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ABSTRACT

A parameterization for eddy buoyancy fluxes for use in coarse-grid models is developed and tested
against eddy-resolving simulations. The development is based on the assumption that the eddies are adia-
batic (except near the surface) and the observation that the flux of buoyancy is affected by barotropic,
depth-independent eddies. Like the previous parameterizations of Gent and McWilliams (GM) and Visbeck
et al. (VMHS), the horizontal flux of a tracer is proportional to the local large-scale horizontal gradient of
the tracer through a transfer coefficient assumed to be given by the product of a typical eddy velocity scale
and a typical mixing length. The proposed parameterization differs from GM and VMHS in the selection
of the eddy velocity scale, which is based on the kinetic energy balance of baroclinic eddies. The three
parameterizations are compared to eddy-resolving computations in a variety of forcing configurations and
for several sets of parameters. The VMHS and the energy balance parameterizations perform best in the
tests considered here.

1. Introduction

Global altrimetric observations reveal robust meso-
scale eddy activity with maxima in the tropics, the west-
ern boundary current extension of the subtropical
gyres, and the equatorward side of the Antarctic Cir-
cumpolar Current (ACC; Maximenko et al. 2005; Stam-
mer et al. 2006). The typical horizontal scale of the
eddies le ranges from 80 to about 200 km, decreasing as
latitude increases (Stammer 1997). The variation of le
with latitude is at a rate consistent with the deformation
radius dependence le � f�1, although the eddies are
systematically larger than the local baroclinic radius.

The scarcity of data precludes global estimates of
eddy heat and salt transports; however, the eddy con-
tribution to the heat and tracer transport has been
shown to be important in the western boundary current
extension, near the equator, and in the ACC, although
it is probably negligible in the gyres’ interior (Wunsch
1999; Jayne and Marotzke 2002). Although limited in
space, the regions where eddy fluxes are important co-
incide with areas of strong heat flux exchange with the
atmosphere, and it is probable that eddy heat fluxes are

crucial in the earth’s heat budget. Despite this, the oce-
anic component of the global climate models is unable
to resolve eddy scales, except in computations about a
decade long (Maltrud and McClean 2005) and for one
set of climate scenarios.

For climate-oriented computations that are inte-
grated for centuries and for several sets of external pa-
rameters, typical resolutions are 1° latitude and longi-
tude, so that eddy fluxes of heat and other tracers have
to be parameterized in terms of the coarsely resolved
variables. These closures usually have at least one un-
determined constant that needs to be tuned to either
high-resolution numerical simulations or observations.
To be useful for climate scenarios or geographical re-
gions other than that used for tuning, a successful eddy
flux closure must contain the appropriate parametric
dependence. One way to achieve the correct depen-
dence on external parameters is to constrain the eddy
flux closures with conservation laws. In this study we
use an approximation of the eddy energy balance (EB)
as a partial constraint on eddy parameterizations.

2. Parameterization of eddy fluxes

In coarse-grid models a typical tracer variable C
evolves according to

Ct � �h�vC� � �w C�z � �h�v�C�� � �w�C��z � Sources.
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The overbar denotes the mean quantity, which is time
averaged over a period longer than the typical eddy
turnover time, and the prime symbol denotes the de-
parture from the mean. Because the length scales of the
primed quantities are unresolved by a coarse grid, the
fluxes induced by the unresolved eddies must be ex-
pressed in terms of mean quantities, such as C.

a. Skew fluxes

Modern parameterizations of eddy fluxes of tracers
take the point of view that the transport occurs largely
along rather than across buoyancy surfaces, and they
take care to separate this “skew” or advective compo-
nent from the properly diffusive part, which represents
irreversible mixing processes and is usually smaller
(e.g., Griffies 1998). In this study we focus on the ad-
vective component of the eddy fluxes only. Following
Griffies (1998), we express the flux of tracers as

v�C� � ��e�hC,
w�C� � ��e�2S � �hC � S2Cz�. �2�

We have denoted the eddy diffusivity with �e, and
S � ��hb/bz is the horizontal vector whose compo-
nents are the slopes of the buoyancy surfaces.

When the tracer is buoyancy itself, it is clear that the
eddy flux thus defined is perpendicular to the buoyancy
gradient, and is not a “downgradient” diffusivity. With
�e 	 0, the horizontal component v�b
 is against the
mean horizontal buoyancy gradient; however, the ver-
tical component is up the vertical buoyancy gradient
and is given by

w�b� � �eS2bz. �3�

These properties have been thoroughly discussed in the
literature (Griffies 1998), and the main point is that the
formulation (2) leaves the buoyancy variance (or en-
tropy) unchanged, as required for advective fluxes.

b. Estimating the eddy “diffusivity” �e

The formulation (2) requires the specification of the
eddy diffusivity �e, which can be a function of time and
space. The simplest choice is �e � �GM, with �GM being
constant. This is the choice of Gent and McWilliams
(1990, hereafter GM90; see also Gent et al. 1995).

Another approach is to equate �e to a typical eddy
velocity �e times a typical mixing length le. Within this
framework, Visbeck et al. (1997, hereafter VMHS),
following Green (1970) and Stone (1972), determine
�e and le based on the insight offered by the linear sta-
bility analysis of a constant baroclinic shear with a
background constant stratification in a zonally reen-
trant geometry. Thus, VMHS select �e � le /te, with

t�1
e � H |�b | /(flR) (where lR ��|bz |H/f is the defor-

mation radius), where H is the domain’s depth, and f is
the rotation rate. The rationale for this choice comes
from Eady’s linear stability analysis (Eady 1949), which
identifies the Rossby deformation radius lR as the fast-
est-growing scale, with growth rate t�1

e . In terms of �e,
VMHS’s choice coincides with that proposed by Lar-
ichev and Held (1995) using scaling arguments for geo-
strophic turbulence based on equipartition of eddy ki-
netic and eddy available potential energy. The equipar-
tition assumption, together with the assumption that
the baroclinic eddy velocity scales as the mean baro-
clinic velocity, leads to estimation of the barotropic
eddy velocity1 as �e � ubcle /lR, with ubc � H |by | /f, that
is, the zonally averaged baroclinic velocity scale. Other
assumptions about the eddy velocity spectra lead to
different dependences of �e on the mean shear (cf.
Smith and Vallis 2002).

