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ABSTRACT

The transhemispheric and interbasin response to time-dependent wind forcing localized in the Northern Hemi-
sphere of a single basin is examined using the reduced-gravity shallow-water equations in domains of simple
geometry. On decadal timescales, the pressure on the eastern boundary fluctuates synchronously in both hemi-
spheres and thus communicates a signal to latitudes distant from the forcing. The signal then penetrates into
the interior through westward radiation of Rossby waves. Associated with the eastern boundary pressure fluc-
tuation is a time-dependent mass flux across the equator that, in a single basin, is balanced by a storage of mass
in the unforced hemisphere. Two oceanic basins connected by a reentrant channel at the high-latitude edge of
the Southern Hemisphere are then considered. Again the forcing is confined to the Northern Hemisphere of one
basin only. In this geometry the time-dependent mass flux across the equator of the forced basin is not entirely
balanced within the same basin, but induces a mass flux into the unforced basin, while the mass heaving within
the periodic channel is negligible. This process is illustrated by considering winds oscillating at a period on the
same order as the Rossby wave transit time in high latitudes. The interhemispheric and interbasin teleconnection
is achieved by a combination of long Rossby waves and large-scale, low-frequency gravity waves forced by the
Rossby signal. These disturbances share no characteristics of Kelvin waves; that is, they are not boundary
trapped.

1. Introduction

This work concerns the decadal and longer response
of the oceanic circulation to changes in the wind forcing.
Decadal timescales have a special significance in ocean-
ography, since they coincide with the time for baroclinic
adjustment of geostrophic flow, mediated by oceanic
Rossby waves.

For example, a surprisingly large fraction of the sea
level signal at decadal frequencies can be explained by
the Rossby wave response of a single baroclinic vertical
mode to wind-curl forcing [see Sturges and Hong (2000)
for a review of decadal variability of sea level]. The
decadal sea level signal is of order a few centimeters,
of similar magnitude to the global trend of 2 cm (10
yr)21.

The notion that the upper-ocean signal at a given
location might be the result of forcing to the east and
subsequent westward propagation as Rossby waves, and
not just due to local forcing, is a familiar one. It is less
intuitive that in the low-frequency band, where Rossby
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waves control the dynamics, a remote response is elic-
ited not just from forcing at different longitudes, but
also from forcing at different latitudes.

Some of the previous work on latitudinally distant
response has focused on the role of baroclinic Kelvin
waves, which operate on timescales of months. For ex-
ample, Kawase (1987) and Huang et al. (2000) studied
the adjustment of the thermocline depth to the switch-
on of a localized source of dense water using a reduced-
gravity, shallow-water model. In these initial value
problems, the steady state is reached through rapid prop-
agation of Kelvin waves followed by a slower adjust-
ment due to Rossby waves. In both Kawase (1987) and
Huang et al. (2000) the sink of thermocline water as-
sociated with the high-latitude forcing is balanced by a
distributed upward flux of mass provided by parame-
terized vertical mixing between the thermocline and the
quiescent abyss. Although the amplitude of the ther-
mocline depth anomaly is inversely proportional to the
vertical mixing parameter, the pattern of circulation be-
comes independent of the mixing as long as the mixing
timescale is longer than the Rossby wave transit time.
This is the realistic limit. In this weakly diffusive re-
gime, a steady response is obtained far away from the
mass source: in the single basin calculation of Kawase
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(1987) there is a steady circulation in the southern, un-
forced, hemisphere as well as in the northern one; in
the global geometry considered by Huang et al. (2000)
there is flow in every basin, although the source is con-
fined to the North Atlantic.

While the steady state is well understood, at least in
the context of a simple baroclinic model, the time-de-
pendent global response of the upper ocean at low fre-
quencies has received less attention, and this is the focus
of the present work.

A notable exception is the work of Hsieh and Bryan
(1996), who examined the response of the global upper
ocean to constant heating localized in the high latitudes
(either in the North Atlantic or in the Southern Ocean).
In this case there is no mixing with the abyssal ocean
that compensates the heating source so that the both the
thickness of the thermocline and the global sea level
increase in time. The sea level rise is not spatially uni-
form, and the instantaneous pattern obtained after 70 yr
is qualitatively similar to the steady solution of Huang
et al. (2000), especially insofar as the remote response
is concerned. Both Hsieh and Bryan (1996) and Huang
et al. (2000) find that the interior remote response is
slow: because of the global scale of the adjustment even
the directly forced subbasin responds on a multidecadal
timescale; that is, adjustment of the directly forced re-
gion requires much longer than the local transit time of
baroclinic Rossby waves.

The conclusion of Hsieh and Bryan (1996) and Huang
et al. (2000) that there is a substantial remote response
is at odds with the recent result of Johnson and Marshall
(2002) that only a small fraction of the signal reaches
beyond the forced hemisphere: our interpretation of this
contradiction is that Johnson and Marshall (2002) are
in a regime where the vertical mixing timescale is faster
than the transit time of baroclinic Rossby waves.

