
Eddy-Driven Buoyancy Gradients on Eastern Boundaries and Their Role
in the Thermocline

PAOLA CESSI AND CHRISTOPHER L. WOLFE

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

(Manuscript received 18 June 2008, in final form 23 January 2009)

ABSTRACT

It is demonstrated that eddy fluxes of buoyancy at the eastern and western boundaries maintain alongshore

buoyancy gradients along the coast. Eddy fluxes arise near the eastern and western boundaries because on

both coasts buoyancy gradients normal to the boundary are strong. The eddy fluxes are accompanied by

mean vertical flows that take place in narrow boundary layers next to the coast where the geostrophic

constraint is broken. These ageostrophic cells have a velocity component normal to the coast that balances

the geostrophic mean velocity. It is shown that the dynamics in these thin ageostrophic boundary layers can

be replaced by effective boundary conditions for the interior flow, relating the eddy flux of buoyancy at the

seaward edge of the boundary layers to the buoyancy gradient along the coast. These effective boundary

conditions are applied to a model of the thermocline linearized around a mean stratification and a state of

rest. The linear model parameterizes the eddy fluxes of buoyancy as isopycnal diffusion. The linear model

produces horizontal gradients of buoyancy along the eastern coast on a vertical scale that depends on both the

vertical diffusivity and the eddy diffusivity. The buoyancy field of the linear model agrees very well with the

mean state of an eddy-resolving computation. Because the east–west difference in buoyancy is related to

the zonally integrated meridional velocity, the linear model successfully predicts the meridional overturning

circulation.

1. Introduction

One measure of the strength of the meridional trans-

port in the ocean is the meridional overturning circu-

lation (MOC), defined here as the time-averaged and

zonally integrated meridional mass transport of the

ocean.

Monitoring the MOC is observationally challenging;

there have been efforts to estimate its transport using a

carefully designed set of sustained observations [e.g.,

the rapid climate change programme (RAPID)]. Using

geostrophy of the meridional velocity and mass con-

servation, it is possible to obtain an approximate esti-

mate of the zonally integrated transport streamfunction

by knowing the wind stress forcing and the buoyancy

difference across the basin (i.e., the buoyancy on the

eastern and western boundaries; Hirschi and Marotzke

2007; Marotzke 1997). Defining the meridional trans-

port streamfunction, C, such that

C
z

[�
ðx

e

x
w

y dx, (1)

it is possible to relate C to the wind stress, t, distributed

over the Ekman layer as a body force, and the differ-

ence in buoyancy on the eastern and western coasts,
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The diagnostic (2) needs to be revised in the presence

of bottom relief, in which case C is not fully determined

by t and Db (Hirschi and Marotzke 2007). Compari-

sons with ocean models indicate that the approxima-

tion (2) works very well when the bottom is flat and

captures the time variability of the MOC even with

topography. In the case where the bottom is flat the

diagnostic (2) is very accurate, as illustrated in Fig. 1,

which compares C from (1) with the approximation
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(2) for an eddy-resolving computation [cf. appendix A

and Wolfe and Cessi (2009)].

Theories of the ideal thermocline assume that the

buoyancy on the eastern boundary is a function of depth

only and does not depend on the latitudinal position

along the boundary (Welander 1971; Rhines and Young

1982; Luyten et al. 1983). This unrealistic assumption

eliminates the contribution to the MOC from the east-

ern boundary buoyancy. The assumption arises from the

requirement that horizontal flow is in thermal wind bal-

ance (i.e., geostrophic and hydrostatic) near the eastern

boundary and from the condition of no normal flow into

the coast.

The structure of the buoyancy on the eastern boundary

is of importance not just for the MOC, but also for the

horizontal large-scale circulation of the interior basin.

Indeed, below the Ekman layer the flow approximately

conserves potential vorticity (PV), which is qualita-

tively determined by the planetary term, by. This im-

plies that potential vorticity contours in contact with the

eastern boundary (‘‘blocked contours’’ in the language

of Rhines and Young 1982) carry the information about

buoyancy into the interior. As a result, if the buoyancy

at the eastern wall is independent of the horizontal

position along the boundary, then the interior is at rest

as well (the ‘‘shadow zone’’ in the language of Luyten

et al. 1983).

The requirement that buoyancy is independent of

latitude, y, along the eastern wall clashes with the ne-

cessity of allowing buoyancy to depend on y at the

surface: how can the isopycnals, independent of latitude

on the eastern wall, match the surface values at the in-

tersection of the eastern boundary with the surface?

This contradiction is reconciled in classical thermocline

theories by allowing ‘‘weak solutions,’’ that is, solutions

that have discontinuous buoyancy (or discontinuous

derivatives) at the intersection of the surface with the

eastern wall. Thus, without vertical diffusion, solutions

of the ideal thermocline equations are discontinuous all

along the surface marking the boundary between the

region of horizontal flow and the quiescent abyss: this is

because this boundary has to be a surface of constant

density, but it is in general not at a constant depth, while

in the quiescent abyss density depends on depth only.

The addition of vertical diffusion, with diffusivity ky,

allows an internal boundary layer of thickness propor-

tional to
ffiffiffiffiffi
k

y

p
to smooth the transition (Stommel and

Webster 1962; Young and Ierley 1986; Salmon 1990;

Samelson and Vallis 1997). However, the singularity at

the boundary between the surface and the eastern coast

is not cured by vertical diffusion (cf. Gill 1985, hereafter

referred to as G85).

The crowding of isopycnals at the boundary between

the surface and the eastern wall, implicit in weak so-

lutions, is a configuration rich in available potential

energy (APE). We thus expect the region near the

eastern boundary to be baroclinically unstable. Indeed,

the analysis of global altimetric data shows secondary

maxima of eddy-kinetic energy (EKE) near the eastern

boundaries of all oceans, albeit weaker than the max-

ima on the western boundaries (Stammer 1997). A

similar enhancement of EKE near the eastern bound-

ary is found in eddy-resolving simulations of the wind

and buoyancy-driven circulation. This is illustrated in

Fig. 2, which shows the vertically averaged EKE for

an eddy-resolving computation (cf. Wolfe and Cessi

2009). The release of APE is accompanied by a flat-

tening of the isopycnals, leading to horizontal buoy-

ancy gradients on the eastern and western boundaries.

Figure 3 shows the time-averaged buoyancy on the

FIG. 1. The overturning streamfunction C for an eddy-resolving

computation forced by wind stress and prescribed surface buoy-

ancy. Only the Northern Hemisphere portion of the domain is

depicted here. The actual model has two hemispheres of equal

extent, with the southernmost 1200 km of the domain occupied by

a reentrant channel. The parameters of the model are described in

appendix A. (top) The actual transport of the MOC, defined by

(1), and (bottom) the diagnostic (2). The diagnostic is an excellent

approximation, except at the equator, where f vanishes. The con-

tour interval (CI) is 1 Sverdrup (Sv [ 1 3 106 m3 s21) and negative

values are dashed.
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eastern and western boundaries for an eddy-resolving

computation. Eddy buoyancy (and momentum) fluxes

are associated with the field of mesoscale eddies near

the boundaries.

In this work we show that the eddy fluxes of buoyancy

drive an ageostrophic circulation with a velocity com-

ponent into and out of the boundary, which balances the

corresponding geostrophic flow. In this way, the condi-

tion of no flow into the solid boundary can be fulfilled

while maintaining a horizontal buoyancy gradient on

the wall. Then an east–west buoyancy difference, Db,

can be supported and we show how Db can be predicted.

This allows the overturning streamfunction, C, to be

evaluated from (2).

A theory for Db is developed, which is a simple

extension of the linear thermocline equations used by

G85, augmented by eddy fluxes of buoyancy (parame-

terized as isopycnal buoyancy diffusion) and viscosity.

Numerical solutions of the noninertial thermocline

equation naturally include horizontal diffusion, and

thus have meridional buoyancy variations on the east-

ern boundary (Colin de Verdière 1989; Salmon 1990;

Samelson and Vallis 1997). In this study we offer

an explicit scaling for the depth of penetration of

surface buoyancy gradients on the eastern wall and

illustrate how this depth affects the interior buoyancy

distribution.

2. Eddy fluxes near the boundaries

The release of APE at the mesoscale and the associ-

ated flattening of the buoyancy field is accompanied

by eddy fluxes of momentum and buoyancy. The eddy

fluxes of momentum break the geostrophic constraint

and the eddy buoyancy fluxes induce a time-averaged

ageostrophic circulation as shown below.

