Eulerian and Lagrangian diffusivities in the Southern Ocean of 1/10°POP

February 23, 2006

Alexa Griesel
Scripps Institution of Oceanography

Sarah Gille
Scripps Institution of Oceanography

Janet Sprintall
Scripps Institution of Oceanography

Julie McClean
Scripps Institution of Oceanography

Joseph H. LaCasce
Norwegian Meteorological Institute, Oslo

Mathew Maltrud
Los Alamos National Laboratory
I Intro

- Model
- Deployments
- Method

II Results

- Depth dependence of Lagrangian diffusivities
- Latitude dependence of Lagrangian diffusivities
- How well do Lagrangian diffusivities parameterize model eddy heat transport

III Discussion

- Number of floats
- Lateral Placement
I Parallel Ocean Program Model

- 1/10° horizontal resolution, 2-9 km grid spacing between 79°S - 34°S

- 40 depth levels (10 m - 250 m cell thicknesses)

- Subgridscale mixing: horizontal: biharmonic diffusion for tracers and momentum. vertical: KPP

- NCEP/NCAR 6 h air-sea heat fluxes and evaporation, monthly ISCCP (shortwave and cloud fraction), MMS (Spencer, 1993) and Xie, Arkin 1997 precipitation

- Restoring to SSS, SST climatology (Steele et al. 2001) under ice, open ocean SSS restoring with timescale of 6 months (Maltrud and McClean, 2005)
I Numerical float deployments and trajectories

- release in 4 patches
- 300 m, 800 m and 1500 m
- two groups per patch and depth, deployed 60 days apart with 80 floats each
- initial deployment grid: quarter degree spacing
- floats are advected by model flow

Float trajectories from 300 m deployments after ca. 3 years
\begin{align*}
\langle u'_i(x, t) \Theta'(x, t) \rangle &= - \int_0^t d\tau \partial_\tau \kappa_{ij}(x, \tau) \partial_{x_j} \Theta(x, t - \tau) \\
\kappa_{ij}(x, \tau) &= \int_{-\tau}^0 d\tilde{\tau} \langle u'_i(t_0 | x, t_0) u'_j(t_0 + \tilde{\tau} | x, t_0) \rangle_L \\
\tau \rightarrow \infty : \quad \langle u'_i(x, t) \Theta'(x, t) \rangle &= - \kappa_{ij}(x) \partial_{x_j} \Theta(x, t)
\end{align*}

1 Defining Means

\[v'_E = u_f(x, t) - V_E(x, t) \]
\[v'_L = u_f(x, t) - V_L(t) \]

1/10° 1998-1999 mean meridional velocity in one bin \([cm/s]\)

\[\overline{v}_E = (-2.26 \pm 4.04) cm/s \quad \overline{v}_L = (-1.73 \pm 3.23) cm/s \]
I Patch 3 trajectories 1500 m Deployment

Bins:
10° in longitude
5° in latitude

at time of deployment $t=0$:

$27.66 < \sigma_\theta < 27.76$

average over all float trajectories:

$\sigma_\theta(1500m) = 34.653 \pm 0.046$

$\sigma_\theta(0m) = 27.701 \pm 0.040$

$\Delta z \approx (1500 \pm 500)m$
II Patch 3: Deployment Depth 1500m D1 vs D2

Deployment 1

k_{yy} as a function of time lag with 2 sigma errorbars (100 x jackknife)

Latitude: 57.5°S, Longitudes: 175°W - 95°W
II Patch 3: Deployment Depth 1500m D1 vs D2

Deployment 1 Deployment 2

κ_{yy} as a function of time lag with 2 sigma errorbars (100 x jackknife)
Latitude: 57.5°S, Longitudes: 175°W - 95°W
II Patch 3: Deployment 1 Depths 1500 m-300 m

1500 m

\(\kappa_{yy}\) as a function of time lag with 2 sigma errorbars (100 x jackknife)
Latitude: 57.5°S, Longitudes: 175°W - 95°W
II Patch 3: Deployment 1 Depths 1500 m-300 m

1500 m 800 m

κ_{yy} as a function of time lag with 2 sigma errorbars (100 x jackknife)
Latitude: 57.5°S, Longitudes: 175°W - 95°W

\begin{align*}
\begin{array}{c}
\kappa_{yy} [m^2/s] \\
-95 & -50 & 0 & 50 & 95 \\
-4000 & -2000 & 0 & 2000 & 4000 \\
\end{array}
\end{align*}

\begin{align*}
\begin{array}{c}
\kappa_{yy} [m^2/s] \\
-95 & -50 & 0 & 50 & 95 \\
-4000 & -2000 & 0 & 2000 & 4000 \\
\end{array}
\end{align*}

\begin{align*}
\begin{array}{c}
\kappa_{yy} [m^2/s] \\
-95 & -50 & 0 & 50 & 95 \\
-4000 & -2000 & 0 & 2000 & 4000 \\
\end{array}
\end{align*}

\begin{align*}
\begin{array}{c}
\kappa_{yy} [m^2/s] \\
-95 & -50 & 0 & 50 & 95 \\
-4000 & -2000 & 0 & 2000 & 4000 \\
\end{array}
\end{align*}
II Patch 3: Deployment 1 Depths 1500 m-300 m

