
1 Shallow water equations PV

There were some questions about the mathematical steps that I left out in class when deriving the
full shallow water potential vorticity (PV) conservation equation. So here it is in full(?) glory: we
start with our Boussinesq, hydrostatic equations
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We’re still going to assume a small Ekman number and constant density because we’re considering
motion of the entire fluid depth, and assume that pressure is related to the sea surface height. But
we’re not going to assume small amplitude flow. The result is:
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As with the last time, note that nothing on the rhs of the momentum equations has any vertical
dependence, so if there’s no vertical structure to u or v to start with, there never will be. Which
means two things. First, that we can still integrate continuity to get
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Dt
= −(H + η)∇ · ~uH (9)

And second that the vertical derivatives in the advective term in the momentum equations go
away, so we can write them as
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To get the general form of potential vorticity conservation we’re going to do a bit of algebra.
Let uH but the vector of the horizontal component of velocity. We can write

DuH
Dt

+ fẑ × uH = −g∇η (13)

duH
dt

+ uH · ∇uH + fẑ × uH = −g∇η (14)

(15)
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Note that from vector identities we know that

∇(u · u) = 2(u · ∇u) + 2u× (∇× u)

Dividing by two and plugging in we get

duH
dt

+
1

2
∇(uH · uH)− uH × (∇× uH) + fẑ × u = −g∇η (16)

duH
dt

+
1

2
∇(uH · uH)− uH × ζ + fẑ × u = −g∇η (17)

duH
dt

+
1

2
∇(uH · uH) + ζ × uH + fẑ × u = −g∇η (18)

duH
dt

+ ([f + ζ]ẑ)× uH = −∇(gη +
1

2
|uH |2) (19)

(20)

Now take the curl of the whole thing to get an equation for rate of change of zeta and note for the
right hand side that the curl of the gradient of anything is zero.

dζ

dt
+∇× ([f + ζ]ẑ)× uH = 0

Apply basic vector identities to this to get

dζ

dt
+ (f + ζ)(∇ · uH)− uH(∇ · [f + ζ]ẑ) + uH · ∇[f + ζ]− [f + ζ]ẑ · ∇uH = 0

We can simplify this a bit by realizing that 1) ζ is the curl of uH and the divergence of the curl
of anything is zero, and 2) the last term has vertical vector dotted into a horizontal one, so is also
zero. So now we have

dζ

dt
+ (f + ζ)(∇ · uH) + uH · ∇[f + ζ] = 0

Combining the first and third terms into a material derivative gives us

Dζ

Dt
= −(f + ζ)∇ · uH (21)

Now look at our continuity equation from the last page and notice that is also has a divergence of
horizontal velocity terms in it. So let’s take the continuity equation, (9) and multiply both sides by
(f + ζ) and then divide by (H + η) to get

(f + ζ)
Dη

Dt
= −(f + ζ)(H + η)∇ · uH

(f + ζ)
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Dt
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which now has a rhs just like Equation (21) above. Combining them gives us
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(24)

Finally, notice that this looks like the chain rule expansion of the following
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