Our approach is similar to VMHS’s, in that we try to
separately estimate the typical eddy velocity and mixing
length. However, our estimate stems from the analysis
of nonlinearly equilibrated eddy fields, rather than the
linear growth of disturbance upon a prescribed mean
field.

The energy balance analysis, presented in the next
section, indicates that in a statistical steady state the
conversion of eddy potential energy is balanced by the
viscous dissipation of eddy kinetic energy. The viscous
removal of eddy kinetic energy is dominated by bottom
drag, because the equilibration of the eddy turbulence
is subject to an inverse cascade, which favors dissipa-
tion at large horizontal scales, and leads to the barotro-
pization of the eddies. This balance determines the
typical barotropic eddy velocity scale �e.

c. A zonally averaged example

An explicit formula is given here for the case where
the mean component of the flow is zonally and tempo-
rally averaged, and thus varies only in depth z and lati-
tude y. Thus, hereafter an overbar denotes a zonal and
temporal average. This configuration, appropriate for a
zonally periodic geometry such as the ACC, provides
an unequivocal distinction between the mean and fluc-
tuating component, because it involves a separation of
horizontal length scales as well as time scales. The der-
ivation is easily generalized to three dimensions, but
the parameterization has not been tested in this more
general context.

1 The eddy velocity that needs to be estimated is the barotropic
component, because the baroclinic velocity is in thermal wind
balance, largely orthogonal to the horizontal buoyancy gradient,
and thus is unable to advect buoyancy.
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The eddy energy balance (19), derived in the follow-
ing section, suggests a typical eddy velocity �e, given by

�e�y� �r�1�w�b��. �4�

The angled brackets, defined as

�� � �LHt��
�1�

0

t�

dt�
�H

0

dz�
0

L

dx,

indicate a temporal, zonal, and vertical average (L is
the longitudinal extern of the domain). The symbol r
denotes the spin-down rate resulting from bottom drag.
To complete the parameterization we need to specify
the mixing length, an issue that is discussed later. The
important assumption here is that le is independent of z.
With this additional restriction we have the relation for
the energy balance (EB) diffusivity:

�
EB
 le�r�1�w�b��. �5�

Using the relation (3) to get an expression for �
EB

in
terms of the mean quantities, we find

�
EB
� cl e

2�by
2 �bz��r �

cle
2

rH �
�H

0

by
2 �bz dz, �6�

where c is a nondimensional constant, which is deter-
mined by the procedure described in section 4c. This
formula is our proposal for the eddy diffusivity and
should be compared with the expression advanced by
VMHS (� is a dimensionless constant):

�
VMHS

� �l e
2 f � |by | ��bz� �

�l e
2 f

H �
�H

0

|by | ��bz dz .

�7�

The diffusivities �
EB

in (6) and �
VMHS

in (7) are rather
similar in their dependence on the mean buoyancy gra-
dient, but differ in their parametric dependence. Spe-
cifically, �

EB
depends explicitly on the bottom drag r,

while �
VMHS

does not. Equivalently, our proposal for the
eddy velocity is

�eEB
�

le
r

by
2

bz

,

while the eddy velocity proposed by VMHS is

�eVMHS
� le f

|by |

�bz

.

There is a quantitative difference of the dependence on
the mean temperature gradient, while there is a quali-
tative difference in the dependence on the frictional
parameter r.

Expression (6) is equivalent to the eddy diffusivity
found by Thompson and Young (2006) for the eddy
diffusivity in a quasigeostrophic two-layer model, as-

suming that the eddies are a dilute gas of vortices.2 We
also share with Thompson and Young (2006) the inabil-
ity to offer a scaling for the mixing length le. Our nu-
merical simulations are consistent with the notion that
le increases with decreasing bottom drag (cf. Cessi et al.
2006, their Fig. 6), but we cannot offer a convincing
scaling argument to quantify this dependence.

To complete the parameterization it is necessary to
specify the mixing length le. We have not been able to
provide a physical scaling argument that agrees with the
results of our numerical simulations. After experimen-
tation, we find that the mixing length can be described
by the Wentzel–Kramers–Brillouin (WKB)3 approxi-
mation of the Rossby deformation radius, and thus we
set

le � f�1�
�H

0

�bz dz. �8�

The scale (8) is also used in our implementation of
the VMHS parameterization (7). This choice differs
from the “width of the baroclinic zone” used by VMHS,
defined as the meridional width over which the Eady
linear growth rate |by| /�|bz| exceeds a fraction (10%)
of the maximum linear growth area of the region. Be-
cause of the ambiguity of this definition and its nonlocal
character, the simpler choice (8) is used here. However,
Haine and Marshall (1998) show that, in simulations of
a front in a mixed layer, the scale of the front is a better
choice than the deformation radius for the mixing
length. The goal here is to compare the different
choices of velocity scales in parameterizations of baro-
clinic eddies.

Notice that in the definitions (6) and (7), the eddy
diffusivities contain vertically integrated quantities, and
are thus independent of z. This choice is supported by
diagnostics of the eddy-resolving simulations (see sec-
tion 4b). The nonlocality in the vertical direction is un-
avoidable given that the baroclinic life cycle involves
the coupling of vertical modes, and in particular the
interaction of the barotropic mode with at least one
baroclinic mode.

3. Eddy energy balance

In this section the mechanical energy balance for ed-
dies is examined starting from the primitive equations,

2 The expression (29) in Thompson and Young (2006) is more
complicated than (6) because they consider two layers of equal
depth. However, (6) is recovered from their Eq. (29) in the limit
of an upper layer that is much thinner than the total depth of the
domain.

