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a b s t r a c t

A three-dimensional numerical model for large-eddy simulation (LES) of oceanic turbulent processes is
described. The numerical formulation comprises a spectral discretization in the horizontal directions
and a high-order compact finite-difference discretization in the vertical direction. Time-stepping is
accomplished via a second-order accurate fractional-step scheme. LES subgrid-scale (SGS) closure is
given by a traditional Smagorinsky eddy-viscosity parametrization for which the model coefficient is
derived following similarity theory in the near-surface region. Alternatively, LES closure is given by the
dynamic Smagorinsky parametrization for which the model coefficient is computed dynamically as a
function of the flow. Validation studies are presented demonstrating the temporal and spatial accuracy
of the formulation for laminar flows with analytical solutions. Further validation studies are described
involving direct numerical simulation (DNS) and LES of turbulent channel flow and LES of decaying iso-
tropic turbulence. Sample flow problems include surface Ekman layers and wind-driven shallow water
flows both with and without Langmuir circulation (LC), generated by wave effects parameterized via
the well-known Craik–Leibovich (C–L) vortex force. In the case of the surface Ekman layers, the inner
layer (where viscous effects are important) is not resolved and instead is parameterized with the Smago-
rinsky models previously described. The validity of the dynamic Smagorinsky model (DSM) for parame-
terizing the surface inner layer is assessed and a modification to the surface stress boundary condition
based on log-layer behavior is introduced improving the performance of the DSM. Furthermore, in Ekman
layers with wave effects, the implicit LES grid filter leads to LC subgrid-scales requiring ad hoc modeling
via an explicit spatial filtering of the C–L force in place of a suitable SGS parameterization.

! 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A parallel, hybrid spectral/finite-difference solver of the incom-
pressible Navier–Stokes equations under the Boussinesq approxi-
mation is developed with the goal of performing large-eddy
simulations (LES) of turbulent processes in the ocean. The solver
uses a second-order time-accurate fractional-step method; hori-
zontal directions are discretized spectrally using Fourier trans-
forms and the vertical direction is discretized using high-order
(fifth and sixth-order) compact finite-difference schemes. Finite
differences allow for grid stretching in the vertical in order to re-
solve expected strong vertical gradients in scalars and velocity.
The solver is equipped with subgrid-scale stress parameterizations

suitable for LES. Boundary conditions can be assigned as prescribed
velocity components or as prescribed shear stresses at the bottom
and top bounding surfaces perpendicular to the vertical direction.
In the case of a deep bottom, the solver uses a sponge layer in
the lower region of the domain in order to absorb incoming inter-
nal waves due to stratification. Parallelization is achieved via mes-
sage passing interface (MPI) protocol using the same structure
described by Winters et al. (2004).

The fractional-step algorithm consists of the pressure correction
method on a non-staggered grid of Armfield and Street (2000).
Such a scheme is attractive because it avoids the complexities of
traditional schemes on non-staggered grids while achieving sec-
ond-order accuracy for momentum and continuity. More specifi-
cally, the non-staggered grid avoids interpolations from grid
points to cell centers and vice versa. Fractional-step algorithms re-
quire solution of the momentum equation leading to an intermedi-
ate non-solenoidal velocity followed by a Poisson’s equation for
pressure leading to a velocity correction enforcing continuity.
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In the method of Armfield and Street (2000), nonlinear terms in
the momentum-solve are discretized explicitly with the second-or-
der Adams–Bashforth scheme while linear viscous terms are dis-
cretized implicitly with the second-order Crank–Nicholson
scheme. This second-order accurate time discretization of the
momentum equation is complemented with a second-order accu-
rate time discretization of the continuity equation inherently satis-
fied through a Poisson’s equation for pressure, as shown by Fringer
et al. (2003).

A similar solver to the present model is that of Slinn and Riley
(1998). Both models use a similar time-stepping algorithm and
both use a single spatial (collocated) grid for all variables. Further-
more, both models are hybrid, employing Fourier transforms in
two directions and compact finite differences in the third direction.
Three major differences between the two models are (1) the use of
higher order compact finite-difference schemes in the present
model, (2) the implicit treatment of the molecular viscous stress
in the present model and (3) inclusion of the gradient of pressure
in the momentum equation in the present model. The model of
Slinn and Riley (1998) uses fourth-order compact finite differences
in the vertical direction. Meanwhile, the present model uses fifth-
and sixth-order compact finite differences in the vertical direction.
The current model treats the molecular viscous stress implicitly via
the Crank–Nicholson scheme whereas the model of Slinn and Riley
treats it explicitly via Adams–Bashforth. Explicit treatment of the
molecular viscous stress terms leads to more stringent restrictions
of the time step. Inclusion of the pressure gradient in our momen-
tum equation (following the work of Armfield and Street (2000))
leads to a second-order accurate in time fractional-step scheme.
The model of Slinn and Riley excludes this pressure gradient reduc-
ing the accuracy of their scheme to first-order in time.

In this article, the previously described discretization is shown
to yield expected rates of spatial and temporal convergence. Fur-
thermore, the above-mentioned discretization is validated by per-
forming LES of benchmarks problems such as turbulent channel
flow and isotropic turbulence. The discretization is also shown to
be effective for oceanic turbulent processes in shallow water and
within the surface mixed layer in deep water.

The wide range of spatial and temporal scales in typical turbu-
lent processes makes their explicit computation untractable. Com-
putational constraints make it impossible to resolve the inner layer
in typical oceanic turbulent boundary layers occurring at extre-
mely high-Reynolds number. Following Piomelli and Balaras
(2002), boundary layers can be divided into two regions: the inner
layer where viscous effects are important and the outer layer
where direct viscous effects on mean velocity are negligible. Two
alternatives exist for dealing with the difficulty in resolving the in-
ner layer. In one alternative, the turbulence is simulated at a much
lower Reynolds number than in the ocean. The relatively low-Rey-
nolds number of the simulated flow permits near full resolution of
boundary layers through either direct numerical simulation (DNS)
or LES with near-wall partial resolution (LES-NWR), the latter term
coined by Pope (2000). Although LES-NWR directly refers to par-
tially resolved wall-bounded boundary layers, this terminology ap-
plies to the resolution of boundary layers in general.

In DNS all of the scales in the turbulence are explicitly com-
puted or resolved, while in LES the more energetic scales are re-
solved and the remaining smaller scales are parameterized.
Furthermore, in principle, the LES should have sufficient resolution
to capture a part of the inertial sub-range. The importance of this is
that scales within and below the inertial sub-range are universal
and thus can be parameterized with a subgrid-scale model applica-
ble to any flow condition. Scales within and below the inertial sub-
range become smaller as bottom or surface boundary layers are ap-
proached, requiring smaller grid sizes near those regions, ulti-
mately leading to LES-NWR.

A drawback of LES-NWR is its limitation to low-Reynolds num-
ber flows, much lower than those typically observed in the actual
ocean. In this case, the simulated flow may be strongly affected
by low-Reynolds number effects and may not scale-up favorably
to the actual flow at a greater Reynolds number. Thus, comparison
of computational results with observational field data is crucial.

An alternative to LES-NWR is to perform LES with near-wall
modeling or LES-NWM (Pope, 2000). In this approach, small turbu-
lent scales and the inner layer are not resolved and instead are
parameterized. In LES-NWM, parameterizations typically consist
of those used for LES-NWR modified to capture the net effect of
the unresolved inner layer in a Reynolds-average sense (Piomelli
and Balaras, 2002; Sullivan et al., 1994). A drawback of this ap-
proach is that results near the unresolved inner layer tend to heav-
ily depend on the parameterization. A extensive review of LES-
NWM is given by Piomelli and Balaras (2002). Here we limit our
discussion of LES-NWM to issues related to our computations.

In LES, the governing equations are spatially filtered leading to a
subfilter-scale (SFS) stress (often referred to as the subgrid-scale
(SGS) stress) which must be parameterized. This stress accounts
for the effect of the unresolved small scales on the resolved larger
scales. Reference to SGS instead of SFS is appropriate for implicit
LES methodologies where a combination of the grid and numerical
scheme assumes the role of the filter, often referred to as the grid
filter. In well-resolved regions, the SGS scales are within the iner-
tial sub-range, and the resolved scales (given by the LES solution)
tend to be insensitive to details of the SGS stress parametrization.
However, in poorly resolved or unresolved regions, such as inner
layers in LES-NWM, the resolved scales greatly depend on the
SGS stress parametrization. In these cases, the unresolved fraction
of the total turbulence increases as the unresolved inner layer is
approached. Thus, often inner layer parameterizations in LES-
NWM resemble those in RANS-based models. For example, in the
LES-NWM of tidal boundary layers of Li et al. (2005), the SGS stress
at the bottom is given through a quadratic drag law based on log-
layer similarity theory. The same formulation is used to set the bot-
tom SGS stress in the RANS-based coastal circulation computations
of Durski et al. (2004). Other LES-NWM involving similar inner
layer parameterizations within the geophysical flows community
include the atmospheric boundary layer simulations of Beare
et al. (2006) and the oceanic surface layer simulations of McWil-
liams et al. (1997), Skyllingstad and Denbo (1995) and Zikanov
et al. (2003). Note that in these simulations, molecular viscosity
is deemed much smaller than the turbulent viscosity thus the vis-
cous stress is neglected with respect to the SGS stress. Further-
more, given that the inner layer is not resolved, the SGS stress is
designed so that it matches the prescribed surface stress thereby
transmitting fluxes from the surface to the interior in the absence
of the viscous stress. This in contrast to the LES-NWR approach in
which the viscous stress matches the surface stress while the SGS
stress decreases to zero as the surface is approached.

Since its derivation in the early 1990s, the dynamic Smagorin-
sky SGS stress model (Germano et al., 1991; Lilly, 1992) has gained
popularity due to its dynamically computed model coefficient
based on local flow conditions allowing it to adapt to numerous
conditions. The derivation of the dynamic Smagorinsky model
(DSM) assumes that the computation resolves down to within
the inertial sub-range, relying on the scale-similarity characteriz-
ing this region. Thus, traditionally, the model has been used in
LES-NWR. Recently, the DSM has also been used for LES-NWM of
the atmospheric boundary layer (Porté-Agel et al., 2000). In these
simulations, the DSM has been shown to yield low values of the
SGS stress in the surface region which has been attributed to a lack
of resolution of the inertial sub-range in that region, clearly the
case since the inner layer is not resolved. In order to alleviate this
problem, Lund et al. (2003), following ideas proposed by Sullivan
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et al. (1994), introduced a hybrid SGS parametrization smoothly
varying between the DSM far from the surface and a more tradi-
tional eddy-viscosity parametrization based on Reynolds-averaged
near-surface similarity close to the surface. Porté-Agel et al. (2000)
introduced a new dynamic Smagorinsky parametrization for which
near-surface resolution of the inertial sub-range is not required,
ultimately leading to a scale-dependent parameterization. Similar
to the parametrization of Lund et al. (2003), their parametrization
also led to higher values of the SGS stress.

Use of the DSM for LES-NWM of the ocean surface mixed layer
has been limited to the simulations of Zikanov et al. (2003). They
did not report the difficulties described earlier for the case of
LES-NWM of the atmospheric boundary layer. Here we demon-
strate that for LES-NWM of the ocean surface mixed layer, the
DSM does lead to excessive low values of the SGS stress near the
surface. For staggered grid methods, such as the method used by
Zikanov et al. (2003), the surface wind stress boundary condition
is not imposed at the surface, but rather at a distance half the ver-
tical grid cell size away from the surface. Such a condition greatly
alleviates the difficulties of the DSM near the surface, as will be
shown through our non-staggered grid method.

In the upcoming sections, the dimensionless governing equa-
tions are described along with appropriate parameterizations of
the SGS stress. This will be followed by a description of the frac-
tional-step scheme and the spatial discretization. Applications of
the solver to oceanic turbulence in shallow and deep water involv-
ing LES-NWR and LES-NWMwill be shown. We will focus on a sim-
ple modification to the surface SGS stress boundary condition
leading to an improvement in the performance of the DSM for
LES-NWM on non-staggered grids. The resulting boundary condi-
tion enforces an SGS stress behavior consistent with log-layer sim-
ilarity. We will also show results from LES of Langmuir circulation
(LC) in shallow water and in deep water. LC consists of parallel,
counter-rotating vortices approximately aligned in the direction
of the wind. In our formulation, LC is generated by the Craik–Leibo-
vich (C–L) vortex force (Craik and Leibovich, 1976) in the momen-
tum equation parameterizing the interaction between surface
waves and thewind-driven shear current. Note that this interaction
and thus the C–L forcemechanism do not involve viscous processes,
thus the C–L force can be used to represent LC regardless of whether
or not LES-NWR or LES-NWM is being performed. Wewill highlight
the need to spatially filter the C–L vortex force in order to damp un-
bounded energy growth injected by the force through subgrid-scale
LC. This low-pass spatial filtering operation acts as a surrogatemod-
el of LC subgrid-scales induced by the LES grid filter.

