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Abstract.
Recent observations and analysis suggest that rough abyssal topography serves as a generation site
for energetic internal waves. The elevated turbulence that these waves produce may be an important
part of global circulation and energy budgets. We have conducted a series of idealized numerical
experiments to investigate internal wave evolution and interaction above rough topography. The
non-hydrostatic equations of motion are solved in a horizontally periodic, domain with free-slip top
and bottom boundary conditions, allowing nonlinear interactions between about 105 wave modes.
We do not explicitly consider the wave generation problem, but instead force each simulation with
a narrowband, upwardly propagating internal tide as a (near) bottom boundary condition. Three
simulations are run with varying amplitude at a low-latitude (26 ◦ S) chosen to match the Brazil
Basin mixing experiment. For comparison, three simulations were also run at at mid-latitude (45 ◦

S).
In all cases nonlinear interactions quickly transfer energy to a wide range of scales and frequencies.
Once a quasi-steady state is achieved, energy spectra are characterized by high-frequency slopes
with close spectral slopes close to -2, in qualitative agreement with numerous observations and
models. In contrast, vertical wavenumber spectra retain more of a narrowband signature, with
deviations in shape that respond sensitively to changes in forcing amplitude. Two-dimensional
spectra are non-separable in vertical wavenumber and frequency, with a band of energy at low-
wavenumbers extending through all frequencies. The numerical predictions of turbulent dissipation
appear to be realistically patchy in space and time with a strongly decreasing trend with height in
all simulations. All simulations yield an approximately quadratic relationship between the average
shear variance and the volume integrated dissipation rate.
There are two major distinctions between low- and mid-latitude results. First, at low-latitude,
nonlinear interactions transfer energy from tidal to near-inertial waves, while at mid-latitude
energy remains concentrated near the forcing frequency (M2) and wavenumber. At low-latitude,
the frequency shift occurs within a few days of the initiation of forcing. Second, the average
mid-latitude dissipation rate is larger than that at low-latitude for comparable wavefield energy,
especially near the forcing region, qualitatively consistent with observations and theoretical
predictions. We hypothesize that the dramatic difference in the rate of energy transfer out of
the tidal band between the low- and mid-latitude experiments is loosely related to Parametric
Subharmonic Instability (PSI) - an idealized type of wave-wave interaction possible only at low
latitudes.

Introduction

The study of deep ocean mixing remains a vital and vi-
brant part of the quest to understand and model ocean cir-
culation. Deep and abyssal mixing maintain the meridional
gradients that drive the overturning circulation, determine
average isopycnal locations, and control deep lateral circu-
lation and upwelling. The order of magnitude discrepancy
between the rate of turbulent diapyncal mixing inferred nec-
essary to close global budgets and typical measurements has
been a long-standing cause of concern in the small-scale
oceanographic community. The relatively low magnitude of
typical thermocline diffusivity (∼5×10−6m2 s−1 ) has been
confirmed by both microstructure [Gregg 1998, Polzin et al

1995] and tracer release [Ledwell et al 1993] studies, and is
consistent with several models of internal wave-wave inter-
action as governing dynamic [Henyey et al 1996, McComas
and Muller 1981, Winters and D’Asaro 1997].

Recent observations in the Brazil Basin [Polzin et al
1997, Ledwell et al 2000] have strengthened earlier sus-
picions [Munk 1966] that much of the ’missing mixing’
may be occurring over regions of rough topography. Polzin
et al [1997] found diapycnal diffusivities well above 10−4

m2 s−1 that extended (with declining magnitude) well above
the highest topography. They suggested that the elevated
turbulence is related to the presence of an energetic inter-
nal wave field generated locally by the interaction of the
barotropic tide with rough topography. The implications of
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such patterns of elevated mixing are global - Simmons et
al [2003] and Hasumi and Suginohara [1999] demonstrate
that the structure and magnitude of deep circulation and up-
welling sensitively respond to bottom-intensified, horizon-
tally inhomogeneous diffusivity.