3 The WKB definition of the Rossby deformation radius differs
from (8) by a factor of �. Here, this factor is absorbed in the
constants c and � in (6) and (7).
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which is the approximation appropriate for oceanic mo-
tions on scales from the baroclinic deformation radius
to the planetary scale. The primitive equations system
is also the one used for direct numerical simulations.
The goal of this section is to justify the choice of eddy
velocity scaling (4).

The system is governed by

Du

Dt
� f� � px � � � ��u � 	s

� 1�s
s � r�bu � �6�6u,

D�

Dt
� fu � py � � � ��� � r�b� � �6�6�,

pz � b,
Db

Dt
� � � ��b,

� • u � 0. �9�

We indicate pressure divided by the constant mean
density with p, because this is the dynamical quantity in
the Boussinesq approximation. The velocity is u � (u, �,
w) and the vertical coordinate is �H � z � 0, where H
is the constant depth. The horizontal coordinates are
0 � x � Lx and 0 � y � Ly; b is the buoyancy.

We consider a doubly periodic geometry, where pe-
riodicity is imposed in both the latitudinal as well as the
longitudinal directions. This configuration avoids
boundary effects and is numerically efficient. The Co-
riolis parameter f is constant.

a. Forcing and dissipation

The momentum equation is forced by a zonal stress
concentrated near the surface, located at z � 0. This
wind stress is modeled as a body force in (9);
��1

s �s(z)�s(y)x̂. Here, �s(y) is a specified pattern of wind
stress and the constant �s K H is the depth of the sur-
face layer. We use a sinusoidal wind profile


s�y� � �
 sin�2�y�Ly � �, �10�

where � is the phase of the wind relative to the origin
of the domain and � 	 0 is the strength of the wind
stress. The nondimensional “surface function”

�s�z� ��2
�

e�z2� 2	s
2
, �11�

tapers the body force �s(y) smoothly to zero in the
ocean interior. We use �s � 40 m. The surface function
�s is normalized so that

�
�H

0

�s�z� dz � 	s. �12�

This normalization ensures that the total flux of zonal
momentum into the water column is �s(y). Distributing

the wind stress over a “surface forced layer” with speci-
fied thickness �s relieves the model from resolving Ek-
man layers.

The bottom stress divergence is also represented as a
body force � r�b(z)(ux̂ � �ŷ) in (9). This bottom drag
force is applied over a layer of thickness �b K H using
the bottom-concentrated function

�b�z� �
H

	b
�2

�
e��z�H�2� 2	b

2
, �13�

which is chosen to have a unit vertical average. We use
�b � 40 m. The time scale r�1 controls the strength of
the bottom drag and is the spin-down time of the baro-
tropic velocities.

b. Small-scale mixing

The eddy diffusivities �(z) and �(z) represent small-
scale mixing processes, such as breaking internal grav-
ity waves and mixed layer turbulence. As a simple
model of enhanced diffusivity in the surface layer we
use

��z� � �a � �s�s�z�, �14�

where �s(z) is the Gaussian surface function in (11);
here, �(z) represents small-scale mixing processes, such
as breaking internal gravity waves and mixed layer tur-
bulence. The constant �a is the small “abyssal” diffu-
sivity, and �s is the surface diffusivity that maintains the
mixed layer. For the viscosity we take �(z) � P�(z),
where the constant P is a Prandtl number. The debat-
able choice of a constant Prandtl number presumes that
the mixing of momentum and tracers is enhanced at the
same rate in the mixed layer: this choice ensures that
there is only one externally imposed depth scale.

Because the stresses are modeled as interior sources
and sinks, the top and bottom boundary conditions are
�uz � ��z � 0. In this way, the primary source of me-
chanical energy dissipation is the bottom drag, rather
than Newtonian friction.

c. Buoyancy forcing

The thermal forcing at the surface z � 0 is applied
with a fixed buoyancy boundary condition

b�x, y, 0, t� � bs�y�, �15�

and again we use the sinusoidal profile

bs�y� � �B cos�2�y�Ly�; �16�

B is a positive constant.
Some earlier idealized studies (Karsten et al. 2002;

Kuo et al. 2005) impose the buoyancy flux over part of
the ocean surface. This fixed-flux limit is certainly ap-
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propriate when the buoyancy is determined by the sa-
linity, but not heat. For temperature, relaxation to an
“apparent atmospheric temperature” approximates the
air–sea heat exchange (Haney 1971), with a relaxation
time given by trel � �zCp�/�, where �z is the depth of
the layer over which the relaxation is applied, � (W m�2

K�1) is the bulk transfer coefficient of heat, Cp is the
specific heat, and � is the density of water. Using the
typical values of � � 40 W m�2 K�1 and �z � 7 m (the
depth of the upper layer), we find trel � 7 � 105 s,
that is, 8 days. This time scale is shorter than a typical
eddy turnover time, estimated at 13 days using an
eddy velocity of 0.1 m s�1 and an eddy size of 150 km
(i.e., average values in our computations). The mean
advection times are even larger, so the rapid relaxa-
tion to a prescribed temperature can be approximated
with the prescription of the surface temperature value,
and this is the limit that we consider. Furthermore,
using the values just cited, Cessi et al. (2006) show
that the eddy statistics are the same when the fixed
surface value is replaced with relaxation to an imposed
value. The bottom boundary condition has no flux, and
�bz(x, y, �H, t) � 0.

d. Three examples of flow

The zonally averaged buoyancy field for three typical
eddy-resolving runs is shown in Figs. 1–3. Depending
on the phase, � in (10), between the Ekman pumping
wE, induced by the surface wind stress, and the surface
buoyancy bs in (16), the thermocline can be determined
by competition between the eddy and mean buoyancy
transports (Fig. 1), or by a balance between Ekman

suction and diffusion, á la Munk (1966; Fig. 2). In the
former case, the mean circulation is thermally indirect,
and the eddies extract the potential energy put into the
fluid by the Ekman pumping, which tends to overturn
the isopycnals (Gill et al. 1974). The eddies are respon-
sible for restratifying the fluid, and diffusion is unim-
portant in most of the thermocline; this is the configu-
ration most relevant to the ACC, and its dynamics have
been discussed in a number of studies (Karsten et al.
2002; Marshall et al. 2002; Marshall and Radko 2003;
Gallego et al. 2004; Kuo et al. 2005; Henning and Vallis
2005; Cessi et al. 2006).

