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Unlike their atmospheric counterparts, swift oceanic cur-
rents, except over equatorial regions, are not strictly zonal
largely because the oceans are bounded by meridional con-
tinental boundaries. These currents are strongly shaped by
these boundaries and the associated bottom topographies.
Away from these swift boundary currents, the open ocean
is full of small scale eddies, hidden behind which are the re-
cently discovered quasi-zonal banded structures, the “latent
jets”, so-called because of their small amplitude (we refer
to them as “quasi-zonal jets in the ocean” hereafter). The
origin of these latent zonal structures and their formation
mechanism has been the subject of an ongoing discussion.
It is not clear if we can directly apply turbulence theories
based on a zonal reentrant channel model, as discussed ex-
tensively in other chapters of this book, to the generation of
the quasi-zonal jets in the ocean.

One interesting phenomenon is that these jets often ex-
tend all the way to eastern boundaries, e.g. Figure 1b in
Galperin (2004), Figure 4 in Nakano and Hasumi (2005),
Figure 5 in Centurioni et al. (2008), Figure 2 in Maximenko
et al. (2008). Several ocean-specific mechanisms related to
oceanic eastern boundaries have been proposed. For exam-
ple, zonal jets in the open ocean can be generated by beta
plumes originating in a baroclinic meander at an eastern
boundary (Afanasyev et al., 2011) or the radiating insta-
bilities emitted from an unstable eastern boundary current
(Hristova et al., 2008; Wang et al., 2012).

Here we focus on the generation mechanism of zonal jets in
the open ocean by radiating instability of an eastern bound-
ary current. This newly proposed mechanism is still in an
early stage of development. This review is mostly based on
Talley (1983a); Fantini and Tung (1987); Kamenkovich and
Pedlosky (1996); Pedlosky (2002); Hristova et al. (2008);
Wang et al. (2012, 2013). We first review the history of ra-
diating instability on a beta plane, then the linear stability
problem of a meridional flow, and finally the nonlinear radi-
ating instability of an eastern boundary current. The nonlin-
ear problem is more relevant to the generation of zonal jets
in the ocean. Finally we discuss several wave-based theories
(O’Reilly et al., 2012; Qiu et al., 2013).

Radiating instability on a beta plane

Radiating instability refers to an instability that can couple
to waves that can radiate away from the source region. The
radiation can be of various forms such as gravity, acoustic
or Rossby waves. Here we focus on the radiating instabil-
ity through Rossby waves on a beta plane, which has been
shown to be relevant to the generation of quasi-zonal jets in
the ocean. Before discussing the generation mechanism, let
us first review the historical development of the theory.

Early studies of radiating instabilities are mainly moti-
vated by the need to address the origin of eddies in the open
ocean away from swift boundary currents. By early 1970s,
eddies in the ocean had been known to be part of the ocean
circulation, but had just started to draw much attention af-
ter a general recognition of their importance to the ocean
circulation. Comprehensive field experiments such as the So-
viet POLYGON (Brekhovskikh et al., 1971) and the inter-
national MODE-I initiated by Henry Stommel highlighted
the turbulent nature of the oceans. Although it is relatively
intuitive to understand the eddies of the Gulf Stream, it as
less clear for eddies in the open ocean because of a lack of an
obvious energy source. Subsequent theoretical developments
suggested two main mechanisms regarding the origin of the
observed eddies in the open ocean. One direct mechanism
is baroclinic instability that can aid the release of the vast
potential energy of the mid-ocean circulation to generate en-
ergetic eddies (Gill et al., 1974; Robinson and McWilliams,
1974; Pedlosky, 1975; Spall, 2000). An alternative mecha-
nism is the radiation of mechanical energy originating from
the instabilities of vigorous boundary currents such as the
Gulf Stream (Wyrtki et al., 1976; Pedlosky, 1977).

The initial theoretical development focused on the lin-
ear response of a resting ocean to a steady localized forcing
(Flierl et al., 1975; Pedlosky, 1977; Harrison and Robinson,
1979). For example, Pedlosky (1977) idealized a meandering
current like the Gulf Stream as a spatially periodic distur-
bance traveling in the zonal direction with speed c and wave
number k, and studied the conditions under which the dis-
turbances can radiate energy southward. It is found that the
extent to which disturbances can radiate through a resting
ocean depends on local criticality in terms of baroclinic in-
stability, so that the local potential vorticity structure of
the open ocean flow controls both the local production of
baroclinic eddies and the transmission of remotely gener-
ated wave energy. A series studies expanded the theory to
include nonlinearity (Malanotte-Rizzoli, 1984) and transient
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forcing (Malanotte-Rizzoli et al., 1987), which are not dis-
cussed further here since they are not our focus. Motivated
readers are encouraged to read the cited literature and the
references therein.

