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ABSTRACT

A previously published method by Wang et al. for predicting subsurface velocities and density from sea

surface buoyancy and surface height is extended by incorporating analytical solutions to make the vertical

projection. One solution employs exponential stratification and the second has a weakly stratified surface

layer, approximating a mixed layer. The results are evaluated using fields from a numerical simulation of the

North Atlantic. The simple exponential solution yields realistic subsurface density and vorticity fields to

nearly 1000m in depth. Including a mixed layer improves the response in the mixed layer itself and at high

latitudes where the mixed layer is deeper. It is in the mixed layer that the surface quasigeostrophic approx-

imation is most applicable. Below that the first baroclinic mode dominates, and that mode is well approxi-

mated by the analytical solution with exponential stratification.

1. Introduction

Wang et al. (2013, hereinafter W13) proposed a

method for projecting surface density and height

downward in the water column. The method requires

simultaneous observations of surface density (or tem-

perature, in the absence of salinity) and height. The

density projection is made using the surface quasigeo-

strophic (SQG) approximation (Blumen 1978; Held

et al. 1995; Lapeyre and Klein 2006; LaCasce and

Mahadevan 2006; Tulloch and Smith 2006; Isern-

Fontanet et al. 2008). The height is then used to deduce

the two gravest baroclinic modes. W13 found that the

SQG portion was most important in the near-surface

region, while the baroclinic modes dominated at depth.

Here we simplify the method by using analytic solutions

for the vertical projection. This obviates determining the

SQG and baroclinic mode solutions numerically. We also

consider a solution with a surface ‘‘mixed layer,’’ al-

lowing us to gauge the latter’s effect on the construction.

2. Method

The method employs a two-component decomposition

of the quasigeostrophic potential vorticity (Pedlosky 1987):
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whereN(z) is the Brunt–Väisälä frequency, c5 p/(f0r0)

is the geostrophic streamfunction, andQ is the potential

vorticity (PV). Because the PV equation is linear, the

solution can be written as a superposition. The homo-

geneous solution is the SQG streamfunction cs, while

the particular solution is the ‘‘interior’’ streamfunction

ci (Lapeyre and Klein 2006). These have different sur-

face boundary conditions:

›

›z
ci 5 0,

›

›z
cs 5

bs
f0
, at z5 0, (2)
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where bs is the surface buoyancy. Thus, only the SQG

solution is directly linked to the surface density.

For the bottom boundary condition,W13 demanded

that the vertical derivative of both streamfunctions

vanish and that the total velocity be zero at the bot-

tom. Alternately, one can simply require that each

streamfunction vanish with depth (e.g., Lapeyre and

Klein 2006; LaCasce and Mahadevan 2006; Lapeyre

2009):

lim
z/2‘

ĉi 5 ĉs 5 0. (3)

It turns out that using this condition greatly simplifies

the subsequent solutions.

The interior solution cannot be determined because

the interior PV Q is unknown, but the two gravest baro-

clinic modes can be deduced if the surface pressure is also

known (W13). The baroclinic modes are solutions of the

Sturm–Liouville problem:
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given

ci(x, y, z, t)5 �
n
gn(x, y, t)Fn(z) , (5)

with the same boundary conditions as for ci. Here Rn is

the nth deformation radius and the gn are the modal

coefficients.

With zero flow at depth, the baroclinic modes are sur-

face intensified and the barotropic mode is absent

(Pedlosky 1987; Samelson 1992; LaCasce 2012).1 As such,

there is only a single unknown, the amplitude of the first

baroclinic mode g1, which can be determined from the

surface elevation h:

cs(x, y, 0, t)1ci(x, y, 0, t)’cs(x, y, 0, t)1 g1F1(0)

5
g

f0
h(x, y, t) . (6)

a. Exponential stratification

The SQG solution and baroclinic modes can be de-

rived analytically for certain idealized stratifications.