In the second case (Fig. 2), the mean circulation is
thermally direct, and the thermocline is a diffusive
boundary layer where eddies are largely suppressed;

FIG. 1. (bottom) The zonally and temporally averaged buoy-
ancy b for run 1 in Table 1 is contoured as a function of z and y
(the contour interval is 0.002 m s�2). (top) The surface distribu-
tion of buoyancy bs(y) and the Ekman pumping wE(y) � �f�1�sy

is shown. For this set of parameters the buoyancy transport by the
zonally averaged flow largely cancels the eddy buoyancy trans-
port.

FIG. 2. Same as Fig. 1, but for run 10 in Table 1. For this set of
parameters the eddy transport of heat is negligible and the buoy-
ancy transport by the zonally averaged flow is balanced by buoy-
ancy diffusion.

FIG. 3. Same as Fig. 1, but for run 11 in Table 1. For this set of
parameters the eddy transport of heat is negligible in the region
0 � y � 2000 km, where the thermocline is thin, and there is
Ekman suction, but eddy buoyancy transport is important in the
other half of the domain.
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Ekman suction flattens the isopycnals, removing avail-
able potential energy, and eddies cannot develop.

In Fig. 3 the Ekman pumping is in quadrature with
the surface buoyancy, � � ��/2 in (10). This case dis-
plays both of the regimes described above: eddies de-
velop preferentially in the downwelling region, leading
to a deep thermocline; in the Ekman upwelling region
eddies are suppressed, diffusion is important, and the
thermocline is thin.

As detailed in Cessi (2007), the relative geometry of
surface buoyancy and wind stress curl determines
whether potential energy is available to the eddies, and

whether they participate in the buoyancy balance. Eddy
parameterizations of buoyancy flux must regulate the
strength of the eddies according to the potential energy
available in the region of interest, and thus we turn to
the eddy energy budget to get scalings for the eddy flux
of buoyancy.

e. The eddy energy budget

Dotting v
 into the eddy momentum equations and
averaging over time, longitude, and height gives the
eddy kinetic energy budget

�
i�1,2
�

j�2,3
�u�iu�j�xj

ui� � ��

2
|v�|2�

y
� ����p��y � �w�b�� � r��b |v�|2� � �� |v�z |2� � ��6v� � �6v��. �17�

In the Reynolds’ stress terms, we have used the nota-
tion (x1, x2, x3) � (x, y, z) and (u1, u2, u3) � (u, �, w).
The wind work, which is the ultimate source of energy
in this configuration, does not appear in the eddy en-
ergy balance (17); it is part of the mean energy balance
instead (cf. Cessi et al. 2006). The fundamental forcing
term in (17) is the conversion of available potential
energy �w
b
�.

The first term on the left-hand side of (17) is the sum
of the Reynolds’ stress conversions between the mean
and the eddies. The second term is the advection of
eddy kinetic energy by the total flow. To the extent that
the scale of the eddies is larger than the deformation
radius, the Reynolds’ conversions and the advection of
kinetic energy are negligible compared to �w
b
�. Thus
the terms on the lhs in (17) can be neglected and we
obtain the production/dissipation balance

����p��y � �w�b��  r��b |u�|2� � �� |v�z |2� � ��6v� � �6v��.

�18�

For nearly geostrophic eddies f�
  p
x, and the leading
order contribution to ��
p
� vanishes. However, there is
a correlation between the ageostrophic velocity and the
pressure, so that in principle the pressure work is of the
same order as the conversion of eddy available poten-
tial energy. We have diagnosed this term in our com-
putations and it is negligible compared to �w
b
�. Dis-
sipation is usually dominated by bottom drag (the first
term on the rhs), with vertical dissipation (the second
term on the rhs) and hyperviscosity (the third term on
the rhs) being smaller and usually negligible. Thus, we
have the eddy energy balance

�w�b��  r��b |u�|2�. �19�

The relation (19) is used to scale the typical barotropic
eddy velocity in (4). We note that this approximation
does not hold for the computations with the lowest val-
ues of � (runs 6 and 9 in Tables 1 and 3), where dissi-
pation by vertical viscosity and hyperviscosity are of the
same order or larger than dissipation by bottom drag.

Because �b is bottom trapped, only the bottom ve-
locity enters the rhs of (19). In the following we argue
that we can estimate the bottom velocity with the
barotropic component. We can estimate the error of
this approximation by provisionally assuming equipar-
tition of eddy kinetic energy between the baroclinic
and barotropic mode.4 In all our computations we find
that a single vertical scale h characterizes the mean
shear, the depth of the thermocline, and the baroclinic
eddy velocity (cf. Cessi and Fantini 2004; Cessi et al.
2006). Using this scale and the eddy kinetic energy eq-
uipartion hypothesis, we can estimate the surface eddy
baroclinic velocity u
su
s through the scaling relation
u
s � u
B�H�h (u
B is the barotropic eddy velocity
and H is the total depth of the domain). Because the
baroclinic velocity has a zero depth average, its value
at the bottom u
b must satisfy the approximate relation
(H � h)u
b � hu
s � 0. When h K H, this gives

u�b � u�B�h�H, �20�

so that the contribution of the baroclinic component to
the bottom velocity is smaller than the barotropic com-
ponent for h K H. This scaling is consistent with the

4 In the case of small bottom drag geostrophic turbulence
theory predicts that the barotropic kinetic energy dominates the
baroclinic eddy kinetic energy. Thus, the estimate of the baro-
clinic velocity obtained assuming equipartition is an upper bound
of the actual value.
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finding of Thompson and Young (2006) that the bottom
velocity cannot be well approximated by the barotropic
component in a two-layer model with equal layer
depths, despite barotropization of the eddies.

