A Spectral Model for Process Studies of Rotating, Density-Stratified Flows

K. B. WINTERS, J. A. MACKINNON, AND BREN MILLS

Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, La Jolla, California

(Manuscript received 5 February 2003, in final form 19 May 2003)

ABSTRACT

A numerical model designed for three-dimensional process studies of rotating, stratified flows is described. The model is freely available, parallel, and portable across a range of computer architectures. The underlying numerics are high quality, based on spectral expansions, and third-order time stepping. Optional submodels include accurate calculation of Lagrangian trajectories. Special consideration has been taken to ensure ease of use by geophysical, as distinguished from computational, scientists. The mathematical and computational methods underlying the model are presented here as are several illustrative applications highlighting the model capabilities and the types of flows amenable to simulation using the model. Sample applications include forced inertial gravity waves, parametric subharmonic instability, shear-driven mixing layers, instability of a low Froude number vortex street, and geostrophic adjustment of intermittent, isolated mixing patches.

1. Introduction

In this work, we describe the features and use of a numerical model designed to provide approximate solutions to the Navier–Stokes equations for density-stratified fluids in a rotating reference frame. The code is freely available and is intended for use as a tool for process-oriented simulations of stratified fluid flow, in particular for nonlinear interactions between internal gravity waves and transitional processes and instabilities resulting in disordered, three-dimensional motions. For our purposes here, we refer to this latter class of flows as turbulent. The algorithm is designed to be run on distributed memory multiprocessor computers using a data-parallel programming paradigm. Within the practical limits of memory and speed on the various platforms, the model can be run on machines ranging from Macintosh laptop computers, to workstation clusters, to large-scale community resources such as the Cray T3E.

The remainder of the paper is organized as follows. The transformed equations of motion are derived in section 2, followed by a discussion of the discrete numerical algorithms in section 3. Parallel implementation is discussed in section 4. Routine diagnostics, illustrative, and validation simulations are presented in sections 5 and 6. Parallel performance benchmarks are provided in section 7. A brief guide to the configuration of the code for user-defined applications and the output files is included in appendixes A and B.

2. Spectral form of the Boussinesq equations

Throughout this document, we will use the following notation conventions:

\[u(x, y, z, t), \] scalar function of position and time; (1)

\[\mathbf{u}(x, y, z, t), \] vector function of position and time; (2)

\[\tilde{u}(k, l, m, t), \] wavenumber space transform of \(u(x, y, z, t); \) (3)

\[\mathbf{u}(k, l, m, t), \] vector form in transformed space; and (4)

\[\mathbf{x}, \mathbf{y}, \mathbf{z}, k, l, m, \] unit vectors in the \(x, y, z \) and \(k, l, m \) directions. (5)

The equations of motion for a density-stratified fluid on an \(f \) plane are
\[
\frac{\partial u}{\partial t} = -u \cdot \nabla u + f v - \frac{1}{\rho} \frac{\partial P}{\partial x} + F_1 + \nu \nabla^2 u, \quad (6)
\]
\[
\frac{\partial v}{\partial t} = -u \cdot \nabla v - f u - \frac{1}{\rho} \frac{\partial P}{\partial y} + F_2 + \nu \nabla^2 v, \quad (7)
\]
\[
\frac{\partial w}{\partial t} = -u \cdot \nabla w - \frac{1}{\rho} \frac{\partial P}{\partial z} + F_3 + \nu \nabla^2 w - g, \quad (8)
\]
\[
\frac{\partial \rho}{\partial t} = -u \cdot \nabla \rho + F_4 + \kappa \nabla^2 \rho, \quad (9)
\]
\[
\nabla \cdot \mathbf{u} = 0, \quad (10)
\]
where \(u, v, w, \rho, P\) are functions of the spatial coordinates \(x, y, z\) (vertical, positive upward), and time \(t\). In addition, \(\nu, \kappa\) are the molecular viscosity and scalar diffusivity respectively; \(f = 2\Omega \sin(\phi)\) is the Coriolis parameter; \(\Omega\) is the earth’s rotation frequency; \(\phi\) is the latitude; and \(g\) is the gravitational acceleration; \(F_i\) are external forcing terms. Equations (6)–(10) are displayed with Laplacian dissipation and diffusion operators even though the code is implemented more generally, permitting a choice within a family of hyperviscosity operators. Because the numerical treatment of each of these schemes is similar, we present the algorithmic approach for the particular choice corresponding to Laplacian dissipation and diffusion.

For stably stratified geophysical flows, numerical accuracy can often be enhanced by focusing available precision on relatively small fluctuations about a steady background. We therefore decompose the (potential) density \(\rho\) into a reference value, a time-independent field, and a fluctuating component that varies in space and time:
\[
\rho(x, y, z, t) = \rho_0 + \bar{\rho}(x, y, z) + \rho'(x, y, z, t). \quad (11)
\]
A corresponding decomposition of pressure is defined in terms of the nonfluctuating components of density:
\[
p = \bar{P}(x, y, z) + P'(x, y, z, t) \quad (12)
\]
\[
\frac{\partial \bar{P}}{\partial z} = -\left(\frac{\partial \rho_0}{\partial z} + \bar{\rho}\right) g. \quad (13)
\]

We make the Boussinesq approximation assuming that density fluctuations are small compared to the reference value and hence use \(\rho_0\) in place of \(\rho\) except when it is multiplied by \(g\) [see Gill (1982), Lighthill (1978) for a discussion of the physical underpinnings of this approximation], obtaining
\[
\frac{\partial u}{\partial t} = -u \cdot \nabla u + f v - \frac{1}{\rho_0} \frac{\partial \bar{P}}{\partial x} - \frac{1}{\rho_0} \frac{\partial \rho'}{\partial x} + F_1 + \nu \nabla^2 u, \quad (14)
\]
\[
\frac{\partial v}{\partial t} = -u \cdot \nabla v - f u - \frac{1}{\rho_0} \frac{\partial \bar{P}}{\partial y} - \frac{1}{\rho_0} \frac{\partial \rho'}{\partial y} + F_2 + \nu \nabla^2 v, \quad (15)
\]
\[
\frac{\partial \rho'}{\partial t} = -u \cdot \nabla (\rho' + \bar{\rho}) + F_4 + \kappa \nabla^2 (\rho' + \bar{\rho}), \quad (16)
\]
\[
\nabla \cdot \mathbf{u} = 0. \quad (18)
\]
Note that the vertical gradient of \(\bar{P}\) does not appear in the equation for \(w\) once the hydrostatic relation (13) is invoked.

A few more manipulations are required before transforming the equations to wavenumber space. Because the flow is divergence free, we can write
\[
\mathbf{u} \cdot \nabla \rho' = \nabla \cdot (\rho'(\mathbf{u}) - \rho'\nabla \cdot \mathbf{u}) = \nabla \cdot (\mathbf{u}'\mathbf{u}). \quad (19)
\]
The nonlinear terms can be expressed in terms of the vorticity \(\mathbf{\omega} = \nabla \times \mathbf{u}\) using the identity
\[
\mathbf{u} \cdot \nabla \mathbf{u} = -\mathbf{u} \times \mathbf{\omega} + \frac{1}{2} \nabla |\mathbf{u}|^2. \quad (20)
\]
We define the new pressure variables,
\[
p = \frac{\rho' + \bar{P}}{\rho_0} + \frac{1}{2} |\mathbf{u}|^2 \quad \text{and} \quad \bar{P} = \frac{\bar{P}}{\rho_0}, \quad (21)
\]
and, for notational convenience,
\[
\mathbf{T} = (T_1, T_2, T_3)
\]
\[
= [\mathbf{u} \times \mathbf{\omega}] \cdot (x, y, z) + (F_1, F_2, F_3)
\]
\[
- \left(\frac{\partial \bar{P}}{\partial x}, \frac{\partial \bar{P}}{\partial y}, 0\right) \quad (22)
\]
and obtain
\[
\frac{\partial u}{\partial t} = T_1 - \frac{\partial P}{\partial x} + f v + \nu \nabla^2 u, \quad (23)
\]
\[
\frac{\partial v}{\partial t} = T_2 - \frac{\partial P}{\partial y} - f u + \nu \nabla^2 v, \quad \text{and} \quad (24)
\]
\[
\frac{\partial w}{\partial t} = T_3 - \frac{\partial P}{\partial z} + \nu \nabla^2 w - \frac{g}{\rho_0} \rho', \quad (25)
\]
to go along with Eqs. (17) and (18).

The algorithmic objective is to compute approximate solutions to the stratified flow equations over a mesh of discrete grid points in Cartesian \((x, y, z)\) space. The grid is defined by \(x = (i - 1)\Delta x, y = (j - 1)\Delta y, z = (k - 1)\Delta z\) with \((\Delta x, \Delta y, \Delta z) = (L_{nx}/L, L_{ny}/L, L_{nz}/L)\) for \((i, j, k) = 1, 2, \ldots, (nx, ny, nz) + 1\). We assume here that \(nx, ny, \text{and} nz\) can be represented as products of powers of 2, 3, or 5 so that discrete FFTs can be computed efficiently over the global data space.

a. Transformed equations: Triply periodic boundary conditions

Time integration is performed in wavenumber space to the spatially transformed version of the equations of
motion. The form of the variable expansions, and hence the form of the transformed equations, depend on the boundary conditions to be imposed. For triply periodic boundary conditions, we expand each of the primitive variables \(u, v, w, \rho' \), and \(P \) in discrete Fourier series of the form

\[
\bar{u}(x, y, z, t) = \sum_i \sum_j \sum_n \bar{u}_{ikj}(t)e^{ikx+jy+mnz},
\]

(26)

where the indices \(i = [-nx/2 + 1, -nx/2 + 2, \ldots, nx/2] \), \(j = [-ny/2 + 1, -ny/2 + 2, \ldots, ny/2] \), and \(n = [-nz/2 + 1, -nz/2 + 2, \ldots, nz/2] \) define discrete wavenumber values \(k = i(2\pi/L_x), l = j(2\pi/L_y), \) and \(m = n(2\pi/L_z) \). We assume here that \(\partial P/\partial z \) is a periodic function of the spatial variables though \(P \) need not be. This allows, for example, simulation of periodic flows in uniformly stratified fluids.