In the present study, we examine the response to pe-
riodic forcing and inquire whether there is a preferred
pattern and frequency that is especially effective at ex-
citing a remote signal. This quest is motivated by recent
results (Cessi and Primeau 2001; Cessi and Louazel
2001; Primeau 2002) showing that at decadal frequen-
cies there are basin modes with characteristic frequen-
cies: the timescale defined by the lowest eigenfrequency
is an instrinsic property of the ocean. The dynamics of
these large-scale basin modes involves only mass con-
servation and geostrophy. Because of their large scale,
most of the modal energy is in the form of available
potential energy so that the modal damping timescale
is decadal even though the friction in the momentum
equations corresponds to a few days. The hallmark of
these basin modes is a synchronous oscillation of the
eastern boundary pressure, which at low frequencies is
uniform in space. The time-dependent eastern boundary
pressure radiates a field of long Rossby waves that prop-
agate westward. When the long Rossby waves reach the
western wall, some of the energy is reflected into short
eastward Rossby waves that are rapidly dissipated, but

some energy excites a pressure signal on the boundary.
At low frequencies, this boundary pressure is coherent
all along the basin’s perimeter, and thus transmits energy
back to the eastern boundary, initiating more Rossby
waves. As detailed in Primeau (2002), this low-fre-
quency boundary pressure signal is not a free Kelvin
wave since the latter is characterized by a boundary
pressure that varies along the boundary, is associated
with cyclonic propagation, and has a characteristic
boundary trapping that scales as the deformation radius.
None of these three signatures are present in low-fre-
quency basin modes because at a decadal period the
wavelength of a free baroclinic Kelvin wave would be
of the order of 106 km, much larger than the circum-
ference of the earth. Instead Primeau (2002) proves that
the boundary signal is associated with low-frequency
gravity waves forced by the interior Rossby waves.

We show in this paper that the boundary pressure
feedback on the interior flow is the vehicle through
which the interior circulation at one latitude induces
flow in regions as remote as the opposite hemisphere,
or even another basin connected through a circumpolar
channel.

2. Model formulation

Our point of departure is the reduced-gravity shallow-
water equations with friction and wind forcing. This is
a minimal model for baroclinic flow in planetary basins
since it also represents the evolution of the first baro-
clinic mode. The model excludes processes such as non-
linear coupling of different vertical modes. The stron-
gest coupling affecting the first vertical mode is due to
the wind-driven steady component of the second bar-
oclinic mode (Dewar 1998; Liu 1999). However, this
nonlinearity is weak so that properties of the first bar-
oclinic mode are largely unchanged, and the reduced-
gravity one layer is a surprisingly accurate approxi-
mation of the first baroclinic mode. It is also the case
that most of the SSH perturbations, h, can be inferred
from the thermocline displacement, h of the first bar-
oclinic mode, through h 5 2(g9/g)h. Thus, remarkably,
despite the exclusion of important processes such as
production of baroclinic eddies, this simple formulation
reproduces the low-frequency wind-driven pressure
fluctuations observed in long time series (Sturges and
Hong 2000). The resilience of baroclinic Rossby waves
is confirmed by satellite observations of the interannual
sea surface height (SSH) signal, which reveals a bas-
inwide coherent pattern of Rossby waves in all oceans.
The latter, although most prominent on the eastern side
of the basins, survives westward all the way to the
boundary current extension regions (Fu and Chelton
2001).

We consider a rectangular basin with 2Ly , y , Ly

as the latitudinal coordinate and 0 , x , Lx as the
cartesian longitudinal one, as shown in Fig. 1. In section
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FIG. 1. A schematic figure of the basin geometry. The lower layer
is at rest.

4, two basins connected at high latitudes by a periodic
channel will be considered (cf. Fig. 8).

We parameterize the eddy fluxes through linear Ray-
leigh friction so that the oceanic flow is governed by
the momentum equations:

t
u 1 uu 1 yu 2 f y 5 2g9h 2 ru 1 , (1)t x y x r(H 1 h)

y 1 uy 1 yy 1 fu 5 2g9h 2 ry , (2)t x y y

and the mass conservation equation:

h 1 [(H 1 h)u] 1 [(H 1 h)y] 5 0.t x y (3)

In (1)–(3)

f 5 by is the Coriolis parameter,
u and y are the zonal and meridional velocities,
r is the coefficient of linear drag,
g9 is the reduced gravity,
r is the mean density,
h is the interface displacement around the mean con-

stant value H, and
t is the zonal component of the wind stress.

Boundary conditions of no-normal flow are imposed on
the solid walls, that is, u · n 5 0, so that total mass is
conserved

L Lx y

dx h dy 5 0. (4)E E
0 2Ly

The integral constraint in (4) is obtained by integrating
the mass conservation equation (3) over the domain and
defining the mean layer thickness H as the initial average
depth of the layer.

The simple geometries considered here omit the sphe-
ricity of the earth and the detailed crenellations of the
coastline. As detailed in Cessi and Louazel (2001), the
dominant dynamics at low frequency is that of long

Rossby waves and the essential timescale is their transit
time. On the sphere b } cosf, where f is the latitude,
but cosf also appears as the metric term that converts
longitude l to distance x: Dx 5 Dla cosf, where a is
the spherical radius. Consequently there is a remarkable
cancellation of the metric term when considering Dx
divided by b. Thus the long Rossby wave transit time
is identical in Cartesian and spherical geometry. As for
the details of the coastline, Primeau (2002) has shown
that they are irrelevant for the large-scale, low-frequen-
cy dynamics of baroclinic Rossby waves in a basin.

The low-frequency, weakly dissipated limit

Because we are concerned with forcing at periods
decadal and longer, the equations can be simplified by
neglecting the inertial terms. Moreover, for small-am-
plitude flows, the nonlinear terms can also be neglected,
and the flow is in geostrophic balance except in thin
frictional boundary layers. As detailed in Cessi and Lou-
azel (2001), this implies that the interior dynamics is
governed by combining the planetary geostrophic limit
of (1) and (2) with the linearized mass conservation (3).
Thus, for small friction, the interior solution satisfies

t
h 2 ch 5 , (5)t x 1 2f r

y

2c(y) [ bg9H/ f , (6)

where we have indicated with c the speed of long Rossby
waves. The velocities are related to h by the diagnostic
equations

t
2 f y 5 2g9h 1 ; fu 5 2g9h . (7)x yrH

The single boundary condition admitted by (5), u 5 0
at x 5 Lx, is satisfied by the condition on h

h 5 h (t) at x 5 L .0 x (8)

Here h0(t) is an arbitrary function of time determined
by the supplemental constraint of total mass conser-
vation (4). The condition (4) can be applied to the in-
terior solution in (5) because the frictional corrections
modify h only in thin boundary layers, whose contri-
bution to the mass integral is negligible.