Validation studies demonstrating the temporal and spatial con-
vergence of the discretization will be presented in Appendix. Final-
ly, results from application of the discretization to canonical
turbulence problems (such as turbulent channel flow and decaying
isotropic turbulence) will be shown.

2. Governing equations

2.1. The filtered equations

The Boussinesq approximated filtered Navier–Stokes equations
augmented with the Craik–Leibovich vortex force accounting for
the phased-averaged surface waves and their generation of LC are
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where!ijk is the totally antisymmetric third rank tensor and ðx1; x2; x3Þ
is a right-handed coordinate systemwith x1 and x2 denoting the hor-
izontal directions and x3 denoting the vertical direction. The filtered
velocity vector is ð!u1; !u2; !u3Þ and !p is the filtered pressure divided by
the reference density, qo. The over-bar denotes the application of a
spatial filter. The filtered temperature is !h and hb ¼ h!hih is the bulk
temperature with h&ih denoting an average over horizontal directions
x1 and x2. Note that the temperature has been decomposed as

!h ¼ hb þ !h0; ð2Þ

and thus the filtered pressure in (1) is the pressure that remains
after the component of pressure that is in hydrostatic balance with
the bulk temperature field is removed. This treatment of the buoy-
ancy term in the momentum equation has been previously used by
others (e.g. Armenio and Sarkar, 2002; Basu and Porté-Agel, 2006).

Equations in (1) have been made dimensionless with half-
depth, d, and wind stress friction velocity, us. The Reynolds number
is Re ¼ usd=m and the Prandtl number is Pr ¼ m=j where m is the
molecular kinematic viscosity and j is the molecular diffusivity.
The subgrid-scale stress, ssgsij , is defined as
sresij ' !ui!uj # uiuj; ð3Þ

and the subgrid-scale buoyancy flux is defined as

ksgsj ¼ !uj
!h# ujh: ð4Þ

The last term on the right-hand side of the momentum equation
in (1) is the C–L vortex force defined as the Stokes drift velocity
crossed with the filtered vorticity !xi (Craik and Leibovich, 1976).
The C–L vortex force is a parameterization of the interaction be-
tween phase-averaged surface waves and the wind-driven current
leading to Langmuir turbulence characterized by LC. The non-
dimensional Stokes drift velocity is defined as

/s
1 ¼ coshð2jx3Þ

2 sinh2ðjHÞ
and /s

2 ¼ /s
3 ¼ 0; ð5Þ

where H ¼ 2d is the depth of the domain and j is the dominant
wavenumber of the phased-averaged surface gravity waves.

The Stokes-modified Coriolis force, Fi, in (1) is ð#!u2 # /s
2=La

2
t ; !u1

þ/s
1=La

2
t ;0Þ and the Rossby number is Ro ¼ u(=fdwith f the Coriolis

parameter. Meanwhile, the turbulent Langmuir number appearing
in the Coriolis force and C–L vortex force is defined as
Lat ¼ ðus=usÞ1=2, where us ¼ xja2 is a characteristic Stokes drift
velocity with x being the dominant frequency; j, the dominant
wavenumber and a, the amplitude of the surface waves.

The non-dimensional, modified, filtered pressure is defined as

P ¼ !pþ 1
2
C; ð6Þ

where !p is the filtered dynamic pressure divided by density, qo, and

C ¼ 1
La4t

/s
i/

s
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La2t
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s
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The buoyancy term in the momentum equation involves the
Richardson number defined as

Ri ¼ ggd2

u2
s

d!h
dx3

! "

x3¼0
; ð8Þ

where ðd!h=dx3Þx3¼0 is the fixed vertical temperature gradient at the
thermocline (i.e. at the bottom of the domain) in our stratified sur-
face mixed layer flows, and g is the coefficient of thermal expansion.

2.2. Subgrid-scale closure

The SGS stress, ssgsij , is parameterized using the Smagorinsky clo-
sure (Smagorinsky, 1963) via a dynamic procedure discussed by

A.E. Tejada-Martínez et al. / Ocean Modelling 30 (2009) 115–142 117



Lilly (1992) and references within. Specifically, the deviatoric part
of ssgsij (i.e. ssgsdij ' ssgsij # dijssgskk =3) is parameterized using the dy-
namic Smagorinsky closure and the dilatational part (i.e. dijssgskk =3)
is added to the pressure. The Smagorinsky closure expresses the
deviatoric part of the SGS stress as

ssgsdij ¼ 2 ðCsDÞ2jSj|fflfflfflfflfflffl{zfflfflfflfflfflffl}
eddy viscosity; me

Sij; ð9Þ

where D is the width of the grid filter (i.e. the smallest characteristic
length scale resolved by the discretization), Cs is the Smagorinsky
coefficient, Sij ¼ ð!ui;j þ !uj;iÞ=2 is the filtered strain rate tensor and
jSj ¼ð 2SijSijÞ1=2 is its norm. Note that the splitting of ssgsij into a devi-
atoric part, ssgsdij , and a dilatational part is done for mathematical
consistency, as both sides of (9) are trace free. The model coefficient
is computed dynamically (Lilly, 1992) based on resolved fields as

ðCsDÞ2 ¼ 1
2

LijMij
$ %

MklMklh i
; ð10Þ

where

Lij ¼g!ui!uj # e!ui
e!uj; ð11Þ

and

Mij ¼ gjSjSij # b2jeSjeSij: ð12Þ

An over-tilde,~&, denotes the application of a homogeneous, low-pass,
spatial test filter in the x1 and x2 directions. Angle brackets in (10) de-
note averaging over homogeneous directions asmeans of preventing
instabilities due to potential negative values of themodel coefficient.
Finally, b is a parameter referred to as the filter width ratio, often
approximated as the test filter width divided by the grid cell size, h.
Simulations with the dynamic Smagorinsky model to be presented
later were performed using the well-known box filter of width 2h
(Pope, 2000) approximated using the trapezoidal rule. The width of
the resulting discrete filter is

ffiffiffi
6

p
h (Lund, 1997), thus b ¼

ffiffiffi
6

p
.

The derivation of the model coefficient in (10) is based on the
Germano identity (Germano et al., 1991) which relates SGS stresses
at two different scales ultimately leading to a model coefficient (i.e.
the Smagorinsky coefficient) determined dynamically as a function
of resolved quantities. The grid-level SGS stress arises from filter-
ing at the grid-scale (defined by the grid filter) while the test-level
SGS stress arises from filtering at a test-scale (defined by a test fil-
ter) usually taken as twice the grid-scale. Assuming scale-invari-
ance, both SGS stresses are modeled via Smagorinsky models
with identical Smagorinsky coefficients. This assumption is valid
if the grid-scale and test-scale are within the inertial sub-range
of the turbulence. However, often the grid-scale and/or test-scale
fall outside of the inertial sub-range as is the case when inner lay-
ers are not resolved.

Similarly, the subgrid-scale buoyancy flux is parameterized as
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2jSj|fflfflfflfflfflffl{zfflfflfflfflfflffl}
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where the model coefficient is computed as
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Applications of the dynamic Smagorinsky model in LES-NWM of
geophysical flows are recent and have been primarily performed
for the atmospheric boundary layer (see Porté-Agel et al., 2000).
For the most part, LES-NWM of geophysical flows have been con-
ducted using the Smagorinsky model without dynamic determina-
tion of the model coefficient. Instead, the model coefficient or
better yet the mixing length, k ' CsD, is obtained by following sim-
ilarity theory which ultimately leads to a representation satisfying
the condition that k ) z (Mason and Thomson, 1992) where z is the
distance to the bottom, say in an atmospheric boundary layer. The
same behavior of the model coefficient has been adopted by Lewis
(2005) in his LES-NWM of the near-surface region of the upper
ocean mixed layer (UOML). We have adopted the same behavior
in our simulations of the UOML to be presented later. In this case,
the model coefficient is obtained from

1
ðCsDÞ2

¼
1

ðCoDÞ2
þ

1
j2ðzþ zoÞ2

: ð17Þ

Furthermore, following Lewis (2005) and references within, we take
je ¼ me=Pr in (13). In Eq. (17), z is the dimensionless distance to the
top surface and zo is the sea surface roughness length scale both non-
dimensionalized with d;j ¼ 0:4 is the von Kármán constant, CoD is
themixing length far from the surface and Co is an adjustable param-
eter usually ranging from 0.1 to 0.3. In our implementation we have
taken Co ¼ 0:16. Furthermore, we have taken D ¼ ðDx1Dx2Dx3Þ1=3.
Note that Dx3 varies with depth. Roughness length scale zo has been
taken as O(0.1 m) following Lewis (2005), who used the UK Meteo-
rological Office LES code (Blasius version 3.03) andMcWilliams et al.
(1997), who used the subgrid-scale model of Sullivan et al. (1994).
Non-dimensionalizing with a half-depth of 45 m, which the half-
depth of the mixed layers in the simulations of Lewis (2005) and
McWilliams et al. (1997), leads to a dimensionless roughness length
of O(0.00222). In the absence of a better approximation, we have
chosen the dimensionless roughness length as the dimensionless
distance between the domain surface and the first horizontal plane
of grid points below the surface, which is O(0.001) for the simula-
tions to be presented later. Coefficient Co is taken as 0.16, following
the analytical work of Lilly as described by Pope (2000). This result is
valid for high-Reynolds number turbulence under the assumption
that resolved scales are within the inertial sub-range, which is in-
deed the case in LES-NWM far from boundaries. Note that near the
surface, the Co term in Eq. (17) (i.e. the first term on the right-hand
side (rhs) of (17)) is negligible compared to the second term in the
rhs of (17). The second term decreases with depth and thus
Cs * Co ¼ 0:16 in regions far below the surface.

3. Numerical method

3.1. Temporal discretization

The non-dimensionalized governing equations in (1) with
appropriate boundary conditions are solved on a non-staggered
grid using the second-order time-accurate semi-implicit frac-
tional-step method analyzed by Armfield and Street (2000). Frac-
tional-step methods integrate the governing equations in a
segregated manner. In other words, the momentum equations
are first solved for the velocity and then some form of Poisson’s
equation is solved for pressure. Poisson’s equation is derived using
the continuity and momentum equations. Thus, the solution of this
equation provides the pressure and also acts to enforce continuity.

Our experience with the fractional-step method previously
mentioned has been similar to that of Armfield and Street (2000)
in that spurious oscillations of the pressure, characteristic of
non-staggered grids, are inherently suppressed by the method.
Armfield and Street implemented their fractional-step method
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using a low-order, finite volume spatial discretization and did not
observe spurious pressure oscillations. In our implementation, a
high-order, spectral/finite-difference spatial discretization also
helps to minimize the spurious pressure oscillations, as noted by
Shih et al. (1989) and Lamballais et al. (1998).

For simplicity, advection, the Coriolis force, the gradient of the
SGS stress and the C–L vortex force are gathered into function Hi as

Hið!ukÞ¼!uj
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Reverting to vector notation (i.e. !u ¼ ð!u1; !u2; !u3Þ; $ ¼ ð@x1 ; @x2 ; @x3 Þ;
H ¼ ðH1;H2;H3Þ and so on) the terms in (18) are explicitly discret-
ized using the second-order time-accurate Adams–Bashforth
scheme as

Nð!un; !un#1Þ ¼
3
2
Hð!unÞ #

1
2
Hð!un#1Þ; ð19Þ

where the superscripts refer to time steps n and n# 1. Using the
second-order time-accurate Crank–Nicholson scheme to discretize
the molecular viscous stress, the semi-discrete momentum equa-
tion may be expressed as
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where !unþ1

( ¼ ð!unþ1
1( ; !unþ1

2( ; !unþ1
3( Þ;Dt is the time step, @X denotes the

boundary and X denotes the interior of the domain excluding the
boundaries. Solution of (20) is facilitated by boundary conditions
satisfied by the velocity field at time tnþ1; !unþ1, imposed on the
intermediate solution at time tnþ1; !unþ1

( . Our horizontal spatial dis-
cretization to be described later is spectral, thus all variables satisfy
periodicity in x1 and x2. The spatial discretization in the vertical
direction (i.e. in x3) uses high-order compact finite differences,
thereby permitting Dirichlet, Neumann or periodic boundary condi-
tions at the top and bottom bounding surfaces of our flow domains.
For all our cases with non-periodic boundary conditions in x3 (i.e.
Neumann or Dirichlet boundary conditions) the boundary condition
on the x3 component of the velocity, !u3, is zero. This condition is not
enforced on the intermediate velocity !unþ1

3( . Instead, following Slinn
and Riley (1998), Eq. (20) is solved on the top and bottom bound-
aries using one-sided vertical derivative approximations, giving rise
to a solution for !unþ1

3( at these boundaries. The solution for !unþ1
3( is re-

tained for later use in the boundary condition for pressure. Informa-
tion regarding our prescription of one-sided and central derivative
approximations in the vertical direction are given in Appendix.