Spatial differentiation is analytic in wavenumber space with the operator transform pairs \((\partial/\partial x, \partial/\partial y, \partial/\partial z) \rightarrow (ik, il, im) \); for example,

\[
\frac{\partial \bar{u}}{\partial x} = \sum_i \sum_j \sum_n ik\bar{u}_{ikj}(t)e^{ikx+jy+mnz} \Leftrightarrow \frac{\partial \bar{u}}{\partial x} = ik\bar{u}.
\]

(27)

For the triply periodic case, transformation of the equations and some straightforward algebra yield

\[
\frac{\partial \bar{u}}{\partial t} = \bar{T}_1 - ik\bar{P} + f\bar{v} - \nu|k|^2\bar{u},
\]

(28)

\[
\frac{\partial \bar{v}}{\partial t} = \bar{T}_2 - il\bar{P} - f\bar{u} - \nu|k|^2\bar{v},
\]

(29)

\[
\frac{\partial \bar{w}}{\partial t} = \bar{T}_3 - im\bar{P} - \frac{g}{\rho_0}\bar{\rho}' - \nu|k|^2\bar{w},
\]

(30)

\[
\frac{\partial \bar{\rho}'}{\partial t} = -ik\cdot(\bar{\rho}u) + (\bar{F}_4 - \bar{u}\cdot\nabla\bar{P} - \kappa\nabla^2\bar{P})
\]

- \(\kappa(|k|^2\bar{\rho}') \),

and

\[
\mathbf{k}\cdot\mathbf{u} = 0.
\]

(31)

(32)

The transformed variables, for example, \(\bar{u} \) or \(\bar{T}_3 \), represent sets of values at each discrete wavenumber location. The transformed equations therefore form a set of ordinary differential equations in time for the complex expansion coefficients at each value of the triplet \((i, j, n)\) within the expansion range for a given discrete grid mesh.

A significant advantage of working with the transformed equations is that the pressure variable \(\bar{P} \) can be expressed in terms of the other variables by dotting the wavenumber vector \((\mathbf{k}, \mathbf{l}, \mathbf{m})\) into the vector form of the momentum equations and making use of (32). This analytical step is analogous to solving a Poisson equation for \(P \) in physical space, a task that often requires the use of iterative methods in purely gridpoint-based formulations. The resulting expression for \(\bar{P} \) is then substituted into the momentum equations to give

\[
\frac{\partial \bar{u}}{\partial t} = \left(\frac{l^2 + m^2}{|k|^2} \right) G_1 - \frac{kl}{|k|^2} G_2 - \frac{km}{|k|^2} G_3 - \nu|k|^2\bar{u},
\]

(33)

\[
\frac{\partial \bar{v}}{\partial t} = -\frac{kl}{|k|^2} G_1 + \left(\frac{k^2 + m^2}{|k|^2} \right) G_2 - \frac{lm}{|k|^2} G_3
\]

- \(\nu|k|^2\bar{v} \), and

\[
\frac{\partial \bar{w}}{\partial t} = -\frac{km}{|k|^2} G_1 + \frac{lm}{|k|^2} G_2 + \left(\frac{k^2 + l^2}{|k|^2} \right) G_3 - \nu|k|^2\bar{w},
\]

(34)

(35)

within periodic conditions

\[
G_1 = \bar{T}_1 + f\bar{u},
\]

(36)

\[
G_2 = \bar{T}_2 - f\bar{u},
\]

(37)

\[
G_3 = \bar{T}_3 - \frac{g}{\rho_0}\bar{\rho}'.
\]

(38)

b. Transformed equations: Free-slip, solid surfaces at \(z = 0, L_z \)

We frequently encounter problem formulations in which the vertical extent of the domain is finite, though viscous boundary layers are not of primary interest. We can modify the variable expansions slightly to enable simulation of flows satisfying free-slip conditions at the rigid lids \(z = 0, L_z \). In particular, we consider flows satisfying periodicity conditions in \(x \) and \(y \) with

\[
w = 0, \quad z = 0, L_z,
\]

(39)

\[
\frac{\partial \bar{u}}{\partial z} = \frac{\partial \bar{v}}{\partial z} = 0, \quad z = 0, L_z,
\]

(40)

\[
\rho = \rho_{\text{bottom}}(x, y), \quad z = 0, \quad \text{and}
\]

\[
\rho = \rho_{\text{top}}(x, y), \quad z = L_z.
\]

(41)

(42)

By choosing

\[
\bar{\rho} = \frac{z}{L_z}\rho_{\text{top}}(x, y) + \left(1 - \frac{z}{L_z} \right) \rho_{\text{bottom}}(x, y),
\]

(43)

we obtain the simple boundary condition \(\rho' = 0 \) at \(z = 0, L_z \), and can therefore treat the primitive variables pairs \((u, v) \) and \((w, \rho') \) in terms of cosine and sine expansions in the vertical, respectively. Other choices could be made for specifying \(\bar{\rho} \) consistent with these expansions. In general the function \(\bar{\rho} \) must be of the form

\[
\bar{\rho} = f(x, y) + g(x, y)z + \sum_n a_n(x, y) \sin\frac{n\pi z}{L_z},
\]

(44)

where \(f, g, \) and \(a_n \) are arbitrary periodic functions of \(x \) and \(y \).

One application for which this formulation is useful is internal wave dynamics in a stratified, finite-depth ocean. For these problems, the vertical displacement of fluid particles from their equilibrium position is ap-
proximately given by ρ'/p, where the fluctuations are defined relative to some ambient density stratification p, for example, with $d\rho/dz$ equal to a constant. Since the vertical motion must vanish at a rigid lid, we require that the vertical displacement, and hence, ρ' also vanish. Note, however, that these boundary conditions are not generally adiabatic because there can be a nonzero flux of density through the upper and lower bounding surfaces. Nevertheless, these boundary conditions are commonly prescribed for problems focusing on gravity wave interactions with reflective upper and lower boundaries. Convectively driven flow produced by a steady, spatially variable temperature difference between two free-slip plates can also be formulated using these boundary conditions. These and other examples are discussed further in section 6.

We refer to functions that vanish at $z = 0, L$, as odd functions; that is, their periodic extensions have odd symmetry across the boundaries. The functions ρ' and w are both odd and therefore expanded in the form

$$w(x, y, z, t) = \sum_{i} \sum_{j} \sum_{n} \tilde{w}_{k,n}(t) \sin(mz)e^{ikx+ily},$$

(45)

where the i, j horizontal indices and k, l wavenumbers are defined as in the triply periodic case but in the vertical we take $n = [0, 1, \ldots, nc]$ and $m = n/mL_z$.

Functions with even periodic extensions, that is, u, v, and P, have z derivatives that vanish at $z = 0, L$, and are expanded in the form

$$u(x, y, z, t) = \sum_{i} \sum_{j} \sum_{n} \tilde{u}_{k,n}(t) \cos(mz)e^{ikx+ily}.$$

(46)

The vertical derivatives take the forms

$$\frac{\partial}{\partial z} w(x, y, z, t) = \sum_{i} \sum_{j} \sum_{n} mn\tilde{w}_{k,n}(t) \cos(mz)e^{ikx+ily}$$ and

$$\frac{\partial}{\partial z} u(x, y, z, t) = \sum_{i} \sum_{j} \sum_{n} -m\tilde{u}_{k,n}(t) \sin(mz)e^{ikx+ily}. $$

(47)

(48)

The procedure for deriving the transformed equations for these boundary conditions is nearly identical to that for the triply periodic case except that the transformed space vertical derivative operator is either $\pm m$, depending on whether the function being differentiated has even or odd symmetry. Our notation is such that \tilde{f} could refer to either the result of a Fourier–Fourier–sine transform or a Fourier–Fourier–cosine transform, with the symmetry properties implied by the context.