An analysis of the equatorial boundary layer (omitted
here) reveals that the condition (8) approximately ap-
plies even across the equator so that on decadal time-
scales the pressure is approximately independent of po-
sition all along the eastern boundary of the basin. Thus
the interior dynamics that in Cessi and Louazel (2001)
was confined to the extra-equatorial region extends
across the equator into the other hemisphere. It is pre-
cisely the time-varying pressure on the eastern boundary
that acts as a source of motion in latitudes that are not
directly forced by the wind stress. In particular, if only
the Northern Hemisphere is forced, then this boundary
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signal freely crosses the equator and excites motion in
the Southern Hemisphere.

3. Periodic forcing in a closed basin

In this section we specialize to forcing that is periodic
in time and confined to a single hemisphere. The goal
is to examine the response in the hemisphere that is not
directly forced. Because the response to low-frequency,
large-scale wind-driven forcing is well described by the
linearized vorticity equation (5), the consideration of
more complicated time dependence (i.e., stochastic pro-
cess) can be achieved by linear superposition of the
solutions at each frequency. Thus we consider a wind
stress curl of the form

t Re[G(x, y) exp(ivt)] if y . 0,
5 (9)1 2 5r f 0 if y # 0,

y

so that G is the Fourier transform of the wind stress
curl. Neglecting an initial transient, the response will
also be of the form

h(x, y, t) 5 Re[ĥ(x, y) exp(ivt)]. (10)

Substituting (10) into (5), we find that ĥ is given by

iv(x 2 L )xĥ 5 h exp0 [ ]c

x iv(x 2 x̂)
212 c G(x̂, y) exp dx̂. (11)E [ ]cLz

The solution (11) satisfies the eastern boundary con-
dition (8) and in the latitudinal bands where the forcing
vanishes ĥ(x, y) is entirely determined by the time-de-
pendent variation on the eastern boundary, proportional
to h0. The latter constant is determined by enforcing
mass conservation (4), which results in

1 1
221 2iṽ x̃ỹh 5 D dx̃ G(x̃, ỹ )(e 2 1) dỹ, (12)0 E E

0 21

1g9H 222 2iṽ ỹD [ ỹ (1 2 e ) dỹ. (13)E2bL Lx y 21

We have defined the nondimensional frequency and spa-
tial coordinates

2bL L x yx y
ṽ [ v , (x̃, ỹ ) 5 , , (14)1 2g9H L Lx y

in order to highlight the dependence of h0 on the non-
dimensional frequency, . Notice that the relevant time-ṽ
scale in the problem is the transit time of long Rossby
waves at the high-latitude boundary:

2T [ L /c(L ) 5 bL L /(g9H).RW x y x y (15)

The expression for the eastern boundary displacement
(12) demonstrates that all latitudes are coupled in con-
trast with the usual interpretation that, in the long wave

approximation, the dynamics of Rossby waves at each
latitude are independent (e.g., Frankignoul et al. 1997).

The denominator, D in (13), vanishes only for com-ṽ
plex. The zeroes of D approximate the discrete low-
frequency eigenvalues of the linear homogeneous equa-
tion associated with (1)–(3) in the limit of small friction.
In particular, the least damped basin mode straddles both
hemispheres. Its interior spatial structure is

ĥ 5 h exp[iv(x 2 L )/c],0 x (16)

with v given by the smallest zero of D (i.e., the zero
closest to the origin in the complex v plane). Because
c becomes infinite at the equator, the pressure along the
equator equals that on the eastern boundary, and the
depth anomaly is symmetric about the equator. As an
example, the least damped eigenmode obtained by find-
ing numerically the zeroes of D in (13) for the parameter
values in (25) is

ṽ 5 7.54 1 1.70i,eig (17)

corresponding to a period of 16.4 yr and an e-folding
decay time of 11.6 yr. The essential point is that ad-
justment to steady state is achieved in a time that must
exceed the longest eigenperiod.

The large-scale approximation (16) compares well to
the least-damped eigenmode obtained solving the un-
forced, linearized shallow-water equation associated
with the system (1) through (3), assuming a time de-
pendence of the form (10), as illustrated in Fig. 2. Notice
that in the shallow water system the depth is indeed
symmetric around the equator, it is approximately con-
stant on the eastern boundary and equal to the value at
the equator, as predicted by the interior approximation
(16).

For v real, the denominator D does not vanish and
it is a measure of the mass flux across the equator be-
cause the storage rate in the Southern Hemisphere is
given by

L 0x

dx h dy 5 Re[h D exp(ivt)]L L /2. (18)E E t 0 x y

0 2Ly

At least for the simple geometry considered here, (12)
shows that the mass flux across the equator depends on
the frequency and shape of the wind stress curl over the
whole hemisphere.

a. Optimal forcing: An upper bound on the remote
response

Given that the least damped basin mode is interhem-
ispherical, it is expected that forcing localized in one
hemisphere can excite a distant response. However, be-
cause the damping of the basin modes is not weak, it
is not clear what forcing frequency would optimally
excite a remote response. In this section we address this
question and determine both the spatial pattern and the
frequency of the forcing that give rise to the largest
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FIG. 2. The (left) real and (right) imaginary part of the height field, ĥ(x, y), for the least damped
eigenmode of the linearized, unforced system associated with (1)–(3). All the parameters are as
in (25), and the friction is r 5 5.7 3 1027 s21. The eigenvalue is v 5 (1.15 1 i0.78) 3 1028

s21, corresponding to a period of 17.3 yr and an e-folding decay time of 4 yr. The amplitude of
the eigenmode is arbitrary and negative values are shaded.

response in the hemisphere that is not directly forced,
subject to a constraint on its norm.