The radiation mechanism in the above mentioned studies
is put into the context of radiating instabilities by Talley
(1983b,a) who studied the radiating capability of the intrin-
sic instabilities of barotropic and baroclinic zonal jets. She
found that whether or not instability can radiate depends
strongly on whether the instabilities satisfy the Rossby wave
dispersion relation in the ambient far field. Instabilities usu-
ally propagate in the same direction as the mean flow. As
a result, westward flow more easily supports instability ra-
diation than eastward flow since Rossby waves always have
westward phase speed.

The orientation of the mean current makes a huge dif-
ference to the instability of the current and its ability to
radiate energy to the far field. Mean currents, which are
tilted with respect to the zonal direction, are more unsta-
ble and their instabilities are more able to radiate (Fantini
and Tung, 1987; Kamenkovich and Pedlosky, 1996, 1998a,b;
Walker and Pedlosky, 2002; Pedlosky, 2002). A meridional
current, representing ocean boundary currents, can be re-
garded as an extreme case of the non-zonality. Fantini and
Tung (1987) noticed that a meridional current can gener-
ate radiating instability more easily than the zonal flows
discussed in Talley (1983b,a). They showed that unstable
waves are able to propagate energy eastward even in the
presence of realistic dissipation. One would expect more ra-
diating instability to occur for these meridional boundary
currents.

Recently Hristova et al. (2008) studied and compared the
linear radiating instability of two meridional boundary cur-
rents, one along western boundary and the other along east-
ern boundary both in a barotropic and in a baroclinic frame-
work. In the barotropic setup, Kelvin-Helmholtz type of in-
stability due to the horizontal velocity shear supports ra-
diating instabilities both from a western boundary current
and from an eastern boundary current. In the baroclinic
setup, instability is provided by Kelvin-Helmholtz instabil-
ity and baroclinic instability. Notably, the energy source
from baroclinic instability significantly contributes to the
energy balance for almost all unstable modes for both east-
ern and western boundary currents. One of the unstable
baroclinic modes resembles the one found by Walker and
Pedlosky (2002), suggesting the linkage between the insta-
bility of a baroclinic boundary current and the instability of
a meridional channel flow. Hristova et al. (2008) found that
the structure of the radiating mode from an eastern bound-
ary has a long zonal tail, and proposed that those radiating
modes can potentially generate quasi-zonal jets in the ocean.

Although both barotropic and baroclinic radiating modes
exhibit long zonal tails and the baroclinic energy conver-
sion can be important both by supporting unstable baro-
clinic radiating mode and by coupling to a barotropic ra-
diating mode, the barotropic component itself seems to be
su�cient to generate long-tailed quasi-zonal jets. The zonal
wavelength and envelope decay scale of a barotropic radiat-
ing mode can be much longer than its baroclinic counterpart

(Hristova et al., 2008). Based on a barotropic model, Wang
(2011); Wang et al. (2012, 2013) used both linear stability
analysis and nonlinear numerical simulations to demonstrate
that radiating instabilities from a barotropic eastern bound-
ary with realistic parameters can generate zonal jets in the
ocean interior with observed properties.

Linear inviscid stability equation for a meridional

flow

A completely realistic model needs to consider both baro-
clinic and barotropic energy sources, but our discussion here
concentrates on the barotropic problem as a simplified ex-
ample of how radiating instabilities can produce zonal jets.
The linear stability equation based on the barotropic quasi-
geostrophic vorticity equation for its simplicity,

@tq + J( , q) = F (1.1)

q = r2
 + �y (1.2)

where  is the streamfunction (� y, x) = (u, v), q the
potential vorticity, F the external forcing and dissipation,
J the Jacobin operator, and � the meridional gradient of
the Coriolis parameter. Consider a basic steady solution q

(hereafter we use overbar to represent the time mean basic
state), which satisfies

J( , q) = F . (1.3)

For a parallel zonal flow, J( , q) = F = 0 meaning that no
external forcing is needed to maintain a zonal parallel flow.
But external forcing is needed for a meridional parallel flow
to balance the divergence of planetary vorticity advection
�v = F .

The linear stability problem examines the evolution of
a small perturbation to the basic state. Considering small
perturbations denoted by primed quantities, Eq. (1.1) with
Eq. (1.3) is linearized to

@tq
0 + J( , q0) + J( 0

, q) = 0 (1.4)

in which the friction and quadratic terms of the perturbation
are neglected.