Diagnostics confirm that estimating the bottom ve-
locity with the barotropic component is a good approxi-
mation, as long as the thermocline is much thinner than
the total depth, consistent with the weak dependence of
the baroclinic correction on the small parameter h/H.

4. Comparison with eddy-resolving simulations

a. Method of solution

In this section we test the energy balance parameter-
ization (6), as well as the GM90 and VMHS proposals,
against eddy-resolving simulations. The latter are ob-
tained by solving (9) with a finite-difference primitive-
equation model in a doubly periodic domain, as de-
scribed in Cessi and Fantini (2004). The horizontal
resolution is 10 km, with a domain size of Lx � Ly �
2000 km � 4000 km. The vertical resolution is variable,
ranging from 7 m near the top and bottom, in order to
resolve the vertical structures of �s and �b defined in
(11) and (13) to 130 m in the center. The total domain
depth is H � 2000 m.

The parameterizations are applied to the solution of
the 2D problem5

bt � �� b�y � �w b�z � ��eby�y � ��eby
2 �bz�z � � � ���b�.

�21�

The mean velocities are calculated by analytically solv-
ing the approximate zonal momentum balance

�f �  	s
� 1�s�z�
s�y� � r�b�z�u,

f u � py  0,
pz � b,

�y � wz � 0. �22�

The zonal flow u is obtained using the thermal wind
balance f uz � �by, with the barotropic component
constrained by the depth integral of the zonal momen-
tum equation, that is,

r�
�H

0

�b�z�u�y, z� dz � 
s�y�. �23�

Given the definitions (11) and (13), this implies that

�f �  
s�y��	s
� 1�s�z� � H�1�b�z��. �24�

The vertical velocity w can then be obtained from the
divergence equation. The comparison with the full nu-
merical solution of � shows that (24) is an excellent
approximation.

b. The importance of the barotropic mode

Before elaborating on the quantitative compari-
son between the resolved and parameterized eddies
it is useful to verify the assumption that the barotropic
eddy velocities are controlling the eddy buoyancy flux.
A simple test of this hypothesis compares the eddy flux

�
b
 with �a���2
BTby, where  
BT is the barotropic

component of the eddy streamfunction, that is,

��BT �
f

H �
�H

0

p� dz,

where p is the pressure. The nondimensional constant a
is fitted by minimizing the least squares error ! defined
as

� �����b� � a���BT
2 by�

2. �25�

All quantities are diagnosed from the eddy-resolving
computations. The sum in (25) is taken over all the
points of the domain in the meridional vertical plane.

Figure 4 shows �
b
 and �a���2
BTby for a typical

computation. For the example shown in Fig. 4, the nor-
malized rms error is 0.24 (and a � 0.90). The normal-
ized rms error is defined as �������b��2.

This error is substantially less than that obtained by
fitting a constant diffusion coefficient to estimate the
flux, as in GM90; the normalized rms error between
�
b
 and ��GMby is 0.49.

A related estimate of the eddy flux has been ad-

5 Because of the model’s coarse resolution, convective adjust-
ment is also employed here, while there is no convective adjust-
ment in the eddy-resolving model.

TABLE 1. The parameter values for the primitive-equation
model in the doubly periodic configuration are H�2000 m, Lx �
2 � 106 m, Ly � 4 � 106 m, f � 10�4 s�1, B � 2 � 10�2 m s�2, �
� 1 � 10�4 m2 s�2, and � � 4.5 � 10�4 m2 s�1, �x � �y � 10.417
km. The training run is shown in boldface.

Run �a(m2 s�1) �s(m2 s�1) � r(s�1)

1 8 � 10�5 0 0 2.2 � 10�7

2 8 � 10�5 0 0 4.4 � 10�7

3 8 � 10�5 0 0 8.9 � 10�7

4 8 � 10�5 5.1 � 10�3 0 2.2 � 10�7

5 4 � 10�5 3.1 � 10�3 0 1.6 � 10�7

6 2 � 10�5 1.6 � 10�3 0 1.1 � 10�7

7 8 � 10�5 5.1 � 10�3 0 4.5 � 10�7

8 4 � 10�5 3.1 � 10�3 0 2.2 � 10�7

9 2 � 10�5 1.6 � 10�3 0 2.2 � 10�7

10 8 � 10�5 0 � 2.2 � 10�7

11 8 � 10�5 0 ��/2 2.2 � 10�7
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vanced by Holloway (1986) using the rms surface
streamfunction  
S, instead of the barotropic stream-
function. Holloway’s is an attractive proposal because
the surface streamfunction is much easier to estimate
from observations than the barotropic streamfunction.
Unfortunately,� 
2s is not a good estimate of the eddy
diffusivity (cf. Table 2).

A summary of the normalized errors between the
three estimates of diffusivity described in this subsec-
tion is given in Table 2. The barotropic eddy stream-
function is a better estimate than a constant diffusivity,
and both are better than the surface eddy streamfunc-
tion, supporting the choice of estimating the eddy dif-
fusivity with the typical velocity and length scale of the
barotropic eddies. In other words, the typical eddy ve-
locity �e and mixing length le should satisfy

�ele ����BT
2 . �26�

c. Quantitative testing of the parameterizations

The procedure adopted to test the parameterizations
is as follows. First, the nondimensional constants c in
(6), � in (7), and �GM are determined by fitting the
square of the vertically integrated buoyancy eddy flux,
defined as

F �y� � �
H

0

��eby�
2 dz, �27�

to the resolved one

Fr � H����b��2�, �28�

where the subscript r refers to the resolved computa-
tions. We find that this diagnostic is sensitive to both
the spatial distribution and the amplitude of the eddy
fluxes. The fit is obtained for one “training” simulation
and the comparison is then performed for simulations
with different sets of parameters, keeping the constants
c, �, and �GM fixed.