From (11), the response in the unforced region is
given by

h 5 Re{h exp[iv(x 2 L )/c 1 ivt]}.remote 0 x (19)

This is a long Rossby wave emanating synchronously
from the eastern boundary and with crests and troughs
arriving at the western wall at times that increase with
the square of the latitude.

As a measure of the response in the unforced hemi-
sphere we use the average of over one period of2hremote

the oscillation, which coincides with | h0 | 2/2, and is
independent of x and y. This measure is proportional to
the potential energy in the unforced hemisphere, which
is the dominant form of energy in the long-scale limit.
The maximization of the energy is subject to a constraint
on the norm of the forcing, namely

1 1

dx̃ GG* dỹ 5 const. (20)E E
0 21

The optimization is obtained by maximizing the func-
tional F (G, G*), defined as

1 1

F [ h h* 1 l dx̃ GG* dỹ 2 const , (21)0 0 E E1 2
0 21

where l is a Lagrange multiplier. Given the expression
(12) for h0 as a function of G, we find that the variation
of F with respect to G*, for v fixed, is

1 1
221 iṽ x̃ỹdF | 5 h D dx̃ (e 2 1)dG* dỹdG* 0 E E

0 21

1 1

1 l dx̃ GdG* dỹ. (22)E E
0 21

For a maximum, dF (and its complex conjugate) must
vanish for an arbitrary variation of dG* (and dG), and
so

221 iṽx̃ỹlG 5 h D (1 2 e ).0 (23)

The optimal wind stress curl has a component that is
constant in space and a component that is a pattern of
waves propagating at the local Rossby wave speed, sim-
ilar to the eigenmodes of the systems, (16). While the
free basin modes are constant at the eastern boundary,
there the optimal wind stress curl varies the most while
vanishing at the western boundary. Because the free
modes are Rossby waves generated at the eastern wall
by the boundary pressure, the most efficient way to
excite them is to maximize the Ekman pumping at the
eastern boundary and then force each free wave coher-
ently by propagating the wind stress curl at the same
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FIG. 3. The eastern boundary depth | h0 | predicted by the interior
approximation (12) (smooth solid curve) as a function of the fre-
quency v of the optimal forcing (24). The x marks show the time-
and space-averaged in the unforced hemisphere obtained by2Ï2^h&
numerically integrating the nonlinear shallow-water equations with
friction, r 5 8 3 1027 s21, for the same forcing.

speed. The pattern of optimal forcing is not realistic,
but it provides an upper bound on the amplitude of any
ocean remote response to atmospheric forcing subject
to the normalization (20).

Comparing (18) with (12) shows that a wind stress
curl of the shape (23) also maximizes the flux of mass
across the equator.

The Lagrange multiplier l is determined by the con-
dition (20). Because the spatial structure of the optimal
forcing depends on v, the normalization condition re-
quires the amplitude of the forcing to depend on the
frequency. The final expression for the optimal forcing
as a function of the spatial coordinates and of the fre-
quency is thus

21/21 2t sin(ṽs )0G(x̃, ỹ ) 5 1 2 dsE 22 [ ]ṽsrbL Ï2 0y

2iṽ x̃ỹ3 (1 2 e ). (24)

In the following we choose t0 5 0.1 N m22. For this
and subsequent calculations we use the following val-
ues:

211 21 21b 5 2.3 3 10 m s , H 5 500 m,
21 6g9 5 0.02 m s L 5 7.5 3 10 m,x

6L 5 6 3 10 m. (25)y

With this choice, the area of the basin is 2LyLx 5 9 3
1013 m2, which is 60% of the surface area of the Pacific
Ocean. The b term is evaluated at the equator, and the
mean depth and stratification are chosen to be typical
of the subtropical thermocline in the Pacific.

Figure 3 shows the eastern boundary depth, | h0 | , as
a function of frequency for the optimal forcing (24).

The offset between the curves in Fig. 3 is because the
theoretical result (12) is based only on interior dynamics
and does not account for the frictional boundary layers.
Specifically, the northern boundary layer contains a sub-
stantial amount of mass.

The forcing frequency is a parameter in the optimalṽ
forcing (24). Thus we can now maximize the optimal
response by varying . We find that the largest responseṽ
is at 5 4.9. For the values quoted in (25) this cor-ṽ
responds to a period of 26 yr. Thus the optimal forcing
is peaked at a period that is quite different from that of
the least damped eigenmode: this is typical of non-nor-
mal systems such as (1) through (3) (Farrell and Ioannou
1996).

Figure 4 (left panel) shows a snapshot of the solution
(11) for the optimal wind forcing (24). Also shown
(right panel) is h obtained by numerically integrating
the reduced-gravity shallow-water equations (1)–(3) in-
cluding friction and nonlinearity. Because the optimal
forcing (24) has its maximum along the northern bound-
ary, where the analytic approximation must be corrected
in a frictional boundary layer, the response of the full
shallow-water system is smaller than that predicted by
the inviscid approximation. In all the numerical calcu-
lations that we use the following value for the frictional
parameter, which guarantees an adequate resolution of
the western boundary layer:

27 21r 5 8 3 10 s , (26)

corresponding to a decay time of 14.4 days. An im-
portant point is that, even though the Ekman spindown
timescale is about 14 days, the basin-scale oscillations
damp only on several decades. Physically this is because
only a fraction (R/L)2 K 1 of the oscillation energy is
kinetic energy (R is the baroclinic deformation radius,

/ f , and L the basin length scale). The largest dis-Ïg9H
crepancies between the large-scale interior approxima-
tion and the shallow-water solutions are due to boundary
layer corrections along the northern and southern walls,
whose widths are of order O( ) ø 440 km. ThisÏrL /bx

is illustrated in Fig. 5 where a snapshot of the zonally
averaged interface displacement predicted by (11)
(dashed line) is compared to that obtained from the nu-
merical solution (solid line). The overestimate by the
analytic approximation to h in the northern and southern
boundary layers is compensated in the interior by an
anomaly of the opposite sign (recall that the area under
each curve must integrate to zero due to mass conser-
vation).