For a velocity jet with a typical width scale Lb and velocity
scale V , the linearized equation Eq. 1.4 is nondimensional-
ized as

(@t+u@x+v@y)r2
 

0+(�⇤�uyy+vxy) 
0
x�(vxx�uxy) 

0
y = 0(1.5)

where �⇤ = �L

2
b/V and the subscripts denote partial deriva-

tives.
Equation 1.5 is further simplified to (after dropping the

primes)

(@t + u@x)r2
 + (�⇤ � uyy) x = 0 (1.6)

for zonal flows, and to

(@t + v@y)r2
 + �

⇤
 x � vxx y = 0 (1.7)

for meridional flows. The vorticity gradient induced by a ba-
sic zonal shear flow is parallel to the gradient of planetary
vorticity, which simplifies the derivation of integral theo-
rems, e.g. the Rayleigh-Kuo theorem (Rayleigh, 1880; Kuo,
1949). However, the first order term appearing in Eq. 1.7
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introduces new modes of instability, which makes it di�cult
to extend the integral theorems to flows with a meridional
component (Fantini and Tung, 1987; Kamenkovich and Ped-
losky, 1996). Nonzonal flows can be expected to be more un-
stable, and even a small meridional tilt can destabilize an
otherwise stable zonal current (Kamenkovich and Pedlosky,
1996). It also introduces a zonal asymmetry in the instability
properties.

We here consider a meridional parallel flow. Since the co-
e�cients in Eq. 1.7 are only a function of x, the perturbation
solution consists of an eigenfunction in x and trigonometric
wave-like structure in y and t

 = <
⇣
A�(x)eil(y�ct)

⌘
, (1.8)

where � is an eigenfunction. Substituting Eq. 1.8 into Eq.
1.7 gives the stability equation of a meridional flow

�xx +
�

⇤

il(v � c)
�x �

⇣
l

2 +
vxx

v � c

⌘
� = 0. (1.9)

Boundary conditions

Consider a basic sheared flow v(x) with constant velocity in
the far field (x ! ±1), which is set to zero in the following
without loss of generality (v|x!±1 = 0). Then in the far
field, Eq. 1.9 becomes the barotropic Rossby wave equation
since v = vxx = 0, resulting in far field wave-form solu-
tions with zonal wavenumber k satisfying the Rossby wave
dispersion relation

 = <
⇣
Ae

ikx
e

il(y�ct)
⌘

(1.10)

k

2 +
�

⇤

lc

k + l

2 = 0, (1.11)

where k and c are allowed to be complex but l is set to be
real. Note that the roots of k are always a pair of complex
conjugates for all eigenmodes since the product of the two
roots is l2, which is real. Explicitly considering c and k being
complex, the far field solution is written as

 = <
⇣
Ae

ikr
e

il(y�crt)
⌘
e

�kix
e

lcit
. (1.12)

The imaginary part of the phase speed c represents the
growth or decay rate of the initial small perturbations. The
imaginary part of k represents the zonal structure of the
envelope of eigenfunction amplitude, which can be used to
determine whether or not an eigenmode is radiating.

Another boundary condition for a mode which radiates
in continuously di↵erentiable velocity profile can be applied
outside the jet region at some convenient finite value of x,
namely,

�x + ik� = 0, (1.13)

in which k is the proper solution of Eq. 1.10 which yields
outgoing radiation. This condition is applied at an arbitrary
point x in the region where there is no mean flow. It ensures
the continuity of the wave function and its derivative with
the radiating Rossby wave. It is also conveniently turns the
semi-infinite region into a finite region for numerical calcu-
lation. We need to determine how to apply the two roots for

k satisfy the two boundary conditions. As the perturbation
energy in the far field is either zero for non-radiating modes
or finite for unstable radiating modes, eigenfunctions in both
cases are expected to decay away from the energy source re-
gion, which in our case is the basic meridional flow. For a
meridional flow in an infinite domain, the k with negative
imaginary part is used for the western boundary condition
and the one with positive imaginary part for the eastern
boundary condition. We will discuss this in more dynamical
detail in the next section.

Identifying a radiating mode

We aim to study the instability of a meridional jet and iden-
tify the modes that can radiate. It is straightforward to un-
derstand that a neutral mode in a plane wave form is ra-
diative. However, an unstable mode, regardless of whether
it is radiating or not, has a spatially decaying structure. We
need a more subtle criterion in order to separate the un-
stable trapped and radiating mode as they both appear to
decay in space.