Specifically c, �, and �GM are chosen by minimizing
the normalized rms error between F and Fr, defined as

EF,Fr
���

k
�F �yk� � Fr�yk��

2

�
k

Fr�yk�
2

. �29�

The sum in (29) is taken over the points of the low-
resolution parameterized computation, which are much
fewer than those in the eddy-resolving computation.
This procedure gives c � 1.48, �GM � 7000 m2 s�1, and
� � 7.7. The value of � differs from that found by
VMHS because we use the definition (8) for the defor-
mation radius rather than the definition for the Eady
problem with constant stratification. The two defini-
tions differ by the factor H/h, where H is the domain
height and h is the depth of the thermocline; this rep-
resents a considerable quantitative difference. Further-
more, as noted in section 2c, our choice of the mixing
length differs from that originally adopted by VMHS.

One eddy-resolving computation (run 7 in Table 1) is
used to “train” the eddy diffusivity for all three param-
eterizations. With this choice, EF,Fr

� 0.08, 0.012, 0.31
for the EB, VMHS, and GM90 parameterizations, re-
spectively. The spatial structure of F is shown in Fig. 5;
while the EB and VMHS parameterized fluxes adhere
closely to the resolved eddy fluxes, it is not possible to
reduce the error of the GM90 parameterization below
the level shown. This is because the shape of the GM90
parameterized fluxes is different from that of the re-
solved one.

Two measures are used to test the performance of
the different parameterizations: one is EF,Fr

, defined in
(29), and the other is the error in the zonally averaged
surface flux EQ,Qr

, defined as

EQ,Qr
���

k
�Q�yk� � Qr�yk��

2

�
k

Qr�yk�
2

, �30�

where Q(y) � �0bz0 is the buoyancy flux at the surface
and z � 0 (the subscript r indicates the resolved com-
putation). These two measures are more sensitive than

FIG. 4. (top) The quantity �
b
 in the top 500 m for the eddy-
resolving computation 11 in Table 1. The corresponding distribu-
tions of Ekman pumping and surface buoyancy are shown in Fig.
3. (bottom) The quantity �a�� �2

BT by, diagnosed for the same
computation and using the same contour level. The constant
a is determined by minimizing the least squares error between �
b

and �a�� �2

BT by. The normalized rms error between the two
fields is 0.24, and a � 0.90.
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the zonally averaged buoyancy, which is another field
that could be compared (cf. VMHS).

For the training computation (run 7 in Table 1), the
error in the surface flux is substantially larger than the
error in EF,Fr

(EQ,Qr
�0.22,0.29,0.51 for the EB, VMHS,

and GM90 parameterizations, respectively). In a statis-
tically steady state, Q is given by the convergence of net
buoyancy transport. With this wind stress configura-
tion, there is a large cancellation between the vertically
integrated mean and eddy meridional buoyancy trans-
ports, and the net buoyancy transport is a small re-
sidual. This cancellation, combined with the derivative
associated with the convergence, leads to a noisier field
than the eddy fluxes, and thus to larger errors for the
surface flux. To illustrate the local performance of the
parameterizations, Fig. 6 compares the surface flux
Q(y) of the parameterized computations to the re-
solved computation.

Figure 7 compares F to Fr for a computation where
only the bottom drag is reduced from the training run
(run 4 in Table 1). The increase in eddy buoyancy flux
above that found in the training run is intermediate
between that predicted by the energy balance param-
eterization and that of the GM90 and VMHS param-
eterization (which assume no dependence on r). For
this computation, the GM90 and VMHS parameteriza-
tions perform better than the EB parameterization.
This is somewhat surprising, given that the eddy mixing
length le actually increases as the drag r decreases (cf.
Cessi et al. 2006, their Fig. 6), and this dependence, not
included in the EB parameterization, would further in-
crease the dependence of the fluxes on r.

Thus, the reasons for failure must be attributed to the
breakdown of one or more of the approximations used
to derive (6). Diagnostics show that equating the baro-
tropic eddy velocity to the bottom velocity is not a good
approximation in those computations with a relatively

FIG. 5. The square of vertically integrated eddy buoyancy fluxes
for the parameterized computations compared with the same
quantity for an eddy-resolving computation (thin solid line) for
the training set of parameters (run 7 in Table 1). The constants c
in (6), � in (7), and �

GM
are determined by minimizing the rms

errors (29) between the parameterized and resolved computations
(they are 0.08, 0.12, and 0.31 for the EB, VMHS, and GM90
parameterizations, respectively). No value of �

GM
reduces the er-

ror further.

FIG. 6. The net surface flux Q��0bz0 for the parameterized
computations compared with the same quantity for an eddy-
resolving computation (thin solid line) for the training set of pa-
rameters (run 7 in Table 1). The least rms errors (30) are given by
0.22, 0.29, and 0.51 for the EB, VMHS, and GM90 parameteriza-
tions, respectively.

TABLE 2. The coefficient a, minimizing the least squares error between �
b
 and �a ���2
BT by, is tabulated for the computations

in Table 1. The rms errors between �
b
 and �a���2
BT by, between �
b
 and ��GM by, and between �
b
 and �d�� �2

s by are also
tabulated ( s is the surface streamfunction, proportional to the surface pressure through f ). The coefficients �GM and d are computed
by a least-squares error fit.

Run a Rms (�
b
, �a �� �2
BT by) Rms (�
b
, ��GM by) Rms (�
b
, �d ���2

s by)

1 0.70 0.40 0.46 0.62
2 0.76 0.36 0.44 0.68
3 0.78 0.38 0.44 0.80

11 0.90 0.24 0.59 0.48
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thick thermocline. In particular, the bottom velocity un-
derestimates the barotropic velocity, and more so for a
larger bottom drag. Because the thickness of the ther-
mocline is controlled by the bottom drag (Cessi et al.
2006) the accuracy of the approximation depends on r
through the parameter h/H (h is the depth of the ther-
mocline and H is the total depth of the domain). As h/H
gets smaller, the approximation gets better. We note
that in our calculations H � 2000 m, which is a rather
shallow depth compared to most large-scale basins, so
that it is difficult to have small h/H.