One is an exponential: N 5 N0e
z/h. Using this in (1)

yields
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N2
0k

2

f 20
Q̂e2z/h . (7)

Here c5�k,lĉ exp(ikx1 ily) and k5 (k2 1 l2)1/2 is the

total wavenumber. The PV and surface buoyancy are

similarly transformed. The SQG solution ĉs can be

shown to be

ĉs 5
b̂s
N0k

ez/h
I1(Leke

z/h)

I0(Lek)
, (8)

where the In are modified Bessel functions and Le [
N0h/f0 is a deformation-like scale associated with the

exponential stratification. The baroclinic modes, on the

other hand, satisfy
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The solution that decays with depth has the form

Fn } ez/hJ1
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�
, (10)

where J1 is a Bessel function of the first kind. Imposing

the surface condition [(2)] yields

J0

�
Le

Rn

�
5 0. (11)

So, the Rn are determined from the zeros of J0. The first

is 2.4048, so

R15
Le

2:4048
. (12)

Notice that the eigenvalue problem is solved without a

transcendental equation. This is because of the choice of

lower boundary condition.

The full solution is then

ĉ5
b̂s
N0k

ez/h
I1(Leke

z/h)

I0(Lek)
1g1e

z/hJ1(2:4048e
z/h) . (13)

We determine g1 from (6):

g15
1

J1(2:4048)
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#
. (14)

b. Mixed layer

We can make the stratification more realistic by

adding a surface mixed layer:

1 Over steep topography the barotropic mode is replaced by a

bottom-intensified topographic wave mode, which generally can-

not be deduced from surface information alone.
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The mixed layer lies above z 5 2D, and generally

Nm �ND. The stratificationN is thus discontinuous at

z 5 2D.

The solution in this case ismore involved and is left for

the appendix. It consists of a constant stratification so-

lution in the mixed layer and an exponential solution

below z52D, which are then matched at z52D. The

streamfunction is matched, so that the horizontal ve-

locities are continuous. We also match (›c/›z)/N2,

which guarantees continuity of the vertical velocity. This

follows from the quasigeostrophic density equation:

w52
f0
N2

d

dt

›c

›z
. (15)

Doing this also makes the PV continuous at z 5 2D.

It will be seen, however, that this condition yields

unrealistic solutions, particularly when the mixed layer

stratification is weak, so we tested matching the buoy-

ancy instead at the mixed layer base (as would be done

in the absence of a discontinuity in N). This produced

more realistic density variations both near and below the

mixed layer base.

3. Results

We evaluate the analytical solutions using fields from

the same North Atlantic simulation discussed by W13.

Full model details are given therein. The three regions

lie in the western and eastern Atlantic, and in the sub-

polar gyre (Fig. 1). In each region we average the density

laterally to obtain a profile forN(z) and use the result to

fit the analytical N curves. We also calculate the rms

density and vorticity as functions of depth, for compar-

ison with the solutions.

The three stratification profiles, with the two idealized

fits, are plotted in the left column of Fig. 2. The expo-

nentials were obtained by fitting the deeper portion of

N, below the region of rapid variation in the upper

several hundred meters. For the mixed layer solution,

the stratification Nm was obtained for the shallowest,

weakly stratified layer, while the depth D was de-

termined from the position of the maximum ofN (about

50m in regions 1 and 2 and 400m in region 3). All pa-

rameters are listed in Table 1. The values of the de-

formation radius R1 range from 22.6 km (region 3) to

32 km (region 2).

The results in Fig. 2 correspond to the second mixed

layer solution in the appendix, in which ›c/›z is matched

at z 5 2D. This requires solving a transcendental

equation, given in (A12). However, the first root varies

little for reasonable values of the mixed layer stratifi-

cation and depth, as indicated in Table 1. Thus,R1 is well

approximated by the pure exponential result [(12)], with

the deep stratificationND replacing the surface valueN0.

As such, neither analytical profile requires a numerical

solution for the baroclinic mode.

Shown in the other columns of Fig. 2 are the standard

deviations of the density and vorticity plotted against

depth. The results for the exponential and mixed layer

solutions are shown, as are the curves obtained by W13.

The latter derive from a numerical solution for the

baroclinic modes, using the actual stratification shown in

the left panels.