One criterion is the phase speed condition. Given a merid-
ional wavenumber l and fixed parameter �, we can find the
associated eigenvalues c by solving the stability equation 1.9
with proper boundary conditions (Eq. 1.13). The distinction
between a radiating mode and a trapped mode becomes evi-
dent in the small growth rate limit ci ! 0. The phase speed
c can be approximated by a Taylor expansion in terms of a
small ki at k = kr

cr + ici = c(ki = 0) + iki
@c

@k

(ki = 0) +O(k2i ). (1.14)

Since l is real, ki must be real if c is real for a radiating
wave satisfying the Rossby dispersion relation. Matching the
real parts of Eq. 1.14 gives

cr = � �

⇤
kr

l(k2r + l

2)
(1.15)

This is the so-called phase speed condition.
Matching the imaginary part of Eq. 1.14 requires that

ci ⇡ ki
@c

@k

(ki = 0) =
ki

l

c

x
g (ki = 0) (1.16)

where cxg represents the zonal group velocity. For an unstable
mode ci > 0, ki and cg always share the same sign, i.e.
westward group velocity c

x
g < 0 corresponds to negative ki,

which is also used in the western boundary condition and
vice verse. This is consistent with the physical mechanism
that the decaying envelope in a radiating mode is produced
by the propagating unstable wave packet generated earlier.
By the time a wave package generated earlier reaches the
far field, the amplitude of the unstable mode at the source
region becomes even larger. So for an unstable radiating
mode, its spatial decay scale 1/ki is intimately linked with
how fast it grows locally (ci) and how fast it can propagate
away (cxg ). Following ci ! 0 we would expect ki ! 0 for
unstable radiating mode, otherwise the mode is trapped.

One commonly used practical but not very strict crite-
rion is that the radiating mode should “look wavy”, which
is measured by kr/ki. The wavy structure indicates that a
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radiating mode is of a wave whose decay scale is long com-
pared to its wavelength, a condition necessary to reveal the
wave character of the radiation. For those with kr/ki > 1,
their zonal decay scale 1/ki is longer than the zonal oscilla-
tion scale 1/kr so that its eigenfunction looks like a plane
wave modulated by a slowly decay envelope. This criterion
is practically convenient but obviously not a su�cient con-
dition as rapid decay can be due to large growth rate.

To summarize, one can use kr/ki > 1 as the first check,
and follow ci ! 0 to see whether ki ! 0, and finally
the phase speed condition to identify radiating modes. The
phase speed condition is a necessary condition. ci ! 0 as
ki ! 0 is a su�cient condition. kr/ki > 1 is an empirical
condition. One needs also check that the relation between
spatial decay, group velocity and growth rate (15) is satisfied
for a truly radiating mode.

Linear radiating instability

Asymmetry exists between westward and eastward radiat-
ing instabilities due to the first derivative of streamfunction
associated with planetary beta. This asymmetry is easier
understood intuitively in terms of the asymmetric Rossby
wave propagation. The zonal group velocity is westward for
long zonal wavelengths (k < l for a fixed l) but eastward for
short zonal wavelengths (k > l) although the phase speed of
planetary Rossby wave is always westward. The meridional
scale 2⇡/l is set by the most unstable mode in this barotropic
case, which is about 6Lb. For baroclinic modes, however, the
deformation radius is a better measure of the transition in
k from eastward to westward energy propagation. With the
same baroclinicity, waves emitted from the eastern boundary
are always of a longer zonal wavelength than those from the
western boundary. Obviously, both energy sources need to
be considered in a realistic model, but we only consider the
barotropic problem as a simplified example of how radiating
instabilities can produce zonal jets. Consider two boundary
currents, one along a western boundary and the other along
an eastern boundary. The boundary condition at the solid
wall is non-permeable for both currents, but for the far field
is c

x
g > 0 for the western boundary case and c

x
g < 0 for the

eastern boundary case. If they exist, radiating modes of a
western boundary current will be of short zonal wavelength,
more a↵ected by lateral friction, and will decay faster than
those long waves radiated from an eastern boundary current.

Fantini and Tung (1987) explicitly considered a western
boundary current represented by a piece-wise constant ve-
locity profile with finite friction, and showed that a range
of long meridional waves (compared to the width of the
boundary current) are able to overcome local friction and
radiate into a region far from the boundary current. They
also showed that the radiating unstable modes are confined
within a small wavenumber range over the long wave end.
The growth rate is large for trapped modes but very small
for radiating modes.

Kamenkovich and Pedlosky (1996) studied linear stabil-
ity of a nonzonal (meridionally tilted) jet and considered
both barotropic and baroclinic continuous velocity profiles.
They demonstrated that the nonzonal orientation of the jet

leads to the emergence of weakly unstable radiating modes,
whereas all unstable modes of a purely zonal current are
trapped. In the along-jet direction, these radiating modes
are longer than the trapped ones; in the cross-jet direc-
tion, the radiating modes are neither symmetric nor anti-
symmetric. The radiating properties are not significantly
di↵erent between the barotropic and baroclinic systems, al-
though the baroclinicity modifies the linear modes of the
barotropic problem and results in the emergence of a new
type of a radiating mode. The analysis of the barotropic
and baroclinic energy conversion terms demonstrated that
one mode type exists mainly due to the barotropic mech-
anism, whereas the baroclinic mechanism is important for
the remaining two mode types. The results suggest that ra-
diating instabilities can exist as long as the mean stationary
flow is not purely zonal.