The intermediate solution, !unþ1
( , obtained from (20) with appro-

priate boundary conditions does not satisfy the divergence-free
condition. To enforce this condition, the following Poisson’s equa-
tion for pressure is solved:

$2ðD!pnþ1Þ ¼ 1
Dt

$ & !unþ1
( in Xþ @X;

@D!pnþ1

@x3
¼ 1

Dt
!unþ1
3( on @X

!pnþ1 ¼ !pn þ D!pnþ1 in Xþ @X:

ð21Þ

The divergence-free velocity is finally obtained as

!unþ1 ¼ !unþ1
( # Dt $ðD!pnþ1Þ in Xþ @X: ð22Þ

As mentioned earlier, while solving Eq. (20), the component of the
intermediate velocity normal to the bottom and top boundaries
(i.e. !unþ1

3( on @X) is not specified and thus kept free as given by the
solution of (20). In turn, this free velocity affects the solution of
Poisson’s equation for pressure through the boundary condition in

(21). As discussed by Slinn and Riley (1998), this is required to en-
sure convergence of the method. However, at the end of the time
step, when the final velocity is computed via (22), !unþ1

3 is set to zero
on @X, thus satisfying the true boundary condition. Validation stud-
ies shown in Appendix along with the theoretical results of Fringer
et al. (2003) have demonstrated that this splitting of the momen-
tum and continuity equation together with the chosen Adams–
Bashforth and Crank–Nicholson schemes is second-order accurate
in time for finite Reynolds number.

Finally, the temperature equation is discretized in similar fash-
ion as the momentum equation. Let

Hð!uk; !hÞ ¼ !uj þ
1
Lat

/j

! "
@!h
@xj

# @ksgs

@xj
; ð23Þ

discretizing H using the Adams–Bashforth scheme as

Nð!un
k ;
!hn; !un#1

k ; !hn#1Þ ¼ 3
2
Hð!un

k ;
!hnÞ # 1

2
Hð!un#1

k ; !hn#1Þ; ð24Þ

and the molecular diffusion term using the Crank–Nicholson
scheme, the temperature equation becomes

1
Dt

# 1
2RePr

$2
! "

D!hnþ1 ¼ #Nð!un
k ;
!hn; !un#1

k ; !hn#1Þ þ 1
RePr

$2!hn in X;

!hnþ1 ¼ !hn þ D!hnþ1 in Xþ @X;

ð25Þ

Depending on the problem, Dirichlet or Neumann boundary condi-
tions in the vertical direction can be assigned to the filtered temper-
ature !h.

3.2. Spatial discretization

The spatial discretization is hybrid, making use of fast Fourier
transforms in the horizontal directions (x1 and x2) and high-order
finite differences in the vertical direction (x3). Taking the two-
dimensional Fourier transform of the semi-discrete momentum
equation in (20) and denoting a Fourier transformed quantity with
an over-hat, &̂, leads to

1
Dt

þ 1
2Re

jkhj2 #
1

2Re
d2

dx23

 !
cD!unþ1

( ¼ #bNð!un; !un#1Þ # $s
b!pn

þ 1
Re

#jkhj2 þ d2

dx23

( )
b!un in X;

b!unþ1
( ¼ b!un þ cD!unþ1

( in X;

ð26Þ

where kh ¼ k1e1 þ k2e2 and k1 (viz. e1) and k2 (viz. e2) are the wave-
numbers (viz. unit vectors) in the x1 and x2 directions, respectively.
The operator d=dx3 denotes the finite-difference approximation of
@=@x3 and $s ¼ ðik1; ik2; d=dx3Þ. Further information regarding the fi-
nite-difference operators can be found in Appendix.

Approximation of vertical ðx3Þ derivatives in (26) via higher or-
der compact finite differences leads to a linear system of the form
Ai

ðk1 ;k2Þx
i
ðk1 ;k2Þ

¼ bi
ðk1 ;k2Þ for each intermediate velocity increment,

cD!unþ1
i( , at each horizontal wavenumber pair (i.e. at each k1 and k2

pair). One-sided derivative approximations are used at and near
boundaries in x3. In the resulting system, A is a matrix and x and
b are vectors. Vector x contains the solution cD!unþ1

i(

' (
at each x3 grid

level. Matrix A is ðnz þ 1Þ + ðnz þ 1Þ and vectors x and b are
ðnz þ 1Þ + 1, where nz þ 1 is the number of grid levels or grid points
in x3. The rows of the system correspond to the discretization of
either the x1; x2 or x3 momentum equation in (26) at each x3 level.
Rows 1 and ðnz þ 1Þ correspond to Eq. (26) at the bottom and top
boundaries of the domain, respectively. However, if for example,
a Dirichlet bottom boundary (BC) condition is applied, then the
first row of A is replaced by vector ð1;0;0; . . . ;0Þ and the first entry
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of vector b is replaced by a 0, when solving the x1 or x2 momentum
equation (i.e. when for !unþ1

1( and !unþ1
2( ). If a Neumann BC is applied,

then the first row or equation in the linear system is replaced by
the compact finite-difference approximation of the Neumann BC.
As mentioned earlier, Dirichlet or Neumann BCs are never imposed
on !unþ1

3( , thus the first and last rows of the system always remain
unchanged when solving the x3 momentum equation. Finally,
when periodic boundary conditions are applied in x3, one-sided
derivative approximations are not required to solve the momen-
tum equation, as no boundaries are present and the domain wraps
around itself. That is the solution at the first x3-level (or the first
equation of the system) is the same as the solution at the last x3-
level (or the last equation of the system).

Taking the Fourier transform of the temperature equation in
(25), we have

1
Dt

þ 1
2RePr

jkhj2 #
1

2RePr
d2

dx23

 !
cD!hnþ1

( ¼ #cN !un
k ;
!hn; !un#1

k ; !hn#1) *

þ 1
RePr

#jkhj2 þ d2

dx23

( )
b!hn in X;

b!hnþ1
( ¼ b!hn þ cD!hnþ1

( in X:

ð27Þ

Dirichlet and Neumann boundary conditions for (27) are imposed
similar to those in the momentum equation described earlier.

Taking the two-dimensional Fourier transform of Poisson’s
equation in (21) leads to

#jkhj2þ
d2

dx23

 !
cD!pnþ1¼ 1

Dt
ik1b!unþ1

1( þ ik2b!unþ1
2( þ d

dx3
b!unþ1
3(

! "
inXþ@X;

dcD!pnþ1

dx3
¼ 1
Dt
b!unþ1
3( on @X;

b!pnþ1¼ b!pnþcD!pnþ1 inXþ@X:

ð28Þ

The velocity at time step nþ 1 becomes

b!unþ1
1 ¼ b!unþ1

1( # i Dt k1cD!pnþ1 in Xþ @X;

b!unþ1
2 ¼ b!unþ1

2( # i Dt k2cD!pnþ1 in Xþ @X;

b!unþ1
3 ¼ b!unþ1

3( # Dt
d
dx3

cD!pnþ1 in Xþ @X:

ð29Þ

The nonlinear advection terms in Eqs. (18) and (23) generate
scales at high wavenumbers (i.e. small scales) unresolvable by
the grid. This effect is reflected through an accumulation of energy
at the smallest resolved scales, often referred to as aliasing. In or-
der to prevent this spurious accumulation, de-aliasing is performed
using the well-known 3/2-rule in the horizontal directions. The
high-order (fourth-order) filter discussed by Slinn and Riley
(1998) (see Appendix) is applied in the vertical direction to the
advection terms at each time step in order to attenuate the spuri-
ous high wavenumber energy accumulation while preserving the
more energetic scales at lower wavenumber and the high-order
accuracy of the spatial scheme.

Next we describe our experiences in applying the previously de-
scribed discretization to shallow water and deep water surface
mixed layer flows.

4. Numerical results

4.1. Langmuir supercells in shallow water

Historically, Langmuir cells have been measured within the
upper ocean surface mixed layer in deep water far above the bot-

tom. Recently, Gargett et al. (2004) and Gargett and Wells (2007)
reported detailed acoustic Doppler current profiler (ADCP) mea-
surements of Langmuir cells engulfing the entire water column
lasting as long as 18 h in a shallow water region off the coast of
New Jersey. Measurements were made at Rutgers’ LEO15 cabled
observatory in 15 m depth water. Gargett et al. (2004) denoted
the observed full-depth cells as Langmuir supercells (LSC) because
of their important role as vectors for the transport of sediment and
bioactive material on shallow shelves.

Using the discretization previously described, Tejada-Martı́nez
and Grosch (2007) performed LES-NWR of a finite-depth, homoge-
neous, wind-driven shear current with LSC under wind and wave
forcing representative of the conditions during the LEO15 LSC
event. A sketch of the domain is given in Fig. 1a. The computational
domain was taken 4pd long in the downwind direction, 8pd=3
wide in the crosswind direction and 2d deep, sufficient for the
resolution of one LSC, where d is half-depth, as noted earlier. The
grid comprised 32 dealiased modes in the x1 and x2 (horizontal)
directions and 97 points in the x3 (vertical) direction (i.e.
ð32+ 32+ 96Þ). Henceforth the number of horizontal grid points
given in all computations presented will correspond to the number
of de-aliased Fourier modes. Furthermore, the C–L vortex force was
set with turbulent Langmuir number ðLatÞ of 0.7 and dominant
surface wave wavelength ðkÞ of 6H where H is depth. The no-slip
condition was prescribed at the bottom of the domain and a wind
stress (given as ss ¼ qou

2
s , where us is the wind stress friction

velocity) was prescribed at the top of the domain in the x1-direc-
tion. In dimensionless terms, application of this wind stress results
in d!u1=dx3 ¼ Re and d!u2=dx3 ¼ 0 at the surface.

Predictions from the LES compared favorably with the in-water
measurements. The reader is directed to the companion articles of
Gargett and Wells (2007) and Tejada-Martı́nez and Grosch (2007)
for details of this comparison and the computational setup. Here
we point to some aspects of the LES relevant to our discussion in
the Section 1. We note that the LES-NWRwas made at a much low-

Fig. 1. Sketch of domains for (a) LES-NWR of LSC in shallow water, (b) LES-NWM of
an unstratified Ekman layer and (c) LES-NWM of a stratified Ekman layer with LC.

120 A.E. Tejada-Martínez et al. / Ocean Modelling 30 (2009) 115–142



er Reynolds number (Res ¼ 395 based on wind friction velocity and
half-depth) than that of the field observations ðRes ¼ Oð50;000ÞÞ.
In spite of this, the LES was able to capture the main features of
a Langmuir supercell manifested as a secondary, coherent turbu-
lent structure advected by the mean shear flow. Figs. 2 and 3 com-
pare the observed structure with the LES-computed structure.
Notice that in both, field observation and LES, the downwelling re-
gion (i.e. the region of negative vertical velocity fluctuations) of the
cell coincides with a region of positive downwind velocity fluctua-
tions. Furthermore, the region of positive downwind velocity fluc-
tuations in the LES is characterized by near-bottom intensification
similar to the field-measured structure. The LES variables were
made dimensionless with the wind stress friction velocity, and

when scaled by the field-measured wind stress friction velocity,
the magnitudes of the LES-predicted velocity fluctuations are in
close agreement with those measured in the field. A similar agree-
ment is also seen in terms of the magnitude of the Reynolds stress
components (not shown).

In addition to the secondary structure previously described, the
full turbulent structure computed in the LES is in agreement with
the field-measured structure. This is reflected through the depth-
trajectory of the second and third invariants of the Reynolds stress
anisotropy tensor which must lie inside the Lumley triangle (Pope,
2000) for all realizable turbulent flows. As seen in Fig. 4, the map of
the invariants computed in the LES agrees well with the map of the
invariants measured in the field, especially in the lower third por-

Fig. 2. Instantaneous fluctuating downwind, crosswind and vertical velocity components as recorded in the field (at LEO15) by an ADCP while Langmuir supercells were
being advected in the crosswind direction. The fluctuations reveal one Langmuir supercell. The lowermost 1.25 m were not measurable by the ADCP; measurements of u0

1 and
u0
2 above )10 m (denoted by a dashed line) were affected by sidelobe contamination.
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Fig. 3. Instantaneous fluctuating downwind, crosswind and vertical velocity components measured in LES. Computational velocities have been made dimensional with the
wind stress friction velocity recorded in the field during the observations of Gargett and Wells (2007).
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tion of the water column. In this region, the map lies in the interior
of the triangle in proximity to the upper curved edge. This is indic-
ative of the dominant, near-bottom two-component turbulent
structure of the flow characterized by strong downwind velocity
fluctuations generated by the mean shear and strong crosswind
velocity fluctuations generated by the bottom convergences and
divergences of the cells. In the absence of LSC and thus strong

crosswind fluctuating velocity component, the map would lie
along the right-hand side edge of the triangle, indicative of
shear-dominated turbulence.

Overall, agreement between the observed and computed turbu-
lent structures is primarily within the lower half of the water col-
umn. Comparison in the upper half is more difficult as
uncertainties in ADCP measurements are prominent, especially in
the upper 3–5 m of the water column (Gargett and Wells, 2007).
Furthermore, this region is expected to be influenced by wave-
breaking, which the LES is not capable of representing.