The analytic approximations (12) and (24) also pre-
dict the dependence of the response on the optimal forc-
ing’s frequency. In Fig. 3, we show (x marks),2Ï2^h &
that is, the average over a period and over the unforced
hemisphere of the rms interface displacement obtained
from the numerical solution of (1)–(3). The wind stress
is the optimal forcing (23) for different frequencies.
Despite the disagreement in the frictional boundary lay-
ers the optimal response is obtained at approximately
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FIG. 4. (left) A snapshot of the analytic approximation to h for the optimal forcing (24) oscillating with
a period of 26 yr. The maximum value of the wind is 0.085 N m22. The range in the Northern Hemisphere
is from 80 to 267 m, while in the Southern Hemisphere it is 210 to 10 m. (right) The solution of h obtained
solving (1)–(3) numerically at the same time. The range in the Northern Hemisphere is from 46 to 243 m,
while in the Southern Hemisphere it is 6.0 to 26.7 m. The contour level is 3 m and negative contours are
shaded.

FIG. 5. The zonally averaged interface displacement shown in the
right panel of Fig. 4 (solid line) is compared with the zonal average
of h from the left panel of Fig. 4 (dashed line).

the same period (between 20 and 26 yr) as the analytical
prediction.

Figure 6 shows four snapshots of h in the unforced
hemisphere during half a period to illustrate the south-
westward propagation of the remote response. Notice
that the maximum displacement migrates from the equa-
tor and the eastern boundary toward the pole and the
western wall during one period, so all of the Southern
Hemisphere experiences a remote response. In both the
analytic approximation and the shallow-water solution
with small dissipation the remote thermocline displace-
ment is approximately 15% of the locally forced depth
variation. Notice that, although the optimal forcing ex-
cites a response in the shape of the least damped ei-
genmode, its pattern is nothing like it.

b. Suboptimal forcing

Because of the peculiar propagating structure of the
optimal forcing, we enquire whether a substantial re-
mote response is also elicited with a more generic shape
of the wind stress. We thus explore the following family
of wind stress patterns:
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FIG. 6. Four snapshots of the analytic approximation to h in the Southern Hemisphere during 0.5 period for the
optimal forcing (24), oscillating with a period of 26 yr. Notice that the maximum and minimum propagate poleward
and westward. The contour level is 1 m and negative contours are shaded.

4 4t 5 t exp[2(y 2 y ) /l ] cos(vt),0 0 (27)

where both the central latitude y0 and the scale l can be
varied. This pattern of wind stress is standing, while
that considered in the previous section is propagating.
The hyper–Gaussian profile in (27) ensures that the forc-
ing is localized in a strip y0 2 l , y , y0 1 l. This
strip might, for instance, correspond to a storm track.
At any rate, the localized standing waves pattern (27)
is very different from the broad traveling pattern in (24),
thus providing an assessment of the robustness of con-
clusions based on the optimal shape (24).

For the range of y0 and l such that the hyper–Gaussian
forcing is localized in the Northern Hemisphere, the
maximum response in the Southern Hemisphere, subject
to the constraint (20), is obtained when the central lat-
itude of the forcing is y0 5 Ly/2, and its width is l 5
0.3Ly. In order for (27) to have the same norm as (24)
the amplitude of the wind stress in (27) must be t0 5
0.015 N m22, which is much smaller than the wind stress
amplitude of the optimal forcing. An analysis of the
remote response, | h0 | 2, as a function of frequency re-
veals that the largest response is obtained at a period
of 22 yr, rather close to the period of the optimal forcing
(26 yr). However, the amplitude is smaller by about a

factor of 3 than that produced by the optimal forcing
(24), indicating that the efficiency of the optimization
procedure considered in the previous section is high
when the norm of the wind stress curl is kept fixed as
in (20).

Figure 7 (left panel) shows a snapshot of the solution
(11) for the wind stress (27), with v 5 2p/22 yr. Also
shown (right panel) is h obtained by numerically inte-
grating the reduced-gravity shallow-water equations.
The agreement between the theoretical prediction based
on interior dynamics and the numerical solution with
small friction is much better than that obtained with the
optimal forcing because the response to a hyper-Gauss-
ian forcing does not entail a northern boundary layer.
Consequently, there is no ‘‘missing-mass’’ error. The
agreement between the analytic inviscid approximation
and the numerical solution with friction is good, not just
as far as the amplitude of the response, but also as far
as the optimal frequency is concerned. A series of nu-
merical calculation, not shown here, varying the fre-
quency of the wind stress, confirms that the largest re-
sponse is indeed obtained when the period is 22 yr.
Although the maximum remote response obtained with
the family (27) is smaller than with the optimal forcing,
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FIG. 7. (left) A snapshot of the analytic approximation to h for the hyper-Gaussian forcing (27), oscillating
with a period of 22 yr. The range in the Northern Hemisphere is from 18 to 211 m, while in the Southern
Hemisphere it is 3.6 to 23.5 m. (right) The interface displacement, h, obtained solving (1)–(3) numerically.
The range in the Northern Hemisphere is from 15 to 27 m, while in the Southern Hemisphere it is 2.7 to
23.0 m. The contour level is 1 m and negative contours are shaded. For both the large-scale approximation
(left) and the full shallow-water solution (right) the ratio of the remote to the locally forced response is
about 25%.