In region 1, the vorticity deviations (Fig. 2c) are of

similar magnitude for all three solutions, down to

roughly 700m. The density deviations (Fig. 2b) are also

similar, and the solutions capture the subsurface max-

imum seen near 250-m depth. The exponential and

mixed layer solutions behave much the same, though

the latter is better in the mixed layer itself; below that,

the two yield very similar results. Moreover, both an-

alytical solutions are as successful as the numerical

solution of W13.

Similar comments apply in region 2 (Figs. 2d–f). The

vorticity variations are somewhat better for the simple

exponential solution, although the differences from the

other solutions are small. Interestingly, the two analyt-

ical solutions perform better than the full numerical

solution in terms of density, as the latter yields much

greater variations with depth. Evidently, the analytical

fit smooths out the small-scale structures in N, which

have little impact on the density variations. Again, the

mixed layer solution is most successful in the mixed

layer itself.

FIG. 1. Surface density from the North Atlantic in the Parallel

Ocean Program (POP) simulation of W13. The three regions to be

considered are indicated by the stippled boxes (from W13).
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FIG. 2. The horizontally averaged fields from the three regions shown in Fig. 1: (a)–(c) region

1, (d)–(f) region 2, and (g)–(i) region 3. Shown are (left)N2, (middle) the rms density anomaly,

and (right) the rms vorticity anomaly. The exponential and mixed layer solutions are shown in

black and red contours, respectively, and the results fromW13 are shown in green. The model

fields are indicated by blue plus symbols.
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Region 3 differs because themixed layer is substantially

deeper, extending to roughly 400m. The mixed layer so-

lution accordingly performs better. The predicted density

variations are nearly depth independent in the mixed

layer itself, as in the model. The exponential solution in-

stead yields density variations that decay monotonically

with depth. The full numerical solution varies even more

with depth, but in this case the variations are realistic. It

performs best below 1000m, where the analytical solu-

tions are less accurate. However, the differences for the

vorticity deviations aremuch less. All three solutions yield

reasonable estimates in the upper 500m.

Thus, the analytical solutions are generally as good as

the reconstructions of W13, despite their idealizations.

Including the surface mixed layer improves the density

variations in themixed layer itself but has relatively little

impact on the horizontal velocities. Below the mixed

layer the simpler exponential fit yields equally good fits

for both density and vorticity.

As noted, the mixed layer solution uses an improper

matching condition on ›c/›z at the base of the mixed

layer. The result is that the density is continuous at

z 5 2D but the vertical velocity is not. Matching w in-

stead yields the solution in (A6). The two mixed layer

solutions are compared in Fig. 3, using the region 3 fields.

Matching (›c/›z)/N2 instead of ›c/›z produces a

discontinuity in the density variations at the mixed

layer base. The variations in the mixed layer in the

former solution are smaller than in the latter, and they

are much larger below. The vorticity deviations in the

mixed layer are also better captured by the solution

with a continuous density; the other solution grossly

overestimates the variations. But while both solutions

produce too large deviations below themixed layer, the

continuousw solutions are much greater, producing the

appearance of a discontinuity at the mixed layer base.

The curve is actually continuous, but the deviations

increase greatly over a small depth range.

TABLE 1. Parameters for the twoN2 fits. The depth range for the fitting is [380, bottom]. EXP andWML represent the cases with a pure

exponential and with a mixed layer overlying an exponential, respectively. The deformation radii come from (12) (EXP) and (A12)

(WML). The second estimate for WML (in parentheses) stems from using the exponential estimate [(12)], with Nm replacing N0.

1 2 3

Case EXP WML EXP WML EXP WML

N0 (s
21) 0.0072 — 0.0085 — 0.0031 —

ND (s21) — 0.0068 — 0.0078 — 0.0026

Nm (s21) — 0.0019 — 0.001 — 0.0005

h (m) 770 770 690 690 2000 2000

MLD (m) — 50 — 60 — 400

f0 9.68 3 1025 9.68 3 1025 7.62 3 1025 7.62 3 1025 1.14 3 1024 1.14 3 1024

R1 (km) 23.8 20.7 (20.8) 32.0 26.7 (26.7) 22.6 15.1 (15.3)

FIG. 3. Comparing the two mixed layer solutions, the solution in which ›c/›z is matched at the

mixed layer base (in green) and that in which (›c/›z)/N2 is matched instead (in purple). The fields

are from region 3, and the panels shown (left) N2, (middle) rms density, and (right) rms vorticity.
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A third solution was also tested, in which N was as-

sumed to increase exponentially to the base of themixed

layer and decay exponentially below (see the appendix).