At the solid boundaries the velocity field must satisfy

nonnormal flow (and, less importantly, no-slip bound-

ary), and there must be no flux of buoyancy into the wall.

FIG. 3. The time-averaged buoyancy minus the time and hori-

zontally averaged field, b(x, y, z)� b
0
(z), for an eddy-resolving

computation driven by wind stress and surface buoyancy. (top)

Here, b� b0 on the eastern boundary, x 5 xe; (middle) b� b0 on

the western boundary, x 5 0; (bottom) the difference between the

fields in (top) and (middle), i.e., b(x
e
, y, z)� b(0, y, z). The vertical

extent of buoyancy gradients is larger on the western boundary

compared to the eastern boundary. The difference field shows two

overturning cells: a shallow, thermally indirect cell in the sub-

tropics and a deeper, thermally direct cell centered in the subpolar

gyre. The CI for all three panels is 2 3 1023 m s22. Negative values

are dashed.

FIG. 2. The vertically averaged EKE is shown in grays (log10

scale) for the Northern Hemisphere part of eddy-resolving com-

putation described in appendix A. The contours of the barotropic

streamfunction are shown in black. Notice the EKE maxima on the

eastern side of the subpolar gyre and on the western side of the

subtropical gyre.
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In general, these conditions are fulfilled in thin bound-

ary layers where geostrophy is broken. In our numerical

simulations we find that in these thin boundary layers,

Reynolds stresses become large in the alongshore mo-

mentum balance, while the across-shore balance re-

mains geostrophic. In this way, the velocity along the

boundary is geostrophic but the component normal to

the boundary is not. This is the common expectation on

the western boundary, and here we find that semigeo-

strophy is also the case on the eastern side.

Near the eastern boundary the buoyancy balance is

approximately

(u9b9)
x

1 wb
z

’ 0, (3)

where the overbar denotes a time average and the primes

denote the departure from time average. The balance (3)

arises from the assumption that in the boundary layer the

component of the buoyancy flux divergence normal to

the coast is much larger than that along the coast, and

balances the vertical component, dominated by mean

downwelling of buoyancy. Consistently, it is assumed

that buoyancy does not change appreciably in the

boundary layer, and this is why the term ub
x

is ne-

glected. The dominant balance in (3) is illustrated in

Fig. 4, which shows the four largest terms in the time-

averaged buoyancy equation near the eastern boundary

for the eddy-resolving computation described in ap-

pendix A. As assumed in (3), both ubx and yby are

smaller than wbz. Furthermore, there is a substantial

cancellation between ubx and yby, so that their sum is

even smaller than each individual term. This is not

surprising: near the eastern boundary the horizontal

flow is dominated by the baroclinic component, which

is in thermal wind balance, and thus largely orthogonal

to the horizontal buoyancy gradient. The diagnostic

in Fig. 4 confirms that the eddy-induced overturning

circulation in the boundary layer is essentially two-

dimensional in the x–z plane.

By continuity, the upwelling, w, has to be accompanied

by a horizontal mass divergence, which near the boundary

is dominated by the component normal to the boundary:

FIG. 4. The mean buoyancy balance near the eastern boundary for the eddy-resolving

computation is illustrated by showing the four largest terms 45 km west of the eastern boundary.

The main balance is between (bottom) (u9)x and wbz. (top) The terms ubx and yby are smallest

and tend to cancel each other. The terms (y9b9)
y
, (w9)

z
, and k

y
b

zz
are all smaller than any of the

terms shown here. The terms are smoothed with a 20-point Hanning window in the y direction

to remove grid noise excited by hydrostatic convection. The parameters of the model are

described in appendix A.
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w
z

1 u
x

’ 0. (4)

It might seem surprising that the mean velocity along

the boundary is negligible in this region, but in section

3b we formally show that there is a scaling such that the

mean buoyancy varies little across the upwelling layer.

Thus, the mean alongshore velocity y (in geostrophic

balance) is not especially large and yy is smaller than ux

in the boundary layer (i.e., the circulation is approxi-

mately two-dimensional).

Eliminating w between (3) and (4) and integrating

across the upwelling boundary layer we find that at the

seaward edge of the boundary layer

u9b9

b
z

 !
z

5 u. (5)

Taking the z derivative of (5) and using thermal wind

balance, applicable outside the boundary layer, we find

u9b9

b
z

 !
zz

5�
b

y

f
. (6)

This is the effective boundary condition that applies to

the baroclinic flow at the outer edge of the thin up-

welling layer [i.e., (6) is the boundary condition (BC)

felt by the interior flow]. Physically, (6) arises from a

balance between the ageostrophic zonal velocity asso-

ciated with the upwelling necessary to balance the baro-

clinic fluxes and the geostrophic zonal velocity in thermal

wind balance.

An analogous calculation can be repeated at a north-

ern or southern boundary, and in general, assuming that

the tangential component of the wind stress vanishes at

the coast, the effective boundary condition is

u9b9 � n̂
b

z

 !
zz

5�=b � ŝ
f

on the boundaries . (7)

In (7), n̂ and ŝ [ ẑ 3 n̂ are the outward normal and

tangent unit vectors on the boundary, respectively. The

eddy fluxes of buoyancy maintain an ageostrophic cir-

culation in thin boundary layers near the walls that is

equal and opposite to the geostrophic mean flow on the

boundary, so that the condition of nonnormal flow can

be satisfied while also having a buoyancy gradient along

the boundary. Consistent with the intuitive notion of

baroclinic instability, a buoyancy gradient along the

boundary is necessary if the eddies are to reduce the

APE and restratify the buoyancy near the coast, deep-

ening the region where the surface buoyancy distribu-

tion penetrates.

The effective boundary condition (5) on b affects

the baroclinic component of the flow, not the barotropic

one. A cancellation between the geostrophic and ageo-

strophic velocity is only admissible for the baroclinic

component of the velocity. This is because the mean

ageostrophic horizontal velocity, u, in (4) must have zero

vertical average. The mean barotropic component of the

flow remains geostrophic all the way into the eastern

boundary layer and the barotropic streamfunction is

constant along the eastern boundary.

The effective boundary condition (7) is not very ac-

curate near the western boundary, where advection of

buoyancy and momentum by the mean flow is impor-

tant. The advection by a barotropic boundary current is

easily included in the effective boundary condition, but

this effect is not considered here and is deferred to a

future study.

3. A linear model of the thermocline

We illustrate the consequences of the effective

boundary conditions just derived in a simple buoyancy

and wind-driven laminar model, where the eddy flux of

buoyancy is parameterized as isopycnal diffusion and

the eddy fluxes of momentum are parameterized as

downgradient momentum diffusion. To make the cal-

culation amenable to semianalytic progress, we linearize

the buoyancy around a prescribed mean stratification,

N2, as in the G85 model.

G85’s model considers the circulation driven by Ek-

man pumping in the context of noninertial planetary

geostrophy, and we add lateral viscosity to fulfill the

conditions of nonnormal flow and no-slip (u 5 y 5 0 on

all solid boundaries). Thus the momentum and mass

balances are given by

�f y 5�p
x

1 t
z

1 n=2u, (8)

fu 5�p
y

1 n=2y, (9)

0 5�p
z

1 b, (10)

0 5 u
x

1 y
y

1 w
z
. (11)

The notation is standard: we use a Cartesian, equatorial

b plane, f 5 by, and the east–west wind stress divided by

the Boussinesq density, t, is applied as a body force that

decays rapidly from the surface, z 5 0. These are the

same equations used in noninertial thermocline theories

(Salmon 1986; Colin de Verdière 1988; Salmon 1990;

Samelson and Vallis 1997).

In the linear case, without topography, the barotropic

mode can be calculated independently of the baroclinic

motion by vertically integrating (8) and (9). Denoting

JULY 2009 C E S S I A N D W O L F E 1599



the barotropic streamfunction with c, we have the stan-

dard barotropic mode equation

bc
x

5�t(x, y, 0)
y
/H 1 n=4c. (12)

Typical solutions of (12) are discussed in Pedlosky

(1987). Here we are interested in the buoyancy distri-

bution, and thus the baroclinic flow, which is forced by

gradients of the buoyancy, b, in hydrostatic balance.

Assuming that the viscous terms are important only in

boundary layers where the alongshore velocity is in

planetary–geostrophic balance, the baroclinic system

(8)–(11) can be manipulated to eliminate u and y in

favor of b and w to give the vorticity equation. The full

derivation is given in appendix B.