FIG. 8. The geometry of two basins with a circumpolar connection
at the southern edge.

the ratio of the displacement amplitude in the unforced
to that in the forced region is larger with the suboptimal
forcing in (27).

For both wind stress patterns considered in this sec-
tion, there is an appreciable response in the unforced
Southern Hemisphere. The remote response is maximum

when the period is about 26 yr. In the following we
assess the robustness of the solution to the geometry of
the basin.

4. Two basins with a circumpolar connection

In this section we examine the coupled problem of
two basins connected by a periodic channel at the south-
ernmost edge. With reference to Fig. 8, the region 2Ly

2 l , y , 2Ly is occupied by a reentrant channel that
connects two basins of equal latitudinal extent, one of
zonal width Lx and the other of zonal width LA. The
two basins are separated by a landmass of width Ll and
by an infinitesimally thin solid boundary. In the follow-
ing we will focus on a configuration with

6 6L 5 10.56 3 10 m, L 5 6.6 3 10 mx y

L 5 L /2, L 5 L /4, l 5 0.16L (28)A x l x y

so that the area of the basin P, of the basin A, and of
the channel approximate those of the Pacific, of the
Atlantic, and of the Southern Ocean, respectively.

The interior dynamics (5) still holds away from the
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boundaries and in each enclosed basin the pressure on
the eastern boundary is a function of time only. In the
channel the periodicity condition h(x, y, t) 5 h(x 1 Lx

1 Ll 1 LA, y, t) applies.
In the following we will consider forcing that is pe-

riodic in time and confined to the Northern Hemisphere
of basin P so that the Southern Hemisphere of P, the
channel, and basin A are all unforced. Using the notation
of section 3, the solution in basin P is given by

h 5 Re[ĥ(x, y) exp(ivt)],P

iv(x 2 L )xĥ(x, y) 5 h exp0 [ ]c

x iv(x 2 x̂)
212 c G(x̂, y) exp dx̂, (29)E [ ]cLx

where h0 is a constant, characterizing the amplitude of
the oscillating depth at x 5 Lx.

Since basin A is unforced, the solution there is giv-
en by

h 5 Re{h exp[iv(x 2 L 2 L 2 L 1 ct)/c},A 1 x l A (30)

where h1 is the amplitude of the oscillating depth at the
eastern boundary of basin A.

The constants h0 and h1 are determined by enforcing
mass conservation in each basin, or alternatively mass
conservation in one basin and globally, as detailed short-
ly. Because the constraint of global mass conservation
leads to consideration of the total mass in the periodic
channel, we only need to examine the area average of
h there.

Neglecting friction, the evolution equation for the
zonally averaged depth in the channel ish

ivh 5 0, (31)

so, in the absence of local forcing, the circumpolar re-
gion does not contribute to the mass displacement, and
only the two basins need to be considered. The ap-
proximate result (31) does not imply that the channel
is at rest: free Rossby waves propagate through the chan-
nel, but they have zero zonal average and do not con-
tribute to mass storage.

The mass budget in basin A is
L 1L 1Lx l A

h dx dy 5 H y | dx, (32)E t E y52Ly

Area(A) L 1Lx l

stating that the total storage rate is balanced by the mass
flux at the boundary between the basin and the channel.

The meridional velocity is in geostrophic balance
even in the western boundary current so that

L 1L 1Lx l A

H y | dxE y52Ly

L 1Lx l

g9H
5 [h(L 1 L 1 L , 2L , t)x l A yf |y52Ly

2 h(L 1 L , 2L , t)]. (33)x l y

The depth on the eastern boundary of basin A is in-
dependent of y and is obtained from (30). The depth on
the southwest corner of basin A is within a western
boundary layer and cannot be obtained from the interior
approximation (30). However, the requirement that the
geostrophic velocity normal to the southern edge of the
landmass vanishes1 leads to constant pressure on that
boundary. Thus, the depth at the southwest corner of
basin A equals h at the southeast corner of basin P, which
in turn is the depth all along the eastern boundary x 5
Lx. We thus have

h(L 1 L , 2 L , t) 5 h(L , t)x l y x (34)

so that the leading-order depth is constant all along the
western and southern boundary of the landmass.

Substituting (29), (30), and (34) into (32) we find that

h 5 h S(ṽ), (35)0 1

1 L /LA x LA 2S(ṽ) [ 1 1 iṽ dỹ exp iṽ x̃ 2 ỹ dx̃,E E 1 2[ ]Lx21 0

(36)

where the nondimensional frequency and coordinates
defined in (14) have been used. To summarize, the mass
budget in basin A, together with geostrophy and the
condition of no flow through the southern boundary of
the landmass, provides the connection (35) between the
eastern boundary pressures of the two basins. Remark-
ably, the width of the landmass does not matter as long
as there is no forcing at its southern tip.

The requirement that the area integrals of (29) and
(30) add up to zero, so as to conserve total mass, leads
to the following condition on h0, analogous to (12):

1 1
221 2iṽ x̃ỹh 5 D9 dx̃ G(x̃, ỹ )(e 2 1) dỹ, (37)0 E E

0 21

1g9H 221 22 2iṽ ỹD9 [ 1 2 S(ṽ) 1 ỹ (1 2 e ) dỹ .E2 [ ]bL Lx y 21

(38)

Notice that neither the width of the continent nor the
size of the channel enter the expression for h0 because
these subdomains do not contribute to the global mass
balance. The eastern boundary pressure here differs
from that in the closed basin of section 3 only through
denominators D and D9 [cf. (13) and (38)]. The two
denominators become identical when the width of basin
A vanishes, and so the results of section 3 apply also
to a semienclosed basin whose southern solid boundary
is replaced by a reentrant channel.