The internal-wave generation problem has received a
surge of recent attention (e.g. St. Laurent and Nash [this
issue], Polzin [this issue], St Laurent and Garrett [2002],
Llewellyn Smith and Young [2002], and Egbert and Ray
[2000]). Efficient generation is found to occur over a wide
range of topography, from fracture zones to sea-mounts to
island arcs to mid-ocean ridges. St. Laurent and Nash [this
issue] argue that the lowest generated modes radiate away
from the generation site, while higher modes are trapped lo-
cally. They hypothesize that nonlinear interactions in the
vicinity of forcing regions transfer energy to dissipative
scales, leading to observed patterns of elevated turbulence.
The nature of such interactions, and sensitivity to the mag-
nitude and spectral character of generated waves, is a major
open question and is the subject of the work presented here.

We have undertaken a series of idealized numerical ex-
periments to study internal wave energy transfers in ener-
getic regions - in particular above sites of topographic in-
ternal wave generation. These experiments do not directly
address wave generation, but impose an upward propagating
internal wave field as a (near) bottom boundary condition,
and explore the energy transfer rate, steady-state spectral
properties, and the numerical analog to turbulent dissipation
as functions of depth. Here we present results using spec-
trally localized wave forcing and consider the sensitivity of
results to changes in forcing wave amplitude and latitude.

Numerical Methods

The numerical model used here is an updated version of
the three-dimensional, pseudo-spectral non-hydrostatic code
used by Winters and D’Asaro [1997], and is more fully de-
scribed in Winters et. al. [2003]. Generally, this choice of
model and associated parameters reflects our focus on inter-
actions within the internal wave continuum rather than the
details of wave generation or dissipation. Approximately
105 wave modes are free to interact via the inviscid Navier-
Stokes equations. Energy transferred to scales smaller than
about 1 km horizontally and 100 m vertically is removed
through hyperviscosity. This removal rate, or equivalently
the rate of downscale transport then serves as an estimate of
the dissipation rate, ε.

Specifically, the model solves the equations of motion in
an incompressible, rotating ocean with arbitrary forcing,
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where (u, v, w) is the velocity vector, ρ′ is the density per-
turbation from a linearly increasing average density profile
(ρ̄), p′ is the perturbation pressure, ρ0 is a reference density,
and f is the inertial frequency. The model is solved in a
rectangular domain of size (Lx, Ly, Lz) with (nx, ny, nz)
evenly spaced grid points, horizontally periodic boundary
conditions and free-slip top and bottom boundary conditions
(Table 1). It must be justified a posteriori that the avail-
able bandwidth is enough to capture the important interac-
tion scales. To address this question, we varied the resolu-
tion for one case and found that the major features discussed
here (spectral slopes and average dissipation rates) did not
substantially change with increased resolution.

The coefficients (νp, κp) and exponent (p) of the hyper-
viscosity terms in (1) are chosen to maximize the range of in-
viscid wavenumbers while removing energy from the small-
est resolved scales quickly enough to maintain numerical
stability. Based upon these equations we define a ‘hyper-
dissipation’ rate (henceforth simply referred to as the dissi-
pation rate),

ε = νp,j

[
∂

∂xj

p/2

ukk

]2

(2)

that describes the rate at which energy is transfered to dissi-
pative scales by inviscid dynamics.