For the purpose of this study, we consider an ap-

proximate form of the vorticity equation that allows

application of the nonnormal flow condition, but not of

the no-slip condition:

b
b

x

f 2
5 w

zz
�

t
zz

f

� �
y

1 n$ � 1

f
=2 $b

f

� �� �
1 O(n2). (13)

The system is completed by the buoyancy equation,

linearized around a state of rest and a mean density b0

that depends on z only. With N2 [ db0/dz, the pertur-

bation density b is governed by

wN2 5 k=2b 1 k
y
b

zz
. (14)

The neglect of advection of b differentiates this model

from most noninertial theories (Colin de Verdière 1988;

Salmon 1990; Samelson and Vallis 1997), but it allows

analytic progress that is not possible in the nonlinear

case.

The second term on the RHS is vertical diffusion of

buoyancy. The first term on the RHS of (14) is the pa-

rameterization of eddy fluxes of buoyancy. The eddy

diffusivity, k, is taken to be constant (Gent and

McWilliams 1990). Because the buoyancy is linearized

around b0(z), isopycnal eddy fluxes are approximately

horizontal. If u9b9 5 �k$b, eddy fluxes are along iso-

pycnals as long as

w9b9 5 kj$bj2/(N2 1 b
z
) ’ kj$bj2/N2, (15)

where the last approximation is made because b � b0.

If we now compare the horizontal divergence of the

horizontal eddy flux with the vertical derivative of the

vertical component we find

(w9b9)
z

$ � (u9b9)
;

b

b
0

� 1, (16)

which is much less than unity in the linearized system.

Thus the nonlinear vertical eddy fluxes (15) are neglected

in the linear model.

We can use (14) to eliminate w in favor of b in (13) to

obtain

b
b

x

f 2
5

k=2b 1 k
y
b

zz

N2

 !
zz

�
t

zz

f

� �
y

1 n$ � 1

f
=2 $b

f

� �� �
.

(17)

The system (8)–(11) and (14) has been studied before

as a model of the thermocline. Pedlosky (1969) pro-

vided a preliminary analysis of the interior solution and

the structure of the boundary layers. Pedlosky’s pa-

rameter ordering was such that buoyancy gradients

on the eastern boundary were excluded. Salmon (1986)

has studied the same problem with simplified friction

(Rayleigh drag instead of Newtonian friction but non-

hydrostatic pressure). Again Salmon assumes that k is

so small that buoyancy gradients on the eastern coast

are excluded. More recently, numerical solutions have

been obtained with horizontal advection of buoyancy

added to (14) (Colin de Verdière 1989; Salmon 1990;

Samelson and Vallis 1997), a case not amenable to

simple analysis. Our study differs from previous quasi-

ideal thermocline solutions in that we stress the role of

eddy fluxes of buoyancy near the boundaries (east and

west), and thus include horizontal diffusion of buoyancy

as a first-order effect. In particular, we emphasize that

eddy fluxes are crucial in allowing gradients of buoyancy

along the boundaries.

a. The boundary conditions

The system (13) and (14), or alternatively (17), needs

two boundary conditions on each of the two boundaries

z 5 0 and z 5 2H, and two horizontal BC on each of the

four boundaries x 5 0, xe and y 5 0, L. The vertical BC

are the specification of b and the requirement that w 5 0,

that is,

b 5 g9B(y) at z 5 0 ; b 5 0 at z 5 �H, (18)

k=2b 1 k
y
b

zz
5 0 at z 5 0 ;

b
zz

5 0 at 5 �H. (19)

The function B gives the nondimensional form of the

surface buoyancy, whose magnitude is given by g9. The

lateral BC are u � n̂ 5 0 and =b � n̂ 5 0 on x 5 0, xe and

y 5 0, L. The nonnormal flow condition can be stated in

terms of b using (9):

$b � ŝ 5 t
zz
� ŝ 1 n =2 $b

f

� �
� n̂

� �
on the boundaries. (20)
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The outward normal direction is n̂ and the horizontal

tangent direction on the boundary is ŝ [ ẑ 3 n̂. Here we

have included the contribution of an alongshore wind

stress t � ŝ.

b. Canonical scaling and effective boundary
conditions

The formulation (17) with BC in (19) and (20) has

been considered before (Pedlosky 1969; LaCasce 2004).

These authors have considered the regime where n ’ k,

so that the horizontal diffusion is only important in

viscous boundary layers and the interior satisfies the

balance studied by G85:

bb
x

5 f 2k
y
(b

zz
/N2)

zz
. (21)

The same ordering, or even k � n, has been consid-

ered in a numerical solution of the noninertial thermo-

cline equation (Colin de Verdière 1989; Salmon 1990;

Samelson and Vallis 1997). Here instead, we consider

n � k, so that eddy diffusion, k, is important in the in-

terior, while the influence of viscosity, n, is confined to

thin side boundary layers. In this case, it is possible to

eliminate the viscosity from the description of the inte-

rior flow by integrating over the viscous boundary layers

and to apply effective boundary conditions on the inte-

rior flow that are independent of n. To do that we begin

by scaling (17), so that there are only two parameters in

the problem. We will also assume that the stratification,

N2, is constant.

We use the following nondimensionalization:

b 5 g9b̂, x 5 lx̂, y 5 Lŷ, z 5 hẑ (22)

where l and h are

l [
bL2k2

N2k
y

 !1/3

, h [
bL2 ffiffiffiffiffiffiffiffi

kk
y

p

N2

 !1/3

. (23)

The vorticity equation becomes

b̂
x̂

ŷ2
5 (=̂2b̂ 1 b̂

ẑẑ
)

ẑẑ
� m

t̂
ẑẑ

ŷ

� �
ŷ

1 e2$̂ � 1

ŷ
=̂2 $̂b

ŷ

 !" #
. (24)

With the scaling (23), the advection of planetary vorticity,

the contribution to vortex stretching by eddy diffusion,

and diapycnal mixing all appear without any parameter.

There are two external parameters: m measures the im-

portance of wind stress (of magnitude t0) and « measures

the importance of viscosity n. Their definitions are

m [
t

0
l

g9h2
, e2 [

n

bl3
. (25)

In addition, the nondimensional Laplacian contains the

aspect ratio of the zonal scale, l, to the scale of the

buoyancy forcing, L; that is,

$̂ [ ›2
x̂ 1

l2

L2
›2

ŷ. (26)

Using values of the parameters as in the eddy-resolving

model described in appendix A, we find

h ; 360 m, l ; 1300 km, m ; 0.06, e2 ; 2.6 3 10�7.

(27)

Notice that the canonical width l is much larger than a

boundary layer, although not quite as large as the basin

scale, xe. Similarly, the vertical scale, h, is more than a

thin mixed layer, although much less than the depth of

the domain. Finally, the parameter measuring the wind

forcing versus the buoyancy forcing is substantially less

than unity, indicating that over the scales l and h the

mechanical forcing is subdominant.

In anticipation of the smallness of the aspect ratio l/L,

we focus on the east and west BC (20), whose nondi-

mensional form is

b̂
ŷ

5 e2 =̂2 b̂
x̂

ŷ

 !" #
and b̂

x̂
5 0 at x̂ 5 0, X

e
, (28)

where Xe [ xe/l is another parameter in the problem.

On the top and bottom we have

b̂ 5 B(ŷ) at ẑ 5 0 ; b̂ 5 0 at ẑ 5�Ĥ, (29)

=̂2B 1 b̂
ẑẑ

5 0 at ẑ 5 0 ; b̂
ẑẑ

5 0 at ẑ 5�Ĥ, (30)

where the notation Ĥ [ H/h has been adopted.

The BC of no flux of buoyancy and nonnormal flow

(28) are both conditions on the derivatives of buoyancy

normal to the boundary, so in the viscous boundary

layer, only the normal derivatives of b̂ are changed at

O(1), but the value of b̂ is only slightly altered. Specif-

ically, in the viscous boundary layer the balance in the

vorticity Eq. (24) is between viscosity and lateral dif-

fusion (Barcilon and Pedlosky 1967; LaCasce 2004;

Pedlosky and Spall 2005), that is, b̂
x̂x̂ẑẑ

’�e2b̂
x̂x̂x̂x̂

/ŷ2.