Analogous to (18), the denominator D9 is proportional

1 As discussed in CL01, the thickness of the frictional boundary
layer on a southern boundary is O( ), leading to negligibleÏrL /bx

correction on the geostrophically balanced depth.
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FIG. 9. The eastern boundary depth in basin P, | h0 | , and the eastern
boundary depth in basin A, | h1 | , (both in meters) predicted by the
interior approximations (29) and (30) as a function of the dimensional
frequency, v, of the optimal forcing (24).

to the total mass flux across the equator for the two
basins combined. A simple calculation shows that the
storage rate of the combined Southern Hemispheres is
given by

L 1L 1L 0x l A

dx h dyE E t

0 2Ly

5 Re[h D9 exp(ivt)]L L /2. (39)0 x y

Because the expressions for h0 in (12) and (37) only
differ through the denominators D and D9, the spatial
structure of the forcing (24) optimally excites the re-
sponse also when considering several interconnected ba-
sins.

Figure 9 shows the amplitudes of the two eastern
boundary pressures for basin P (solid line) and basin A
(dashed line), as a function of the forcing frequency.
For the value of parameters in (28), the Southern Hemi-
sphere of basin P is maximally excited at a period of
45 yr. This period is longer that the optimal value found
in section 3 because Lx and Ly are larger in the present
example [cf. (28) with (25)]. In fact, the optimal non-
dimensional frequency for | h0 | is 5 5.2, which isṽ
slightly higher than that obtained with a single basin in
section 3 ( 5 4.9). The essential point is that the op-ṽ
timal forcing period is comparable to the transit time of
baroclinic Rossby waves in the subpolar region of the
forced basin, both in a single basin and in two basins
(and presumably also three basins) connected by a pe-
riodic high-latitude channel.

The response in basin A increases with increasing
period and becomes equal to that of basin P in steady
state when the pressure difference between the eastern
and western boundary vanishes, and so no net flux of
mass enters or leaves each basin. Of course, when the

frequency is very close to zero, the approximation (29)
is no longer valid because the neglected frictional effects
become essential.

As an example, we show in Fig. 10 a snapshot of h
forced by a wind stress curl given by (24) oscillating
at a period of 40 yr for the geometry of Fig. 8. The
solution is obtained by solving the shallow water system
(1)–(3) with the parameters in (28) and r 5 8 3 1027.
A comparison with the solution obtained in the closed
basin, whose forcing oscillates at 26 yr (cf. Figs. 4 and
10), shows that the spatial pattern of the response in the
Southern Hemisphere of the forced basin is very similar
in the two cases, confirming the interpretation that a
proper mode of the system is excited. The response in
basin A is 15% of the response in the Southern Hemi-
sphere of basin P and it is symmetric around the equator,
as predicted by the interior approximation.

To quantify the role of each subasin in the global
mass balance, we plot in Fig. 11 the volume anomaly
stored in the various regions of the domain as a function
of time. The storage rate is proportional to the flux of
mass across the open portion of each subregion and can
be approximately obtained by multiplying the storage
by the frequency v (and shifting the time series by one
quarter period). The largest storages are in the Northern
and Southern Hemispheres of the forced basin, P. For
the values used here they imply a flux of mass across
the equator which peaks at 1.7 Sv (Sv [ 106 m3 s21).
Because the storages in the two hemispheres of basin
P do not cancel, there is a flux of mass at the boundary
between basin P and the channel that peaks at 0.4 Sv
in the example of Fig. 11. The storage in the periodic
channel is negligible, and so all the mass leaving basin
P is fluxed into basin A, whose storage is equally par-
titioned between the two hemispheres. In basin A, the
mass flux across the equator peaks at 0.2 Sv, about 12%
of the corresponding maximum flux in basin P.

5. Summary and discussion

We have examined the remote response to time-de-
pendent wind forcing confined to a single hemisphere
in domains of simplified geometry. A time-dependent
flow is obtained in unforced regions through the Rossby
waves that radiate from the eastern boundary. The east-
ern boundary pressure fluctuates in time so as to guar-
antee that the mass of the active layer is conserved.
Combining this with simple dynamics leads to analytic
results that enable us to survey the parameter space and
to identify the controlling nondimensional factors.

In the absence of alongshore winds, the fluctuations
are synchronous all along the eastern coasts on the de-
cadal timescales considered here. Unlike Kelvin waves,
these disturbances are robust to coastline irregularities
(Primeau 2002).

We find that for a closed basin the remote response
in the unforced hemisphere is maximally excited by
winds oscillating at a period longer than, but of the same
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FIG. 10. A snapshot of the interface displacement, h, obtained solving (1)–(3) numerically in the geometry
shown in Fig. 8. The wind stress is obtained from the optimal forcing (24), oscillating with a period of 40
yr. The maximum wind-stress is 0.053 N m22. The range in basin P is from 241 to 39 m in the Northern
Hemisphere and from 25 to 6 m in the Southern Hemisphere. In basin A the range is 21 to 4 m. The
contour level is 2 m and negative contours are shaded.

order as, the period of the least damped eigenmode of
the system. This eigenmode is characterized by depth
anomalies that are maximum in the poleward-west cor-
ner of the basin and minimum on the eastern boundary
and the equator and have a period roughly equal to TRW

in (15). The pressure on the equator for these basin
modes equals that along the eastern boundary, sug-
gesting that the low-frequency oceanic variability gen-
erated in high latitude can influence tropical dynamics
without any atmospheric mediation.