The transformed equations for domains of finite extent in z are

$$\frac{\partial \tilde{u}}{\partial t} = \left(\frac{\ell^2 + m^2}{|k|^2} \right) G_1 - \frac{kl}{|k|^2} G_2 + \frac{im}{|k|^2} G_3 - \nu |k|^2 \tilde{u},$$

(49)

$$\frac{\partial \tilde{w}}{\partial t} = -\frac{ikm}{|k|^2} G_1 - \frac{ilm}{|k|^2} G_2 + \left(\frac{k^2 + \ell^2}{|k|^2} \right) G_3 - \nu |k|^2 \tilde{w},$$

and

$$\frac{\partial \tilde{u}'}{\partial t} = -ik(\tilde{\rho}'u) - il(\tilde{\rho}'v) + m(\tilde{\rho}'w)$$

$$+ (\tilde{F}_d - \mathbf{u} \cdot \nabla \tilde{p} - \kappa \nabla^2 \tilde{\rho} - \kappa |k|^2 \tilde{\rho}').$$

(50)

(51)

(52)

3. Numerical algorithms

a. Treatment of nonlinear terms

Collocation methods (Canuto et al. 1988) are used for nonlinear terms. Terms involving products, for example, $\rho' \mathbf{u}$ and \mathbf{T}, are computed by local multiplication of values at the discrete grid points followed by transformation of the resulting product to wavenumber space. Care must be taken when using this approach however as aliasing errors are possible. Rather than employing relatively severe truncation rules to formally exclude the possibility of aliasing, we routinely monitor energy spectra in each of the three wavenumber directions as a means of detecting the development of aliasing errors. In well-resolved simulations of nonlinear flows, viscous and diffusive effects act to remove energy at small scales, at rates as fast or faster than the rate of energy transfer from larger scales. With insufficient grid resolution, however, energy tends to accumulate near the maximum resolvable wavenumbers because nonlinear transfers to unresolved scales are misrepresented at resolved scales. Accumulation of energy at small scales is a characteristic signature of an underresolved simulation. In practice, it is often difficult to predict how fine a mesh will be required for a given nonlinear flow. Monitoring the energy spectra is one tool by which an objective assessment of whether a given grid is sufficiently fine can be made.

b. Transform tools

As discussed further in section 4, the parallelization strategy is based on performing simultaneous transforms of different data on different processors rather than distributing the computations required for each transform across the processors. This “coarse grained” approach to parallelism allows the use of serial FFT code. We adopt the approach of Cooley et al. (1970) and use a discrete, complex to complex FFT as a computational kernel, around which the various specialized transforms (real to conjugate symmetric, real sine/cosine, etc.) are built. Specifically, we have implemented procedures 4–7 of Cooley et al. (1970) using the Temperton FFT package for the low-level FFTs.
c. Time integration and treatment of viscous/diffusive terms

At each discrete spatial wavenumber, each of the transformed ordinary differential equations has the form

$$\frac{d}{dt} f = F - \alpha(k^2 + l^2 + m^2) f,$$

(53)

where F is a function of the wavenumbers k, l, and m. An integrating factor can be introduced to obtain the condensed form

$$\frac{d}{dt} \left[fe^{\alpha(k^2 + l^2 + m^2)t} \right] = e^{\alpha(k^2 + l^2 + m^2)t} F.$$

(54)

The quantity $fe^{\alpha(k^2 + l^2 + m^2)t}$ is integrated discretely in time using an explicit, third-order Adams–Bashforth (AB3) scheme. Introducing superscripts to indicate the time level $t^n = (n - 1)dt$, the AB3 scheme is defined by

$$\frac{dy}{dt} = \psi \Rightarrow y^{n+1}$$

$$= y^n + \frac{dt}{12} (23\psi^n - 16\psi^{n-1} + 5\psi^{n-2}) + O(dt^4).$$

(55)

Applying this scheme to (54), for time levels $n \geq 2$, yields

$$f^{n+1} = -e^{-\alpha dt(k^2 + l^2 + m^2)}$$

$$\times \left\{ f^n + \frac{dt}{12} [23F^n - 16e^{-\alpha dt(k^2 + l^2 + m^2)} F^{n-1} + 5e^{-2\alpha dt(k^2 + l^2 + m^2)} F^{n-2}] \right\}.$$

(56)

A simple startup procedure based on explicit, lower-order methods is used for $n < 2$. Because the AB3 is a multilevel scheme, the functions F from two previous time steps are required in addition to the current value in order to advance the fields. The AB3 method is asymptotically stable for wave-like problems as discussed by Canuto et al. (1988) and Slinn (1995).

We note here that simple generalizations to the diabatic terms in the governing equations, for example, anisotropic diffusion or dissipation operators, or “hyperviscosity” schemes such as biharmonic diffusion, are treated similarly. These generalizations lead to a slight modification of the exponential terms in (56). The numerical code is implemented in term of generalized operators, the parameters of which are specified by the user during configuration.

4. Parallelization

The parallelization strategy is based on the data parallel or single-process, multiple-data (SPMD) paradigm in which an identical copy of the program runs on each node of a parallel machine. Each process operates on distinct portions of the globally distributed data space. Exchange of data between the nodes is accomplished through calls to the message passing interface (MPI; Gropp et al. 1996; Gropp and Lusk 1996). To the extent that each processor can execute its assigned set of tasks without requiring an exchange of data with other processors, a parallel algorithm achieves a linear speedup; that is, the total execution time decreases linearly with the number of processors. For nontrivial algorithms, however, it is not possible to eliminate the need for data transfers between nodes entirely and communication overhead reduces the return of employing additional processors. Communication overheads are significant for algorithms based on global differentiation methods for which the value of a discrete derivative at a given point depends not only on values at neighboring points but on all values along the direction of differentiation. Implicit compact schemes and analytic differentiation in discrete Fourier space are two examples of global differentiation methods. The increase in accuracy and convergence rate comes at a cost in terms of the inherent degree of parallelism of the algorithm.

The global data space for the physical space representation of the primitive variables consists of four three-dimensional arrays of real valued elements corresponding to the three velocity components and the perturbation density at each of the $nx \times ny \times (nz + 1)$ spatial grid points. The apparently extra value in the z direction is required for functions that are even symmetric in z. For periodic or odd functions, the value at $z = L$, is equal to the value at $z = 0$ or zero and would not generally require explicit storage. At certain stages of the algorithm, we will need to work with the transformed, wavenumber space representation of these, and similarly expanded, variables. The parallelization strategy therefore relies intrinsically on both a physical and a wavenumber space distribution of data across multiple processors.

The data partitioning in physical space is based on the logical allocation of a contiguous block of $\text{locnz} + 1 = nznp + 1$ horizontal planes consisting of $(nx + 2) \times (ny + 1)$ real data values to each of np processor elements as shown in Fig. 1a. There are two (one) extra locations in the x (y) dimension that are not accessed in the physical space representation. They permit in-place real to complex FFTs in the x direction and a graceful collapse of the algorithm to two dimensions when $ny = 0$. We refer to the storage arrays in this orientation as data slabs. Each processor is assigned a unique identification label myid, with values ranging from 0 to $np - 1$. The uppermost ($\text{locnx} + 1$) plane is superfluous except for the uppermost processor $\text{myid} = (np - 1)$, where it is required if free-slip boundary conditions are imposed. For simplicity of the implementation, we use identical storage arrays for all processors and restrict the partition parameters $\text{locnz} = nznp$ and $\text{locnx} = (nx/2)/np$ to integer values.

Parallelization issues arise for sections of the algo-
rithm where the underlying numerical operations are
global in scope rather than local. For example, Fourier
transformation in the z direction of an initially real-valued, z-periodic variable would require $nx \times ny$ independent one-dimensional transforms over vectors of length nz. The operation is global in the sense that, at
each discrete (x, y) location, all nz elements in the vertical
direction are required to calculate the transform. Communication is an issue because the data needed to
compute any one of the required transforms is distributed
across the np processors. In contrast, x and y
transforms are local in the sense that sets of these transforms
can be performed over data already residing on each
processor. Clearly, the operations required for each set of
x or y transforms are independent of one another and
the sets of transformations can therefore be executed in
parallel.

We illustrate the approach by considering a three-
dimensional transform of w, from physical to wave-
number space, for a simulation in a finite depth ocean.

Forward Fourier-Fourier-Sine transform of w

Given the $nx \times ny \times nz$ discrete values of w stored
in the local data slab, each processor performs the fol-
lowing steps in parallel.

1) Perform $ny \times nz$ one-dimensional, real to com-
plex FFTs over data vectors of length nx. Results
from each transform are overwritten into the slab
storage structure filling the extra two elements in the
x direction.

2) Perform $(nx/2 + 1) \times (nz/np)$ complex to complex
FFTs over data vectors of length ny.

3) Send $(np - 1)$ subblocks of the results, each con-
sisting of $[(nx + 2)/2]np \times ny \times (nz/np)$ complex
elements to each of the remote processors.

4) Receive $(np - 1)$ like-sized subblocks of results from
each of the remote processors, arranging the data to
form a local column of horizontally transformed data
with $[(nx + 2)/2]np \times ny \times nz$ complex data
elements as shown in Fig. 2.

5) Perform sine transforms in z over each of the $(nx +
2)/np \times ny$ data vectors of length nz in the local data
column.

Steps 3 and 4 consist of data transfers between pro-
cessors and thus represent communication overhead to
the algorithm for the three-dimensional transforms. In
the implementation, these steps are isolated from all
computation and performed in a single routine called
`slabs2to_columns`. Inverse transforms are performed in
a similar fashion, reversing the order of the transform
directions and utilizing a communications routine called
`columns_to_slabs`.

5. Diagnostics

a. Energy balance equations

Data enabling a time-dependent analysis of the energy
balances Eqs. (57) and (58) (see, e.g., Winters et al.
1995; Gill 1982) is routinely computed at user-specified time intervals as the integration proceeds:

\[
\frac{d}{dt}E_k = -\frac{1}{V} \int_S \left(\frac{\rho}{\rho_0} u + \frac{1}{2}(u^2 + v^2 + w^2) \right) \cdot \hat{n} \, dS
\]

\[
- \frac{g}{\rho_0 V} \int_v \rho w \, dV + \frac{1}{V} \int_v \rho u \cdot \nabla^2 u \, dV
\]

\[
+ \frac{1}{V} \int_v u F_1 + v F_2 + w F_3 \, dV \quad \text{and} \quad (57)
\]

\[
\frac{d}{dt}E_p = -\frac{g}{\rho_0 V} \int_S \left(2 z \rho \cdot \hat{n} \right) \, dS + \frac{g}{\rho_0 V} \int_v \rho w \, dV
\]

\[
+ \frac{g}{\rho_0 V} \int_v z F_4 \, dV + \frac{kg}{\rho_0 L_c} \int_S \rho \cdot \hat{n} \, dS
\]

\[
- \frac{kg}{\rho_0 L_c} (\bar{p}_{\text{top}} - \bar{p}_{\text{bottom}}), \quad (58)
\]

where

\[
E_k = \frac{1}{2V} \int_v (u^2 + v^2 + w^2) \, dV \quad \text{and} \quad (59)
\]

\[
E_p = \frac{g}{\rho_0 V} \int_v \rho z \, dV \quad (60)
\]

are the kinetic and potential energies in joules per kilogram, respectively.