Thus the boundary layer width is given by e. Because

the boundary layer correction accommodates the gra-

dients of b, without changing the value of b to leading

order in e, the buoyancy can be rewritten as

b̂ 5 b
I
(x̂, ŷ, ẑ) 1 e ~b(j, ŷ, ẑ), (31)

where bI is the buoyancy in the interior, j [ x/e is the

boundary layer variable, and e ~b is the boundary layer

correction, small in order to correct the derivative, b̂
Ix̂

, to
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leading order but not the function, bI. With this scaling

(24) becomes

b̂
jjẑẑ

1 b̂
jjjj

/ŷ2 5 0 1 O(e) , (32)

and the BC (28) becomes

b
Iŷ

5 ~b
jjj

/y and b
Ix̂

1 ~b
j
5 0 at x̂ 5 0, X

e
. (33)

We can now integrate (32) across the boundary layer1 to

find, to leading order in e,

0 5 (b
Ix̂

1 ~b
j
)

ẑẑ

					
x50

j50‘0

1

~b
jjj

~y2

					
x50

j50‘0

1 O(e), (34)

where j 5 0‘0 is the seaward edge of the boundary layer.

Using (33) together with the condition that ~b vanishes as

j / ‘, we obtain the effective boundary conditions

ŷ b
Ix̂ẑẑ

5 b
Iŷ

at x̂ 5 0, X
e
. (35)

These BC apply to the inviscid vorticity equation, that

is, to (24) with e 5 0, outside the viscous boundary layer

(i.e., at j 5 0‘0, which is equivalent to x 5 0, as far as the

interior solution is concerned).

In dimensional form, and generalized to all four solid

boundaries, the effective boundary conditions are

f
k$b � n̂

N2

� �
zz

5 ($b� t
zz

) � ŝ on the boundaries. (36)

This is just the same as (7), with the eddy flux of buoy-

ancy parameterized as horizontal diffusion. We have also

allowed a tangential (alongshore) component of the wind

stress at the coast, although this term will be zero in all

our subsequent calculations. This term is important in the

dynamics of the eastern boundary and will be the subject

of a future study.

In the limit of vanishing (or very small) eddy diffu-

sivity, k, we recover the usual condition that the hori-

zontal derivative of b along the boundary vanishes.

This is the laminar thermocline limit that has been

examined by several authors (Pedlosky 1969; G85;

Salmon 1986; LaCasce 2004; Pedlosky and Spall 2005).

All of these previous studies apply the boundary con-

dition ($b� t
zz

) � ŝ 5 0 on the eastern boundary. The

laminar thermocline limit is recovered by considering

k small enough that the canonical l and h are thin

boundary layers of no consequence to the interior flow.

In the following we show that consideration of eddy

processes in the interior of the domain leads to solutions

that are qualitatively different than those with no eddy

processes.

We thus proceed to solve the interior vorticity equa-

tion, which in dimensional form is

b
b

x

f 2
5

k=2b 1 k
y
b

zz

N2

 !
zz

�
t

zz

f

� �
y

, (37)

with the effective lateral boundary conditions (36).

c. Relation to G85 scaling

The canonical scales l and h in (23) are a special case

of the similarity scaling of G85, given by

l1/4/h 5 r, where r [
N2

k
y
bL2

 !1/4

. (38)

Notice that the parameter r is independent of k. G85

looks for similarity solutions satisfying (21) and with the

origin of coordinates on the eastern boundary. In other

words, G85 looks for solutions of the form

b(h), where h [�rz(x
e
� x)�1/4, (39)

and his solutions b(h) are singular at x 5 xe.

We can think of l as the distance over which we need

to shift the coordinate x eastward in order to move the

singularity outside of the domain (cf. Fig. 5). Then h is

the depth of the thermocline at x 5 xe. Eddy diffusion

cures the singularity in G85’s solution by allowing a fi-

nite depth of the thermocline at x 5 xe. However, it is

not possible to find solutions of (37) in similarity form

when horizontal diffusion is included.

For large basins, l is significantly less than the full

domain’s width, xe. Therefore for xe 2 x � l, G85’s

balance (21) applies: as the western boundary, x 5 0, is

approached, the depth of the thermocline is of order hG,

where

h
G

[
k

y
bL2x

e

N2

 !1/4

(40)

is G85’s depth. This is also the depth of the thermocline

found by Pedlosky (1969; lT in his notation). Clearly, hG

is larger than h, because xe is larger than l (cf. Fig. 5).

Near the western boundary, eddy effects become

important again and we need to satisfy the effective

boundary condition (36). Because the depth scale of

the incoming flow is hG � h, the second term on

the RHS of (37) is negligible. Thus the horizontal scale

1 Here we integrate across the boundary layer at x 5 0, but the

same procedure is applied on all the boundaries. Advection by the

barotropic flow introduces dM (and possibly a nonlinear western

boundary scale) in the eddy-resolving model.
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near the western boundary is not l, but a new scale dP

defined as

d
P

[ k
bL2

k
y
x

e
N2

 !1/2

. (41)

This is one of the possible western boundary layer

widths for the baroclinic component of the flow con-

sidered by Pedlosky (1969); the other possible width is

the Munk scale, dM [ (n/b)1/3, but here we consider a

parameter ordering such that dM� dP.

The horizontal scale dP is shorter than the eastern

boundary scale, because dP 5 l h2/h2
G. It is easy to verify

that with the horizontal scale dP and the vertical scale

hG the alongshore buoyancy gradient is of the same

order as the eddy flux term in (36): near the western

boundary b changes to leading order over a distance dP.

The different scales are illustrated in Fig. 5, which also

shows G85’s similarity variable as a dashed line.

In summary, eddy fluxes of buoyancy introduce a new

horizontal scale on the eastern boundary, l, associated

with the depth of the thermocline, h, at x 5 xe. On the

domain scale, and thus as the western boundary is ap-

proached from the east, the thermocline is of depth hG

and eddy fluxes are unimportant in the interior. Within

a horizontal distance of order dP from the western

boundary, eddy fluxes become important again; dP is the

western boundary layer width for the buoyancy, and

thus for the baroclinic component of the flow—very

different from the western boundary layer width of the

barotropic flow, dM, governed by (12).

d. Method of solution

Here we delineate the method of solutions of the in-

terior vorticity equation, (37), subject to the effective

boundary conditions (35). We consider the solutions in

nondimensional units, but drop the hats from our nota-

tion in this subsection. To allow analytic progress, we

consider the limit where the dynamical aspect ratio l/L is

much less than one, which is a mild restriction. In this

limit, =2 ’ ›2
x and the interior buoyancy satisfies

b
x

y2
5 (b

xx
1 b

zz
)

zz
� m

t̂
zz

y

� �
y

, (42)

subject to the BC (30) (with =2 ’ ›2
x ) and (35).

Assuming that the wind stress acts as a body force

confined to a thin Ekman layer of nondimensional

depth d with the form t̂ 5 s(y)ez/d, the solution to (42)

can be written as

b 5 b
p
(y, z) 1 �

‘

n50
[a

n
(y)el

e
(x�X

e
) 1 c

n
(y)e�l

w
x]sink

n
z,

(43)

where the particular solution bp is given by

b
p

5 B(y) 1 1
z

Ĥ

� �
1 m

s

y

� �
y

d2 ez/d � 1� z

Ĥ

� ��

� z2

2
� z3

6Ĥ
� Ĥ

3
z

#
. (44)

The vertical wavenumber kn 5 np/Ĥ is quantized by

the depth of the domain, and the homogeneous solution

decays from the eastern and western boundaries at the

rates

l
e
(y, n) [

1

2

1

(k
n
y)2

�1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 k6

ny4

q� �
,

l
w

(y, n) [
1

2

1

(k
n
y)2

1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 k6

ny4

q� �
. (45)

Notice that all le and lw are positive for all values of n

and y. Also, le is smaller than lw for every n and y, so

the decay scale on the east, l, is longer than the decay

scale on the west, dP, as anticipated in section 3c.

The coefficients an(y) and cn(y) are determined by the

effective boundary conditions on the eastern and west-

ern boundaries, that is,

FIG. 5. A sketch of the vertical and horizontal scales of the

thermocline. The solid line shows the depth of the thermocline

obtained including eddy fluxes of buoyancy. The edge of the

thermocline is drawn beyond the eastern boundary to show the

relation with the similarity solution of G85, shown as a dashed line.