The simulations are initialized at rest and forced with a
bottom-localized, narrowband field of upward-propagating
internal waves of tidal(M2) frequency, a modification of the
forcing used by Slinn and Riley [1998]. For example, forcing
of vertical velocity is specified as the time derivative of a
hypothesized forcing wave velocity,

Fw =
∂wF

∂t
=

∑
k
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i[k·x−ω0t]F (z) (3)

k = [kx, ky, kz(kx, ky, ω0)] (4)

F (z) = e−b2z2
. (5)

The simulations presented here were forced with a narrow
gaussian distribution of spectral amplitudes (Ak) around a
central horizontal wavenumber,

Ak = A0e
−
[

kx−kx0
β

]2−
[

ky−ky0
β

]2

, (6)

where A0 physically represents a typical vertical displace-
ment. The central horizontal wavevector (kx0, ky0) is ori-
ented eastward in these f-plane simulations without loss of
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Table 1. Parameters common to all runs

Lx 50 km nx 128 kx0 6.3 × 10−4 m−1 N 2 × 10−3 s−1

Ly 50 km ny 64 ky0 0 m−1 ω0 1.4 × 10−4 s−1

Lz 5 km nz 128

generality (Table 1). For each pair of horizontal wavenum-
bers (kx, ky), the vertical wavenumber is calculated from
the dispersion relationship for a given forcing frequency, ω 0.
The characteristic scale (b) of the vertical localization func-
tion (F ) is chosen to allow at least one full vertical wave-
length in the forcing region (b = 1.5kz0).

The results from six runs are presented here (Table 2),
three each at low-latitude (LL) and mid-latitude (ML). Runs
LL1 and ML1 are presented in some detail; they have the
same forcing amplitude, but have different local inertial fre-
quencies, representing low (26 S) and mid-latitude (45 S)
environments. The low latitude value was chosen to match
that of the Brazil Basin observations. The central forcing
wavenumber k0 and wave amplitude A0 were chosen to ap-
proximately match the magnitude and characteristic hori-
zontal wavenumber of the peak upward energy flux calcu-
lated by St. Laurent and Garrett [2002]. Note that as lati-
tude changes, so does the vertical wavenumber of the forcing
waves, which is set by the chosen horizontal wavenumber
and forcing frequency (Table 2). In addition to these two
main simulations, two others were conducted at each lati-
tude, with half and double the forcing amplitude.

Results

Low-latitude: base case (Run LL1)

Despite the simple form of the forcing functions, a rela-
tively complex wavefield quickly emerges. Figure 1 shows
snapshots from Run LL1 after a couple days and nearly a
month. The early snapshot of horizontal velocity shows a
simple pattern of upwardly propagating waves (upper left
panel). Because no appreciable energy has yet been trans-
ferred to high wavenumbers, the dissipation rate is negligible
(upper middle panel). Spectra confirm that energy is tightly
banded around the forcing wavenumbers and tidal frequency
(right panels, thick grey). In the later snapshot energy has
spread out to a wide range of scales and frequencies. Re-
markably, there is no significant peak at the forcing (tidal)
frequency in the later snapshot, but a large peak can be seen
near the inertial frequency. Low-frequency (low aspect ra-
tio) motions are visible as banded structures of horizontal
velocity in the later snapshot (lower left). The dissipation
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Figure 2. Integrated spectral energy in two frequency bands,
ΣΨ(ω)dω, of width dω = 1.4 × 10−5s−1 centered at ω =
5.6×10−5s−1 and ω = 1.4×10−4s−1 (thick and thin solid lines).
The frequency spectra, Ψ(ω, t) were calculated at each time from
wavenumber spectra using the linear dispersion relationship. The
lower frequency band includes both inertial and near-inertial mo-
tions; to separate these dynamically different processes, motions in
this frequency band with non-zero horizontal wavenumber (super
inertial, thick solid line), and zero horizontal wavenumber (inertial,
dotted line) are plotted separately.

rate is patchy, as observations often suggest, with elevated
regions visible near the bands of strong velocity (and strong
shear). The patterns and typical scales of velocity and dissi-
pation rate fluctuations are qualitatively similar to observed
data [Polzin 2003a].