For horizontally periodic boundary conditions, the surface integral in Eqs. (57), that is, the term containing the pressure work and advection of kinetic energy, is always zero, regardless of which boundary condition set is chosen in the \(z \) direction. In (58), the surface integral quantifying energy changes associated with advection of fluid across the bounding surface \(S \) vanishes for the rigid-lid boundary conditions \(w = 0 \) at \(z = 0, L_z \) but is nonzero for vertically periodic conditions. The quantities \(E_k \) and \(E_p \), the terms on the right-hand sides of (57) and (58), and the corresponding values of time are written to an ascii output file at specified time steps. Discrete differentiation of \(E_k(t) \) and \(E_p(t) \) can then be used to check the accuracy of the volume-integrated energy balances and to diagnose bulk energy transfers within an evolving flow. Slightly modified forms of the dissipative terms are used if hyperviscosity is specified during configuration.

b. Energy spectra

As discussed previously, pseudospectral numerical methods are subject to aliasing errors if the underlying discrete grid is too coarse. To detect the onset of aliasing errors, the output data can be analyzed to compute energy spectra as functions of wavenumber in each dimension. Because calculation of spectra in each wavenumber direction requires significant interprocessor data exchanges, we do not perform the calculation as the simulation proceeds. Rather we monitor the output files using the spectral calculations as a form of a posteriori quality control.

Typically, a nonlinear simulation will start out well resolved and exhibit energy spectra that decay with wavenumber near the small-scale limits. As the simulation proceeds and the flow evolves, energy is generally transferred toward small, dissipative scales. Depending on the rate of the transfer, the grid may or may not be fine enough to resolve the evolving flow without aliasing. An insufficient grid can be diagnosed by examining the behavior of the spectra at small scales. If aliasing is detected, for example, upturned energy spectra near the cutoff wavenumbers is observed, the simulation can be rerun using a finer grid. To save computational effort, a well-resolved flow field at an intermediate time can be interpolated to a finer mesh and used as an “initial” condition for a higher-resolution continuation run.

c. Lagrangian trajectories

In addition to computing the flow fields, the underlying fields (and derived quantities) can be sampled in time along Lagrangian trajectories defined by

\[
\frac{dx}{dt} = u. \quad (61)
\]

To compute the trajectories, velocities at positions that are not coincident with grid points are required. Rather than interpolating the required values from values at nearby gridpoint locations using locally based interpolation schemes, the direct-sum formulas Eqs. (26) and (27), or (45) and (46), are used. The values obtained in this way at arbitrary points are therefore just as accurate as the “known” values at the grid points. In this sense, the values are free of spatial interpolation errors. The summations are naturally distributed across multiple processors, as a distinct range of expansion coefficients are stored on each processor as shown in Fig. 2. For each distinct location \((x, y, z)\) at which velocities are required, each processor computes a partial sum corresponding to the expansion coefficients within the processor’s assigned portion of wavenumber space. The partial results are then globally summed to produce the required values. Though the summations are very efficiently computed, the summation algorithm itself is computationally intensive; it is not FFT based. For example, to compute values at \(n = O(nx \times ny \times nz) \) arbitrary locations via direct summation requires \(O(n^2) \) floating point operations. In contrast, if the \(N \) values were required at the grid points, as they are in the underlying flow calculations, they can be obtained using the FFT algorithm in \(O(n \log n) \) operations. Our Lagrangian float model, while highly accurate, is therefore intrinsically computationally expensive within the overall FFT-based spectral algorithm. The model was de-
Fig. 3. Lagrangian advection. (a) Time series of position for three Lagrangian trajectories. (b) Density values along the same trajectories. (c) Initial (passive) density distribution, particle tracks traced out by the three trajectories over the simulation period. Initial positions shown as asterisks. (d) Final density distribution and trajectory locations.

signed to compute only a small number of trajectories (compared to the number of grid points), but to do so very accurately.

Slightly modified summation formulas are used to reconstruct, for example, the density field and its Laplacian \(\nabla^2 \rho \). The time series obtained by sampling \(\rho \) at each point on a given trajectory, \(\rho_e(t) \), can then be compared to \(\rho_L(t) \) obtained by integrating the equation

\[
\frac{d\rho_e}{dt} = \kappa \nabla^2 \rho. \tag{62}
\]

Exact integration of this equation gives, in principle, a time series identical to \(\rho_e \). In practice, however, accuracy depends on estimation of second derivatives and discrete integration in time. Estimation of the second derivative is a noise-amplifying operation; that is, noise in the high-wavenumber components of \(\rho \) will be amplified by the square of the wavenumber magnitude. Contamination of these components will lead to a discrepancy between the time series before the contamination is likely to be noticed in the underlying flow fields. Comparison of the two series is therefore a stringent test of the numerical quality not only of the “Lagrangian float” model, but for the underlying flow calculations as well. To minimize time-stepping errors, the Lagrangian float model is integrated in time using a fourth-order Runge–Kutta technique, which is inherently more accurate than the third-order method used to integrate the flow itself.

Figure 3 shows Lagrangian trajectories computed in a steady flow with circular streamlines in horizontal \((x, y)\) planes. In this simulation, density was used as a passive scalar, that is, \(g = 0 \), and initialized with a uniform gradient in the \(x \) direction as shown in Fig. 3c. The viscosity and diffusivity were set to very small values and, over the time period shown here, their effects can
be considered negligible. Time series of x and y position data are shown in Fig. 3a for three trajectories. Each trajectory traces out a circle in the (x, y) plane as shown in Fig. 3c. Though the circular motion of the fluid advects and distorts the density field (Fig. 3d) in the limit of vanishing diffusivity, the density along any given trajectory should remain constant. Figure 3b shows the computed density as a function of time for the same three trajectories. Both quantities ρ_e and ρ_l are shown but cannot be distinguished.

The float model can be configured to be imperfectly Lagrangian, that is, to use modified trajectory equations with residual or random components added to the right-hand side of (61). In addition, flow variables can be sampled at additional positions slightly offset from the location point of the infinitesimal float. This allows estimation of gradients of field quantities, for example, $\partial \rho / \partial z$ or $\partial u / \partial z$, at each point along the trajectories. Such calculations are relatively expensive, however, as performing them is similar in workload to carrying nearby “shadow” floats in the calculation.

6. Applications

a. Internal gravity waves

The model is well suited to study nonlinear interactions between internal gravity waves. Simulations can be made in two or three dimensions, with or without rotation, and in the presence or absence of ambient flows. The ambient stratification need not be uniform, but can vary, for example, with depth. A variety of wave-related processes are therefore amenable to fully nonlinear simulation, for example, critical-level interactions (Winters and D’Asaro 1994), turning points, caustics, and wave instability.

Figure 4 shows two simple examples. In the first, the simulation is run as an initial value problem in a rotating reference frame, with initial conditions chosen as snapshot of a horizontally propagating, vertically standing wave. In the limit of small wave amplitude and vanishing viscosity, an analytic solution can be found. A comparison of the analytic solution, evaluated as a function of time at a fixed spatial position, with the computed
solution at the same location is shown (Fig. 4, second panel from top).

Alternatively, forced waves can be simulated utilizing the functions F_i^x. In the example shown (Fig. 4, bottom panels), the (x, t) dependences of F_i are derived from a monochromatic, infinite-space planar gravity wave solution, but localized near the bottom by a windowing function. As in the unforced case, the wave frequency is set to the M_2 tidal frequency. Note the downward phase propagation, indicative of upward energy propagation. Even this relatively simple situation produces rich behavior, as nonlinear interactions between upward- and downward-propagating (reflected) waves increasingly transfer energy toward high frequencies and wave-numbers as shown in the bottom panel of Fig. 4. A similar approach might be used, for example, to simulate the nonlinear interactions between a spectrum of waves generated over variable topography.

Nonlinear interactions between gravity waves often lead to wave instabilities. We illustrate by recomputing the solution for run P1 in Bouruet-Aubertot et al. (2001). In this experiment, a two-dimensional, spatially periodic internal gravity wave propagates vertically through a linearly stratified fluid. The ambient flow field is infinitesimally disturbed by the presence of random velocity fluctuations such that the kinetic energy of the fluctuations is a factor of 10^4 smaller than the kinetic energy of the primary wave. As discussed in Bouruet-Aubertot et al. (2001), such waves are unstable, regardless of their initial amplitude. The instability is related to the parametric subharmonic instability (PSI) mechanism, transferring energy from the primary wave to one of half the frequency.

Figure 5a shows the y (into page) components of vorticity and Fig. 5b density, along with lines of constant phase for the primary wave at the start of the calculation. For linear gravity waves, the motion of fluid particles is along phase lines, with frequency proportional to the inclination angle from the horizontal. Figures 5c and 5d show the same quantities at a later time (after approximately 40 buoyancy periods). The overall orientation of the observed phase is consistent with energy transfer...
to lower frequency by PSI. Small-scale structure is also
apparent in both the vorticity and density fields, which
exhibit gravitationally unstable overturns.

b. Vortex street instability

In this example we consider a network of counter-
rotating vortex monopoles in a stably stratified fluid. A
similar pattern of vorticity, sometimes called a vortex
street, is seen after an object is towed through a stratified
fluid and the initially turbulent wake collapses under the
stabilizing effects of gravity. In the laboratory, these
structures are typically observed to be long lived, sur-
viving at least as long as it is feasible to conduct ex-
periments (Spedding 1997).