Fig. 5a shows shear (1–3) components of viscous, Reynolds and
SGS stress in LES with and without LSC (i.e. without wave effects).
In both simulations, the SGS stress is given by the dynamic Smago-
rinsky model in (9) and (10). The SGS stress goes to zero at the bot-
tom and at the surface of the domain following the behavior of the
model coefficient in (10). At the surface, the viscous shear stress
matches the wind stress thereby transmitting momentum flux
from the surface to the interior. Once in the interior, the flux is
transmitted by the Reynolds shear stress to depths where viscous
effects are negligible.

Fig. 5b shows mean downwind velocity in LES with and without
LSC. These mean velocity profiles demonstrate the impact of LSC on
the viscous wall region and the log-layer region. The presence of
LSC disrupts the typical log-law behavior of the mean velocity

Fig. 4. Trajectory of Lumley invariant maps in (a) LES and (b) observations of
Langmuir supercells. Blue symbols denote trajectory of map in the lower third of
the water column, green symbols denote the trajectory in the middle third and the
red symbols denote the trajectory in the upper third. (For interpretation of color
mentioned in this figure the reader is referred to the web version of the article.)

Fig. 5. (a) Shear stress components in the upper fourth of the water column and (b) mean velocity in the lower half of the water column in LES of Langmuir supercells. The
computational domain extends from x3=d ¼ #1 to x3=d ¼ 1. Furthermore, xþ3 ¼ ðx3=dþ 1ÞRes .
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inducing what resembles a law of the wake-like behavior. The law
of the wake in traditional boundary layers has been attributed to
large-scale turbulent mixing (Coles, 1956). LSC enhances this mix-
ing and, as seen in Fig. 5b, generates a large wake region stretching
down through the would-be log-layer region and into the buffer
region. Note that our LES of the flow without LSC yields a clear
log-law region. Thus, the previously described disruption of the
log-layer in the presence of LSC is strictly due to C–L vortex forcing.

Further evidence of disruption of the log-layer by LSC comes
from the analysis of turbulent velocity variances measured during
the LSC event at LEO15 and a more recent event measured at the
Navy’s R2 tower on the Goergia shelf (Gargett and Savidge,
2008). Both measurements were made under similar wind and
wave forcing conditions but different tidal forcing condition. Under
a strong tidal current at R2, the near-constancy of the turbulent ki-
netic energy (TKE) in the lower third portion of the water column
was indicative of a bed stress log-layer. However, a similar near-
constancy of TKE was noticeably absent from the LEO15 LSC event,
characterized by a much weaker tidal current. This non-constancy
of TKE was also the case in our LES of LSC guided by the LEO15
measurements (Tejada-Martı́nez and Grosch, 2007).

4.2. Unstratified Ekman layer

In this subsection we present results from LES-NWM of an
unstratified, surface wind-driven Ekman layer. We will focus on
the performance of the dynamic Smagorinsky parametrization in
(9)–(12) and the Smagorinsky parametrization based on similarity
in (9) and (17) (henceforth referred to as the Smagorinsky–Mason
parametrization).

The computational domain for the Ekman layer is taken to be
L1 ¼ d long in the downwind direction and L2 ¼ dwide in the cross-
wind direction, following the simulation of Zikanov et al. (2003)
(see Fig. 1b). In the vertical direction the domain extends from 0
to 2d, thus the dimensionless vertical coordinate extends from
x3=d ¼ 0 to x3=d ¼ 2. The grid consists of ð32+ 32+ 129Þ points.
A hyperbolic stretching function is employed in order to cluster
more grid points near the surface (around x3 ¼ 2d) where velocity
gradients are expected to be strongest. With this stretching, at the
bottom of the domain the grid cell aspect ratio is D3=D1 * 0:75
varying down to D3=D1 * 0:2 at the surface, where Di is the grid
spacing in the ith direction. We have excluded the C–L vortex term
appearing in the momentum equation, thereby excluding wave ef-
fects, and the Rossby number is Ro ¼ 1.

The downwind ðx1Þ and crosswind ðx2Þ directions are homoge-
neous, thus periodic boundary conditions are taken in these direc-
tions. At the bottom of the Ekman layer ðx3 ¼ 0Þ, we impose zero
normalvelocity, that is fu3gx3¼0 ¼ 0andzero tangential stress, that is

!ssgsd13

n o

x3¼0
¼ 0 and !ssgsd23

n o

x3¼0
¼ 0: ð30Þ

At the surface ðx3 ¼ 2dÞ, we impose zero normal velocity (i.e.
fu3gx3¼2d ¼ 0). Furthermore, the 1–3 component of the SGS stress
is set equal to a specified wind stress, ss ' qou

2
s in the x1 direction,

while the 2–3 component of the SGS stress is set equal to zero. In
dimensionless form these conditions become

!ssgsd13

n o

x3¼2d
¼ 1 and !ssgsd23

n o

x3¼2d
¼ 0: ð31Þ

Note that the simulation methodology chosen is LES-NWM for
which the SGS stress matches the surface stress prescribed at the
boundaries. This is in contrast to the LES-NWR of LSC described ear-
lier, in which the molecular viscous stress matches the surface
stress at the surface and the SGS stress decays to zero.

For all Ekman layer simulations (stratified and unstratified),
regardless of the SGS model (dynamic Smagorinsky or Smagorin-

sky–Mason), we resort to similarity theory to impose control of
the solution at the surface together with explicit use of Eq. (9). Fol-
lowing similarity theory (reviewed by Lewis (2005)) and the sur-
face boundary condition !u3 ¼ 0 applied to Eq. (9), at the surface

ssgsd13

n o

x3¼2d
* ðCsDÞ2x3¼2d

d!u1

dx3

! "2

x3¼2d
; ð32Þ

As noted by Eq. (31), ssgsd13 ¼ 1 at the surface. Using this condition
with Eq. (32) mentioned above, we may solve for d!u1=dx3 at the
surface:

d!u1

dx3

! "

x3¼2d
¼ 1

ðCsDÞx3¼2d

; ð33Þ

where ðCsDÞx3¼2d is obtained by evaluating the similarity equation in
(17) at the surface ðz ¼ 0Þ. The remaining boundary conditions on
solution derivatives are taken as d!u2=dx3 ¼ 0 at the surface and
d!u1=dx3 ¼ d!u2=dx3 ¼ 0 at the bottom which also follow from the
boundary conditions on ssgsdij appearing in Eqs. (30) and (31) and
the use of (9).

Following Zikanov et al. (2003) we employ the following
decomposition of the instantaneous velocity !ui:

!ui ¼ Uiðx3; tÞ þ !u0
i; ð34Þ

where Ui ¼ h!uii and h&i denotes averaging over the horizontal
(homogeneous) directions (x1 and x2) (i.e. the horizontal average).
The instantaneous bulk velocity is defined as

Ub
i ðtÞ ¼

1
2

Z x3¼2d

x3¼0
Uiðx3; tÞdx3: ð35Þ

Fig. 6 shows the x1 and x2 bulk velocity components during our sim-
ulation. These components exhibit the undamped oscillation dis-
cussed by Lewis and Belcher (2004). Lewis and Belcher
analytically solved the unsteady, linearized, wind-driven, finite-
depth Ekman layer equations with constant eddy-viscosity. Note
that their eddy-viscosity parameterizes all of the turbulence and
is not the same as the eddy-viscosity in our LES. They solved two
separate problems each characterized by different boundary condi-
tions at the bottom of the domain: (1) @u1=@x3 ¼ @u2=@x3 ¼ 0 at
x3 ¼ 0 and (2) u1 ¼ u2 ¼ 0 at x3 ¼ 0. The first condition is the same
as in our simulation. Condition (2) leads to solutions composed of a
steady-state component plus a damped temporal oscillatory com-
ponent. As the name suggests, the damped component decays in
time, thus eventually the solution becomes purely steady. Condition
(1) leads to a solution composed of a steady-state component plus
an undamped temporal oscillatory component. This undamped, the
so-called, inertial oscillation remains part of the solution for all
times, a characteristic exhibited by our numerical solution in
Fig. 6. The undamped oscillations in Ub

1 and Ub
2 have a period of

2pRo consistent with the non-dimensionalized version of the solu-
tion of Lewis and Belcher (2004) (Eq. (17), page 322 of their paper).
Furthermore, Ub

1 and Ub
2 are out of phase with each other by p=2,

consistent with the result of Lewis and Belcher (2004).
Taking the horizontal average of the x1 and x2 momentum equa-

tions in (1) excluding the buoyancy force and the C–L vortex force
(i.e. letting Lat ¼ 1) and letting Re ¼ 1 leads to

@U1

@t
¼ # @h!u0

1!u
0
3i

@x3
þ
@hssgsd13 i
@x3

þ 1
Ro

U2; ð36Þ

and

@U2

@t
¼ # @h!u0

2!u
0
3i

@x3
þ
@hssgsd23 i
@x3

# 1
Ro

U1; ð37Þ

respectively, where h!u0
i!u

0
ji is the instantaneous resolved Reynolds

stress. The flow under consideration is steady in a statistical sense
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if averaged over times spanning M periods, MT, of the inertial oscil-
lation, whereM ¼ 1;2;3; . . .. Averaging (36) and (37) overM periods
leads to h@!u1=@tiMT ¼ 0 and h@!u2=@tiMT ¼ 0 and thus

1
Ro

hu2iMT ¼ @h!u0
1!u

0
3iMT

@x3
#
@hssgsd13 iMT

@x3
; ð38Þ

and

# 1
Ro

hu1iMT ¼
@ !u0

2!u
0
3

$ %
MT

@x3
#
@ ssgsd23

D E

MT

@x3
; ð39Þ

respectively, where h&iMT denotes averaging over horizontal direc-
tions and over a time interval equal to MT. Integrating (38) and
(39) leads to

1
Ro

Z 2d

0
u2h iMTdx3 ¼ # ssgsd13

D E

MT

n o

x3¼2d
; ð40Þ

and

# 1
Ro

Z 2d

0
hu1iMTdx3 ¼ 0; ð41Þ

respectively.
Next we compare results from LES using the dynamic Smago-

rinsky model (DSM), given by (9)–(12), and from LES using the
Smagorinsky–Mason model (SMM), given by (9) and (17). In both
simulations, the global conservation condition in (41) is satisfied
up to within single precision machine epsilon. In the LES with
SMM, the global conservation condition in (40) is satisfied up to
1.2% error. However, in the LES with DSM, this condition is only
satisfied up to 26% error (while the simulation of Zikanov et al.
(2003), also using the DSM, satisfied this condition up to 4% er-
ror). The source of this error will be discussed in detail further
below.

Figs. 7–10 show results from simulations using DSM and SMM.
Throughout the near-surface region, the 1–3 SGS stress given by
the DSM is smaller than the 1–3 SGS stress given by the SMM.
The reason for this can be traced to the model coefficient expres-
sions in (10)–(12). As the surface is approached, the denominator
in (10) becomes much larger than the numerator. Similar low val-
ues of the model coefficient have been obtained near the bottom
surface in simulations of the atmospheric boundary layer (ABL)
(Lund et al., 2003; Porté-Agel et al., 2000). Porté-Agel et al.
(2000) attributed these low values to the fact that near the surface
the dynamic procedure samples scales larger than the local integral
scale thereby violating the scale-invariance assumption and lead-
ing to lower values of hLijMiji. Under the scale-invariance assump-
tion, the widths of the grid filter and the test filter are assumed to
be within the inertial sub-range. In order to remedy this problem,
Porté-Agel et al. (2000) introduced a scale-dependent dynamic
procedure in which the scale-invariance assumption is not needed.

Values of the resulting dynamic model coefficient were observed to
be larger than the values of the original dynamic model coefficient.
An alternate approach was proposed by Lund et al. (2003).
Following ideas proposed earlier by Sullivan et al. (1994), they
represented the near-surface turbulence through an SGS parame-
trization consistent with similarity theory, similar to SMM. Lund
et al. (2003) proposed a two-part SGS parameterization consisting
of a blend between the DSM and a similarity-based model. Near
the surface, the model based on similarity theory is active while
decaying away from the surface as the inverse of the distance to
the surface, similar to expression (17). Lund et al. (2003) identify
the DSM as the LES part of their blended model and the model
based on similarity theory as the Reynolds-averaged Navier–Stokes
(or RANS) part.

Returning to our LES with the DSM, the dotted curve in Fig. 8a
shows that the 1–3 component of the SGS stress close to the
surface (at x3=d * 1:98) is characterized by a non-monotonic
(irregular) behavior. This irregularity induces a similar irregularity
in urms

3 (Fig. 7b) as well as in the 1–3 component of the resolved
Reynolds stress (Fig. 8a) near the surface. Similar irregularities
can also be observed in the results of Zikanov et al. (2003).

To understand the non-monotonic behavior of the 1–3 SGS
component, we recall its form:

ssgsd13 ¼ ðCsDÞ2jSjS13: ð42Þ

Near the surface, the overall trend of ssgs13 is to increase in order to
match the prescribed surface wind stress. However, as distance to
the surface decreases, the decreasing trend of the dynamic model
coefficient ðCsDÞ2 causes a small drop in the 1–3 SGS stress
(Fig. 8a, dotted curve) interrupting the monotonic increase of the
stress. As the distance to the surface continues to decrease, the 1–
3 SGS stress recovers its increasing trend due to the dominant effect
of the wall-normal gradient of the velocity (forming part of the jSj
and S13 terms in (42)).