κ_{yy} as a function of time lag with 2 sigma errorbars (100 x jackknife)
Latitude: 57.5°S, Longitudes: 175°W - 95°W
Lagrangian diffusivities with depth

κ_{yy} as an average over last 25 tlags (days 70-95), bins at 57.5°S
Lagrangian diffusivities with depth

\(\kappa_{yy} \) as an average over last 25 tlags (days 70-95)
\(\kappa_{yy} \): 1x Standard deviation last 25 tlags, Mean depth in bin: Standard error

\[+ D_1 \circ D_2 \]

- 300m
- 800m
- 1500m

Lagrangian KYY [m^2/s]

Depth [m]
\(\kappa_{yy} \): 1x Standard deviation last 25 tlags, Mean depth in bin: Standard error
Lagrangian diffusivities with latitude

\[\kappa_{yy} \text{ as an average over last 25 tlags (days 70-95) and longitudes West of Drake Passage} \]
II Lagrangian diffusivities with latitude

\[\kappa_{yy} \text{ as an average over last 25 tlags (days 70-95) and longitudes West of Drake Passage} \]

Mean depth of trajectories in bin
II Lagrangian diffusivities with latitude

\[\kappa_{yy} \] as an average over last 25 tlags (days 70-95) and longitudes West of Drake Passage

Zonal mean meridional eddy heat transport
Zonal mean meridional T gradient at 300 m
How well do Lagrangian diffusivities parameterize model eddy heat transport?

- $v'T' = \overline{vT} - \overline{vT}$, overline is 1998-1999 mean
- Interpolate $v'T'$ and $\partial_y \overline{T}$ to drifter locations
- Average over bin
- $\kappa_{EFG} = \langle v'T' \rangle / \langle \partial_y \overline{T} \rangle$
- Eliminate rotational part: $\kappa_{EDL} = \langle \nabla \cdot v'T' \rangle / \langle \nabla^2 \overline{T} \rangle$

FG: "Flux Gradient"
DL: "Divergence Laplacian"
II Lagrangian vs Eulerian diffusivities

\[\kappa_E = \langle \nu' T' \rangle / \langle \partial_y T \rangle \]

\[\kappa_E = \langle \nu' T' / \partial_y T \rangle \]
\[\kappa_E = \frac{\langle \nabla \cdot \overline{v'T'} \rangle}{\langle \nabla^2 T \rangle} \]
Lagrangian vs Eulerian diffusivities - depth dependence

\[\kappa_{EFG} = \frac{\langle \nabla \cdot \bar{v}'T' \rangle}{\langle \nabla^2 T \rangle} \quad \kappa_{EDL} = \frac{\langle \nabla \cdot \bar{v}'T' \rangle}{\langle \nabla^2 T \rangle} \]
- Lagrangian diffusivity tensor $k_{yy}, k_{xx}, k_{xy}, k_{yx}$, no convergence for zonal diffusivities

- still insufficient Lagrangian statistics, influence of shear dispersion

- Davis 1987 theory strictly for passive tracers

- How to interprete Lagrangian diffusivities with respect to diffusivities commonly used in models (distinguish between diffusive, advective, rotational parts)

$$K_s = \begin{pmatrix}
A & 0 & (A - \kappa_{gm})S_x \\
0 & A & (A - \kappa_{gm})S_y \\
(A + \kappa_{gm})S_x & (A + \kappa_{gm})S_y & AS^2
\end{pmatrix}$$

$$S = -\nabla_h \rho / \partial_z \rho.$$
Summary

- reasonable convergence of diffusivities for 1500 m deployment
- subtraction of spatially varying mean is crucial
- Lagrangian diffusivities \((1719 \pm 1420)m^2/s\) above 500 m, \((972 \pm 548)m^2/s\) at 1250 m
- Latitudinal dependence: Lagrangian diffusivities high where temperature gradients and eddy heat fluxes high
- no correlation between Eulerian and Lagrangian diffusivities, depth dependence is similar
- Parameterization with Lagrangian diffusivities overestimates meridional eddy heat transport and divergence of eddy heat transport across bins by a factor of about 2
Number of Floats 800m deployment

Meridional diffusivity (m^2/s) as a function of timelag (days).
Bootstrap 100 times Half the floats (40)
Meridional diffusivity (m^2/s) as a function of timelag (days).

Bootstrap 100 times Half the floats (40)
Meridional diffusivity (m^2/s) as a function of timelag (days).

Bootstrap 100 times Half the floats (40) Quarter of the floats (20)
Number of Floats 800m deployment

Meridional diffusivity (m^2/s) as a function of timelag (days).
Bootstrap 100 times Half the floats (40) Quarter of the floats (20)
Lateral Placement 800m deployment

Left: 40 trajectories from northern side of deployment points. Right: 40 trajectories from southern side
Lateral Placement 800m deployment

Meridional diffusivity \((m^2/s)\) as a function of timelag (days). Sample 100 times Northern set of floats (red) and Southern set of floats (blue). Full sample (black).