
GFD Homework 3
DUE 8 March in class

1. Topographic Rossby waves. Think back to the QG equation for a single, homogenous layer of
fluid. Now let’s say that the lower boundary is sloped, as would happen, for example, when
we’re near the coast. Our local coast runs roughly north/south, and we can approximate the
bottom slope linearly as αx where α is small, at which point the total water depth becomes

H0 + η − αx

The QGPV equation becomes:

Dq

Dt
= 0 q = ζ + βy − f

H0
(η − αx)

where η is still potentially a function of both x and y.

(a) Write out the linearized form of the QG equation in terms of the streamfunction Ψ

(b) Assuming a wave-like solution for the streamfunction, find the dispersion relation (e.g.
ω = ....)

(c) Compute the along-isobath phase speed. In the Northern Hemisphere, do topographic
waves propagate with the shallower water on their right or left?

(d) Now let’s compare a purely topographic Rossby wave (β = 0, α 6= 0) with a traditional
Rossby wave (β 6= 0, α = 0) . How steep does the bottom slope have to be for a topo-
graphic wave (ignoring beta) to have a comparable magnitude frequency as a traditional
Rossby wave? (assume a latitude of 45N and H0 = 2000 m).

(e) Compare your answer to typical steepnesses of real continental slopes.
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2. In class we derived equations that govern the vertical mode shapes for both Rossby and internal
gravity waves. For Rossby waves, for example, if we assume N varies slowly with depth the
equation looks like:

d2Ψ̂

dz2
=

1

f20

(
k2H +

kβ

ω

)
N2(z) ˆΨ(z)

And the solutions are a quantized set of vertical modes. Show that, even without assuming N
to be constant, the modes are orthogonal to each other in the particular sense that∫ H

0
N2(z)Ψ̂n(z)Ψ̂m(z) = 0 (if m 6= n)

This means that you can formally project any initial perturbation onto a complete set of
modes, which then propagate away at their own speeds.
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3. In class Thursday we will derive the dispersion relation for two-layer QG flow with a back-
ground mean sheared flow that can lead to baroclinic instability when ω has an imaginary
component. We will mention that for the limiting case of β = 0, the dispersion relation re-
duced to a simple limit in which there was an instability for ALL values of U, no matter how
small. For the full dispersion relation,

ω =
−kβ
k2h + k2i

[
1 +

k2i
2k2h
± k2i

2k2h

√
1 +

4k4h(k4h − k4i )
k4βk

4
i

]

where kh =
√

(k2 + l2).

(a) For given values of β and ki, what’s the minimum value of U (let’s call it Umin) that
allows growing instability for any wavelength? In other words, what’s the smallest U for
which there is at least SOME instability possible.

(b) For U = 2Umin and l=0, instability will be possible for a range of wavelengths. What is
the k of the motion that grows fastest in time?

(c) Now we’ll compare these results with the observed results of baroclinic instability in
the atmosphere and ocean. To do so, let’s say we’re at a mid-latitude of 40N, g’=0.5
(atmosphere), g’=0.01 (ocean), and characteristic ”layer” heights are 5 km (atmosphere)
and 500 m (ocean). The former is approximately half the tropopause height while the
later is a characteristic length scale of the ocean pycnocline. Plug in numbers to get the
fastest growing wavelength for the (U = 2Umin) case in each fluid.

(d) What is the e-folding time-scale of growth, in days?

(e) Using your no-doubt excellent web-surfing skills, compare these numbers to typical sizes
of both mid-latitude atmospheric storms and ocean eddies (look in the Gulf Stream
extension or Agulhas retroflection for good examples). Are they similar?

3