Figure 8 compares F to Fr for the three parameter-
izations in a case where the wind stress curl is in
quadrature with the buoyancy forcing, that is, ����/2
in (10); this is run 11 in Table 1. The eddy-resolving
zonally averaged buoyancy for this configuration is
shown in Fig. 3. In the first half of the domain, 0 � y �

2000, the wind generates Ekman suction, which sup-
presses the generation of eddies. As discussed in more
detail in Cessi (2007), the combination of Ekman suc-
tion and heating is a sink of eddy available potential
energy. Both the VMHS and the EB parameterizations
are able to capture the suppression of eddy fluxes in
this region, more so than the GM90 parameterization.

Figure 9 shows the resolved and parameterized eddy
fluxes in a case where the wind stress curl is in an-
tiphase with the buoyancy forcing, that is, �� � in (10);
this is run 10 in Table 1. The zonally averaged buoyancy
for this configuration is shown in Fig. 2. The Ekman
upwelling suppresses the generation of eddies in the

center of the domain and this is well captured by both
the VMHS and EB parameterizations, but not by the
GM90 parameterization. Despite the large errors in the
eddy flux, the net surface flux, which is mostly con-
trolled by the mean circulation, is very well reproduced
by both the VMHS and EB parameterizations, and has

FIG. 9. The square of vertically integrated eddy buoyancy fluxes
for the parameterized computations compared with the same
quantity for an eddy-resolving computation (thin solid line). The
wind stress is in antiphase with the buoyancy forcing, that is, � �
� in (10). The values of the parameters are given in the entry for
run 10 in Table 1. The normalized rms errors (29) are EFEB

, Fr �
0.37, EFVMHS

, Fr � 0.52, and EFGM, Fr � 7.20.

FIG. 7. The square of vertically integrated eddy buoyancy fluxes
for the parameterized computations compared with the same
quantity for an eddy-resolving computation (thin solid line). The
values of the parameters are given in the entry for run 4 in Table
1. Because only the bottom drag r is changed from the values used
in run 7, the VMHS and GM90 fluxes are the same as those in
Fig. 5.

FIG. 8. The square of vertically integrated eddy buoyancy fluxes
for the parameterized computations compared with the same
quantity for an eddy-resolving computation (thin solid line) for a
wind stress in quadrature with the buoyancy forcing, that is, � �
��/2 in (10). The values of the parameter are given in the entry
for run 11 in Table 1. The normalized rms errors (29) are EFEB

,
Fr � 0.34, EFVMHS

, Fr � 0.51, and EFGM, Fr � 0.90.
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a relatively small error with the GM90 parameteriza-
tion (cf. run 10 in Table 3).

The performance of all three parameterizations is
summarized in Fig. 10, where the rms error for the eddy
fluxes EF,Fr

and net surface flux of buoyancy EQ,Qr
are

plotted as a function of the run number. Because there
is an outlier in EF,Fr

(GM90 parameterization for run
10), this datum is excluded from the plot. Overall, the
largest errors are given by the GM90 parameterization
circles), while the VMHS (squares) and EB (stars) pa-
rameterizations have comparable overall perfor-
mances, with errors around 30%. The largest errors of
the EB parameterization are found for run 6, which has
the lowest diffusivity and bottom drag. For this compu-
tation (and, to a lesser degree, for run 9) the dominant
form of energy dissipation is not bottom drag, but ver-
tical viscosity concentrated in the surface mixed layer.
Furthermore, even hyperviscosity is larger than the bot-
tom drag, indicating that the energy-containing eddies
are poorly resolved. In this regime the approximation
(19) to the eddy energy balance fails.

5. Discussion

In this work we developed a parameterization of
eddy fluxes built around a constraint from the eddy
energy balance. Diagnostics from the direct numerical
simulations show that the eddy diffusivity is very well
approximated by the rms eddy barotropic streamfunc-
tion, and thus is essentially independent of depth. This
diagnostic confirms the hypothesis that the barotropic
eddy velocity determines the eddy diffusivity, with the
baroclinic component affecting a negligible eddy buoy-
ancy flux transport. For nearly geostrophic eddies, the

buoyancy gradient is largely orthogonal to the baro-
clinic component of the eddy velocity, which is in ther-
mal wind balance. This result is exact in a two-layer
system and holds very well in systems with many ver-
tical modes, as demonstrated by Smith and Vallis
(2002).

We estimate the eddy barotropic streamfunction with
the barotropic eddy velocity times an eddy mixing
length. The barotropic eddy velocity can be approxi-
mated with the bottom eddy velocity, which in turn can
be obtained by an approximation to the eddy energy
balance, (19). The energy balance immediately intro-
duces the bottom drag r as one of the controlling pa-
rameters of the eddy diffusivity. This result is consistent
with the findings of Thompson and Young (2006) in the
context of a quasigeostrophic model.

The velocity estimate needs to be supplemented by
an eddy length estimate in order to be used for evalu-
ating the streamfunction. Lacking any explicit con-
straint on the mixing length, le is estimated from eddy-
resolving simulations. Assumptions used in the litera-
ture, such as the equipartition of eddy kinetic and
potential energy (Larichev and Held 1995), are not sup-
ported by direct numerical computations (Cessi et al.
2006; Thompson and Young 2006) and cannot be used
to predict the mixing length. The optimal fit for le in-
dicates an explicit inverse dependence on the bottom
drag (Cessi et al. 2006), as found by several studies of
geostrophic turbulence on the f plane (Larichev and

TABLE 3. The errors between the resolved and parameterized
fluxes for three parameterizations are tabulated for a subset of the
computations in Table 1. The errors in the square of vertically
integrated eddy fluxes EF,Fr

, are defined in (29) and those in the
surface buoyancy fluxes EQ,Qr

, are defined in (30). The training
run is shown in boldface. The errors are plotted in Fig. 10.