Hristova et al. (2008) extended the study of Fantini and
Tung (1987) by explicitly considering the asymmetry be-
tween a western boundary current and an eastern boundary
current using the same piece-wise velocity profile. They con-
firmed the finding of Fantini and Tung (1987) for a western
boundary current, but found that an eastern boundary cur-
rent supports radiating instability over a wider meridional
wavenumber range and with longer wavelength than does an
equivalent western boundary current. In addition, Hristova
et al. (2008) also studied a baroclinic case in which baroclinic
instability provides an additional energy source for pertur-
bations. They showed that baroclinic energy conversion is
the dominant energy source for perturbations in a western
boundary current, but only accounts for 50% energy source
in the case with an eastern boundary current. Another 50%
comes from the horizontal velocity shear through barotropic
instability. While baroclinic instability can be important in
supporting baroclinic mode, which can couple to barotropic
modes and dramatically change the instability property, we
here keep the problem as simple as possible and do not con-
sider the baroclinic case.

Both Fantini and Tung (1987) and Hristova et al. (2008)
used a broken line velocity profile for the sake of computa-
tional simplicity. This also reduces the continuous di↵eren-
tial equations to a set of algebraic equations.

Wang et al. (2013) considered a continuous velocity profile
represented by a bounded Bickley jet with a focus on the
case with an eastern boundary current

v = �V sech

2

✓
x� x0

Lb

◆
(1.17)

where x0 denotes the location of the center of the Bickley
jet, and Lb the cross-stream length scale of the boundary
current.

Figure 1.1 shows an example of the linear results in Wang
et al. (2013). The dashed and solid lines correspond to vari-
cose and sinuous modes first found by Lipps (1962) but with
modified structures. The varicose and sinuous modes are
no longer symmetric and anti-symmetric because the two
modes can project onto each other due to the beta e↵ect
associated with the first derivative in x. To illustrate the
cross-projection, we perform a simple perturbation analysis



Radiating instability and small-scale stochastic wind forcing 5

assuming � ⌧ O(1). The eigensolution in terms of stream-
function can be expanded as

 =  

(0) + �

⇤
 

(1) +O(�⇤2) (1.18)

Substituting Eq. (1.18) into Eq. (1.7) and collecting terms
with the same order of �⇤ gives

(@t + v@y)r2
 

(0) � vxx 
(0)
y = 0 (1.19)

(@t + v@y)r2
 

(1) � vxx 
(1)
y = � (0)

x (1.20)

The zeroth order equation 1.19 is the same stability equa-
tion for a jet on an f plane, and has the unstable sinuous
mode and varicose mode for a basic Bickely jet. The first
order correction  (1) slightly modifies the two basic modes
to reflect the � influence. The first order equation shows
that the two basic zero-order modes have a forcing e↵ect
on the order one term  

(1). The x-derivative leads to a 90
degree phase shift, so that the sinuous (varicose) mode im-
poses an antisymmetric (symmetric) forcing structure. As a
result, the zeroth order modes lose their original symmetry.
Readers may refer to Wang (2011) for more detailed analysis
of the cross-projection of the originally orthogonal unstable
modes induced by beta e↵ect.

Figure 1.1a shows the growth rates of the modified sinu-
ous (solid line) and varicose modes (dashed line). While the
most unstable mode is a modified sinuous mode, the modi-
fied varicose mode supports radiating instability over a wider
wavenumber range as shown in Figure 1.1b (red color). The
solid and dashed lines in Figure 1.1b represent the real part
of the eigenvalues of the unstable modes, lcr. The symbols
represent the frequencies would be if the unstable modes sat-
isfy Rossby wave dispersion relation, i.e., the symbols cor-
respond to !r = ��kr/(k2r + l

2), where kr is calculated ac-
cording to Equation 1.10. The instabilities with a matching
lcr and ��kr/(k2r + l

2) (marked by red symbols) can ra-
diate. It is clear that the modified varicose mode has more
potential to radiate. The two critical wavenumbers dividing
radiating and trapped modes are l = 0.46 and l = 0.74 for
the modified varicose and sinuous mode, respectively. Note
that the approximately linear relationship between !r and
l (lines in Figure 1.10b) should not be compared to the con-
ventional Rossby wave dispersion relation, because kr here
is not a fixed quantify, but rather it changes as l varies.
The relationship between !r and l is an intrinsic property
of the instability of the boundary current. One would expect
a di↵erent !r(l) function for a di↵erent current profile.