Although irregularities in the 1–3 SGS stress and the 1–3 Rey-
nolds stress caused by the DSM are also seen in the simulations
of Zikanov et al. (2003), these irregularities are more pronounced
in our implementation. Furthermore, as discussed earlier, in our
LES the global conservation statement in (40) is poorly satisfied
up to 26% error while in the LES of Zikanov et al. (2003) this global
conservation is satisfied more accurately up to 4% error.

In order to improve our LES results with the DSM we introduce
a modification to our surface boundary condition. The modification
is motivated by principles used to set the surface stress boundary
condition in staggered grid formulations such as that of Zikanov
et al. (2003). In such formulations, the horizontal momentum
equations (characterized by 1–3 and 2–3 SGS stress components)
are discretized at the so-called half-integer points located
half-way between integer points along the vertical direction; the
integer points correspond to the points on our non-staggered grid.
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Fig. 6. Bulk downwind velocity, Ub
1, and bulk crosswind velocity, Ub

2, in an unstratified Ekman layer.
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More precisely, the horizontal momentum equations are never
treated at the surface; instead they are treated at locations Dz=2
below the surface, where Dz is the vertical distance between the
surface and the first horizontal plane of grid (or integer) points be-
low the surface. Thus, the boundary conditions on the 1–3 and 2–3
SGS stress components in (31) are assigned at a distance Dz=2 be-
low the surface. This implies a constant stress layer spanning the
region between the surface and the first plane of half integer points
below the surface. This is consistent with the fact that the simula-
tion does not resolve the inner layer surface region, but rather only
resolves up to the log-layer region where the 1–3 stress is nearly
constant and equal to the surface stress (Pope, 2000). Analogously,
we postulate a similar constant stress layer in our LES, and the 1–3
stress boundary condition in (31) is prescribed at the surface and at
the first horizontal plane of grid points below the surface in a Rey-
nolds-average sense. The dimensionless, prescribed 1–3 SGS stress
is obtained form:

#h!u0
1!u

0
3ih þ ssgsd13 ¼ 1; ð43Þ

where h!u0
1!u

0
3ih denotes averaging the instantaneous quantity !u0

1!u
0
3

over horizontal directions x1 and x2. Note that on the surface
h!u0

1!u
0
3ih ¼ 0, thus ssgsd13 ¼ 1 just as in Eq. (31). On the horizontal plane

of grid points below the surface ssgsd13 ¼ 1þ h!u0
1!u

0
3ih. The effect of this

modification (denoted as BC2 in the figure legends) greatly im-
proves results relative to the original boundary condition (denoted
as BC1) in which the SGS stress is prescribed only at the surface.
Figs. 9 and 10 compare results between the LES with BC1 and the
LES with BC2. Irregularities present in the 1–3 SGS stress, 1–3 Rey-
nolds stress and urms

3 predicted in LES-BC1 are less pronounced than
those in LES-BC2. Overall, the results obtained from LES-BC2 are in
closer agreement with those obtained in LES of Zikanov et al.
(2003). For example, the peak value of the 1–3 Reynolds stress
and the mean crosswind velocity at the surface are closer to those
presented by Zikanov et al. (2003).

In LES-BC2, the global conservation statement in (40) is satisfied
up to within less than 5% in close agreement with the 4% reported
in the LES of Zikanov et al. (2003). Recall that this error in LES-BC1
is much greater at 26%. As described earlier, nonlinear terms in the
momentum equation are discretized in time with the second-order
Adams–Bashforth scheme (AB2), which is unconditionally unstable
for the treatment of a pure convective equation. Thus the error in
Eq. (40) may be associated with instability of the AB2 scheme trig-
gered by low values of the SGS stress. We have implemented the
third-order Runge–Kutta (RK3) scheme described by Garg et al.
(1997) (replacing the AB2 scheme) and tested it in LES-BC2.
Unlike AB2, RK3 can be conditionally stable for a purely convective
equation. The new simulation with RK3 was performed with the

Fig. 7. (a) Mean velocity and (b) components of root mean square (rms) of velocity in unstratified Ekman layer. Time averaging was performed over M = 5 periods of inertial
oscillation.
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same time step as the original simulation with AB2. RK3 scheme
improved the satisfaction of the continuity equation by a factor
of approximately 3 and reduced the error in Eq. (40) down to less
than 1%. RK3 led to a slight increase in bulk crosswind mean veloc-
ity mainly by increasing the magnitude of the dimensionless cross-
wind mean velocity at the surface from approximately 5 (with
Adams–Bashforth) to approximately 6, consistent with the reduc-
tion of the error in Eq. (40). Finally, RK3 led to negligible impact
on velocity root mean squares and Reynolds stress components.
We also tested RK3 in LES-BC1 and found a similar reduction of
the error in the continuity equation, but did not obtain a reduction
of the error in Eq. (40). The latter error was not reduced possibly
due to the pronounced non-monotonic (irregular) behavior in the
1–3 component of the SGS stress in LES-BC1, described earlier, or
the excessively low values of the SGS stress.

In summary, our non-staggered grid formulation has revealed
the importance of the constant stress layer in DSM LES-NWM of
the UOML and possibly of the ABL as well. Previous simulations
have involved staggered grid formulations for which the constant
stress layer is the only choice, thereby obscuring its effects. A num-
ber of researchers have reported difficulties with the DSM leading
to a small 1–3 SGS stress component near the surface and thus a
lack of sufficient turbulent kinetic energy dissipation. Our results
demonstrate that this problem of the DSM is indeed more severe

than initially thought and is greatly alleviated by the constant
stress layer.

4.3. Langmuir cells in a stratified turbulent Ekman layer

Here we review results from LES-NWM of a stratified Ekman
layer flows with C–L vortex forcing generating LC. The SGS stress
is parameterized with the SMM rather than the DSM for reasons
to be explained later. Two simulations are reviewed. The first sim-
ulation (simulation 1) is performed with turbulent Langmuir num-
ber Lat ¼ 0:334 (the same value used by Skyllingstad and Denbo
(1995); henceforth SD95) and the second (simulation 2) is per-
formed with Lat ¼ 0:3 (the same value used by McWilliams et al.
(1997)). The wavelength of the deep water waves represented by
the C–L force is 60 m. In simulation 1, Ro ¼ 1 and in simulation
2, Ro ¼ 1:3556, the latter following McWilliams et al. (i.e.
f ¼ 10#4 s#1, corresponding to 45,N latitude). In both simulations
the extent of the domain is 150 m in the downwind and crosswind
directions and 90 m in the vertical. Note that in the figures shown
further ahead and in the domain sketch of Fig. 1c these lengths are
made dimensionless with the half-depth ðd ¼ 45 mÞ, as described
earlier. Both cases start from rest ð!ui ¼ P ¼ 0Þ and with suddenly
imposed surface waves (represented via the C–L force) and wind
stress in the x1 direction with associated friction velocity

Fig. 8. Near-surface (a) downwind-vertical Reynolds and SGS shear stresses and (b) crosswind-vertical Reynolds and SGS shear stresses in an unstratified Ekman layer. Time
averaging was performed over M = 5 periods of inertial oscillation.
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us ¼ 6:1+ 10#3 m s#1. Furthermore, both cases possess a constant
initial temperature profile within the upper 33 m of the water col-
umn and a stable, linear profile in the lower 57 m. This stably strat-
ified region is characterized by a buoyancy frequency of
N ¼ 0:0044 s#1, corresponding to ðd!h=dx3Þx3¼0 ¼ 0:01 K m#1 and
g ¼ 2+ 10#4 K#1. Using these values in the definition of the Rich-
ardson number in (8) we obtain Ri ¼ 1067:7.

The boundary conditions for the flow variables are those de-
scribed earlier in the LES of the unstratified Ekman layer. For tem-
perature, at the bottom boundary we prescribe a fixed vertical
gradient (i.e. ðd!h=dx3Þx3¼0). As we have non-dimensionalized
temperature with ðd!h=dx3Þx3¼0, the vertical gradient of the dimen-
sionless temperature at the bottom is simply @!h=@x3 ¼ 1. At the
surface, the temperature gradient is obtained via the following
condition

me
Prt

@!h
@x3

+ ,

x3¼2d
¼ Q

Cpqousd
d!h
dx3

! "#1

x3¼0
; ð44Þ

where Cp is the specific heat at constant pressure and Q is the net
surface heat flux.

In simulation 1, initially the surface heat flux is randomly im-
posed as Q ¼ #c60 W m#2, where c is a spatially random number
between 0 and 1. This heat flux is linearly decreased to 0 within the

first 2 min of the simulation. In simulation 2, the surface heat flux
is randomly imposed as Q ¼ #c5 W m#2 for the first 2 min of the
computation. After the first 2 min, the surface heat is left constant
as Q ¼ #5 W m#2. Note that these non-zeros, de-stabilizing sur-
face heat fluxes are chosen simply to help trigger motions and thus
facilitate the transition of the flow from rest towards a turbulent
state. All of the parameters and conditions characterizing simula-
tion 2 are the same as those in the simulation of McWilliams
et al. (1997).

At the bottom of our domain we prescribe a Rayleigh damping
layer (see Fig. 1c) in order to attenuate incoming waves (Durran,
1999), thereby preventing them from reflecting back into the do-
main. The thickness of the damping layer is denoted as Ld, thus
the layer spans the region 0 6 x3 6 Ld. This layer is implemented
by adding the following terms to the right-hand side of the
momentum equation and the temperature transport equation,
respectively:

# Rd½!ui # h!uiix1 ;x2 .; ð45Þ
# Rd½!h# h!hix1 ;x2 .; ð46Þ

where

Rdðx3Þ ¼ 0 if x3 > Ld ¼ aRð1# cos½pðLd # x3Þ.Þ=2 if x3 6 Ld;

ð47Þ

Fig. 9. (a) Mean velocity and (b) components of root mean square (rms) of velocity in unstratified Ekman layer. Time averaging was performed over M = 5 periods of inertial
oscillation.
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and a#1
R is the e-folding time scale of damping at x3 ¼ 0. In our LES

the Rayleigh damping layer occupies the lower third of the water
column.

Early results of simulation 1 were encouraging given that re-
solved horizontal features were characteristic of Langmuir cells
in terms of downwind ðx1Þ velocity fluctuations (Fig. 14). That is,
x1-velocity fluctuations were characterized by downwind elon-
gated streaks alternating in sign in the crosswind ðx2Þ direction.
As seen in Fig. 14, the crosswind length scale of the Langmuir cells
prior to turbulence transition is precisely the grid cell size in the
crosswind direction. Initially, the grid-scale LCs are supported by
the discretization. However, after transition to turbulence begins,
LC nonlinear interaction generates scales (modes) beyond the
support of the discretization, leading to unbounded increase of
resolved turbulent kinetic energy (Fig. 11, bottom panel). This
behavior is consistent with the experience of SD95 who noted that
‘‘the scale of the most unstable Langmuir circulations is much
smaller than the model grid spacing”.

The current discretization possesses relatively small numerical
energy dissipation and is not able to attenuate the high wavenum-
ber modes produced by LC nonlinear interaction (i.e. LC subgrid-
scales). In the LES of SD95, the initial size of the cells is on the order
5–6 times the grid cell size; this size is attributed to the implicit
filtering or attenuation produced by uncharacterized numerical

diffusivity. The role of the SGS parameterization is to extract en-
ergy from the smallest resolved scales (i.e. the grid-scales). In our
case, the SGS model is clearly not equipped to handle the high
wavenumber LC modes suggesting that new SGS parameteriza-
tions should be developed which take into account the presence
of the C–L vortex force and LC subgrid-scales.

To remedy the unstable LC modes triggered by the C–L force in
the stratified Ekman layer, we resort to filtering this force with a
fourth-order filter at each time step, in the absence of a proper
LC subgrid-scale parameterization. That is

the filtered term ¼ the unfiltered termþ Oðh4Þ; ð48Þ

thereby adhering to the overall spatial accuracy of the method. In
the horizontal directions the C–L force term is filtered with the filter
defined by

~f ¼ fi # cf ðfiþ2 # 4f iþ1 þ 6f i # 4f i#1 þ fi#2Þ; ð49Þ

where ~f i is the filtered function and fi is the unfiltered function.
Coefficient cf represents the strength of the filter. Parameter cf is ta-
ken as 1/16 following Slinn and Riley (1998). In the vertical direc-
tion, the C–L force is filtered with the fourth-order filter (adjusted
for grid-stretching) discussed in Appendix.