The transition from dominantly tidal (in a depth-averaged
sense) to lower frequency motions occurs rapidly and early
on in the simulation (Fig. 2). During the first few days,
the newly generated internal tide is largely in phase with
the forcing, and we see a rapid rise in tidal energy. After
five days the first waves have reflected off the top bound-
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Figure 1. Left panels: slices of eastward horizontal velocity after 2 days (4 forcing periods) and 43 days (82 forcing periods) from the
low-latitude simulation (Run LL1). Slices are located 2.5 km horizontally and 1 km vertically away from the domain boundaries. Middle
panels: dissipation rate (2) at these times. Right panels: early (thick, grey) and late (thin, black) depth-averaged power spectra of horizontal
kinetic energy as a function of horizontal wavenumber (kh = |(kx, ky)|), vertical wavenumber (kz), and frequency. Frequency spectra for
the early snapshot was calculated from wavenumber spectra using the linear dispersion relationship, while frequency spectra for the later
time is based on a 4-day time series. Central forcing frequencies/wavenumbers are indicated with vertical dotted lines. Grey shaded regions
indicate wavenumber ranges in which hyperviscosity acts to damp motion in less than a day.
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Table 2. Run parameters, from left to right: run label, forcing amplitude, local inertial frequency, forcing vertical wavenum-
ber, depth-averaged total energy averaged over days 20-40, average energy from super-inertial motions only, and average
dissipation rate. Depth averages taken only above the forcing region (z ≥ 0.8km).

Run A0 / m f / s−1 kz0 / m−1 Etot / Jkg−1 Ewaves / Jkg−1 ε / Wkg−1

LL1 1.0 −5.3 × 10−5 9.6 × 10−3 1.1 × 10−3 6.9 × 10−4 2.9 × 10−10

LL2 2.0 −5.3 × 10−5 9.6 × 10−3 2.1 × 10−3 1.5 × 10−3 1.1 × 10−9

LL3 0.5 −5.3 × 10−5 9.6 × 10−3 5.5 × 10−4 5.0 × 10−4 1.9 × 10−10

ML1 1.0 −1 × 10−4 1.3 × 10−2 1.1 × 10−3 1.1 × 10−3 5.9 × 10−10

ML2 2.0 −1 × 10−4 1.3 × 10−2 1.9 × 10−3 1.9 × 10−3 1.4 × 10−9

ML3 0.5 −1 × 10−4 1.3 × 10−2 1.9 × 10−2 8.4 × 10−3 1.4 × 10−10

ary and begun to propagate downwards (not shown). Over
the next few days there is a rapid redistribution of energy to
other wavenumbers and frequencies, and, as a result, a loss
of coherence between the wavefield and the forcing. Most of
the transition between the narrow and broad spectral shapes
shown in Figure 1 occurs during this period. In particular,
the tidal energy declines while near-inertial energy rises. Af-
ter approximately 10 days, the wavefield becomes steady in
the sense that tidal and near-inertial wave energies stabilize
with a ratio close to 1:3. However, energy slowly accumu-
lates in inertial and sub-inertial motions with zero horizontal
wavenumber throughout and several months beyond the pe-
riod shown here (Fig. 2, dotted line).

Two-dimensional spectra of horizontal velocity provide
further insight into the distribution of waves present in the
quasi-steady state (Fig. 3,left). Two major features are ap-
parent. First, the peak in energy at the forcing frequency and
wavenumber is small. Instead there is an accumulation of
energy near the inertial frequency at vertical wavenumbers
ranging from half to several times the forcing wavenumber.
Second, there is a band of energy centered below the forcing
wavenumber extending out to high frequencies.

After about 10 days, when the magnitude and spectral
properties of super-inertial motions have stabilized, aver-
age wave energy and dissipation rate both steadily decrease
with height above the forcing region (bottom 800 m, Fig.
4). Inertial and sub-inertial energy (thick grey, left panel)
also decreases steadily with height, though less smoothly.
The conversion of depth-averaged tidal to near-inertial en-
ergy from Figure 2 is mirrored in the depth-evolution of
frequency spectra (Fig. 4, right panel). At three increas-
ing heights above the bottom, the tidal peak shrinks, while
lower-frequency energy rises. Though depth-average energy
spectra show a broad peak near and above the inertial fre-
quency (Fig. 1), the spectrum from highest above bottom
here is instead peaked at half the forcing frequency (Fig. 4,
right panel, blue line).