At the eastern boundary, and on a horizontal scale of order l, the

depth of the thermocline is order h [cf. (23)]. Within a distance of

O(l) of xe, all three terms in the vorticity Eq. (23) are important. A

horizontal distance of order xe into the domain, the vertical scale is

hG, defined in (40): in this region the eddyless balance examined by

G85 is recovered. Within a distance dP of the western boundary,

eddy fluxes of buoyancy are important again: here the depth of the

thermocline is hG� h so diapycnal diffusion is negligible.
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�
‘

n50
[yk2

n(l
e
a

n
� l

w
c

n
e�l

w
X

e ) 1 a
ny

1 (c
n
e�l

w
X

e )
y
]sink

n
z 5�b

py
on x 5 X

e
, (46)

�
‘

n50
[yk2

n(l
e
a

n
e�l

e
X

e � l
w

c
n
) 1 c

ny

1 (a
n
e�l

e
X

e )
y
]sink

n
z 5�b

py
on x 5 0. (47)

The system (46) and (47) is a series of coupled first-order

ordinary differential equations (ODEs) in y that can be

solved by projecting the RHS onto sine modes, that is,

yk2
n(l

e
a

n
� l

w
c

n
e�l

w
X

e ) 1 a
ny

1 (c
n
e�l

w
X

e )
y

5� 2

Ĥ

ð0

�Ĥ

b
py

sink
n
z dz, (48)

yk2
n(l

e
a

n
e�leXe � l

w
c

n
) 1 c

ny
1 (a

n
e�leXe )

y

5� 2

Ĥ

ð0

�Ĥ

b
py

sink
n
z dz. (49)

The integrals in (48) and (49) are calculated analytically

with the help of Mathematica’s Online Integrator. The

ODEs in (48) and (49) must be supplemented by the

condition that the buoyancy is continuous all along

the boundary of the domain. This requirement guaran-

tees that the area-integrated vertical velocity vanishes

at every level.

If eddy diffusion in the meridional direction is negli-

gible near the northern and southern walls, then b does

not vary along these boundaries and the continuity re-

quirement amounts to

a
n
(1� e�l

e
X

e ) 5 c
n
(1� e�l

w
X

e ) at y 5 0, 1; (50)

that is, there is no meridional velocity across the northern

or southern boundary at any level.

The ODEs in (48) and (49) are integrated numerically

using Matlab’s boundary value problem solver bvp4c.

4. Results

a. Estimating the parameters N and k

The solution (43) depends on the ratios Ĥ 5 H/h and

Xe 5 xe/l, that is, the ratios of the canonical depth and

width to the size of the domain. To determine the linear

solution, the values of the basic stratification, N, and of

the eddy diffusivity, k, must be provided. These two

parameters are part of the solution in the eddy-resolving

model and are obviously not constants.

The horizontally and time-averaged vertical buoy-

ancy gradient for one simulation is shown in Fig. 6. At

about 70 m, N has a maximum of about 6 3 1023 s21 and

then decays with depth to about 2 3 1023 s21 at 800 m.

The vertically averaged value of N is also indicated in

the figure (dashed line), and this is the value that is used

to estimate the constant stratification in the linear

model (17).

Figure 7 shows a scatterplot of u9b9 versus b
x

for two

strips near the eastern (top panel) and western (bottom

panel) boundaries, each about 250 km wide. The scatter

is large and the values differ substantially on the two

sides. It is noteworthy that the eddy buoyancy fluxes are

higher on the east, although the levels of EKE are

higher on the west (cf. Fig. 2). This partition suggests

that most of the EKE near the west is generated by

barotropic shear instability rather than by baroclinic

processes.

FIG. 6. The mean stratification N of the eddy-resolving model

run, defined as the square root of the vertical derivative of the

horizontally and time-averaged buoyancy, N2 5 hdb/dzi. The

dashed line indicates the vertical average of N. The parameters of

the model are described in appendix A.
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Because u9b9 decays away from the boundaries, it is

difficult to assign a meaningful constant value for k: The

flux gradient slopes become smaller farther from the

boundaries. We use a value of 1200 m2 s21 as the con-

stant value appropriate for the region of O(l) near the

eastern boundary. This value is consistent with the

cross-shore diffusivity in the California Current System

estimated by Marchesiello et al. (2003) with a high-

resolution regional model.

b. A typical solution

In this subsection we present the solutions of the

linear model of section 3. As well as the specification

of N and k, the surface buoyancy and the wind stress

forcing must be prescribed. We use shapes that are

slight modifications of those used in the eddy-resolving

computations2 (cf. Fig. 8):

b(x, y, 0) 5 g9B(y) 5 g9 cos
py

L
,

t 5 t
0
s(y) e

z
d 5 t

0
�cos

3p

2L
y 1 e�

y2

2s2

� �
e

z
d. (51)

There is no wind stress at the northern and southern

boundaries, to avoid strong upwelling layers, and the

surface buoyancy naturally satisfies no flux at the coast.

Figure 9 shows the buoyancy on the eastern and

western boundaries for a solution using the same pa-

rameter values of the eddy-resolving computation, with

N and k estimated as in section 4a. Other values of the

parameters are

k
y

5 9.8 3 10�5 m2 s�1, b 5 2.3 3 10�11 s�1 m�1,

L 5 4.9 3 106 m, (52)

x
e
5 2.4 3 106 m, g9 5 0.016 m s�2,

t
0

5 1 3 10�4 m2 s�2. (53)

It is reassuring that the buoyancy signal decays with depth

on the scale h� H, so that the use of a zero buoyancy

condition on the bottom is equivalent to the no-flux

condition used in the eddy-resolving computation.

A comparison of be, bw, and Db between the eddy-

resolving computation (Fig. 3) and the linear solution

FIG. 7. Scatterplot of u9b9 vs the time-averaged gradient b
x

for

the eddy-resolving model (dots). The linear slopes (lines) bound

most of the points, indicating the range of constant eddy diffu-

sivities found in the computations. (top) Points near the eastern

boundary and (bottom) points near the western boundary (within

250 km from the boundaries). Lower slopes are found farther away

from the walls. The parameters of the model are described in ap-

pendix A.

FIG. 8. The shapes of the surface buoyancy B and of the wind

stress s as a function of y; B satisfies the no-flux condition on the

boundaries and s vanishes on the boundaries.

2 In the eddy-resolving model the wind stress does not vanish at

the equator, but in the linear model it does, so as to ensure some

regularity of the solution at the equator.
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(Fig. 9) shows remarkable agreement. The largest dis-

crepancy occurs in the east–west difference in the sub-

tropical region: this is the wind-driven subtropical cell

for which horizontal advection of buoyancy, neglected

here, is essential (Luyten et al. 1983; Rhines and Young

1982).

The structure of the linear solution (43) together

with the effective boundary condition (33) readily ex-

plains the downward and northward tilt of the iso-

pycnals on the eastern boundary and the downward

and southward tilt on the western boundary. We can

approximately solve the buoyancy on the meridional

boundaries by expanding the effective boundary con-

ditions in vertical modes so that ›2
z / 2k2

n. Neglecting

the contribution from the distant boundary, we can

make the approximation

b̂
ẑẑx̂

; 6k2
nl

e,w
b̂. (54)

The plus sign in (54) applies to the east and the minus

sign applies to the west. We can approximate le,w with

the low-mode (kn � 1) expansion of (45), that is,

l
e
’

ŷ2

4
k4

n, l
w

’ (k
n
ŷ)�2

1
ŷ2

4
k4

n. (55)

Using these approximations in (54), and replacing

2k2
n / ›2

z, the approximate effective BCs become

ŷ3

4
b̂

ẑẑẑẑẑẑ
5 b̂

ŷ
at x 5 X

e
, (56)

b̂

ŷ
� ŷ3

4
b̂

ẑẑẑẑẑẑ
5 b̂

ŷ
at x 5 0. (57)

Then (56) is a hyperdiffusion equation whose solution

depends on the similarity variable he 5 (ẑ� z0)ŷ�2/3,

and (57) is a hyperdiffusion equation whose solution is

b̂(ŷ, ẑ) 5 ŷ f(h
w

), with the similarity variable given by

h
w

5 (ẑ� z
0
)(1� ŷ4)�1/6. Contours of these similarity

variables are shown in Fig. 10 and they illustrate how

the slope of the isopycnals on the eastern and western

boundaries arises (cf. with Fig. 9). The imposed surface

buoyancy distribution is carried at depth along the

contours shown in Fig. 10.

The similarity solutions cannot hold along the whole

meridional span of the boundaries because be 5 bw at

ŷ 5 0, 1. Given the sense of propagation of the similarity

variables, bw has to adapt to be at ŷ 5 1, while be has to

match bw at ŷ 5 0. Thus the buoyancies on the east and

west boundaries, although they have a qualitatively dif-

ferent scaling [cf. (23) with (40)], are interdependent.