While the results (not shown) were better than with the

continuousw solution above, they were still significantly

worse than with the continuous density solution.

Thus, we retain the mixed layer solution that matches

›c/›z at z 5 2D. This is obviously a practical choice

rather than a rigorous one, as the solution implies dis-

continuous vertical velocities. The unrealistic element is

the discontinuity in N, as the model profiles are instead

continuous. We retain the continuous density solution in

the interest of having a relatively simple analytical profile.

Further comparisons are shown in the subsequent fig-

ures. Snapshots of the density anomaly in region 1 are

shown in Fig. 4. The model fields are in the left column

and the exponential and mixed layer solutions are in the

middle and right columns, respectively. Figures 4a–c show

plan views of the density anomalies at 520-m depth, and

Figs. 4d–f show density cross sections taken along the

dashed line in the upper panels, near 40.58N.

Both analytical solutions capture the horizontal struc-

ture and amplitude of the model anomalies (Figs. 4a–c),

beyond relatively minor regional differences. Note that

520m is well below themixed layer depth (roughly 50m).

The vertical structure (Figs. 4d–f) is also very similar. The

analytical solutions decay more slowly with depth, a

consequence of using only a single baroclinic mode in the

decomposition. Nevertheless, the overall picture is very

similar. The mixed layer solution is slightly better in the

mixed layer itself, capturing, for example, the vertical

variations near 438W, but the exponential solution is

basically as good.

The comparisons in region 2 are very similar and are not

shown. The fields for region 3 are contoured in Fig. 5. The

depth (520m) for the plan views is just below the mixed

layer (400m). Again, the structures and amplitudes are

very similar, outside of regional variations. Differences are

more apparent in the vertical though, with the mixed layer

solution clearly superior at capturing the variations in and

just below the mixed layer. Again, the decay below the

mixed layer is too gradual in both solutions because of

having only a single baroclinic mode.

The vorticity fields compare similarly. In region 1

(Fig. 6), the two solutions produce realistic structures

with reasonable amplitudes. The vertical slices too are

very similar, above 800m. However, the model anoma-

lies extend deeper than in the solutions, which is un-

surprising given that the barotropic component is absent

in the solutions. But the result is good in the upper part

FIG. 4. Plan views from region 1 of the density anomaly at 520-m depth for (a) the model, (b) the pure

exponential fit, and (c) the exponential with the mixed layer. (d)–(f) Vertical slices of the density anomaly

along the dashed line indicated in the upper panels.
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of the water column, and there is no appreciable im-

provement with the mixed layer model.

Similar comments apply in region 3 (Fig. 7). The so-

lutions are comparable in the upper 1000m, but the

model vorticity anomalies extend deeper. And here too,

the mixed layer yields only minor changes from the pure

exponential.

The similarities between the solutions and the model

are quantified in Fig. 8, which shows the correlations

between the analytical solutions and the model density

(left) and vorticity (right) as functions of depth. In re-

gion 1 (top panels), the correlations for the density for

both solutions (solid contours) are between 0.8 and 1.0

in the upper 1000m. The correlations for the vorticity

are similarly high. Moreover, the two solutions are not

greatly different.

W13 found that the SQG contribution to the full so-

lution was generally less than that of the baroclinic

modes.We examined this by calculating the correlations

for the SQG portions alone (dashed contours in Fig. 8).