Run
EF,Fr

EB
EF,Fr

VMHS
EF,Fr

GM90
EQ,Qr

EB
EQ,Qr

VMHS
EQ,Qr

GM90

1 0.27 0.24 0.31 0.32 0.35 0.30
2 0.19 0.19 0.77 0.30 0.28 0.34
3 0.21 0.33 1.07 0.27 0.28 0.59
4 0.46 0.17 0.28 0.37 0.32 0.43
5 0.27 0.32 0.24 0.25 0.33 0.41
6 0.93 0.20 0.74 0.53 0.34 0.42
7 0.07 0.12 0.31 0.22 0.29 0.51
8 0.14 0.25 0.28 0.18 0.28 0.45
9 0.44 0.23 1.24 0.37 0.30 0.73

10 0.37 0.52 7.20 0.23 0.25 0.35
11 0.34 0.51 0.90 0.27 0.31 0.44

FIG. 10. (top) The normalized rms errors between the param-
eterized and resolved eddy buoyancy fluxes EF,Fr

defined in (29),
excluding the errors of the GM90 parameterization for run 10 in
Table 1 (cf. Fig. 9 and Table 3), which would be well outside the
plotted range. (bottom) The normalized rms errors between the
parameterized and resolved net surface fluxes EQ,Qr

, defined in
(30).
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Held 1995; Smith et al. 2002; Thompson and Young
2006). However, using the optimally fitted mixing
length leads to a worse performance of the parameter-
ization than using the local baroclinic deformation ra-
dius (estimated by the WKB approximation). This dis-
crepancy might indicate that the correlation between
the eddy velocity and the tracer field depends on more
than one length, or, equivalently, that the barotropic
eddy streamfunction cannot be estimated by the prod-
uct of the barotropic eddy velocity times the typical
mixing length. This is not surprising given Thompson
and Young’s (2006) result that the distance between
eddies (or vortices) is a length scale that is as important
as the typical eddy scale. It is also possible that the
poorly resolved loss of balance in the primitive-
equation numerical model provides a route for energy
dissipation alternative to bottom drag, so that the
quasigeostrophic results do not transfer directly to the
primitive-equation context.

The new proposal for the eddy flux parameterization
is compared to the GM90 scheme and a modified
VMHS scheme. The latter equates �e to a typical eddy
velocity and a typical mixing length, which we chose to
be the Rossby deformation radius (the choice of mixing
length differs from the original VMHS proposal). How-
ever, the VMHS and EB parameterizations differ in the
choice of �e. VMHS make the identification �e � le /te,
where le is the distance of particle transfer by eddies
and t�1

e is the linear instability growth rate, while we
equate �e to the barotropic component of the eddy ve-
locity, which is estimated using the approximate eddy
energy balance. The two choices lead to a similar rela-
tion of the eddy diffusivity on the mean vertical and
horizontal buoyancy gradient, but differ qualitatively in
the dependence on the external parameters, and in par-
ticular on the bottom drag.

Despite the uncertainties in the mixing length esti-
mate, both the EB and VMHS parameterizations per-
form well in comparisons with eddy-resolving simula-
tions where the external parameters are changed, indi-
cating the necessity of including the dependence of �e

on the local buoyancy gradients, which is absent in the
GM90 scheme. Both the VMHS and EB parameteriza-
tions involve vertical integrals of mean quantities, but
this nonlocality is unavoidable in the equilibration of
baroclinic instability, which requires the coupling of at
least two vertical modes. In the configuration consid-
ered here, we also find that assuming �e independent of
depth is an excellent approximation.

The dependence of the parameterization on the bot-
tom drag is tested with eddy-resolving simulations in a
periodic domain that approximates the ACC geometry.

The dependence on other parameters, such as the ro-
tation rate f, the imposed external buoyancy gradient,
and the domain size, has not been tested because of the
computational demand of a primitive-equation eddy-
resolving model. Although there is a dependence on
the bottom drag in the direct numerical simulations, it
is not as strong as that predicted by the energy balance
parameterization. The reason for this failure is twofold.
First, in the regime of weak bottom drag, dissipation is
dominated by vertical viscosity, and this prevents esti-
mation of the barotropic velocity component from the
eddy energy balance. Second, the approximation that
equates the bottom eddy velocity with the barotropic
component breaks down when the contribution of the
baroclinic component to the bottom velocity becomes
comparable to that of the barotropic component. The
ratio of the two components depends on r through the
following two mechanisms: 1) the ratio of barotropic to
baroclinic eddy kinetic energy decreases as r increases
because bottom drag primarily affects the barotropic
component; and 2) if the eddy kinetic energy were eq-
uipartioned between baroclinic and barotropic modes,
the ratio of the corresponding velocities would scale as
�h�H, that is, the ratio of the thermocline depth to the
domain depth. As Cessi et al. (2006) show, h increases
with increasing bottom drag, so that the approximation
becomes poorer for larger r, or for shallow domains.
The net result is that as r becomes larger the approxi-
mation becomes less accurate.

In contexts that are more complex than those con-
sidered here, other mechanisms might intervene that
preclude the simple estimation of the barotropic eddy
velocity through the energy balance. One likely suspect
is bottom relief. Although the influence of topography
on the wind-driven circulation has not been thoroughly
examined for the primitive equations, some inferences
might be drawn from the quasigeostrophic results.
Treguier and Hua (1988) show that while for freely
decaying turbulence topography mediates a direct
transfer of energy from the barotropic to the baroclinic
mode, for turbulence forced by large-scale winds, to-
pography merely slows down the inverse cascade of the
barotropic mode. As a result, the eddies become more
surface intensified, and this might or might not lead to
a breakdown of the approximations as discussed above,
depending on whether h becomes smaller or larger.

Finally, the approximate energy balance used to de-
rive the proposed parameterization requires that the
Reynolds stress contributions to the energy fluxes be
neglected. This is probably not a good approximation in
regions where the eddies are organized in jets, such as
the mid- and low latitudes.
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