The linear solution in the interior, illustrated in

Fig. 11 by three plan views at representative depths,

shows the general southwest to northeast slant of the

isopycnals, with a reversal of the north–south gradient

at depth. The reversal is apparent in the buoyancy on

the eastern boundary and the SW to NE slant can be

inferred by conceptually connecting the isopycnals on

the two boundaries in Fig. 9. In comparison with the

eddy-resolving computation, shown in Fig. 12, the linear

solution lacks the narrow scales of the western boundary

current and its extension on the western side: the hori-

zontal scale in the linear solution is dP defined in (23),

and for values of k appropriate for the western bound-

ary (cf. Fig. 7) dP should be smaller than what is shown

here. The horizontal advection of buoyancy by the

barotropic flow near the western boundary is also

FIG. 9. (top) Buoyancy b on the eastern boundary, x 5 xe, for

the linear model; (middle) b on the western boundary, x 5 0.

(bottom) The difference between the fields in (top) and (middle),

i.e., b(xe, y, z) 2 b(0, y, z). The fields should be compared to

those for the eddy-resolving computation shown in Fig. 3. The CI is

2 3 1023 m s22. Negative values are dashed.
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important in the eddy-resolving computation, but this

process is neglected in the linear model. Otherwise, the

linear solution captures the tilt of the isopycnals and the

reversal of north–south gradients with depth with re-

markable fidelity.

The linear solution shares qualitative features with

the numerical solutions of the noninertial thermocline

solutions of Colin de Verdière (1989), which include

horizontal advection of buoyancy. As in that article, the

solution is dominated by the buoyancy forcing rather

than the wind forcing, as evidenced by the smallness of

the parameter m, defined in (25).

c. The strength of the MOC

The east–west buoyancy difference is an important

quantity because it determines the MOC (Hirschi and

Marotzke 2007; Marotzke 1997). On the basin scale, it

is appropriate to neglect the viscous stress in (8) and

use this approximate relation for y in (1). Integrating in

the vertical and requiring that C vanishes at z 5 0 and

z 5 2H gives (2). Thus, given the wind stress and Db,

the time-averaged MOC can be estimated to a very

good approximation. Using the diagnostic (2) for the

linear model gives the MOC shown in Fig. 13, which

compares well with the nonlinear computation shown in

Fig. 1. Again, the linear model works best in the sub-

polar region, and the inadequate description of the

subtropical cell in the buoyancy difference is reflected in

the estimate of C. The linear planetary geostrophic

model is also unable to reproduce the cross-equatorial

abyssal cell seen in Fig. 11.

FIG. 11. Three plan views of the buoyancy for the linear solution

(43) at various depths. The northeast to southwest tilt is dictated by

the geometry of the buoyancy on the eastern boundary. (bottom)

The reversal of the north–south buoyancy gradient at depth can be

seen in the boundary values as well (cf. the top and middle panels

in Fig. 9). The contour interval is (top) 1 3 1023 m s22, (middle)

0.4 3 1023 m s22, and (bottom) 1 3 1024 m s22. Negative values

are dashed.

FIG. 10. (top) Contours of the similarity variable, he, of the

hyperdiffusion equation associated with the effective boundary

condition on the eastern boundary; compare with the top panel of

Fig. 9. (bottom) The similarity variable hw of the diffusion equa-

tion associated with the effective boundary condition on the

western boundary; compare with the middle panel of Fig. 9. The

similarity variables propagate the surface buoyancy signal down-

ward along the eastern and western boundaries. The value chosen

for z0 is 3.
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The diagnostic (2), together with the scaling discussed

in section 3c, reveals the scaling of the MOC: because

the depth of the thermocline on the western boundary,

hG, is larger than that on the eastern boundary, h, it

dominates the integral in (2). We thus have

C ; (h2
Gg9 1 Ht

0
)/(bL), (58)

where hG is the vertical scale in (40). Thus, without wind

stress, the MOC scales like the square of the thermo-

cline depth on the western boundary. According to (40)

the MOC scales as C ; g9[x
e
k

y
/(bN2)]1/2, a scaling that

we have verified with the solution (43).

In nonlinear models of the oceanic circulation, N2

is part of the solution and it is tempting to identify hG

as the scale height for the basic stratification (i.e., N2 ;

g9/hG). Using this hypothesis in (40), the scale of pene-

tration of the surface buoyancy gradient in the interior

is hG ; (bL2k
y
xe/g9)1/3. Using this nonlinear scale we

find that the MOC scales as

C ; (k2
yx2

eLg9/b)1/3. (59)

This is the classical scaling of the buoyancy-driven

MOC (Welander 1971; Vallis 2000). Notice that al-

though the scaling is determined by the buoyancy value

in a region where diapycnal diffusion is negligible and

eddy diffusion is important, the final scaling depends on

ky but not on k.

Thus, the scaling for the MOC is determined by the

depth of the thermocline on the western boundary. This

is not to say that the buoyancy on the eastern boundary

is irrelevant: for reasonable parameter values, h and hG

are comparable and Db is very different from bw (cf.

Fig. 9). Specifically, we have that the ratio between the

two scale heights is given by h/hG 5 (l/xe)
1/4, so that for

narrow basins the influence of the eastern boundary is

greater than for very wide basins.

A further question that can be explored with the

linear solution is the relative importance of wind ver-

sus buoyancy forcing in determining the strength of the

MOC. In the context of the linear model, this is done

assuming that N2 is fixed, although it is clear that this

parameter would change in a full nonlinear calculation.

In the expression (2) it is apparent that the explicit

term due to the wind stress (i.e., the last integral on the

FIG. 13. The overturning streamfunction C for the linear model

accurately describes the eddy-resolving model MOC in the sub-

polar region (top panel of Fig. 1), but only qualitatively in the

subtropical region. The CI is 1 Sv.

FIG. 12. Three plan views of the time-averaged buoyancy per-

turbations (i.e., the departures from the time and horizontal av-

erage) for the eddy-resolving computation at various depths. The

main features of NE to SW tilt and N–S gradient reversal with

depth are captured by the linear model (cf. Fig. 11). The CIs are

(top) 1 3 1023 m s22, (middle) 0.4 3 1023 m s22, and (bottom)

1 3 1024 m s22. Negative values are dashed.
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RHS) tends to decrease the strength of the MOC: this

is the Ekman overturning cell, and it is thermally in-

direct in the region of the westerlies (i.e., opposite to

the sense of circulation of the MOC). However, from

(43), (44), and (49), Db depends on the wind stress and

the dependence is linear: this is illustrated in Fig. 14,

which shows that Db linearly increases with t0. Because

of the thermally indirect Ekman cell, the strength of

the MOC decreases as t0 increases for small values of

t0, so that for realistic values of the wind stress, t0 5

O(1024 m2 s22), C has a nonmonotonic behavior. For

large values of the wind stress (t0 . 1023 m2 s22), the

increase due to Db overcomes the decrease due to the

reverse Ekman cell, and C increases monotonically with

t0. However, this regime may be outside the range of

validity of linear theory.

d. Boundary upwelling

The effective boundary conditions replace the de-

tailed dynamics of the viscous boundary layer, and they

allow the calculation of the vertical velocity integrated

across the boundary layer. From (14), or equivalently

(3), the integral of the vertical velocity across the vis-

cous boundary layer on the eastern boundary, of width

d, is given by (a similar relation can be obtained on the

western boundary)

ðx
e

x
e
�d

w dx 5�N�2kb
x
j
x5x

e
�d

1 O(d). (60)

The RHS can be calculated from the interior solution

and it is shown in Fig. 15. The eastern boundary verti-

cal velocity is dominated by buoyancy-driven down-

welling near the surface, with wind-driven upwelling

confined to the tropics. The downwelling in the upper

portion of the boundary layer is necessary to return the

surface eastward interior flow associated with the neg-

ative meridional temperature gradient (cf. top panel of

Fig. 11). Conversely, the western boundary layer expe-

riences upwelling. Given the basic stratification, N2, this

results in higher buoyancy on the eastern boundary

compared to the western boundary, so that Db is posi-

tive as shown in Fig. 9 (bottom panel) (cf. Colin de

Verdière 1988).