The correlations for the density are comparable to those

for the full solutions in the upper 50m. This is as ex-

pected, since the SQG solution matches the model

density at the surface, but the correlations decrease

below themixed layer; at 500m they are nearer to 0.5 for

both analytical profiles. Of course, the correlations do

not reflect the amplitude of the SQG contribution, and

the latter decrease even more rapidly in comparison to

the model’s (not shown). The correlations for the SQG

vorticity (right panel) are lower even at the surface,

being slightly less than 0.6. This reflects that the surface

density is not always aligned with the surface pressure

(W13). Thus, the baroclinic mode contribution is more

important in this regard.

The results are qualitatively the same in the other

two regions (middle and bottom panels). It is striking

in particular that the two idealized profiles yield such

similar correlations. Despite that the mixed layer im-

proves the amplitude of the density variations in the

mixed layer, it changes the structures little.

4. Summary and conclusions

We extended the study of W13 for predicting sub-

surface velocities and density from surface buoyancy

and sea surface height. We use analytical solutions to

make the vertical projection, assuming either an expo-

nentialN profile or an exponential with a mixed layer at

the surface. The solution is a combination of an SQG

component and the first baroclinic mode.

The solutions perform remarkably well in comparison

with subsurface fields from a North Atlantic simulation.

Both the density and vorticity fields are realistic, above

about 1000m depth. Moreover, the comparisons are

FIG. 5. As in Fig. 4, but for region 3.
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generally as good as those of W13, who used numerical

solutions to obtain the vertical dependence.

Several additional points are of interest. Including a

surface mixed layer improves the density fields in the

mixed layer itself but has little effect below. Also, both

solutions yield similar vorticity fields. This suggests

that a simple exponential profile may suffice in many

applications, and this can be easily determined from

climatological density.

Second, the reconstructions require only a single

baroclinic mode.We have dispensed with the barotropic

mode and accordingly miss variability at great depths,

but this is to be expected as the fields are reconstructed

solely from surface data. Nevertheless, if a barotropic

mode is desired, a flat bottom condition can be applied,

as with the exponential N solution of LaCasce (2012).

Then the two unknown modal amplitudes would be

determined as in W13. The price would be having to

solve a transcendental equation for the baroclinic

modes, something we have avoided here.

The mixed layer solution has a discontinuity at the

base of the mixed layer, and the solutions require

matching conditions there. Matching the density rather

than the vertical velocity yields better results, despite

that the latter is theoretically preferable. The reasoning

is that the weakly stratified mixed layer is always joined

to the stratified interior via a transition region, so that

the density is continuous. Including such a layer in the

theoretical model is possible but would defeat the pur-

pose of having a simplified solution.

We found too that the SQG portion of the solution is

most important in the mixed layer, where the stratifi-

cation is weak and the PV near zero. Thus, the SQG

construction is probably most valuable as an idealized

representation of mixed layer flow.
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APPENDIX

The Mixed Layer Solutions

The stratification is

FIG. 6. Plan views of the vorticity (normalized by f0) and vertical slices of the same quantity at 520-m depth in

region 1.
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(
Nm if z.2D

NDe
(z1D)/h if z# 2D

.

The SQG solution in the mixed layer that satisfies the

upper boundary condition is

ĉ5A1 cosh

�
Nmkz

f0

�
1

b̂

Nmk
sinh

�
Nmkz

f0

�
. (A1)

The solution in the lower region, which vanishes with

depth, follows from (8):

ĉ5A2e
(z1D)/hI1[LDke

(z1D)/h] , (A2)

with LD [ NDh/f0. We obtain A1 and A2 by matching ĉ

and (›ĉ/›z)/N2 at z 5 2D. As noted, this guarantees

continuity of the horizontal and vertical velocities, re-

spectively. The result is

A15
b̂

D

�
Nm

ND

sinh(Lmk)I0(LDk)1 cosh(Lmk)I1(LDk)

�
,

(A3)

A25
b̂

D
, and (A4)

D5Nmk

�
Nm

ND

cosh(Lmk)I0(LDk)1 sinh(Lmk)I1(LDk)

�
,

(A5)

with Lm [ NmD/f0. In the limit of vanishing surface

stratification, c is nearly barotropic in the mixed layer

and proportional to the surface buoyancy.