Fig. 10. Near-surface (a) downwind-vertical Reynolds and SGS shear stresses and (b) crosswind-vertical Reynolds and SGS shear stresses in an unstratified Ekman layer. Time
averaging was performed over M = 5 periods of inertial oscillation.
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The effectiveness of filtering the C–L force term can be seen in
Fig. 11(top) as velocity fluctuations do not grow unbounded and
do approach a statistically steady state after transition from rest.
Additionally, we observe that the characteristic horizontal size of
the initial Langmuir cells is about two times larger in the simula-
tion with the filtered C–L force (Fig. 15) than in the simulation with
the unfiltered force (Fig. 14). Ultimately, the coherence of the ini-
tial cells breaks down as a Langmuir turbulent state is reached
(see Figs. 15–17). Once the cells reach the base of the mixed layer,
they interact with the thermocline leading to internal wave activ-
ity. Recently Polton et al. (2008) analyzed in detail the resulting
internal wave field in our simulations and found that high-fre-
quency internal waves drain energy and momentum from the
UOML over decay timescales comparable to the inertial oscillation.

Our results indicate that we may control the smallest Langmuir
scales resolved in the computation via explicit filtering of the C–L
force. This is a desirable attribute given that the unfiltered force
leads to Langmuir scales of the same size as the grid. Scales of this
size are greatly susceptible to aliasing and truncation errors and
thus are poorly resolved. In traditional turbulent flows, small scales
on the order of the grid size are not very energetic, thus their poor
resolution does not greatly jeopardize the resolved large scales.
However, this is not the case in Langmuir turbulence, as untreated
(unfiltered) nonlinear interaction between Langmuir small scales
serves to produce scales (modes) beyond the support of the dis-

cretization, which can lead to numerical instability. Generally it
has proven difficult to compare the growth of Langmuir cells in
computations with field observations as the growth and initial size
of Langmuir cells can be strongly affected by numerical diffusivity
(e.g. truncation errors) (see SD95) and also aliasing. In the LES of
SD95, the initial size of the Langmuir cells is on the order 5–6 times
the grid cell size; according to Skyllingstad and Denbo, the exact
dependence of this size on numerical diffusivity is not known. Fil-
tering of the C–L force presents an explicit way of controlling the
size of the cells, and thus may pave the way for a future study of
the growth of Langmuir cells without the uncertainties and ad-
verse effects of numerical errors.

After transition towards a statistically steady state is achieved
in simulation 1 (with filtered C–L force and Lat ¼ 0:334) averages
required for various statistical quantities are collected. These aver-
ages are taken over five inertial periods. A similar transition is also
observed in simulation 2 (with filtered C–L force and Lat ¼ 0:3).
Averages over five inertial periods are also collected after a statis-
tical steady state is reached. Various statistical quantities are
shown in Figs. 12 and 13. An increase in the amplitude of the sur-
face waves leads to a decrease in Lat . In the simulation with lower
Lat (simulation 2), the strength of the cells is greater, leading to a
more homogeneous mean downwind velocity and stronger vertical
velocity fluctuations. Recall that simulation 2 is performed with
the same parameters as those in the simulation of McWilliams

Fig. 11. Time history of turbulent kinetic energy components at x3=d ¼ 1:886 in a stratified Ekman layer (simulation 1) (a) with and (b) without explicit filtering of the vortex
force. Surface is at x3=d ¼ 2.
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et al. (1997), as described earlier. Overall, the results of simulation
2 are comparable to those of McWilliams et al. (1997). Further-
more, recall that without the C–L force, the downwind bulk veloc-
ity (i.e. the net downwind transport) is zero as dictated by (41).
Inclusion of the C–L force leads to
Z 2d

0
hu1iMTdx3 þ

Z 2d

0

/s
1

La2t
dx3 ¼ 0; ð50Þ

thus the net downwind transport (Eulerian + Stokes drift correc-
tion) remains zero. In simulations 1 and 2, this condition is satisfied
accurately, as the two terms on the left-hand side of (50) have
opposite signs and are within 1% of each other in magnitude. In both
simulations (1 and 2) the condition in (40) is satisfied up to within
2% error. Such a conservation condition holds for the current prob-
lem configuration given that the C–L force has zero component in
the downwind direction. Finally, note the overall effect of the turbu-
lent Langmuir number, Lat . In simulation 1, Lat ¼ 0:334 while in
simulation 2, Lat ¼ 0:3. An increase in the amplitude of the surface
waves leads to a decrease in Lat . In the simulation with lower Lat ,
the strength of the cells is greater, leading to a more homogeneous
mean downwind velocity and stronger vertical and crosswind
velocity fluctuations.

Figs. 15–19 detail the transition of the flow towards Langmuir
turbulence in the simulation with filtered C–L vortex force.

Fig. 15 shows downwind velocity fluctuations on a horizontal
plane near the surface and Figs. 16–19 show downwind, crosswind
and vertical velocity fluctuations on a vertical plane. As can be seen
from these figures, the coherence of the initial Langmuir cells
breaks down as a Langmuir turbulent state is reached (Figs. 16–
19). This is in contrast to the shallow water cells studied earlier,
which show greater coherence during the fully developed Lang-
muir turbulent state. As the cells of Figs. 15–19 reach the base of
the mixed layer, they interact with the thermocline generating
internal wave activity (Polton et al., 2008).

The C–L vortex force is seen to trigger small scale, unstable LC in
the stratified Ekman layer flow, however, this is not the case in the
shallow water LSC flow described earlier in Section 4.1. The C–L
vortex force is given as the cross-product between the Stokes drift
velocity and flow vorticity. As described by Leibovich (1983), any
crosswind anomaly in the downwind velocity produces vorticity
anomalies (in the vertical direction) with opposite signs. These
vorticity anomalies produce horizontal C–L vortex forces which
converge in the crosswind direction over planes of local maximum
downwind velocity. The converging forces give rise to the surface
convergence of flow associated with the Langmuir cells.

The LES of the stratified Ekman layer starts from rest and tran-
sitions towards turbulence in response to small perturbations (on
the order of the grid-scale) induced by the initially random desta-

Fig. 12. (a) Mean velocity and (b) Reynolds normal stress components in a stratified Ekman layer. Time averaging was performed over M = 5 periods of inertial oscillation.
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bilizing surface heat flux described earlier. Among these perturba-
tions are crosswind anomalies in the downwind velocity feeding
the C–L vortex force mechanism generating coherent Langmuir
cells. LC nonlinear interaction leads to a loss of cell coherency
and the generation of length scales beyond the support of the
numerical method once transition to turbulence occurs. In con-
trast, LES of shallow water LSC in Section 4.1 starts from an already
turbulent field containing strongly coherent Couette cells, a sec-
ondary turbulent structure characterized by crosswind anomalies
of the downwind velocity over scales much larger than the grid-
scale. The wavelength of these anomalies is approximately two
times the depth of the water column. The C–L vortex force mech-
anism feeds on these large-scale Couette cells to generate the
LSC described earlier which are much bigger than the grid cell size.
Unlike LC in the stratified Ekman layer, the coherence of the LSC
does not break down once statistically steady turbulence is
reached. Note that only one Langmuir supercell is resolved in our
simulation, thereby precluding nonlinear interaction between
multiple supercells. Future simulations will focus on increasing
the size of the domain in the horizontal directions allowing for
the resolution of more supercells. It is possible that nonlinear
interaction between these supercells could lead to modes beyond
the support of the numerical method requiring filtering of the

C–L vortex force. Nonlinear interaction between Couette cells has
been observed in the form of cell meandering by Tsukahara et al.
(2006) and a similar interaction could be possible between Lang-
muir supercells. A detailed analysis of the Couette cells and their
transition to LSC is given by Tejada-Martı́nez and Grosch (2007).

5. Concluding remarks

We have described a hybrid spectral/finite-difference discreti-
zation of the Navier–Stokes/Craik–Leibovich equations suitable
for LES of shallowwater and deep water surface mixed layer turbu-
lent flows. Time integration is accomplished with a fractional-step
scheme. The spatial and temporal accuracy of the discretization
has been demonstrated for simple flows with analytical solutions
and for benchmark turbulent flows.

Additional simulations with the method focused on LES-NWR of
shallow water flow with full-depth LSC and on LES-NWM of an
unstratified Ekman layer flow without wave effects and a stratified
Ekman layer flow with wave effects (i.e. with LC). The behavior of
the dynamic Smagorinsky SGS stress model was highlighted in
LES-NWR of LSC and in LES-NWM of an unstratified Ekman layer
flow. In the LES-NWM, the SGS stress is required to match the wind

Fig. 13. (a) Downwind-vertical Reynolds and SGS shear stresses and (b) crosswind-vertical Reynolds and SGS shear stresses in a stratified Ekman layer. Time averaging was
performed over M = 5 periods of inertial oscillation.
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stress at the surface in the absence of a viscous stress, while in the
LES-NWR, the SGS stress is not constrained to satisfy a boundary
condition and thus freely tends to zero at the surface. The domi-
nant contribution of the near-surface SGS stress in LES-NWM leads
to results heavily dependent on the SGS stress parameterization.
Given that LES-NWM does not resolve the surface inner layer
and only resolves up to the log-layer, the SGS stress is expected

to adhere to log-layer similarity theory. This similarity theory is
explicitly built in the SMM. In the case of DSM, similarity is ac-
counted for through the SGS stress boundary condition, enforcing
a constant stress behavior characteristic of the log-layer. In the
log-layer region, the shear stress is nearly constant and equal to
the surface stress (Pope, 2000). In traditional, non-staggered grid
implementations of the DSM, this constant stress condition is

Fig. 14. Instantaneous downwind velocity fluctuation, u0
1=us on horizontal plane at x3=d ¼ 1:85 in a stratified Ekman layer (simulation 1) without explicit filtering of the

vortex force. Surface is at x3=d ¼ 2.

Fig. 15. Instantaneous downwind velocity fluctuation, u0
1=us on horizontal plane at x3=d ¼ 1:85 in a stratified Ekman layer (simulation 1) with explicit filtering of the vortex

force. Surface is at x3=d ¼ 2.
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Fig. 16. Instantaneous velocity fluctuations on vertical plane at x1=d ¼ 10=6 and tus=d ¼ 0:503 (simulation 1) with explicit filtering of the vortex force.

Fig. 17. Instantaneous velocity fluctuations on vertical plane at x1=d ¼ 10=6 and tus=d ¼ 0:628 (simulation 1) with explicit filtering of the vortex force.
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Fig. 18. Instantaneous velocity fluctuations on vertical plane at x1=d ¼ 10=6 and tus=d ¼ 0:723 (simulation 1) with explicit filtering of the vortex force.

Fig. 19. Instantaneous velocity fluctuations on vertical plane at x1=d ¼ 10=6 and tus=d ¼ 0:848 (simulation 1) with explicit filtering of the vortex force.
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automatically satisfied as the SGS stress boundary condition is not
enforced at the surface but rather at a distance half the local verti-
cal grid cell size below the surface assumed to be within the log-
layer. In our non-staggered grid formulation, this condition has
to be explicitly enforced by setting the SGS stress plus the resolved
Reynolds stress equal to the surface stress at the top of the domain
and at the first plane of grid points below. The absence of this con-
stant stress layer results in small SGS stress values jeopardizing the
accuracy of the method.

Finally, it was seen that the C–L vortex force can trigger unsta-
ble small-scale LC. Filtering of this force suppresses the instability
leading to a stable computation. We interpret this filtering opera-
tion as an ad hoc SGS model accounting for LC subgrid-scales as
neither the SMM nor the DSM is able to represent these scales.
As described in earlier sections, the DSM samples the smallest re-
solved scales in order to dynamically compute the model coeffi-
cient. In the absence of the C–L vortex force filtering operation,
the rising unstable LC scales would pollute the DSM coefficient,
exacerbating the instability. Our results demonstrate the need for
SGS models able to account for the subgrid-scales generated by
the C–L vortex force term and thus LC.

Appendix A. Validation studies

A.1. Convergence results: Taylor–Green vortices and Poiseuille laminar
channel flow

Temporal and spatial convergence results are presented in
terms of two canonical problems, Taylor–Green vortices and
Poiseuille laminar flow, respectively. The exact solution for the
two-dimensional Taylor–Green vortices problem is

u1ðt; x1; x2; x3Þ ¼ # cosðx1Þ sinðx3Þ expð#2mtÞ;
u2ðt; x1; x2; x3Þ ¼ 0;
u3ðt; x1; x2; x3Þ ¼ sinðx1Þ cosðx3Þ expð#2mtÞ;

pðt; x1; x2; x3Þ ¼
1
4

cosð2x1Þ þ cosð2x3Þð Þ expð#4mtÞ;

ð51Þ

for xi 2 ½0;2p.. Periodicity is taken in x1; x2, and x3 and the initial
condition is prescribed as (51) with t ¼ 0. A second version of this
problem was also tested in a domain defined by x1 2 ½0;2p.; x2 2

½0;2p. and x3 2 ½0;p. in which periodicity is taken in x1 and x2
and Dirichlet boundaries are taken at x3 ¼ 0 and x3 ¼ p. Fig. 20a
clearly shows second-order temporal convergence results for the
latter problem on a 33+ 9+ 17 grid. Other grids were tested lead-
ing to the same temporal convergence. Although these problems
are relatively simple, they can quickly lead to the discovery of
coding errors. Furthermore, through these problems we have
confirmed the results of Armfield and Street (2000). That is,
excluding the pressure gradient from the momentum-solve in
(26) or (20) leads to a first-order time-accurate method while
retaining the pressure gradient leads to a second-order time-
accurate method.