There are both long and short wave cuto↵s in the growth
rate, unlike for the piece-wise continuous velocity profile case
where short wave cuto↵ is absent due to the infinite back-
ground shear at the velocity jump. The modified varicose
mode is the only unstable mode over the long wave end
with a long-wave cuto↵ l = 0.125. Radiating instability oc-
curs over the meridional wavenumber range 0.125 < l < 0.46
for the modified varicose mode and 0.706 < l < 0.74 for the
modified sinuous mode.

Historically, less attention has been paid to the varicose
mode in barotropic instability studies of a zonal shear cur-
rent because of their smaller growth rate compared with the
sinuous mode. The varicose mode, however, becomes cru-

Figure 1.1 (a) shows the growth rates calculated by a shooting
method (lines) and an initial value method (stars). (b) shows the
real frequencies calculated from eigenvalues, !r = lcr (lines) and
!r = ��⇤kr/(k2r + l2) where �⇤ = 0.41 (symbols). In (a) (b), the
dashed lines represent modified varicose modes, and the solid
lines represent modified sinuous modes. The red symbols in (b)
marks the unstable modes that satisfy the matching condition.

cial here because most of the radiating modes are modified
varicose modes.

Figure 1 shows an example of the eigenfunction (real
part) associated with a radiating mode (dashed line) and
a trapped mode (solid line). The “wavy structure” is clearly
shown in the radiating mode, but not in the trapped mode.
In this example, kr/ki = 190 > 1 for the radiating mode
and kr/ki = 0.43 < 1 for the trapped mode. Assume the
boundary current width Lb = 100km, then the instability
has meridional wavelength of less than 400km but a zonal
wavelength of more than 4000km. In the nonlinear studies
shown next we can see that the most unstable mode has
wavelength about 400 km. The strong anisotropic property
of the radiating instability from an eastern boundary current
may play a role in the generation of quasi-zonal jets in the
ocean observed in, for example, Maximenko et al. (2005).
In contrast, radiating instability from a western boundary
current is more isotropic, i.e., k ⇠ l, and less likely exhibits
asymmetric zonal-jet structures (Hristova et al., 2008).

Nonlinear radiating instability

Uncertainties exist in the linear theory. It is not clear
whether radiating instabilities extend to finite amplitudes
and how energetically important the radiating instabilities
are since they have small growth rates. The theory is ex-
tended to nonlinear regime in Wang (2011); Wang et al.
(2013) and its relevance to the generation of quasi-zonal jets
in the ocean is demonstrated in Wang et al. (2012).
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Figure 1.2 The real part of the eigenfunctions of the radiating
(dashed) and trapped (solid) modes as a function of x (x is
normalized by Lb). The radiating mode has l = 0.4,
k = 0.21� i0.0011, and the trapped mode has l = 0.82,
k = 0.32� i0.74.

Consider weakly nonlinear radiating instability using a
numerical solution of Eq. (1.1). With an eastern boundary
current v fixed in time and a Laplacian friction applied to
perturbations, Eq. (1.1) becomes

(@t + v@y)r2
 + � x � vxx y �r ·AHr = 0. (1.21)

AH is strongly increased at the western boundary to remove
energy and enstrophy

AH = A

w
H � (Aw

H �A

e
H) exp(

x

↵Lx
), (1.22)

where ↵ controls the decay scale. This function changes from
approximately A

w
H at the western boundary to A

e
H at the

eastern boundary. The boundary current is represented by
Eq. (1.17). The numerical model domain is Lx in the zonal
direction and Ly in meridional direction discretized by Nx

and Ny grids. The nonlinear radiating instability is investi-
gated by studying the behavior of a small perturbation  to
the basic state v. The parameters used in Wang et al. (2013)
are listed in Table (1.1). Note that the small Ly is deliber-
ately chosen to decrease the model’s spectral resolution so
that behaviors of the first several discrete modes can be stud-
ied individually. For Ly=700 km, the only resolved unstable
wavelength is 350km, since the unstable wavenlength range
is between approximately 250 and 550 km (Figure 1.3). Then
the question is whether the frictionally suppressed radiat-
ing mode can contribute to the energy radiation from the
boundary current to the interior.

We aim to study the fundamental element of nonlinear
dynamics, the triad-interaction, in which three waves satisfy
the condition for resonance, described below, between them.
Here by reducing the model Ly, we can single out one unsta-
ble mode, denoted as the primary mode, with a wavenumber
l2 and frequency !2. The goal is to test whether we can find
the other two modes that satisfy resonance condition with
the primary mode: l1 + l2 + l3 = 0, !1 + !2 + !3 = 0, with
a hope that one of the two modes is a radiating mode.