Mid-latitude: base case (Run ML1)

At mid-latitude (Run ML1), most wave energy remains
near the forcing frequency. The initial snapshots and spec-
tra are similar to the low latitude case (Fig. 5). The flow
evolution however, is significantly different. The final state
shows neither the dominant near-inertial peak nor the asso-
ciated banded structures in velocity. As with Run LL1, the
initial rapid growth of tidal energy levels off after a few days
(Fig. 2, bottom panel). In this case energy again appears at
near-inertial frequencies but does not surpass that in the tidal
band. There is no appreciable energy accumulation in iner-
tial or sub-inertial motions. Unlike the low-latitude case, the
average energy input from forcing and loss to dissipation are
comparable; the system has achieved a truer steady state.

At this latitude, energy does not build up in near-inertial
and inertial motions, but instead remains clustered near the
forcing frequency and wavenumber (Fig. 3, right panel). As
in the low-latitude case, there is a band of energy centered
near half the forcing wavenumber spread through a wide
range of frequencies. There are also patches of elevated en-
ergy at harmonics of the forcing frequency.

In steady-state, the mid-latitude waves maintain a dom-
inantly tidal frequency, with steadily decreasing magnitude
with height (Fig. 6). In contrast to the low-latitude case, here
energy and dissipation rate rapidly decrease with height and
level off a kilometer above the forcing region.

Varying amplitude

We now briefly consider the effect of changing the forc-
ing amplitude at each latitude (Runs LL2,LL3,ML2,ML3,
Table 2). As the low-latitude forcing amplitude is doubled,
and doubled again, the saturation energy level also doubles
twice (Table 2). With increasing amplitude the wave-field
shear is distributed amongst a larger range of vertical scales
(Fig. 7, top panel). In particular, with higher total spec-
tral level there is an increasing spread of variance to lower
wavenumbers. It is interesting to note (but beyond our cur-
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Figure 3. Two-dimensional spectra of eastward horizontal velocity as a function of frequency and vertical wavenumber for the base cases
at low latitude (Run LL1, left) and mid latitude (Run ML1, right). Spectra were calculated from four day long time series starting 38 days
into the run, and have been averaged over all horizontal wavenumbers. Blue lines indicate the tidal forcing frequency and local inertial
frequency (vertical lines) and forcing wavenumber (horizontal lines).
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Figure 4. Left panel: Total energy (kinetic plus potential) averaged horizontally and over 4 days after the low-latitude simulation (Run
LL1) has achieved a near-steady state. Thin black and thick grey lines represent data with non-zero horizontal wavenumber (super-inertial)
and zero-horizontal wavenumber (inertial and sub-inertial) respectively. Middle panel: average dissipation rate over this period. Right
panel: horizontal kinetic energy frequency spectra calculated from time series at three depths as indicated by horizontal dashed lines in the
left and middle panels. Vertical dashed lines indicate the forcing frequency (M2), half the forcing frequency, and the inertial frequency. A
line with a -2 slope is shown for reference.
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Figure 5. Same as Fig. 1, for mid-latitude (Run ML1).
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Figure 8. Integrated shear spectra (Fig. 7) versus the average dissi-
pation rate above the forcing region (z ≥ 0.8km) for low-latitude
(black circles) and mid-latitude (red stars) simulations. A -2 slope
is shown for reference.

rent ability to understand) that all three spectra are peaked
at or just above twice the forcing wavenumber. At mid-
latitude, shear spectra are peaked at the forcing wavenum-
ber, with variance primarily spread to higher wavenumbers.
Compared to the low-latitude cases, mid-latitude shear spec-
tra maintain consistent shape with varying amplitude (Fig. 7,
right panel). Integrated shear variance has a strong relation-
ship with average dissipation rate amongst all simulations
(Fig. 8).

