Lecture 12

Ekman layers

12.1 The role of friction

The linearized time-dependent momentum equations, in the hydrostatic limit
are:
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where A, is the vertical eddy diffusivity (the turbulent equivalent to the
kinematic viscosity), and the lateral friction terms have been ignored on the
grounds of the thinness of the ocean.

12.2 Ekman layers driven by wind-stress at
the surface

In this case we set the pressure gradient terms to zero:
For boundary conditions we require that the vertical gradient of the hor-
izontal velocity be equal to the ration of the stress to the eddy viscosity



12.2.1 An infinitely deep ocean
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where the velocities are functions of z. The boundary conditions are:
ou” ov”
= 7. /pA, =71//pA, at z=0 12.5
5, = Tw/PAe - =Tu/pAs at 2 (12.5)
W =v"=0 at z=—00 (12.6)

Equations 12.4 are a coupled set of second order ordinary differential equa-
tions for u and v as a function of z. If we define a length scale
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and if the wind is blowing in the z-direction (to the east) alone, then it can
be verified that the general solution is of the form:

op =

(12.7)

u'(z) = \/ETZ(SE(BZ/‘; cos (z/0 —m/4) (12.8)
Py
v (z) = \/fpz‘iéEez/‘s sin (z/0 — w/4) (12.9)

(eg. Kundu & Cohen, 4th ed. pg 619) These solutions suggest that g is the
vertical distance over which the effect of friction is confined.
Talk about vertically integrated balance. For wind blowing in the x-
direction only:
0
[u] = / udz = 0; (12.10)
—h
Talk about vertically integrated balance. For wind blowing in the x-direction
only:
[v] = / udz = ——=. (12.11)
—h
so long as h/dg > 1. Very different from no rotation case! With positive
7Y ,we have negative transport (offshore), leading to sea level change, and
pressure gradients, so:
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Figure 12.1: Vertical profiles of downwind (u) and crosswind (v) current
driven by a wid stress directed along the x (toward the east) axis.

12.3 Ekman layers driven by pressure gradi-
ents

Consider a pressure gradient in the y direction only (ie the flow aloft is along
the x axis, over a solid boundary:
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The boundary conditions are:
ou?  OvP
i t 2= 12.1
5 P 0 at 2=0 (12.13)
w=v"=0 at z=-h (12.14)

In the case when h/dp is very large, it help to recast the problem in terms
of 2/ = 2z + h, so that 2z’ = 0 at the bottom, and increases to 2z’ = h at the
surface.



The general solution to equation 12.12 can be written in terms of

1 dp
U=——— 12.15
pf Oy (12.15)
representing the geostrophic velocity, as
uP(Z) =U (1 — e ¥/ o z’/(SE) (12.16)
WP (2) = Ue ™% sin 2' /65 (12.17)

In this case the bottom stress is related to the geostrophic velocity by:
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Figure 12.2: Vertical profiles of downwind (u) and crosswind (v) current
driven by a wid stress directed along the x (toward the east) axis.

Describe Ekman pumping/suction

12.4 Ekman layers driven by combined stress
and pressure gradients

In the most general case, when a fluid layer of depth h is driven by a combi-
nation of wind stress at the surface and pressure gradients, we can write the
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Figure 12.3: Above the bottom boundary the flow is in geostrophic balance:
counterclockwise in the northern hemisphere around a low pressure center.
Very close to the bottom, where the velocities and the Coriolis force are weak,
the pressure gradient is balance by the bottom stress, parallel to the flow, so
the flow is toward the center of the low pressure. This creates a convergence
toward the center, with a net upward flow throughout the field (not confined
to the Ekman layer)

general formula:
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where ¢ and ¢ arre the real and imaginary parts of:

N_ 9|, cos((1 —1)z/dg)
T =5 |1 cos((1—)h /o) (12.20)

and ¢7 and q] arre the real and imaginary parts of:

. V20 +0)0g sin((1—i)(z + h)/dE)
T= 77004, cos((1—i)h/op) (12:21)

To find the transports, these expressions have to be integrated vertically:



