

Surface Waves

Internal Waves

tens of meters

Simple interfacial internal wave

 $\mathbf{h} = -\mathbf{h_0}\mathbf{cos}(\mathbf{kx} - \omega \mathbf{t})$

$$\mathbf{U_1} = \frac{\omega \mathbf{h_0}}{\mathbf{H_1} \mathbf{k}} \mathbf{cos}(\mathbf{kx} - \omega \mathbf{t})$$

$$\mathbf{U_2} = -\frac{\omega \mathbf{h_0}}{\mathbf{H_2}\mathbf{k}}\mathbf{cos}(\mathbf{kx} - \omega \mathbf{t})$$

after Gill, Atmosphere-Ocean Dynamics

Linearize equations of motion

$$\begin{array}{lll} \displaystyle \frac{\partial u}{\partial \mathrm{t}} &=& -\vec{u}\cdot\nabla u + fv - \frac{1}{\rho}\frac{\partial p}{\partial \mathrm{x}} + \nu\nabla^2 u\\ \displaystyle \frac{\partial v}{\partial \mathrm{t}} &=& -\vec{u}\cdot\nabla v - fu - \frac{1}{\rho}\frac{\partial p}{\partial \mathrm{y}} + \nu\nabla^2 v\\ \displaystyle \frac{\partial w}{\partial \mathrm{t}} &=& -\vec{u}\cdot\nabla w - \frac{1}{\rho}\frac{\partial p}{\partial \mathrm{z}} + \nu\nabla^2 w - g\\ \displaystyle \frac{\partial \rho}{\partial \mathrm{t}} &=& -\vec{u}\cdot\nabla\rho + \kappa\nabla^2\rho\\ \nabla\cdot\vec{u} &=& 0 \end{array}$$

Linearize equations of motion

Linearize equations of motion

Try a solution of the form $u(x,y,z,t) = \hat{u}e^{-i[kx+ly+mz-\omega t]}$

Get polarization and dispersion relationships

$$\omega^2 = \frac{(k^2+l^2)*N^2+m^2*f^2}{k^2+l^2+m^2}$$

Linearize equations of motion

Try a solution of the form $u(x,y,z,t) = \hat{u}e^{-i[kx+ly+mz-\omega t]}$

Get polarization and dispersion relationships

$$\omega^2 = \frac{(k^2+l^2)*N^2+m^2*f^2}{k^2+l^2+m^2}$$

(Glenn Flierl)

Continuous stratification

Mode-1 wave (approx two-layer)

 $\mathbf{U} = \boldsymbol{\Psi}(\mathbf{z})\mathbf{cos}(\mathbf{kx} - \omega \mathbf{t})$

Allowable frequency range $\mathbf{f} \leq \omega \leq \mathbf{N}$ days to minutes

Wave propagation direction \rightarrow

What generates internal waves?

1) Wind makes near-inertial internal waves

What generates internal waves?

2) Barotropic tide sloshing over topography

Internal Tide: An internal wave with a tidal frequency, usually once in 12.4 hours = M2

Often generated at the continental shelf break, with waves propagating both on and off shore.

Internal-tide generation in Monterey Bay

courtesy of Oliver Fringer 5.10e-03 V (m/s) -5.10e-03

Internal-tide generation in Monterey Bay

courtesy of Oliver Fringer

Global pattern of internal tides

Simmons et al 2004

Complicating factors: higher-mode waves

Waves propagate in beams...

Complicating factors: complex topography

SIO Pier temperatures

Strength of surface and internal tide (SIO pier)

Barotropic tide: regular beating of semi-diurnal (12 hour) and diurnal (24 hour) signals

Internal tide: a mess! Changing stratification, mesoscale currents, eddies,

More local internal tides

Lerczak, Winant and Hendershott, 2003

Complicating factors: nonlinearity

Linear waves

$$\frac{\partial h}{\partial \mathbf{t}} + c_0 \frac{\partial h}{\partial \mathbf{x}} = 0$$

$$h(x,t) = \cos(x - c_0 t)$$

Non-linear waves

$$\frac{\partial h}{\partial \mathbf{t}} + (c_0 + h)\frac{\partial h}{\partial \mathbf{x}} = 0$$

When wave amplitude gets 'large' (shallow water), crest of wave moves faster, so wave starts to steepen. This can take several forms...

Solitons: internal waves of unusual size

Nonlinear internal tides: bores

courtesy of S. K. Venayagamoorthy and O. Fringer, Stanford

Nonlinear internal tides: bores

Why you should care

• Internal-wave fluctuations often dominate any signal you measure. Up/down CTD casts. Moorings.

• Internal-wave shear produces turbulence and mixing. Most mixing at interface / thermocline, can bring nutrients up into the euphotic zone. (next week)

 May create net on or offshore transport of mass / nutrients / larvae / ???

Consequences of Internal Waves

Wave breaking mixes the ocean (next week).

Hawaiian Ocean Mixing Experiment (HOME)

Klymak et al 07

Levine and Boyd 06

Aucan et al 05

Huge overturns as internal tide sloshes up and down a steep slope

Hawaiian Ocean Mixing Experiment (HOME)

Huge overturns as internal tide sloshes up

Klymak et al 07 Levine and Boyd 06 Aucan et al 05

Hawaiian Ocean Mixing Experiment (HOME)

Klymak et al 07 Levine and Boyd 06 Aucan et al 05

IW transport larvae/nutrients

2015 m S⁻¹ 10 5 'n 20 50 15 Pa 010 5 -50 meters above bottom N umol L⁻¹ 15 0 10 5 -5 u'p' 15 $\bigotimes_{-2}^{2} \bigotimes_{-2}^{-1} \bigotimes_{-2}^{2}$ 10 5 u'N´ 20 umol m L⁻¹ s⁻¹ 0.3 15 10 5 05-Aug 09-Aug 22-Aug 13-Aug 17-Aug

u

Drew Lucas, SIO

Larvae transport onshore

Convergence at the front of a wave train

Only strong upward swimmers can stay in the front

6

com o

Pineda 99