Discussion

Wave-wave interactions and spectral evolution

Energy may be transfered between finite amplitude in-
ternal waves through the nonlinear terms in (1). Though in
general the transfer rates are complicated and somewhat im-
penetrable, McComas and Bretherton [1977] argued that for
spectral distributions similar to the , energy transfer is dom-
inated by a few classes of interactions that can be described
in relatively simple terms. One of these is Parametric Sub-
harmonic Instability (PSI), which involves the transfer of en-
ergy from an energetic initial wave to waves of smaller ver-
tical scale and half the frequency. PSI is a candidate mecha-
nism to transfer energy away from tidally forced waves only
when the tidal frequency is at least twice the inertial fre-
quency - a criteria that is met only for the low-latitude runs.
Previous studies of PSI in GM-like wavefields have miti-
gated its importance by noting the relatively long associated
timescales of interaction - typically on the order of tens of
days for the vertical wavenumbers considered here [McCo-
mas and Muller 1977].

It is tempting to conclude that the apparently much more
efficient transfer of energy out of the forcing bandwidth in
the low latitude case is due to PSI, particularly given the
spectral peaks at half the forcing frequency in Figure 4.
However, a few caveats must be noted. First, energy appears
at a range of vertical wavenumbers in the lower, near-inertial
frequency band, many of which are actually smaller than
the forcing wavenumber. Second, resonant wave interac-
tion models are based upon statistical averages of randomly
phased waves with prescribed spectral shapes. Comparisons
with interaction timescales or other model features may not
be appropriate for the bandwidth limited, coherently forced
waves described here. In fact, both the initial wavefield evo-
lution (Fig. 2) and the saturation spectral shapes (Figs. 4,
3) suggest that the transfer of energy out of the forcing fre-
quency band is quite rapid.

Other features of the spectral evolution or final state ob-
served here are even less easily explicable in terms of com-
monly discussed classes of wave-wave interaction. In partic-
ular, there is no previously described mechanism that we are
aware of that operates to transfer energy to higher frequen-
cies at low wavenumbers, a feature observed at both latitudes
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(Fig. 3). We caution against overly strict comparison with
any single mechanism - it is likely that the evolution here
comes from a full array of resonant and off-resonant wave
interactions.

Energy and dissipation

Over the last 30 years several studies have identified the
dissipation rate with the modeled spectral transfer of en-
ergy from large (vertical) scale to small scale waves through
wave-wave interaction (e.g. Gregg et al [2003], Polzin et al
[1995], Muller et al [1986]). Several robust features of this
family of predictions have been validated by a wide range of
observational [Gregg 1989, Polzin et al 1995] and numerical
[Winters and D’Asaro 1997] results, though few validation
attempts have taken place near regions of energetic internal
wave generation. Here we briefly consider several such fea-
tures.

First, the average dissipation rate generally scales quadrat-
ically with wavefield amplitude. In the most recent formu-
lations, amplitude is defined as a typical shear spectral level
integrated over a range of vertical wavenumbers defined by
a critical Richardson number criterion [Gregg et al 2003].
This method cannot be directly applied to our results, as the
simulated waves succumb to hyperviscosity before the wave
shear reaches the critical value. Furthermore, calculation of
the spectral energy level in such methods is based on as-
sumptions about the shape of vertical wavenumber spectra
that are violated here (Fig. 7). Despite spectral differences,
there is a strong, close to quadratic relationship between to-
tal shear variance and average dissipation rate for all six of
the simulations presented here (Fig. 8). There is also a good
correlation between average dissipation rate and both the to-
tal and super-inertial energy in each run (Table 2).