For basins that are symmetric around the equator the
low-frequency basin modes have no net mass flux across
the equator. However, when periodic wind forcing is
applied to a single hemisphere, the storage rate in that
hemisphere does not vanish, and there is a time-depen-
dent mass flux passing across the hemispheres, even if
the local forcing vanishes there. Replacing the southern
boundary with a reentrant channel connecting the high-
latitude edge of the unforced hemisphere leaves the so-
lution unchanged.

When two basins connected at the southern boundary
by a periodic channel are considered, forcing in the
Northern Hemisphere of one basin induces a time-de-
pendent response in the other basin. This oceanic te-
leconnection is characterized by a mass flux across the
boundary between the forced basin and the channel. The

channel stores a negligible amount of mass, instead act-
ing as a conduit between the two basins whose storages
are out of phase. The essential point is that, on these
long timescales, mass balance is not achieved within
one basin, but globally and with negligible contribution
from the reentrant portion.

The lack of signal in the channel when the forcing is
in the Northern Hemisphere is in agreement with the
finding by Hsieh and Bryan (1996) of a weak Southern
Ocean sea level rise in response to heating in the Arctic.
In contrast, Huang et al. (2000) find a sizeable signal
in the Antarctic Circumpolar Current region sustained
by a balance between lateral eddy exchanges and ver-
tical upwelling due to mixing (both parameterized). The
latter process is absent in both Hsieh and Bryan (1996)
and in our model, and it obviously has a qualitative
repercussion in reentrant geometries.

We have considered wind stresses whose amplitude
ranges from 0.01 to 0.05 N m22 oscillating over several
decades: the upper range of values is larger by about a
factor of 2 from those reported by Roemmich et al.
(2001) on interannual scales. With such wind stresses,
the remote response of the interface displacement is of
the order of several meters. For the choice of parameters
(25), a thermocline depression h of 10 m is associated
with a sea level change, h 5 2(g9/g)h, of 2 cm, which
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FIG. 11. The mass storage in each subregion is plotted as a function
of time for the calculation shown in Fig. 10. Notice that the storage
is equipartitioned between the two hemispheres in basin A, and so
the two solid lines almost coincide. The storage rate in meters cubed
per second can be obtained by multiplying the storages by v 5 5 3
1029 s21.

is of the same order as the decadal trend currently ob-
served (Douglas 2000), indicating that sea level changes
observed at one location might be generated by very
distant forcing.

Within the confines of a highly idealized geometry,
we have performed a calculation with two basins having
an area comparable to that of the surface Pacific and
Atlantic, respectively. We obtain a mass flux on mul-
tidecadal timescales across the equator of the model
Pacific that is of magnitude comparable to that measured
by Roemmich et al. (2001) at 248N using geostrophic
flow above 800 m. The observed geostrophic flow in
the thermocline is somewhat compensated by Ekman
transport, but presumably the compensation decreases
on longer timescales.

Besides the hemisphere-integrated transport fluxes,
our calculation shows that the low-frequency global
thermocline displacement obtained from localized forc-
ing has a nontrivial large-scale pattern that reflects the
dynamics of baroclinic Rossby waves coupled through
the pressure along the solid boundaries. Regardless of
the shape of the forcing and the basin geometry, the
interface displacements within the semienclosed basins
all share a minimum in response in the eastern tropical
region and a gyrelike pattern in both hemispheres at
midlatitudes (cf. Figs. 4, 7, and 10). These patterns are
very similar to those found in the steady-state calcu-
lations of Huang et al. (2000) and in the initial value
problem of Hsieh and Bryan (1996). A similar pattern
in transient sea level rise is found by Bryan (1996) in
a calculation using the Geophysical Fluid Dynamics
Laboratory coupled model with enhanced greenhouse
warming, about 45 years after the warming starts.

Our analytic approximation clarifies that the pressure

on the boundaries is the vehicle for communication be-
tween basins and that Rossby waves transmit the in-
formation to the interior. We also hope to dispell the
commonly received opinion that free Kelvin waves are
an essential element in the low-frequency oceanic fluc-
tuations: there are no free Kelvin waves at decadal pe-
riods that can fit in any terrestrial basin. Instead the field
of Rossby waves forces low-frequency, large-scale grav-
ity waves that redistribute the mass coherently within
the global ocean. Because of the large-scale nature of
the motions involved, the details of the coastline are
irrelevant.

Here, we have limited our study to a single vertical
baroclinic mode, or equivalently to one reduced-gravity
layer. The inclusion of several vertical modes (or layers)
would allow for more complex processes, for example,
the interaction with time-mean currents and the spon-
taneous generation of time-dependent flows. Although
advection by mean currents is bound to be important,
we are very encouraged by some recent results by D.
Stammer et al. (2003, unpublished manuscript: concerns
the response of the global ocean to radiative forcing
anomalies over Asia) showing very similar propagating
patterns of remote SSH anomalies in the Atlantic and
Pacific in response to anomalies of heat and wind stress
forcing confined to the Indian Ocean in a multiyear
calculation using the Massachusetts Institute of Tech-
nology global model (at 18 horizontal resolution, with
23 vertical levels).

At the moment, we are not in a position to determine
whether the explicit presence of mesoscale-eddy vari-
ability alters qualitatively the picture presented here.
Our analysis of optimal forcing reveals that decadal re-
mote response is most sensitive to forcing near the east-
ern boundaries in high latitudes, while mesoscale-eddy
energy is largest near the western boundaries in mid-
latitudes. Furthermore, our calculations show a lack of
sensitivity to the actual value of dissipation, also most
important in the western boundary current, and to the
dynamics in the model Antarctic circumpolar region,
another eddy-rich region. We thus anticipate our results
might be robust to the inclusion of eddy processes.
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