Below the main thermocline there is weak upwell-

ing in the eastern boundary layer, associated with the

interior westward flow due to the reversed meridio-

nal gradient (cf. bottom panel of Fig. 11). The vertical

velocity in the eastern boundary layer compares very

well with that found in the eddy-resolving model,

FIG. 14. The strength of the overturning streamfunction mea-

sured by the maximum of C (below the Ekman layer) as a function

of the strength of the wind stress, t0 (circles), and the maximum of

the east–west buoyancy difference, Db (asterisks), as a function of

t0 for the linear model. The nonmonotonic behavior of C for re-

alistic values of t0 is due to the competing effects of the thermally

indirect Ekman cell and the wind-driven contribution to the east–

west buoyancy difference. The units of C (m3 s21) have been re-

scaled so that both quantities appear on the same plot. The units of

b are m s22.

FIG. 15. The vertical velocity integrated across the (top) eastern

and (bottom) western viscous boundary layers. The CI for the

western boundary layer is 1 m2 s21, while on the eastern boundary

layer it is 0.25 m2 s21. The solution shows strong downwelling near

the equator on the west, but viscous effects cannot be neglected in

this region, so the solution is not reliable there. On the east, there is

buoyancy-driven downwelling in the thermocline in the subpolar

region and most of the subtropics, while the tropics have wind-

driven upwelling, which extends to the north below the thermo-

cline.
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shown in Fig. 16, and with previous analysis of the

three-dimensional circulation (Colin de Verdière 1988,

1989).

The vertical velocities are much larger in the western

boundary layer (cf. the contour interval for the two

panels in Figs. 15, 16) and they reflect the compensation

to the interior Ekman vertical velocity pattern (cf. the

wind stress distribution shown in Fig. 8). In particular,

there is strong downwelling near the equator that bal-

ances the strong interior Ekman suction at those lati-

tudes. This downwelling cell is not present in the eddy-

resolving simulation.

There are two reasons for the discrepancy on the

western boundary. First, the solution (43) with (45) has

a singularity in the x derivative at the single point x 5 0,

y 5 0. Thus, even though the buoyancy is regular

at the equator, the vertical velocity becomes infinite at

y 5 0. The singularity is due to a term behaving as

b̂ ; exp(�x/y2) near the origin: this is the term multi-

plying cn, and its form arises from the leading-order

behavior near the equator lw limy/0 (kny)22. We be-

lieve that this weak singularity is cured by viscosity or

diffusion in the y direction.

Second, as noted earlier, the effective BC (7) is not

accurate at the western boundary where horizontal ad-

vection of buoyancy and momentum by the mean flow

are large. Thus, the relationship (60) breaks down at the

western boundary.

5. Discussion

Motivated by the results of an eddy-resolving com-

putation, we have explored the effects of eddy buoyancy

fluxes near the solid boundaries, with special emphasis

on the eastern wall. We find that the requirement of a

quasi-adiabatic flow leads to a mean ageostrophic cir-

culation near the eastern (and western) boundary with

strong upwelling (or downwelling) next to the solid

walls, balanced by the eddy flux. The ageostrophic cell

has a velocity component in the direction normal to

the wall that cancels the baroclinic geostrophic ve-

locity at the boundary, allowing a mean alongshore

buoyancy gradient on both the eastern and western

boundaries. The geostrophic constraint for the normal

velocity is broken in a thin boundary layer where vis-

cous (or Reynolds) stresses become important. For

Newtonian friction, the thickness of the boundary layer

is Nhf�1
ffiffiffiffiffiffiffi
n/k
p

(cf. Pedlosky and Spall 2005), where h is

the dynamically determined depth near the boundary.

The viscosity n ’ 10 m2 s21 in the eddy-resolving model

is much smaller than the eddy diffusivity, k, associated

with the resolved eddy buoyancy fluxes, and this viscous

boundary layer is below the model’s resolution. We find

that it is not necessary to resolve the details of the vis-

cous boundary layers if only the interior flow is of in-

terest. Instead, effective boundary conditions for the

interior flow can be applied. The effective boundary

conditions relate the alongshore buoyancy gradient on

the boundary to the eddy buoyancy flux at the outer

edge of the boundary layer. The same eddy flux is also

proportional to the vertical velocity integrated across

the viscous/nonlinear boundary layer.

The consequences of the effective boundary condi-

tions are explored in a model of the thermocline line-

arized around a prescribed mean stratification and a

state of rest. This is G85’s model with the addition of

eddy fluxes of buoyancy parameterized as diffusion

along isopycnals, with constant eddy diffusivity, k.

The linearized model reveals that there are two ver-

tical scales of the thermocline: one at the eastern

boundary, h, and one at the western boundary, hG. Only

hG has been considered in eddyless (i.e., k 5 0) models

before; the thermocline depth at the eastern boundary,

h, has been ignored in the past by considering the limit

where the eddy diffusion vanishes. There are three east–

west horizontal scales: l is the distance from the eastern

boundary where eddy diffusion is important and the depth

of the thermocline is h; moving westward, on the basin

FIG. 16. The vertical velocity integrated across the (top) east-

ernmost 54 km and (bottom) westernmost 54 km for the eddy-

resolving model described in appendix A. The CI for the western

boundary layer is 1 m2 s21, while on the eastern boundary layer it is

0.25 m2 s21. The fields have been smoothed in the y direction with

a 30-point (163 km) Hanning window to remove the grid modes

associated with hydrostatic convection.
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scale xe, eddy diffusion is unimportant and the depth of

the thermocline is hG; near the western boundary, eddy

diffusion becomes important again on a scale dP. Both

l and dP are scales of the order of 1000 km, intermedi-

ate between the basin scale and the viscous/nonlinear

boundary layer.

The linear model is compared with an eddy-resolving

computation in a parameter range outside the validity of

the linear theory: horizontal and vertical variations of

b are as large as the vertical variations due to the basic

stratification, N2, around which the model is linearized.

Remarkably, this leads to an accurate description of the

buoyancy distribution on both the eastern and western

boundaries, indicating that the effective boundary con-

dition is a good approximation at the seaward edge of

the thin viscous/inertial boundary layers. Of course, the

specifications of the basic stratification and of the eddy

fluxes of buoyancy are essential to determine the linear

answer, while they are part of the solution in the non-

linear problem.

We find that even though the effective boundary

condition is not accurate on the western boundary (due

to the neglect of buoyancy advection), the buoyancy

distribution is accurately described there. Presumably,

meridional advection is so large on the western boundary

that buoyancy is homogenized in the meridional direc-

tion and thus meridional transport is quenched. Indeed,

the main difference between the western boundary

buoyancy in the linear model and in the eddy-resolving

model is that the latter has meridional gradients con-

fined to the intergyre front. The neglect of horizontal

advection by the mean flow near the western boundary

can be relaxed: it is possible to generalize the effective

boundary conditions (7) to include advection by a

western-intensified barotropic velocity field. For con-

sistency, the advection by the barotropic field must be

included in the interior dynamics. This leads to a linear

model as well, but one not amenable to simple analysis:

it will be the subject of future study.

The linear model also gives a qualitatively correct

description of the interior buoyancy distribution, espe-

cially in the subpolar gyre, where the ventilation dy-

namics are not important. However, the linear model has

less east–west asymmetry than the nonlinear model: this

is partly due to the choice of a constant k, so that l ; dP,

while dP should be substantially smaller than l if the eddy

diffusivity is smaller at the western boundary; further-

more, the imprint of the wind-driven barotropic flow is

absent in this linear formulation.

Because of the successful description of the east–west

buoyancy difference, the linear model predicts well

the strength of the MOC, whose maximum is at the

subpolar/subtropical gyre boundary. The scaling of the

MOC strength is set by the depth of the thermocline at

the western boundary hG and is given by c ; g9(xeky /

bN2)1/2. Assuming that the stratification is internally

determined (i.e., N2 ; g9/hG), rather than prescribed as

in the linear model, recovers the k2/3
y law found in

nonlinear models (Welander 1971; Vallis 2000).

Although the scaling of the MOC is determined by

the depth of the thermocline on the western boundary,

Db is strongly influenced by be, not just bw. This is be-

cause for typical oceanographic values hG ; h. The

connection between the MOC and the boundary buoy-

ancy suggests that processes local to the coasts are im-

portant for the global mass transport: presumably, local

alongshore winds (excluded in the present treatment)

also contribute to the buoyancy distribution on the

eastern boundary and thus ultimately to the MOC.

Confining the eddy buoyancy fluxes near the eastern

boundary would allow buoyancy gradients in the upper

portion of the ‘‘shadow zone’’ to be matched to the ideal

thermocline solutions in the interior (cf. Pedlosky 1983).