We consider here a vorticity distribution comprising
12 pairs of vortex monopoles, each of which with an
azimuthal speed V_θ given by

$$V_\theta = \pm \frac{r}{r_m} V \exp \left[1 - \left(\frac{r}{r_m} \right)^2 - \left(\frac{z}{z_m} \right)^2 \right], \quad (63)$$

where r and z are the radial and vertical distances from
the vortex center, respectively; r_m and z_m are character-

Figure 6 shows the vertical velocity (top panel) and
the vertical vorticity (bottom panel) on the central hor-
izontal plane $z = L_z/2$ after the vortex street has been
significantly deformed by the mutual interaction of the
vortex monopoles. There has been an upscale energy
transfer, producing a flow characterized by larger hor-
izontal spatial scales than were present initially. Small-
scale features are apparent in the vorticity field and are
correlated with patches of highly structured regions of
flow with alternating bands of upward and downward
flow (Fig. 6 top). Owing to the vertical structure of the
initial vorticity field, the vortex interactions and deformations are most pronounced in the central region of the flow. Figure 7 shows the Richardson number (a measure of stability in a stratified flow) and the cross-stream velocity component \(v \) in the \(y-z \) plane indicated in Fig. 6. The cross-stream flow has a jetlike structure, with high shears on the upper and lower flanks. These shears are unstable, as indicated by values of the inverse Richardson number greater than 4, producing a train of counterrotating Kelvin–Helmholtz (KH) billows on the flanks. The vertical motions associated with these secondary instabilities appear as the alternately signed bands in Fig. 6. Figure 8 shows some of the three-dimensional structure of the flow. Shown are the vertical vorticity on two separated horizontal planes as well as the planes \(y = L_y \) and \(x = L_x \) along with contours of density.

c. Shear-driven mixing layer

Very detailed studies of processes leading to turbulent transports in stratified flows can also be undertaken. We consider here a shear-driven mixing layer that develops from the unstable velocity and density profiles:

\[
 u = \frac{u_0}{2} \tanh \left(\frac{2}{h_0} \left(z - \frac{L_z}{2} \right) \right) \quad \text{and} \quad (64)
\]

\[
 \rho = -\frac{\rho_0}{2} \tanh \left(\frac{2}{h_0} \left(z - \frac{L_z}{2} \right) \right). \quad (65)
\]

The flow is unstable first to Kelvin–Helmholtz billows and subsequently to smaller-scale three-dimensional instabilities leading to turbulence. Eulerian aspects of this flow have been studied by Smyth and Moum (2002) and Smyth et al. (2001) as a model of small-scale turbulent patches observed by vertical profiling instruments in the ocean thermocline. The Lagrangian floats submodel was used by D'Asaro et al. (2004) to diagnose the signatures of such events detectable by Lagrangian instrumentation.

Figure 9 shows a snapshot of the density field in the \(y = 0 \) vertical plane, along with cross sections taken at the positions indicated in the top panel. The flow was computed on a grid with uniform mesh spacing at a resolution of \(512 \times 256 \times 64 \) for \(Pr = \nu / \kappa = 1 \) on a Cray T3E using 32 processors. Thirty-six floats, each sampling the flow field at nearby shadow locations as well as their actual positions, were carried along for the
Lagrangian study. Projections of the trajectories in streamwise, cross-stream, and horizontal planes are shown in Fig. 10. At early times, before the KH billows collapse and become turbulent, the trajectories trace out simple paths, particularly in the \(y-z \) and \(x-y \) planes, where the paths are vertical and horizontal lines, respectively. Significantly more structure is evident at later times.

d. Horizontal convection

We now consider the flow in an elongated container driven by an externally maintained temperature difference between the upper and lower bounding surfaces. We consider the response to a sinusoidal distribution of heating and cooling at the upper surface with the bottom surface maintained at the mean value imposed at the upper surface. A similar model has been examined recently (Paparella and Young 2002) in the context of the thermally driven component of the global circulation. Taking density as a surrogate for temperature, we prescribe

\[
\rho = \Delta \rho \cos(2\pi x/L_x) \quad z = L_z \quad \text{and} \quad (66)
\]

\[
\rho = 0 \quad z = 0, \quad (67)
\]

along with horizontal periodicity and free-slip rigid lids. The time-independent field \(\mathbf{F} \) is prescribed as \(\mathbf{F} = (z/L_z)\rho(x, y, L_z) \) and so \(\rho' \) is required to vanish at \(z = 0, L_z \). In this simplified model, positive (negative) values of \(\rho \) correspond to cooling (heating) at the “poles” and “equator,” respectively.

Figure 11 shows the density field at several instants in time for a convectively driven flow with Rayleigh number \(Ra = g' L^3/\nu \kappa = 1.5 \times 10^6 \) and \(Pr = \nu/\kappa = 3 \), where \(g' = (\Delta \rho \rho_0)g \). Dense, convectively unstable fluid descends to depth at the poles \(x = 0, L \) until it reaches the bottom surface, at which point it propagates toward the equator \(x = 0 \) as a gravity current. The simulation was done in two dimensions on a Macintosh laptop for a container with an aspect ratio of 10 using 1024 \(\times \) 129 grid points in the horizontal and vertical directions, respectively.

e. Customization

Because the source is freely available, the code can be adapted for very specific research problems in fluid dynamics. Two examples are briefly presented here. W. D. Smyth (2003, personal communication) has modified the source to carry an additional passive scalar and to compute the active scalar \(\rho \) at higher resolution than that used for \(\mathbf{u} \) and \(\mathbf{P} \). Such an approach is useful for flows with \(Pr = \nu/\kappa > 1 \), where the scale at which density fluctuations are diffusively smoothed are smaller than the scales at which kinetic energy is viscously dissipated. Figure 12 shows two scalars with different diffusivities computed at different resolutions within the same flow field.

M. A. Sundermeyer and M. P. Lelong (2003, personal communication) have used the model to study the formation of vortical modes through the relaxation of diapycnal mixing events, and their effect on the lateral dispersion of a passive tracer. To force the model, they have added a subroutine, which they call from within the main time-stepping loop of the code, to periodically inject potential energy (PE) in the form of randomly placed Gaussian-shaped stratification anomalies. Rather than explicitly simulating diapycnal mixing caused by breaking internal waves, they represent the effects of wave breaking by imposing a short-lived diapycnal dif-
Fig. 9. Images of the density field from a turbulent mixing layer in the $y = 0$ streamwise–vertical plane and three spanwise–vertical cross sections.
Fig. 10. Projections of Lagrangian trajectories in an evolving shear-driven mixing layer. Tracks are shown for the duration of the simulation.

fusivity profile at random locations in the model, the result of which subsequently adjusts to form small-scale vortical motions and radiating internal waves. Using this approach, they simulate flows that evolve from rest to a statistically stationary state in which the input of PE and subsequent conversion to kinetic energy (KE) is balanced by dissipation. The result is a random field of small-scale geostrophic eddies, or vortical modes, and a dispersing tracer field. The simulations are being used to test theoretical predictions of vortical mode stirring.
in the ocean (Fig. 13; see also Sundermeyer et al. 2003, manuscript submitted to J. Phys. Oceanogr).

7. Performance benchmarks

The run-time profile for a a single processor run using a grid mesh of 120³ points, with the Lagrangian floats model switched off, was constructed. Nearly 88% of the execution time is spent computing multidimensional FFTs, which have an operation count that scales like $O(n \log n)$, where n is the total number of mesh points. Tasks such as computation of the wavenumber space derivatives needed to form the vorticity field, calculating various nonlinear products in physical space, combining various terms to form the right-hand sides of the transformed equations of motion, and time stepping the fields in wavenumber space scale like $O(n)$. The additional tasks of writing three-dimensional output fields to disk and computing the spatial integrals required for the energy balances also have $O(n)$ workloads. These tasks, however, are not executed at every time step but at user-specified frequencies. As the problem size n increases, the algorithm becomes increasingly dominated by the FFTs.

A parallel scalability analysis quantifies the expected improvement in performance as additional processors are added to a parallel computation. Such analyses seek to answer the question “how many processors can I use before adding additional processors reduces the execution time too little to be worthwhile?” Quantitative answers are specific to both the code and the architecture of the computing facility.

We assume that a given algorithm can be decomposed into a parallelizable component and a nonparallelizable or serial component. The total execution time T is then written as

$$T(np) = T_p \frac{1}{np} + T_s,$$ (68)

where T_p is the time required for the parallelizable portion, T_s is the time required for the serial portion, and np is the number of processors. The total execution times for runs using different numbers of processors can be used to construct a linear relationship between T and $1/np$, yielding T_p and T_s for a given computing environment. Results are typically displayed as a plot of speedup S versus the number of processors np where $S = T(1)/T(np)$. In the limit $T_s/T_p \to 0$, the speedup is linear with respect to np and the algorithm scales infinitely well. For real algorithms, the ratio is finite and leads to a flattening of the speedup curve signifying diminishing returns for additional processors.

Figure 14 shows the speedup curves for the algorithm on two different architectures based on estimates of T_p and T_s from calculations with $O(128^3)$ grid points. The red curve gives results for a Beowulf cluster connected using an inexpensive 100-Mbit ethernet switch. The curve suggests that, for this algorithm, additional processors beyond about 30 yield only slight improvements in performance. On this cluster, the ratio $T_s/T_p \approx 0.0396$. Similar analyses were performed for a 128-node, dual-processor, Pentium Linux cluster with a Myrinet switch at the Scripps Institution of Oceanography (SIO) and the Cray T3E at the Texas Supercomputer Center (TACC). Both communications switches are significantly superior to a simple ethernet switch and so improvements in parallel scalability are expected. The results show that increasing the speed of communications produces a smaller T_s/T_p ratio and a wider range in np before the speedup curve flattens. Figure 14 shows that the algorithm scales reasonably well on the T3E to a few hundred processors. One might choose to run a given problem on more processors if memory limitations were the primary constraint, but the results show that additional processors beyond a few hundred would contribute relatively little in reducing the execution time.