The evolution of the first four modes, i.e. modes with
wavelengths Ly/i , i = [1, 2, 3, 4], is studied in Wang et al.
(2013) under two scenarios. In the first scenario, the sin-
gle unstable mode with wavelength 350km resonates with
the frictionally suppressed radiating mode with wavelength

700km through subharmonic instability. Note that the reso-
nance condition for a triad containing the linearly unstable
mode is possible only if the growth rate of that mode is
small compared to the real frequencies of the components
of the triad. No resonance can occur if the unstable mode
has an order one growth rate since the sum of the frequen-
cies will not be zero and the resonance denominator, which
is proportional to the sum of the complex frequencies, will
not be small enough. If the growth rate is order one, the
development time for the instability will lead to the growth
of the unstable wave to finite amplitude before the sharing
of energy between members of the triad can be made mani-
fest. We keep the growth rate of the most unstable mode as
small as possible by reducing the forcing amplitude by trial
and error. The mechanism of energy transfer in this limit
is most clear and rigorous but we believe it illuminates a
general process of energy transfer in the spectrum.

The linearly stable radiating mode becomes non-linearly
unstable under this scenario by tapping into the energy of
the most unstable mode with half of its wavelength. The
radiating mode can take away almost a quarter of the total
perturbation energy from the boundary region into the in-
terior. In the second scenario with a slightly di↵erent �, the
most unstable mode and the linearly stable radiating mode
become non-resonant, so that the radiating mode becomes
energetically insignificant.

Figure (1.4) shows the first scenario. Three stages are
clearly shown in the time evolution of the streamfunction
at an arbitrary location within the boundary current (a).
There is a clear separation in the time evolution because
the specific parameter set in Table (1.1) are chosen to re-
duce the growth rate of the most unstable mode to as small
a value as possible in order to isolate and identify the three
stages of development. During stage I, the most unstable
mode quickly stands out and from random noise initializa-
tion and grows exponentially, while other modes decay. The
subharmonic instability between the most unstable mode
and its superhamonic starts to occur during stage II, but
the radiating mode is still in the developing stage with an
amplitude several orders of magnitude smaller. As a result,
only the structure of the most unstable mode is observable.
During stage III, both the most unstable mode and the ra-
diating mode come into play. The long tail of the radiating
mode becomes evident. The linearly stable radiating mode
becomes nonlinearly unstable.

One of the main results in Wang et al. (2013) is the demon-
stration of the significant energy radiation from an unstable
eastern boundary current even though there is no unstable
radiating mode. They intentionally studied several discrete
waves with a focus on the fundamental element of nonlinear
dynamics, the triad interaction. The mechanism is expected
to be applicable to more general cases. For example, elon-
gated eddies was also observed in a study with a meridion-
ally tilted jet (Kamenkovich and Pedlosky, 1996).

Generation of quasi-zonal jets

The phenomenon of perturbations propagating westward
into the ocean interior from an eastern boundary is not
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Parameter Value Parameter Value

Ly 700km A

e
H 102m2

/s

Lx 5000km ↵ 0.15

Ny 32 x0 -100km

Nx 256 Lb 50km

A

w
H 104m2

/s V 0.11m/s

� 1.8⇥ 10�11
/ms

Table 1.1. Parameters used in the nonlinear study in Wang

et al. (2013).

Figure 1.3 Linear growth rates normalized by V/Lb as a
function of meridional wavelength. The growth rates are
calculated by fitting the time series of the integrated
perturbation kinetic energy to exponential curves,
EKE = Ce2!it, where !i = lci is growth rate.

a new idea. It is the specific horizontally elongated struc-
ture of the radiating instabilities that connects them to
the generation of the quasi-zonal jets in the ocean that is
newly of interest. As a natural extension of Wang et al.
(2013), Wang et al. (2012) demonstrated the connection
by examining whether the radiating instabilities of an east-
ern boundary current with realistic oceanic parameters can
generate quasi-zonal jets in the ocean with observed prop-
erties. Wang et al. (2012) used the same model and the
same set of parameters listed in Table (1.1) but with a mid-
latitude � (2⇥10�11

/ms) and the boundary current velocity
V = 0.2m/s, which is consistent with the observed values
(Brink and Cowles, 1991).

The simple model can reproduce realistic zonal structures
comparable to observations. Figure (1.5) shows the model
result along with a figure of high-pass filtered mean dy-
namic ocean topography from Maximenko et al. (2008). The
snapshot of the surface height anomaly (Figure 1.5b) clearly
shows elongated zonal structures. The instantaneous sur-
face height anomaly reaches 9cm with velocity scale about
10cm/s. The ten-year averaged surface height anomaly has
an amplitude of 1.5cm, which is comparable to results from
observations averaged over a similar time period (Maxi-
menko et al., 2008; Melnichenko et al., 2010).