Given the westward propagation sense of the potential

vorticity conserving solution, it would be interesting to

explore the influence of the effective BC on the interior

PV distribution.
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APPENDIX A

The Eddy-Resolving Run

We employ the Massachusetts Institute of Technol-

ogy General Circulation Model [MITgcm; see Hill et al.

(1999) and the references therein] to integrate the hy-

drostatic primitive equations in a simple flat-bottomed,

equatorially centered, double-hemisphere, rectangular

domain with a zonally periodic channel occupying the

southernmost 1200 km of the domain and extending to

the bottom. The approximate zonal and meridional ex-

tents of the domain are xe 5 2400 km and L 5 9800 km,

respectively, and the depth is H 5 2400 m. This choice of

domain size (narrow and shallow compared to a typical

oceanic basin) is dictated by computational constraints.
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Experiments with a non-eddy-resolving model, in which

the effects of eddies are parameterized, have shown that

increasing the domain size does not greatly alter the

qualitative features of the circulation.

The momentum and thermodynamic equations are

discretized on a fine Cartesian horizontal grid with grid

spacing Dx 5 Dy 5 5.4 km. The vertical grid has

20 levels with grid spacing that varies from 13 m at the

surface to 275 m at the bottom. The levels are distrib-

uted such that vertical differences are second-order

accurate. The use of a Cartesian grid—chosen for ana-

lytical simplicity—is somewhat nonstandard, but we

have found that it does not alter the qualitative features

of the circulation. Consistent with the choice of a Car-

tesian grid, the variation of the local planetary rotation

rate is represented by a simple b plane, f 5 by, with

b 5 2.3 3 10211 m21 s21.

The momentum equations are forced by a specified

surface wind stress, symmetric around the equator,

whose Northern Hemisphere portion is shown in Fig. 8.

Dissipation is provided by horizontal Laplacian viscos-

ity with n 5 12 m2 s21, vertical viscosity with nV 5 3 3

1024 m2 s21, and horizontal biharmonic friction with

coefficient n4 5 9 3 108 m4 s21. The horizontal Lap-

lacian viscosity is chosen to have the minimum value

necessary to resolve the Munk layer on the western

boundary and the vertical Laplacian and horizontal bi-

harmonic friction coefficients are chosen to have the

minimum value necessary to ensure numerical stability.

To relieve the model of having to resolve the turbulent

bottom boundary layer, the bottom boundary condition

is no-stress and a linear drag with coefficient r 5 1.1 3

1024 m s21 is applied as a body force in the bottom

grid cell.

Density is a linear function of temperature only,

so the thermodynamic equation reduces to a forced

advection–diffusion equation for the buoyancy. Advec-

tive fluxes are calculated using a third-order direct space–

time scheme with a Sweby flux limiter that avoids the

generation of unphysical temperature extrema. Buoy-

ancy is diffused via Laplacian diffusion with a constant,

isotropic diffusivity k 5 9.8 3 1025 m2 s21, which is close

to the value of k 5 1024 m2 s21 required by the classical

advective–diffusive theories of the thermocline (Munk

1966; Munk and Wunsch 1998). The use of an isotropic

diffusivity eliminates the possibility of spurious dia-

pycnal fluxes in the presence of large isopycnal slopes

(i.e., the Veronis effect; Veronis 1975) without com-

promising model stability. The buoyancy equation is

forced by relaxation to a specified zonally uniform

surface distribution g9B(y) in the top grid point with a

relaxation time scale of 11 days. The surface buoyancy

distribution is shown in Fig. 8. The maximum south–

north buoyancy difference is 0.0164 m s22. The ampli-

tude of the wind stress divided by the mean density is

t0 5 1 3 1024 m2 s22, corresponding to a momentum

flux per unity density of 0.1 N m22.

The experiment reported here (Figs. 2, 3, etc.) was

started from rest and integrated with a time step of 610 s

for 438 yr. At this point near-statistical equilibrium had

been achieved and 4-yr running averages of the dy-

namical variables showed little variation except for a

slow buoyancy drift in the bottom 275 m, equivalent to

less than 0.2 mK yr21.

APPENDIX B

Derivation of (13)

In this appendix, the vorticity Eq. (13) is derived.

Taking the difference of the y derivative of (8) and

the x derivative of (9) we find the vorticity equation

by � fw
z

5�t
zy

1 n=2(y
x
� u

y
). (B1)

Taking the sum of the x derivative of (8) and the y de-

rivative of (9) we find the divergence equation

�bu 1 f (y
x
� u

y
) 5 =2p 1 n=2w

z
. (B2)

We have used (11) to eliminate the horizontal diver-

gence in favor of wz. Eliminating the vorticity, yx 2 uy,

between (B1) and (B2) we find

by � fw
z

5�t
zy

1 n=2
=2p 1 bu 1 n=2w

z

f

 !
. (B3)

Using (8) and (9) repeatedly to eliminate by and bu, we

obtain

b
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f
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� f

t
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Dividing by f and taking the z derivative we have
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(B4)

The buoyancy Eq. (14) can be used to eliminate w in

favor of b, but the last two terms on the RHS of (B4)
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cannot be written in terms of b. However, it is clear that

all terms multiplied by powers of n are only important in

side boundary layers.

In (13) we keep only the term proportional to n and

neglect all terms proportional to n2. This allows appli-

cation of the nonnormal horizontal flow condition. The

first term on the RHS, wzz, allows application of the

condition of no horizontal flux of buoyancy.

To apply the no-slip condition the terms proportional

to n2 need to be considered: these are the last three

terms on the RHS of (B4). Of the terms proportional to

n2, the first one is the largest one in boundary layers

because it has the most horizontal derivatives:

n2

f
=2 =2

w
zz

f

� �
’

n2

f
=2=2 k=2b

fN2

 !
zz

. (B5)

The other terms proportional to n2 are [cf. (B8)]

n2 b

f
=2

=2y
z

f 2

 !
’ n2 b

f
=2 =2b

x

f 3

 !
. (B6)

Therefore, for small viscosity and unless k � n, it is

possible to write a single approximate potential vorticity

equation in terms of b, given by

b
b

x

f 2
5 w

zz
�

t
zz

f

� �
y

1 n$ � 1

f
=2 $b

f
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1
n2

f
=2 =2

w
zz

f

� �
1 H.O.T., (B7)

together with (14).

To determine the BC appropriate for (B7), addi-

tional manipulations are needed. Let us consider no-

flow (u 5 0) and no-slip (y 5 0) on the meridional

boundaries (x 5 0, xe). Taking the x and z derivatives

of (B2) and eliminating ux in favor of yy 1 wz gives

f =2y
z

5 =2b
x

1 n=2w
zzx
� f w

zzy
1 by

yz
. (B8)

Using this result in the vertical derivative of (8) and

applying the condition u 5 y 5 0 gives

fb
y

5 n =2b
x

1 n=2w
zzx
� f w

zzy
� at x 5 0, x

e
,

h
(B9)

which is a condition on the fifth x derivative of b, to be

applied to (B7). If only the no-flow condition is en-

forced, the second term on the RHS of (B9) can be

dropped [the last term on the RHS of (B9) is subdom-

inant in the boundary layer].

An additional BC is needed if no-slip is enforced. This

can be obtained by eliminating u from (9) by using (8),

that is,

�f y 5 �p
x

1 t
z
� n=2

p
y

f
1 n2=2 =2y

f
. (B10)

Approximating the Laplacian operator with ›2
x, the term

vxxxx can be eliminated by using the x derivative of (B1),

ux can be eliminated using (11), yx can be eliminated

using (B2), and yxx can be eliminated using (9). After

taking the z derivative to eliminate pressure in favor of

b the BC is

0 5 b
x
�t

zz
1 n

b
xx

f

� �
y

1 n2
w

zzxx

f

� �
y

1 nw
zzx

1 H.O.T. at x 5 0, x
e
. (B11)

This BC is to be applied in addition to the no-flux con-

dition k$b�n̂ 5 0 (bx 5 0 on the meridional boundaries)

so that it is a condition on the fourth derivative of b (in

the boundary layer w N2 ’ kbxxzz).

It should be stressed that the dominant balance in the

boundary layers for the barotropic pressure is rather

different: all the terms involving wz in (B4), (B9), and

(B11) vanish when the vertical integral is considered.

Thus, the boundary layer widths for the barotropic flow

are independent of the eddy diffusivity, while k is es-

sential for the baroclinic flow.
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