Fig. 20b shows spatial convergence results for a laminar Poiseu-
ille channel flow. The exact solution is

u1ðt; x1; x2; x3Þ ¼ umax 1# x3
h

' (2
! "

;

u2ðt; x1; x2; x3Þ ¼ 0;
u3ðt; x1; x2; x3Þ ¼ 0;

pðt; x1; x2; x3Þ ¼ po #
2u2

max

Reh
x1
h
;

ð52Þ

where h is the channel half-height, Reh ¼ umaxh=m and umax is the
maximum centerline velocity. Note that the exact pressure solu-
tion in (52) is linear in x1. However, the spectral discretization
in x1 and x2 dictates that all solution variables must be periodic
in these two directions. Thus, to have a periodic pressure we must
take the pressure as a constant and account for the pressure
gradient as a known forcing vector ðf1; f 2; f 3Þ added to the
right-hand side of the momentum equation where f1 ¼ 2u2

max=Reh
and f1 ¼ f2 ¼ 0.

The initial condition is taken as u1 ¼ ðumax=3Þ½1#
ðx3=hÞ2.; u2 ¼ u3 ¼ p ¼ 0. Although this initial condition is not
the exact solution, it is divergence free. Furthermore, note that
the exact solution to this problem is time-independent. Here the
time splitting in the fractional-step scheme serves as an iterator
driving the numerical solution towards the exact, steady solution.

The spatial convergence result of Fig. 20b demonstrates that the
spatial discretization employed is fourth-order accurate, consistent
with the fourth-order spatial filter applied to the nonlinear advec-
tion term, discussed earlier.

Fig. 20. (a) Temporal convergence in Taylor–Green vortices problem and (b) spatial convergence in Poiseuille channel flow problem.
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A.2. Decaying isotropic turbulence

Under certain conditions, large-scale motions can become tur-
bulent. More precisely, the large-scale motions become unstable
and break into smaller scale motions which take energy from the
larger ones. Energy is passed down to such small scales at which
it is dissipated by the action of molecular viscosity. At high enough
Reynolds numbers, the small-scale motions cease to depend on the
nature of the large-scale flow, leading to the universality of small-
scale motions. Furthermore, these scales lose all directional orien-
tation, thus becoming isotropic. The energy contained within these
scales is characterized by what is usually referred to as the five-
thirds law. In other words, the energy at these scales behaves as
k#5=3
r , where kr , the radial wavenumber, is proportional the inverse

of the size of the scales. The radial wavenumber is defined as the
magnitude of wavenumber k ¼ ðk1; k2; k3Þ.

In this section we present LES results with the dynamic Smago-
rinsky model of a flow which is nearly isotropic at all scales. Our
results are compared to the experimental data of Comte-Bellot
and Corrsin (1971), who represented an infinite space of isotropic
motions decaying in time because of a lack of kinetic energy pro-
duction (in the absence of shear flow) to balance the viscous dissi-
pation. They accomplished this by obtaining a turbulent field
behind a regular grid of bars spanning a steady, uniform duct flow.
By moving at the speed of the mean flow behind the grid, they cor-
rectly surmised that an observer would see something like true
isotropic turbulence evolving in time.

Due to the homogeneity of the flow, the domain is taken as a
cubewith sides of length 2p, and the boundary conditions are taken
as periodic in the x1-, x2- and x3-directions. Furthermore, the cube is
represented by a grid with 33 equally spaced vertices in each direc-
tion. Thus, the uniform spacing in all directions is h ¼ 2p=32.

Results are compared to the experimental data of Comte-Bellot
and Corrsin (1971) in the form of energy spectra, or better yet, en-
ergy contained in the different scales of the flow. The initial condi-
tion for our simulations is obtained such that its energy spectrum
matches filtered experimental spectrum at a particular non-dimen-
sional time station of the Comte-Bellot and Corrsin experiment, de-
noted as t42. The simulation is run for 56 time units up to a second
non-dimensional time station, denoted as t98, and the energy spec-

trum of the solution at this time is compared to the energy spec-
trum of themeasured data corresponding to that same time station.

The solid curves in Fig. 21a and b show the energy spectrum of
the initial condition in our simulation matching the energy spec-
trum of the Comte-Bellot and Corrsin (1971) experiment at t42.
The Reynolds number of the initial condition based on the Taylor
microscale is 71.6. The dashed curves show the energy spectrum
of the solution in our simulation at t98. Fig. 21a and b show excel-
lent agreement at t98 between the spectrum of the experiment
(diamonds) and the spectrum of the simulation (dashed) for the
smaller resolved scales in the range 5 < krh < 16. The disagree-
ment at lower wavenumbers is due to the limited length of the
sides of the cubic domain.

Fig. 21a demonstrates the effect of explicit filtering in the x3
(vertical) direction (analogous to de-aliasing in the x1 and x2 (hor-
izontal) directions). Exclusion of either explicit filtering or de-alias-
ing (not shown) can lead to energy accumulation at high
wavenumbers, as shown by the dash-dotted curves in Fig. 21a.

Fig. 21b demonstrates the effect of the SGS parametrization, in
this case the dynamic Smagorinsky model. The energy spectrum in
the simulation without SGS parametrization is characterized by
excessive energy accumulation for a large part of the resolved
wavenumber range. The addition of the SGS parametrization leads
to a drastic improvement as the SGS stress serves to extract energy
from the resolved scales successfully modeling the effect of unre-
solved scales on resolved scales.

The dynamic Smagorinsky model gives ðCsDÞ2, as shown in Eq.
(10). The Smagorinsky coefficient Cs computed in our decaying iso-
tropic turbulence LES with de-aliasing and explicit vertical filtering
of the nonlinear terms for the ranges from 0.120 to 0.186, where in
Eq. (10) we have taken D * h, where h ¼ 2p=32 is the grid size in
x1; x2 and x3.

A.3. Turbulent channel flow

In this section we present DNS and dynamic Smagorinsky mod-
el LES results of an unstratified turbulent channel flow between
parallel, stationary, no-slip plates. The channel flow is chosen to
have a Reynolds number, Res (based on the friction velocity, us,
and the channel half-height, d) at 180 for the purpose of compari-

Fig. 21. (a) Effect of SGS stress model and (b) effect of explicit filtering of advection terms in the x3 direction in decaying isotropic turbulence.

136 A.E. Tejada-Martínez et al. / Ocean Modelling 30 (2009) 115–142



son with the benchmark DNS results of Kim et al. (1987). The inter-
ested reader is directed to Tejada-Martı́nez et al. (2007) for the re-
sults dealing with a stably stratified version of this flow. The
friction velocity is defined as us ¼ ðsw=qoÞ

1=2, where sw is the shear
stress at the walls. From Dean’s correlation, as given by Kim et al.
(1987), Res ¼ 180 corresponds to a bulk Reynolds number (based
on the bulk streamwise velocity and channel half-height) of
2800. The geometry of the problem is composed of no-slip walls
at x3=d ¼ /1 with homogeneous spanwise ðx2Þ and streamwise
ðx1Þ directions. Thus, the spanwise and streamwise directions are
taken as periodic. The channel domain is taken L1 ¼ 4pd long in
the x1 direction and L2 ¼ ð4=3Þpd wide in the x2 direction. The
wall-normal direction extends from x3=d ¼ #1 to x3=d ¼ 1. The
LES grid is composed of 33 points in the x1 and x2 directions and
65 points in the x3 direction (i.e. 33+ 33+ 65) while the DNS grid
is composed of a 128+ 128+ 129 grid. For our channel grid, a
hyperbolic stretching function is employed in the wall-normal,
x3, direction such that the vertical distance between the first point
off the top (bottom) plate and the plate itself, x(3, is given through
Dzþ1 ¼ 1 for both DNS and LES. Using the stretching function, the
grid spacings in the x3 direction become smaller near the walls,
yielding higher resolution in these regions. Due to the no-slip
boundary conditions, a viscous boundary layer and its characteris-
tic strong velocity gradient in the wall-normal direction develop in
the near-wall region, requiring higher resolution. The first point off

the wall at Dzþ1 ¼ 1 is well below the top of the viscous sublayer lo-
cated at Dzþ ) 5 (Pope, 2000). Thus our LES may be categorized as
LES-NWR (i.e. LES with near-wall resolution).

In turbulent channel flow simulations, the flow is driven by a
constant streamwise pressure gradient chosen such that (in a con-
trol volume setting) it balances the targeted wall shear stress
determined by the choice of Res. This balance results in a dimen-
sionless streamwise pressure gradient equal to unity.

Figs. 22 and 23a and b compare root mean square (rms) of
velocity fluctuations, 1–3 Reynolds stress component and mean
streamwise velocity, respectively, in our DNS and LES of turbulent
channel flowwith the benchmark DNS of Kim et al. (1987). The rms
of velocity fluctuations and the 1–3 Reynolds stress component are
derived following the classical Reynolds decomposition:

!ui ¼ h!uiiþ !u0
i; ð53Þ

where h&i denotes averaging in time and over homogeneous direc-
tions (i.e. x1 and x2), h!uii is the mean velocity and !u0

i is its fluctuating
component. Based on this definition, the Reynolds stress compo-
nents are computed as h!u0

i!u
0
ji ¼ h!ui!uji# h!uiih!uji and the rms of veloc-

ity fluctuations as urms
1 ¼

ffiffiffiffiffiffiffiffiffiffi
h!u02

1 i
q

, urms
2 ¼

ffiffiffiffiffiffiffiffiffiffi
h!u02

2 i
q

and urms
3 ¼

ffiffiffiffiffiffiffiffiffiffi
h!u02

3 i
q

.
The agreement between the present DNS and the Kim et al.

(1987) DNS in terms of rms of velocity fluctuations, 1–3 Reynolds
stress component and mean streamwise velocity is remarkable gi-

Fig. 22. Root mean square of velocity fluctuations in DNS and LES of turbulent channel flow.
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ven that our DNS was performed on a 128+ 128+ 129 grid while
the DNS of Kim et al. (1987) was performed on a finer
ð192+ 160+ 129Þ grid. Their domain was similar to ours, except
in the x2-direction, in which ours is 4pd=3 wide while theirs is
2pd wide. Fig. 23a also shows the 1–3 components of the viscous
stress and the Reynolds stress in the DNS and LES and the SGS
stress in the LES. The sum of the 1–3 viscous and Reynolds stress
components results in a straight line as expected (Pope, 2000).

Figs. 24–26 show LES results in terms of the model coefficient
ðCsDÞ2 (appearing in the dynamic Smagorinsky SGS stress parame-
trization) and streamwise and spanwise energy spectra, respec-
tively. Streamwise (spanwise) energy spectra are computed by
taking the Fourier transform of streamwise (spanwise) autocorre-
lation functions. The two-point, one-time, streamwise correlation
function is defined as

Rx
ijðDx1; x3Þ ¼

!u0
iðt; x1; x2; x3Þ!u0

jðt; x1 þ Dx1; x2; x3Þ
D E

tx2

!u0
i
!u0
j

D E : ð54Þ

Similarly, the spanwise correlation function is

Ry
ijðDx2; x3Þ ¼

!u0
iðt; x1; x2; x3Þ!u0

jðt; x1; x2 þ Dx2; x3Þ
D E

tx1

!u0
i
!u0
j

D E ; ð55Þ

where h&itxi denotes averaging in time and over the xi-direction.
Autocorrelations are obtained by setting i ¼ j in (54) and (55)
and ignoring the usual convention of summing over repeated
indices.

Near the wall, ðCsDÞ2 goes to zero as can be seen by analyz-
ing Eqs. (10)–(12). As expected, near the wall ðCsDÞ2 ) zþ3

¼ ðReszÞ3 where z is the dimensionless distance to the wall
(Pope, 2000). Streamwise and spanwise energy spectra at the
middle horizontal plane and a near-wall horizontal plane of
the channel from our LES compared to those from the DNS of
Kim et al. (1987) demonstrates that the LES is able to accu-
rately represent the energy in the most energetic scales of the
flow. As expected, there is small damping of energy in the
LES relative to the DNS at the highest resolved wavenumbers
of the LES. This damping is due to an unknown combination
of the spatiotemporal discretization and the SGS parameteriza-
tion. Note that the high wavenumber energy damping observed
in LES with our high-order spatial discretization is much less
that the damping observed in LES with lower order methods.
For comparison, the reader is directed to the LES results of
Najjar and Tafti (1996) obtained with a second-order accurate
spatial discretization. In the latter, excessive streamwise energy
damping occurs at k1h ) 10. Finally, the reader is reminded that
it is not possible to compare our LES energy spectra at the

Fig. 23. (a) Reynolds, viscous, SGS and total (Reynolds plus viscous plus SGS) shear stresses and (b) mean velocity in wall units in DNS and LES of turbulent channel flow. In
DNS, the SGS stress is zero. Note that xþ3 ¼ ðx3=dþ 1ÞRes .
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same near-wall locations as those of Kim et al. (1987) due to
different grids between our LES and their DNS. As a result,
LES energy spectra in terms of wall-normal fluctuations at
zþ ¼ 4:75 are lower than the DNS counterpart at zþ ¼ 5:34 for
all wavenumbers resolved in the LES.