Note that meridional tilt of the quasi-zonal structure ex-
ists in the snapshot but not in the time averaged field. The
tilt in the snapshot is due to the simultaneous westward and
northward propagation of radiating instabilities. The wave
crests/troughs emitted at later time lay to the north of those
emitted at earlier time. The angle of the tilt in the snapshot
depends on the direction of the perturbation propagation. In

Figure 1.4 (a) shows the time series of the streamfunction at a
fixed location within the boundary current. The time-axis is
non-dimensionalized by 2⇡/!i in which !i of the most unstable
mode is chosen. The streamfunction snapshots at t = 20 and
t = 50 are shown in panel (b) and (c), respectively. Letters I, II
and III indicate di↵erent stages. Unit m2/s is used in all panels.

a meridional reentrant channel model, this meridional tilting
is averaged out over a long time period. The mean field only
shows the residue with straight east-west banded structure,
whose meridional wavelength is set by the radiating insta-
bility of the boundary current and in this case comparable
to observed values.

Discussion

While the radiating instabilities from an eastern bound-
ary generate instantaneous vacillating quasi-zonal jets in
the ocean, the irregularity of the coastlines and topogra-
phy, which is known to play an important role in anchoring
coastal filaments and enhancing the growth of meanders and
eddies (Kelly, 1985; Brink and Cowles, 1991), may addition-
ally trigger stationary perturbations in the ocean interior.
Davis et al. (2013) investigate the generation of zonal stria-
tions in the North Pacific using a primitive equation model
and confirm the relevance of the radiating instability of an
eastern boundary current in generating zonal striations in
the ocean interior.

There exist other relevant wave-based theories. O’Reilly
et al. (2012) showed that zonal jets emerge in a two-layer
quasi-geostrophic ocean model forced by large-scale stochas-
tic wind. The zonal jets are wave-like perturbations resulting
from the secondary instability of baroclinic Rossby waves
emanated from an eastern boundary with long meridional
but short zonal scales. Qiu et al. (2013) used a 1 1

2 -layer re-
duced gravity model and showed that zonal jets form as a
result of the breakdown of primary waves that are forced
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Figure 1.5 a) is a reproduction of the figure 2e in Maximenko
et al. (2008) showing the high-pass filtered mean dynamic ocean
topography (cm). The corresponding geostrophic zonal velocity
has amplitude of O(1cm/s) (Melnichenko et al., 2010). b) shows
a snapshot of the surface height anomaly in the model (cm).
The anomaly is the deviation of surface height from its
meridional mean. c) is the 10-year time average of the model
surface height anomaly (cm).

by annually oscillating winds and emanated from eastern
boundary. As in O’Reilly et al. (2012), zonal jets in Qiu
et al. (2013) emerge from instabilities of Rossby waves with
long meridional and short zonal wavelengths. However, the
instability mechanism in Qiu et al. (2013) is essentially non-
linear triad-interaction of three primary waves, unlike the
intrinsic instability of the meridional primary Rossby waves
in O’Reilly et al. (2012). A similar mechanism related to
the secondary instability of primary meridionally-oriented
instability is systematically studied in Berlo↵ et al. (2009).
They showed that the structure of the primary instabil-
ity of an unstable baroclinic zonal flow resemble the shape
of noodles oriented in the meridional direction. The sec-
ondary instability of those “noodles” results in zonal jets.
These theories, together with the radiating instabilities of
an eastern boundary current, all share similar fundamen-
tal physics, in a broad sense, that banded zonal jets can
emerge from meridinally-sheared flows, either in a form of
baroclinic Rossby waves, “noodle” instabilities or forced-
stationary boundary currents.

The generation of quasi-zonal structures in the ocean in-
terior by radiating instabilities from an eastern boundary
current is clearly demonstrated in both linear and nonlinear
studies. One of the main findings is that linearly stable, long
radiating modes of an eastern boundary current can become
nonlinearly unstable by resonating with short trapped un-
stable modes. This phenomenon is clearly demonstrated in
the weakly nonlinear simulations. Results suggest that lin-
early stable longwave modes deserve more attention when
the radiating instability of a meridional boundary current
is considered. As remarked in Wang et al. (2012), since the
simplest barotropic QG model can capture striations with
wavelengths and amplitudes which resemble those observed
in the satellite data, we anticipate similar features will oc-
cur in more complex systems. Although it is still unclear
whether there is one universal mechanism that can explain
striations observed throughout the world ocean, these results
demonstrate that those close to the oceanic eastern bound-
ary can be formed by radiating modes of the EBC which,
in our case, overcome friction by nonlinear transfer of en-
ergy from the more unstable trapped modes. The dynamics
shown here seems generic enough to point to the EBC as a
major source.
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