The second robust prediction to come from wave-wave
interaction based models of turbulence is that the average
dissipation rate should increase with latitude. The expla-
nation, as described by Gregg et al [2003], is that the dis-
sipation rate depends on a characteristic wavefield aspect
ratio, or equivalently a characteristic frequency. For near-
inertially dominated (GM) wavefields, the energy containing
frequency increases with latitude. In the lower water col-
umn, the mid-latitude dissipation rate is approximately twice
as large as the average low-latitude dissipation rate in a com-
parably strong wavefield (Figs. 4, 6). In fact, the elevated
lower water-column dissipation is comparatively larger than
than the correction factor (L(θ)) of Gregg et al. This ele-
vation may be related to the fact that the average energy-
containing frequency in our mid-latitude simulation is closer
to tidal than inertial (Fig. 6, Table 2). However, as the mid-
latitude dissipation rate decreases more quickly with height
above bottom, the depth-averaged dissipation rates are only
slightly larger at the higher latitude (Fig. 8).

There are significantly fewer theories addressing the ver-

tical structure of dissipation near generation regions. Ob-
served profiles of energy and dissipation over rough topog-
raphy in in the Brazil Basin both decline significantly within
500 meters above bottom [Polzin et al 1997]. Polzin [2003a]
propose a a kinematic model in which the steady-state en-
ergy level at each height is set by a balance between dis-
sipation, itself a quadratic function of energy, and vertical
energy flux divergence. In all of our simulations the aver-
age dissipation rate declines with height, though not quite as
quickly as in the observations or Polzin’s model. We sus-
pect that the relatively large decay scale of simulated low-
latitude dissipation reflects the choice of a moderately sized
forcing wavenumber. Direct forcing of high-wavenumber
waves could lead to enhanced near-bottom dissipation. To-
pographic scattering of downwardly propagating low-mode
waves may also lead to bottom-intensified turbulence [St.
Laurent and Garrett 2002, Muller and Xu 1992] but is not
included in these simulations.

Conclusions

We have presented results from simulations of nonlin-
early evolving internal wave fields at representative low and
mid latitudes. All cases were forced with a simple bottom-
localized, narrowband upwardly propagating internal tide,
yet all quickly spread energy to a variety of scales and fre-
quencies. In the low-latitude simulations, depth-averaged
energy was quickly transfered out of the M2 frequency band
into inertial and near-inertial motions. After about 10 days
the wavefield became steady in the sense that the magni-
tude and spectral characteristics of super-inertial energy sta-
bilized. In this state energy spectra evolved from tidally to
dominated to have significant spectral peaks between half
the tidal (forcing) frequency and the local inertial frequency.
Average super-inertial energy and dissipation both declined
steadily with height. The saturation energy level increased
linearly with changes in forcing amplitude. For increasing
wave energy / spectral level, vertical wavenumber spectra
became increasingly broad, and the average dissipation rate
grew quadratically.

At mid-latitude, wave energy remained significantly more
localized around the forcing frequency and vertical wavenum-
ber. The saturation wavefield maintained a steady spectral
shape and smoothly declined in amplitude with increasing
height above bottom. The average dissipation rate was larger
in the lower water column than that at low-latitude ( for simi-
lar wavefield energy), but declined more quickly with height.

Overall we find these results to be very encouraging.
Given the simple form of the forcing, the fact that the sat-
uration states selected by internal dynamics display spectral
properties and kinematic relationships similar to ocean ob-
servations and theoretical predictions is remarkable. In par-
ticular, it suggests that the important dynamics are relatively
robust and are captured by the scales resolved here. We con-
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clude that similar methods hold great promise for further
exploration of mixing above rough topography as well as
a host of other energetic internal-wave regimes. Hopefully
such work will be instrumental in the development of global
models of internal-wave generation, propagation, and decay
(e.g. Alford [this issue], and Muller [this issue]).
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