Appendix B. Finite-difference stencils

Most of the description of the finite-difference stencils appears
in Tejada-Martı́nez and Grosch (2007). We present it here for
completeness.

Fig. 24. Mean dynamic coefficient, hC2
sD

2i, in LES of turbulent channel flow.

Fig. 25. Streamwise one-dimensional energy spectra in LES of turbulent channel flow.
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In order to resolve strong gradients in the x3-direction near the
bottom boundary and the top surface, a greater number of points is
clustered near these two regions. Consider a set of equi-distant
points at locations ni discretizing the vertical direction of the do-
main. Clustering or stretching of these points may be accomplished
through a mapping hyperbolic function (with existing real inverse)
such as

zi ¼ ð1=bÞ tanh½ni tanh
#1ðbÞ.: ð56Þ

This function takes the set of N equi-distant points ni discretizing
the interval ½#1;1. and maps them to the set of N non-uniformly
spaced points zi in ½#1;1.. In our LES-NWR of shallow water Lang-
muir circulation, the points zi are clustered near the upper and low-
er bounds of the interval. In our LES-NWM of stratified and
unstratified Ekman layers, the points are clustered near the surface
only. Coefficient b is a measure of the clustering.

The finite-difference approximations of @=@x3 and @2=@x23 used
here (i.e. d=dx3 and d2=dx23, see further ahead) can only be applied
over points which are equi-distant. Thus, derivatives on the non-
uniform grid are computed in terms of derivatives on the equi-dis-
tant grid and derivatives of the inverse of the mapping function as

df
dz

¼ df
dn

dn
dz

and
d2f

dz2
¼ d2f

dn2
dn
dz

! "2

þ df
dn

d2n

dz2
; ð57Þ

where z and n denote zi and ni, respectively, in (56). Note that this
approach to clustering leads to non-uniformly spaced grid points
in the vertical direction only. The grid points are uniformly spaced
in the horizontal directions.

Using compact finite-difference schemes, second- and first-or-
der derivatives of function f ðnÞ on ½a; b. are obtained. Consider
the set fn1; n2; n3; . . . ; nN; nNþ1g of equi-distant points gridding the
interval ½a; b. with h being the distance between the points. The
second and first derivatives of f ðnÞ may be obtained from

Af 00 ¼ Bf thus f 00 ¼ A#1B
n o

f ; ð58Þ

and

Cf 0 ¼ Df thus f 0 ¼ C#1D
n o

f ; ð59Þ

where f ¼ ðf1; f2; & & & ; f NÞ
t and fi is f ðzÞ evaluated at zi 2 ½a; b.. Matri-

ces A; B; C and D are banded. However, matrices A#1B and C#1D are
full. Next, the stencils used to generate these matrices are detailed.

B.1. First-order derivative

Let f 0i denote the first derivative of f ðzÞ at z ¼ zi. For i > 2 and
i < N, the first derivative of function f ðzÞ is approximated via

1
3
f 0i#1 þ f 0i þ

1
3
f 0iþ1 ¼ 1

h
# 1
36

fi#2 #
7
9
fi#1 þ

7
9
fiþ1 þ

1
36

fiþ2

! "
: ð60Þ

Detailed analysis of this Oðh6Þ approximation is given by Lele
(1992). For i ¼ 1, the first derivative may be obtained from the fol-
lowing Oðh5Þ approximation:

f 01 ¼ 1
h

c1f1 þ c2f2 þ c3f3 þ c4f4 þ c5f5 þ c6f6 þ c7f7 þ c8f8ð Þ; ð61Þ

where

c1 ¼ #ða0 # 28b0 þ 13; 068Þ=5040;
c2 ¼ þða0 # 27b0 þ 5040Þ=720;
c3 ¼ #ða0 # 26b0 þ 2520Þ=240;
c4 ¼ þða0 # 25b0 þ 1680Þ=144;
c5 ¼ #ða0 # 24b0 þ 1260Þ=144;
c6 ¼ þða0 # 23b0 þ 1008Þ=240;
c7 ¼ #ða0 # 22b0 þ 840Þ=720;
c8 ¼ þða0 # 21b0 þ 720Þ=5040;

ð62Þ

a0 ¼ 1809:257 and b0 ¼ #65:1944. For i ¼ 2, the first derivative
may be obtained from the following Oðh5Þ approximation:

Fig. 26. Spanwise one-dimensional energy spectra in LES of turbulent channel flow.
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f 02 ¼ 1
h

d1f1 þ d2f2 þ d3f3 þ d4f4 þ d5f5 þ d6f6 þ d7f7 þ d8f8ð Þ; ð63Þ

where

d1 ¼ #ða1 # 21b1 þ 720Þ=5040;
d2 ¼ þða1 # 20b1 # 1044Þ=720;
d3 ¼ #ða1 # 19b1 # 720Þ=240;
d4 ¼ þða1 # 18b1 # 360Þ=144;
d5 ¼ #ða1 # 17b1 # 240Þ=144;
d6 ¼ þða1 # 16b1 # 180Þ=240;
d7 ¼ #ða1 # 15b1 # 144Þ=720;
d8 ¼ þða1 # 14b1 # 120Þ=5040;

ð64Þ

a1 ¼ #262:16 and b1 ¼ #26:6742. Similar expressions for the first
derivatives are defined at i ¼ N and i ¼ N þ 1. The stencils in
(61)–(64) are analyzed in detail by Carpenter et al. (1993).

B.2. Alternate first-order derivative

The previously described vertical derivative at i ¼ 1 and
i ¼ N þ 1 proved effective for non-zero shear stress and no-slip
boundary conditions. However, in the case of the zero shear stress
boundary conditions at the bottom of the domain in Ekman layer
simulations, this approximation leads to undesired inaccuracies.
For example, consider imposing du1=dx3 ¼ 0 at the bottom of the
domain, as is the case for the unstratified and stratified Ekman
layer simulations. Following the previously described formulation,

du1

dx3
¼ du1

dn
dn
dx3

¼ 0; ð65Þ

where dn=dx3 is the vertical derivative of stretching function nðx3Þ
which maps a set of stretched grid points on x3 to a set of regularly
spaced grid points on n. The derivative du1=dn in (65) mentioned
above is approximated through Eq. (61) valid for a regularly spaced
grid. A major deficiency of the formulation previously described is
that Eq. (65) implies that

du1

dn
¼ 0: ð66Þ

Thus, the true zero derivative boundary condition on a stretched
grid is not imposed and instead is replaced by an erroneous zero
derivative on a regularly spaced grid. A more accurate approxima-
tion of the derivative was implemented at the bottom without
requiring the stretching function derivative (i.e. dn=dz). A third-or-
der accurate expression for the first derivative was implemented,
derived via Taylor series expansions taking into consideration the
vertical variability of the grid. The vertical derivative of a quantity
f (i.e. df=dx3) at the bottom of the domain was taken as

f 01 ¼ #a1f1 # a2f2 # a3f3; ð67Þ

where

a1 ¼ #1=k1; a2 ¼ k2=k1; a3 ¼ k3=k1; ð68Þ

with

k1 ¼ #h1h2ðh1 þ h2Þ
ðh1 þ h2Þ2 # h2

1

; k2 ¼ ðh1 þ h2Þ2

ðh1 þ h2Þ2 # h2
1

;

k3 ¼ h2
1

ðh1 þ h2Þ2 # h2
1

: ð69Þ

In the previous expression h1 is the vertical distance between the
first two grid points starting at the bottom, and so on. A similar
expression for df=dx3 at the surface was also implemented for con-
sistency. Although the previous approximation of the first-order
derivative is third-order accurate, it is well known that boundary

stencils may be one order less than interior stencils without degrad-
ing the overall spatial accuracy of the interior scheme (e.g. see Kre-
iss, 1972). Our interior scheme is fourth-order accurate, as was
shown in the validation studies and is described further in the
upcoming subsection.

B.3. Second-order derivative

For i > 2 and i < N, the second derivative of function f ðzÞ is
computed using the following Oðh6Þ approximation discussed by
Lele (1992):

2
11

f 0i#1þ f 0i þ
2
11

f 0iþ1 ¼
1
h2

3
44

fi#2þ
12
11

fi#1#
51
22

fiþ
12
11

fiþ1þ
3
44

fiþ2

! "
:

ð70Þ

For i ¼ 1, the second derivative may be obtained from the following
Oðh5Þ approximation:

f 001 ¼ 1
h2 c1f1 þ c2f2 þ c3f3 þ c4f4 þ c5f5 þ c6f6 þ c7f7 þ c8f8ð Þ; ð71Þ

where c1 ¼ 5:211; c2 ¼ #22:300; c3 ¼ 43:950; c4 ¼ #52:722; c5 ¼
41:000; c6 ¼ #20:100; c7 ¼ 5:661 and c8 ¼ #0:700. For i ¼ 2, the
second derivative may be obtained from the following Oðh5Þ
approximation:

f 002 ¼ 1
h2 d1f1 þ d2f2 þ d3f3 þ d4f4 þ d5f5 þ d6f6 þ d7f7 þ d8f8ð Þ; ð72Þ

where d1 ¼ 0:700; d2 ¼ #0:389; d3 ¼ #2:700; d4 ¼ 4:750; d5 ¼
#3:722; d6 ¼ 1:800; d7 ¼ #0:500 and d8 ¼ 0:061. Similar expres-
sions for the second derivatives are defined at i ¼ N and i ¼ N þ 1.
The stencils in (71) and (72) are courtesy of Jackson (University of
Illinois at Urbana-Champaign, personal communication) and may
be derived using a similar approach to that of Carpenter et al.
(1993).

When solving Poisson’s equation for pressure in (28), the fol-
lowing alternate expressions are used (instead of (71) and (72))
leading to lower round-off errors. For i ¼ 1

f 001 ¼ #1
h
49
10

f 01

þ 1
h2

13;489
1800

f1 þ 12f 2 #
15
2

f3 þ
40
9

f4 #
15
8

f5 þ
12
25

f6 #
1
18

f7
! "

;

ð73Þ

with truncation error 0:6572h6d8f=dz8. Note that the Neumann
pressure boundary condition in (28) is assigned through the first
term on the right-hand side of (73). For i ¼ 2,

11
128

f 00i#1 þ f 00i þ 11
128

f 00iþ1

¼ 1
h2

585
512

f1 #
141
64

f2 þ
459
512

f3 þ
9
32

f4 #
85
512

f5 þ
3
64

f6 #
3

512
f7

! "
;

ð74Þ

with truncation error 0:02101h6d8f=dz8. Similar expressions are
used for i ¼ N þ 1 and i ¼ N. The approximations in (73) and (74)
and their corresponding truncation errors were derived via Taylor
series analysis.

B.4. Spatial filtering of advection terms

As discussed earlier, the advection terms in the momentum
equations are spatially filtered in the vertical direction at each time
step in order to damp out scales of motion unresolvable by the
grid. The following fourth-order compact filter adapted for a non-
uniform grid (Slinn and Riley, 1998) is used:
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0:4~f i#1 þ ~f i þ 0:4~f iþ1

¼ 0:4f i#1 þ fi þ 0:4f iþ1 #
1
80

ðfiþ2 # 4f iþ1 þ 6f i # 4f i#1 þ fi#2Þ

# h
80

6c2ðziÞ
c21ðziÞ

! "
fiþ2 # 2f iþ1 þ 2f i#1 # fi#2

2

! "

# h2

80
4c3ðziÞ
c31ðziÞ

þ 3c22ðziÞ
c41ðziÞ

! "
ðfiþ1 # 2f i þ ui#1Þ

# h3

80
c4ðziÞ
c41ðziÞ

! "
fiþ1 # fi#1

2

! "
; ð75Þ

where c1 ¼ @n=@z; c2 ¼ @2n=@z2; c3 ¼ @3n=@z3 and c4 ¼ @4n=@z4 and
n is a mapping function in (56). Note that this stencil is not valid for
points at the bottom and top boundaries and for the first two hor-
izontal planes of points off from these boundaries. In the current
implementation the filter is not applied at these points. This omis-
sion does not have a negative impact on the results.

A formal derivation of this compact filter can be made through
Taylor series analysis. From this analysis one can see that the fil-
tered function is an approximation of the unfiltered function up
to fourth-order. That is

~f ¼ f þ Oðh4Þ: ð76Þ

The finite-difference approximations of the first and second deriva-
tives in the vertical ðx3Þ direction (discussed in the previous subsec-
tion) introduce an error of Oðh5Þ or higher. Filtering the advection
terms in the vertical direction using (75) introduces an error of
Oðh4Þ. Furthermore, using a spectral discretization in the horizontal
(x1 and x2) directions introduces an error of much higher order than
the previously discussed finite differencing and filtering operations.
Thus, the current spatial discretization is at least of Oðh4Þ. A higher
order filter could potentially be introduced, however, this would in-
volve a more expensive computation at the expense of only mini-
mally changing results.
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