Acknowledgments. This work was supported by the National Science Foundation (OCE 0242471) and the U.S. Office of Naval Research (Code 322, Physical Oceanography, Grant N0014-96-1-0616). We gratefully acknowledge the significant intellectual contribution to
FIG. 12. Turbulent flow in a collapsing KH billow. The instability was driven by a maximum shear of 0.035s^{-1} across a layer of initial depth 0.22m. The viscosity was $0.995 \times 10^{-4} \text{m}^2 \text{s}^{-1}$, so the Reynolds number based on the total thickness of the shear layer was 1700. The flow carried two scalars differing only in their diffusivities: (a) $5.7 \times 10^{-7} \text{m}^2 \text{s}^{-1}$ and (b) $1.4 \times 10^{-7} \text{m}^2 \text{s}^{-1}$. Density was controlled by the less-diffusive scalar such that the minimum gradient Richardson number was 0.04. The more diffusive scalar was resolved on a $192 \times 48 \times 120$ grid (with uniform spacing) as were the velocity and pressure fields. The less diffusive scalar was resolved on a $384 \times 96 \times 240$ grid. Interpolation between grids was done using FFTs.
FIG. 13. (top left) Time series of PE and KE for a typical model spinup and equilibration, and (top right) KE spectrum after statistical equilibrium has been reached. Bottom two rows: plan views of potential vorticity with (subsampled) velocity vectors overlaid, and tracer at $t = 0, 5, 10, \text{and } 20$ inertial periods after KE equilibrium is reached.

FIG. 14. Speedup characteristics on three facilities with different communications infrastructures.

APPENDIX A

Configuration for User-Defined Problems

The code is written in Fortran77 and makes calls to both the MPI and NETCDF libraries. The model has been successfully run on the following platforms: single- and dual-processor Pentium workstations, Linux; a small cluster of Digital Equipment Corporation (DEC) Alpha workstations, Linux; a Cray T3E, Unicosmk; a 256-processor Pentium cluster, Myrinet, Linux; and a Macintosh PowerBook G4, OS X.

For our systems, we use the mpich implementation of MPI available from Argonne National Laboratory (information available online at http://www-unix.mcs.anl.gov/mpi/mpich). The NETCDF libraries are available from the National Center for Atmospheric Research (NCAR) (information available online at http://www.
The first step is to specify basic parameters such as the domain size, the boundary conditions, fluid properties, and run-time control parameters, for example, the time step, the total number of time steps in the integration, and how frequently to write the results to output files. The specification is accomplished by setting values in the text file input/problem_params.h, which are then incorporated during compilation.

Table A1 gives a brief description of each of the parameter settings for the default configuration. The file supplied with the code can be used as a template for developing new configurations. Comments in parenthesis give other legal values for text-based parameters.

If the parameter float_switch is set to “on,” an additional file called float_positions.dat must be placed in the input directory. Each line of the file must contain an integer float label (i.e., 1, 2, 3, . . .) followed by the dimensional x, y, and z starting locations for each float. A sample file is included with the code.

b. Configure user-supplied subroutines

There are three user-supplied subroutines that require configuration prior to compilation. All three reside in the input directory. Again, the routines supplied with the code should be used as templates for constructing more elaborate definitions.

The first routine, rho_bar_func.f, is used to specify the ambient density profile $\tilde{\rho}(x, y, z)$, its partial derivatives, and its Laplacian. The horizontal gradients of the corresponding hydrostatic pressure field are also specified here. Recall from section 2 that the total (potential) density is decomposed as

\[\rho = \tilde{\rho} + \nabla \cdot \nabla \tilde{\rho} \]

unidata.ucar.edu/packages/netcdf/). Our expectation is that, provided the MPI and NETCDF libraries are installed, the source code should compile and run on any UNIX-like system with a Fortran compiler. Because the model is designed to be run in a parallel environment, calls will be made to MPI even when the number of processors is set to one. The MPI library is therefore required even if the code is to be run only in a single-processor environment. Fortunately, the widely used implementations of MPI have been designed to function efficiently in the single-processor limit.

There are three main steps to configuring the model for a user-defined problem: configuring the parameter file, configuring the user-defined routines, and compiling the executable code. The procedure is explained here using the unforced internal wave example discussed in section 6b as an illustrative example. This configuration computes the time evolution of an internal wave mode in a rigid-lid, free-slip ocean using a snapshot of the linearized analytical solution as an initial condition.

a. Configure the main parameter file

The first step is to specify basic parameters such as the domain size, the boundary conditions, fluid properties, and run-time control parameters, for example, the time step, the total number of time steps in the integration, and how frequently to write the results to output files. The specification is accomplished by setting values in the text file input/problem_params.h, which are then incorporated during compilation.

Table A1. Parameters in input/problem_params.h.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>netcdf_file</td>
<td>None</td>
<td>Initial conditions not read in from existing netcdf file (filename)</td>
</tr>
<tr>
<td>force_flag</td>
<td>No</td>
<td>No user-defined forcing terms added to equations of motion (yes)</td>
</tr>
<tr>
<td>bc_flag</td>
<td>zslip</td>
<td>Free-slip, rigid lid at $z = 0$, L_z (periodic)</td>
</tr>
<tr>
<td>Lx</td>
<td>20 000</td>
<td>All fields periodic in x over scale L_x</td>
</tr>
<tr>
<td>Ly</td>
<td>20 000</td>
<td>All fields periodic in y over scale L_y</td>
</tr>
<tr>
<td>Lz</td>
<td>2000</td>
<td>z boundary conditions applied at $z = 0$, L_z</td>
</tr>
<tr>
<td>g</td>
<td>9.81</td>
<td>Gravitational acceleration in m s$^{-2}$</td>
</tr>
<tr>
<td>ξ</td>
<td>$\pi/4$</td>
<td>Latitude ϕ in rad (45°)</td>
</tr>
<tr>
<td>x_{Omega}</td>
<td>$2 \pi/(24 \times 3600)$</td>
<td>Earth’s rotation frequency in s$^{-1}$</td>
</tr>
<tr>
<td>f</td>
<td>$2 \Omega \sin(\phi)$</td>
<td>Coriolis parameter</td>
</tr>
<tr>
<td>ρ_0</td>
<td>1027</td>
<td>Reference density ρ_0 in kg m$^{-3}$</td>
</tr>
<tr>
<td>nu</td>
<td>1×10^{-5}</td>
<td>Fluid viscosity in m2 s$^{-1}$</td>
</tr>
<tr>
<td>kappa</td>
<td>$1 \times 10^{-5}/0.75$</td>
<td>Diffusivity of density in m2 s$^{-1}$</td>
</tr>
<tr>
<td>diss_flag</td>
<td>Isotropic</td>
<td>Use standard Laplacian dissipation and diffusion (DNS)</td>
</tr>
<tr>
<td>p</td>
<td>2</td>
<td>Use standard Laplacian dissipation and diffusion (DNS)</td>
</tr>
<tr>
<td>T_{diss}</td>
<td>$-999 999 99$</td>
<td>Option unused for case isotropic, $p = 2$</td>
</tr>
<tr>
<td>ν^{DNS}</td>
<td>$2 \times 10^{-4}(\rho_0/g)$</td>
<td>Characteristic scale of density gradient in kg m$^{-1}$</td>
</tr>
<tr>
<td>ν_0</td>
<td>0.01</td>
<td>Characteristic velocity scale in m s$^{-1}$</td>
</tr>
<tr>
<td>$b/freq$</td>
<td>$V(g/\rho_0) \times \text{DGRAD}$</td>
<td>Derived quantity, do not alter</td>
</tr>
<tr>
<td>dt</td>
<td>46</td>
<td>Time step in s</td>
</tr>
<tr>
<td>t_{start}</td>
<td>0</td>
<td>Start time in s for integration</td>
</tr>
<tr>
<td>t_{end}</td>
<td>$4000 \times dt$</td>
<td>End time for integration</td>
</tr>
<tr>
<td>$t_{\text{write_all}}$</td>
<td>$50 \times dt$</td>
<td>Time increment in s between creation of output files</td>
</tr>
<tr>
<td>vort_flag</td>
<td>No</td>
<td>Do not write the three vorticity components to the output files (yes)</td>
</tr>
<tr>
<td>t_{stat}</td>
<td>$50 \times dt$</td>
<td>Time increment in s between calculation of volume-integrated statistics</td>
</tr>
<tr>
<td>float_switch</td>
<td>Off</td>
<td>Do not calculate trajectories of Lagrangian floats (on)</td>
</tr>
<tr>
<td>$t_{\text{float_on}}$</td>
<td>t_{start}</td>
<td>Time in s at which floats are released, ignored if float_switch is off</td>
</tr>
<tr>
<td>z_{close}</td>
<td>$0.5 \times dz/L_z$</td>
<td>Min distance from $z = 0$, L_z allowed for floats, ignored if float_switch is off</td>
</tr>
<tr>
<td>z_{offset}</td>
<td>$-0.5 \times dz/L_z$</td>
<td>Relative location of second float sensor, ignored if float_switch is off</td>
</tr>
<tr>
<td>Δw</td>
<td>$0.01 U_0$</td>
<td>Dimensionless residual velocity of imperfect floats</td>
</tr>
<tr>
<td>efactor</td>
<td>0</td>
<td>No random noise added to initial conditions</td>
</tr>
</tbody>
</table>
\[\rho = \rho_0 + \bar{\rho} + \rho'(x, y, z, t) \]
\(\text{(A1)} \)

where \(\rho_0 \) is a constant reference value. By splitting the remainder of the density field into a time-invariant part and a time- and space-dependent fluctuating part, the available resolution of the algorithm is focused on the relatively small unknown component rather than on a larger invariant component. Note that this is a mathematical decomposition rather than a purely physical one.