The derivation for the baroclinic modes is similar. The

upper and lower solutions that satisfy the boundary

conditions are

ĉ5

8>>>><
>>>>:

B1cos

�
Lmz

RnD

�
if z.2D

B2e
(z1D)/hJ1

�
LD

Rn

e(z1D)/h

�
if z# 2D

.

Matching ĉ and (›ĉ/›z)/N2 at z 5 2D yields a tran-

scendental equation for the Rn:

Nm

ND

J0

�
LD

Rn

�
2 tan

�
Lm

Rn

�
J1

�
LD

Rn

�
5 0. (A6)

We solve (A6) numerically, using Newton’s method.

Thus, the total streamfunction in the mixed layer

case is

FIG. 7. As in Fig. 6, but for region 3.
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FIG. 8. Correlations between the predicted and modeled (left) density and (right) vorticity for (a) region 1,

(b) region 2, and (c) region 3. Shown are the results using the single exponential (black solid curves) andmixed layer

(red solid curves) solutions, as well as the correlations from the SQG portions alone (dashed curves).
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c5

8>>>><
>>>>:

A1 cosh

�
Lmkz

D

�
1

b̂

Nmk
sinh

�
Lmkz

D

�
1g1 cos

�
Lmz

RnD

�
z.2D

A2e
(z1D)/hI1[LDke

(z1D)/h]1 g1e
(z1D)/h cos

�
Lm

Rn

�
J1[LDe

(z1D)/h/Rn]

J1(LD/Rn)
z# 2D

. (A7)

The constant g1 is determined again from the surface

elevation. As this only involves themixed layer solution,

the result is particularly simple:

g15
g

f0
ĥ2A1 . (A8)

The solution obtained by matching ›c/›z instead at

z 5 2D is very similar. Having a continuous buoyancy at

the interface with a discontinuous N is equivalent to

having a delta-function PV sheet at the mixed layer base.

Such a discontinuity can support buoyancy anomalies

(Bretherton 1966; Plougonven and Vanneste 2010; Smith

and Bernard 2013), which in turn can permit Eady-type

instabilities in the mixed layer (Pedlosky 1987). For the

present solutions, however, the density anomaly is assumed

confined to the upper surface, precluding instability.

The constants for the SQG solution are instead

A15
b̂

D

�
ND

Nm

sinh(Lmk)I0(LDk)1 cosh(Lmk)I1(LDk)

�
,

(A9)

A25
b̂

D
, and (A10)

D5NDk cosh(Lmk)I0(LDk)1Nmk sinh(Lmk)I1(LDk) .

(A11)

The transcendental equation for the baroclinic modes is

also altered slightly, to

J0

�
LD

Rn

�
1

Nm

ND

tan

�
Lm

Rn

�
J1

�
LD

Rn

�
5 0. (A12)

The form is slightly different than before, and in the

limit of weak surface stratification the second term is

very small. So, in fact, the solutions are close to the zeros

of J0. As such, one can approximate R1 by LD/2.4048 in

the full solution.

Thus, the total streamfunction can be written as be-

fore, but with the approximate value of R1:

ĉ5

8>>>><
>>>>:

A1 cosh(Lmk)1
b̂

Nmk
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�
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D

�
1 g1 cos

�
2:4048Lmz

LDD

�
z.2D

A2e
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(z1D)/h]1 g1e
(z1D)/h cos

�
2:4048Lm

LD

�
J1[2:4048e

(z1D)/h]

J1(2:4048)
z# 2D

.

The constant g1 is again determined by (A8).

A third solution was also tested, involving a double

exponential stratification profile:

N5

(
NDe

2(z1D)/h
m if z.2D

NDe
(z1D)/h if z# 2D

.

In fact, this provides the most satisfactory fit to the density

profiles in the three cases considered, and the stratification

is continuous, so that density alone can be matched at

z52D. But the results were as unsatisfactory, as with the

first solution described above. The density variations in-

creased below the surface to unrealistically large values

near themixed layer base, and the vorticity variationswere

overly large at depth, so we chose to focus on the second

solution given above.
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