The same problem can be solved using different choices of \(\rho' \). Different fluctuating components will be solved for numerically but the combination \(\bar{\rho} + \rho' \) will be the same (up to roundoff errors). The fluid is assumed to obey the Boussinesq approximation (fluctuations are much smaller than the characteristic value) and so \(\rho_0 \) is neither carried explicitly in the calculation nor included in the output data.

The routine below prescribes a linear density profile, that is, a fluid with constant buoyancy frequency \(N \).

```fortran
subroutine rho_bar_func(xprime,yprime,zprime,rho_bar,  
   * rho_bar_x,rho_bar_y,rho_bar_z,g2rb,  
   * p_bar_x,p_bar_y,Pz,DGRAD,U0,rho_0)

  ! *****input arguments xprime,yprime,zprime are DIMENSIONLESS as are the  
  ! *****output variables rho_bar,rho_bar_x,rho_bar_y,rho_bar_z etc  
  ! (xprime,yprime,zprime):  
  ! d*less vertical position  
  ! Lz:  
  ! vertical domain length [m]  
  ! DGRAD:  
  ! characteristic density gradient used to scale variables [kg/m^4]  
  ! U0:  
  ! characteristic velocity scale used in nondimensionalization  
  ! rho_0:  
  ! reference density [kg/m^3]  
  ! rho_bar, rho_bar_x, rho_bar_y, rho_bar_z, g2rb  
  ! density, and spactial gradients, g2rb=grad2(rho_bar)

  ! N.B.
  ! Lz,DGRAD, & U0 ARE OBTAINED BY THE CALLING MODULE  
  ! FROM THE INPUT FILE input/problemparams.h. THEY ARE  
  ! USED TO NONDIMENSIONALIZE THE RETURNED VALUES. YOU  
  ! MAY OR MAY NOT WANT/NEED TO USE THEM IN YOUR DEFINITIONS

  implicit none  
  real xprime,yprime,zprime  
  real Lz,DGRAD,U0,rho_0  
  real rho_bar,rho_bar_x,rho_bar_y,rho_bar_z,g2rb,p_bar_x,p_bar_y

  ! local variables
  real x,y,z

  ! **** USER DEFINED DEFINITIONS START HERE ***********************************
  x = xprime*Lz ! use dimensional value to evaluate formulae
  y = yprime*Lz ! use dimensional value to evaluate formulae
  z = zprime*Lz ! use dimensional value to evaluate formulae

  rho_bar = DGRAD*(Lz-z) ! linear stratification, fn of z only
  rho_bar_x = 0.0
  rho_bar_y = 0.0
  rho_bar_z = -DGRAD
  g2rb = 0.0

  p_bar = -g rho_0 z - g* integral rho_bar (x,y,z') dz'
```
c only the quantities p.bar.x and p.bar.y are needed
p.bar.x=0.0
p.bar.y=0.0

**** USER DEFINED DEFINITIONS END HERE *************************************
c return nondimensional values
rho.bar=rho.bar/(DGRAD*Lz)
rho.bar.x = rho.bar.x/(DGRAD)
rho.bar.y = rho.bar.y/(DGRAD)
rho.bar.z = rho.bar.z/(DGRAD)
g2rb = g2rb/(DGRAD/Lz)
p.bar.x = p.bar.x/((rho.p0*U0**2/Lz))
p.bar.y = p.bar.y/((rho.p0*U0**2/Lz))
return
end

There are two ways in which the initial conditions
can be prescribed. The first is used in the example
configuration. Here, the values of the flow velocities
and the perturbation density are calculated and speci-
cified in a user-defined subroutine, given the spatial
location at which the values are required. The internal
wave example here is relatively simple; it evaluates
some straightforward analytical functions of position
derived from the linearized internal wave equations.

Much more complicated user-defined routines could
be used, for example, using random number genera-
tors to introduce random components of flow at var-
ious scales. The routine user_defined.ics is called for
each spatial grid point whenever the value of netcdf.
file is set to “none” in input/problem.params.h. The user-defined routine need not be
particularly efficient because it is called only once
prior to the real computational workload of integrat-
ing the equations forward in time. Local variables
may be defined and used for storing intermediate re-
results provided they are declared with respect to type
as shown in the following example:

 subroutine user_defined.ics(x,y,z,Lx,Ly,Lz,u,v,w,pd)
 c inputs
 c x,y,z positions in spatial domain [m]
 c Lx,Ly,Lz domain lengths in x,y,z [m]
 c outputs
 c u,v,w speeds in x,y,z directions at (x,y,z) [m/s]
 c pd perturbation density [kg/m3]
 c rho.total=rho.0 + rho.bar(z) + pd(x,y,z)
 c rho.bar defined in user supplied rho.bar.func.f
 c rho.0 specified input/problem.params.h
 implicit none
 real x,y,z,u,v,w,pd
 c **
 c **user declares any additional local variables to be used here
 real kics,lics,mics,omega2,omega.ics,A.ics,c(2,2),arg
 real ambient.density.gradient,Lx,Ly,Lz,N2.ics,pi,rho.0,g,f
 c **
 pi=4.*atan(1.)

 WAVE PARAMETERS FOR SIMPLE TEST WAVE
 c n.b. wave is defined in uniform stratification
 c ambient.density.stratification should be consistent with
Ambient density gradient in rho_bar_func

\[
\text{ambient_density_gradient} = -(\rho_0/g) \times 2e^{-6} \quad \text{[kg/m}^4\text{]}
\]

\[
\rho_0 = 1027 \quad \text{[kg/m}^3\text{]}
\]

\[
g = 9.81 \quad \text{[m/s}^2\text{]}
\]

\[
f = 2 \times (2\pi/(24 \times 3600)) \times \sin(\pi/4.) \quad \text{[1/s] 45 deg latitude}
\]

\[
A_{ics} = 3. \quad \text{displacement [m]}
\]

\[
k_{ics} = ((1) \times (2. \pi/L_x)) \quad \text{[1/m]}
\]

\[
l_{ics} = ((0) \times (2. \pi/L_y))
\]

\[
m_{ics} = ((4) \times (\pi/L_z))
\]

\[
N2_{ics} = (-g/\rho_0) \times \text{ambient_density_gradient} \quad \text{[1/s}^2\text{]}
\]

\[
\omega^2 = \left(((f)^{2}) \times m_{ics}^{2} \times N2_{ics} \times (k_{ics}^{2} + l_{ics}^{2} + m_{ics}^{2}) \right)
\]

\[
\omega_{ics} = \sqrt{\omega^2} \quad \text{[1/s]}
\]

\[
c(1,1) = A_{ics} \times k_{ics} \times m_{ics} \times \omega_{ics} / (k_{ics}^{2} + l_{ics}^{2} + m_{ics}^{2})
\]

\[
c(1,2) = A_{ics} \times l_{ics} \times m_{ics} \times f / (k_{ics}^{2} + l_{ics}^{2} + m_{ics}^{2})
\]

\[
c(2,1) = A_{ics} \times l_{ics} \times m_{ics} \times \omega_{ics} / (k_{ics}^{2} + l_{ics}^{2} + m_{ics}^{2})
\]

\[
c(2,2) = A_{ics} \times k_{ics} \times m_{ics} \times f / (k_{ics}^{2} + l_{ics}^{2} + m_{ics}^{2})
\]

\[
\text{arg} = k_{ics} \times x + l_{ics} \times y \quad \text{generally -\omega_{ics} \times t \ but \ set \ t = 0}
\]

\[
w = A_{ics} \times \omega_{ics} \times \sin(m_{ics} \times z) \times \sin(\text{arg})
\]

\[
pd = -A_{ics} \times \text{ambient_density_gradient} \times \sin(m_{ics} \times z) \times \cos(\text{arg})
\]

\[
u = c(1,1) \times \cos(m_{ics} \times z) \times \cos(\text{arg})
\]

\[
u = -c(1,2) \times \cos(m_{ics} \times z) \times \sin(\text{arg})
\]

\[
v = c(2,1) \times \cos(m_{ics} \times z) \times \cos(\text{arg})
\]

\[
v = +c(2,2) \times \cos(m_{ics} \times z) \times \sin(\text{arg})
\]

\[
\text{return}
\]

\[
\text{end}
\]

A second method is to use the values in an existing NETCDF data file as initial conditions. This method is invoked whenever netcdf_file is set to the path name of an existing NETCDF file rather than to none. We assume here that the NETCDF file is global, that is, that it contains initialization data over the full computational domain, and is consistent with the run for which it is being used to initialize [i.e., matching resolution and reference pro file \(\rho(\zeta) \)]. Local NETCDF files, that is, those containing only data allocated to individual processors, can be concatenated together using calls to the NETCDF libraries (or using other tools designed to manipulate NETCDF files). We require a global data file for initialization so that a given NETCDF file can be used to initialize new runs independent of the number of processors used to carry out the simulations.

When this second initialization method is chosen, the dimensional flow variables are extracted from the file, nondimensionalized using the scales specified in problem_params.h for the new run, and stored in arrays to be used as initial conditions. This technique can be used, for example, to restart a simulation from any saved output point.

Finally, the external forcing functions \(F_i \) (see section 2) need to be defined if the parameter force_flag is set to “yes.” The routine is not called, and need not be modified, if force_flag is set to “no.” The routine user_defined_forcing allows these functions to be specified as functions of space and time. The example below lists the routine used for the forced wave run discussed in section 6b. In this case, body forces are applied near the bottom boundary \(z = 0 \) with magnitude and phase chosen to project strongly onto a monochromatic, upward-propagating internal gravity wave. Efficiency is somewhat more critical in this case because the routine is called for each grid point at each time step. Compared to multidimensional transform operations, however, the computational workload is small, that is, \(O(n) \) compared to \(O(n \log n) \), where \(n \) is the total number of spatial grid points:
subroutine user_defined_forcing(x,y,z,t,F1,F2,F3,F4,Lx,Ly,Lz,f,g,rho_0)

User defined subroutine to add time/space dependent forcing to the equations of motion. Inputs and outputs for this routine are all DIMENSIONAL.

Inputs:
- x, y, z: spatial location at which forcing is to be defined, [m]
- t: time at which forcing is to be defined [s]
- f, g, rho_0: Coriolis parameter, gravity, reference density [1/s, m/s², kg/m³]

Outputs:
- F1-3: acceleration at x, y, z & t in x, y, z directions [m/s²]
- F4: rhs of perturbation density eqn [(kg/m⁴)/s]

Note: For F4, you must take into account what you are using for rho_bar when you define this term.

Implicit none

real x,y,z,t,F1,F2,F3,F4
real Lx,Ly,Lz,f,g,rho_0

Declare local variables

real A_force, omega_force, k_force, l_force, m_force, b, F_of_z, Fprime,
envelope_uv, envelope_wp, arg, pi
real ambient_density_gradient, N2_force, omega2_force, F_of_t

Define rhs values

pi = 4. * atan(1.)
ambient_density_gradient = -(rho_0/g) * 2e-6 ! [kg/m⁴]
N2_force = (-g/rho_0) * ambient_density_gradient ! [1/s²]
A_force = 3. ! displacement [m]
k_force = ((1) * (2 * pi/Lx)) ! [1/m]
l_force = ((0) * (2 * pi/Ly))
m_force = ((4) * (pi/Lz))

omega2_force = (((f)**2) * m_force**2 + N2_force * (k_force**2 + l_force**2)) /
(k_force**2 + l_force**2 + m_force**2)

omega_force = sqrt(omega2_force) ! [1/s]

beta = 0.2e-4 ! width of guassian forcing wavenumber packet
bfactor = 1.0 ! height of vertical amplitude window compared to m_force
b = bfactor * m_force / (2 * pi) ! characteristic height of vertical amplitude window
F_of_z = exp((-b**2) * (z**2)) ! Vertical amplitude window
Fprime = -2. * (b**2) * z * F_of_z ! derivative of vertical amplitude window

Loop through wavenumbers and force in an envelope around k_force

F1 = 0
F2 = 0
\texttt{F3=0}\n\texttt{F4=0}\n\begin{verbatim}
do i=1,32
 k=(i*2.*pi/Lx)
 dk=2.*pi/Lx
 A=A_force*exp(-(k-k_force)/(sqrt(2.)*beta)**2)
 m=k/alpha
 l=l_force
 arg=k_x+1_y-omega_force_t
 envelope_uv=\texttt{*F_of_z*cos(m_z)-(Fprime)*sin(m_z)} \texttt{ ! [\textbf{rhs forcing envelope for u and v}]}
 envelope_wp=\texttt{*F_of_z*sin(m_z)}
 F1=F1+A*(omega_force**2/k)*sin(arg)*envelope_uv
 F2=F2-A*(omega_force**2/k)*(f/omega_force)*cos(arg)*envelope_uv
 F3=F3-A*(omega_force**2/m)*cos(arg)*envelope_wp
 F4=F4+A*(omega_force/m)*(rho_0*N2/g)*sin(arg)*envelope_wp
 enddo

\end{verbatim}
\begin{verbatim}
toories (the file can be edited if different starting locations are desired);
• calculates and reports run-time memory usage, comparing it to the memory available on the local machine;
• calculates and reports total disk space required for the output files, comparing it to disk space currently available in the requested output location; and
• constructs a short shell script \texttt{run} containing the command needed to launch a multiprocessor job under MPI.

The setup script processes information obtained from command line switches and from the system.conf file. A typical setup invocation is

\begin{verbatim}
\end{verbatim}

This command configures and compiles the code for a four-processor run at a spatial resolution of $128 \times 128 \times 128$, with three infinitesimal Lagrangian floats, with output sent to the specified location. The system.conf supplied with the code contains several example configurations for different computing environments. The file is used to specify locations of the NETCDF and MPI libraries, the Fortran compiler and desired compilation switches, and the syntax of the run command for MPI jobs. The example below can be used on machines with Intel processors running Linux, assuming that the libraries have been installed in the customary location/usr/local/lib. The syntax of the run command is appropriate for the mpich implementation of MPI. A log file will be written as the code is executed. We are assuming in this example that mpich has been configured for a cluster consisting of at least four processors. Changing the \texttt{--np} flag to \texttt{1} will generate code for a uniprocessor run:
Model Output

Results are output at a user-specified frequency in the form of NETCDF files. In a multiprocessor run, each processor writes files containing data over the portion of physical space allocated to that processor. The naming convention of the files is cfd3Dxxxxx.yyy, where xxxxxx is a six-digit integer string corresponding to the identification of the processor that wrote the file. For single-processor runs the files are simply named cfd3Dxxxxx. Each file contains data values for the velocity components \(u, v \) and \(w \); the perturbation density \(\rho' \); the ambient profile \(\bar{\rho}(z) \); and the pressure \(P \). The files also contain values for the independent variables \(x, y, z, \) and \(t \), along with descriptive labels and units for each variable. If the user-specified parameter \(\text{vortflag} \) was set to “yes” during configuration, the three components of the vorticity vector will also be present.

There are many tools available to manipulate, view, or extract data from NETCDF files, though a detailed discussion is beyond the scope of this paper. We do mention a few particularly useful tools, however: Ncview (information available online at http://meteora.ucsd.edu/pierce/ncview_home_page.html) and NCO (for NETCDF operators; information online at http://nco.sourceforge.net). Ncview is a visual browser for data stored in NETCDF format. NCO allows operations such as extraction, appending, new file creation, and averaging to be applied to data stored in NETCDF files. We also import NETCDF files, either those written directly by our model or new files created by extraction or concatenation, directly into the commercial software package MATLAB for further analysis or display. A freely available NETCDF interface can be obtained from the U.S. Geological Survey (available online at http://woodshole.er.usgs.gov/operations/modeling/mexcdf.html).

A diagnostic file \textit{energetics} is also written out containing estimates of the volume integrated kinetic and potential energies in addition to the energy transfer rates on the right-hand sides of Eqs. (57) and (58). The frequency at which the data are computed and stored is controlled by the parameter \(\text{lstat in problem.params.h.} \) Note that \(\text{lstat} \) should be specified small enough to allow reasonable estimates of the time derivatives of \(E_k \) and \(E_p \). The file is formatted as shown in Table B1 with white-space-separated values. The energy balances can then be evaluated on a term by term basis. Generally, we have found that for well-resolved simulations, the balances are accurate enough that errors in estimation of the time derivatives and spatial integrals, neither of which affect the quality of the underlying simulation itself, dominate the residual.

REFERENCES


```bash
# x86 linux g77. (NOTE: If using an f77 compiler, define F77 below, but do not define F90!)
FFLAGS = $FFLAGS -O3 -I/usr/local/include -ffixed-line-length-none -x f77-cpp -input
FLIBS = -L/usr/local/lib -lncdf -lmpich
F77 = g77
RUNCOMMAND = /usr/local/mpich/bin/mpirun -np NUMPROCS $PWD/flow.solve.x >& output/runlog &
```

Table B.1: Format of \textit{energetics} file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Quantity</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time (t)</td>
<td>s</td>
</tr>
<tr>
<td>2</td>
<td>(E_k)</td>
<td>J kg(^{-1}) m(^2) s(^{-2})</td>
</tr>
<tr>
<td>3</td>
<td>(E_p)</td>
<td>J kg(^{-1})</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{g}{\rho_0 V} \int \rho w , dV)</td>
<td>W kg(^{-1}) m(^2) s(^{-3})</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{1}{V} \int ru \cdot \nabla^2 u , dV)</td>
<td>W kg(^{-1})</td>
</tr>
<tr>
<td>6</td>
<td>(-\frac{g}{\rho_0 V} \int \bar{\rho} z \rho_a \cdot \hat{n} , dS)</td>
<td>W kg(^{-1})</td>
</tr>
<tr>
<td>7</td>
<td>(\frac{kg}{\rho_0 V} \int \bar{\rho} \nabla \cdot \hat{\mathbf{n}} , dS)</td>
<td>W kg(^{-1})</td>
</tr>
<tr>
<td>8</td>
<td>(-\frac{kg}{\rho_0 L_z} (\overline{\rho u p} - \overline{\rho \rho_{\text{nom}}}))</td>
<td>W kg(^{-1})</td>
</tr>
<tr>
<td>9</td>
<td>(\frac{1}{V} \int fu_i + \nabla F_i + w F_i , dV)</td>
<td>W kg(^{-1})</td>
</tr>
<tr>
<td>10</td>
<td>(\frac{g}{\rho_0 V} \int z F_i , dV)</td>
<td>W kg(^{-1})</td>
</tr>
</tbody>
</table>