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ABSTRACT

The objective of this study is to investigate the time-dependent circulation in a closed basin where the
steady circulation is included and long Rossby wave speeds are consistent with observations. Specifically,
the large-scale baroclinic eigenmodes of a two-layer rectangular basin forced by surface wind stress in the
limit of small dissipation are examined. Low-frequency modes with small decay rates independent of friction
result when the constraint of mass conservation is enforced. The magnitude of the wind stress is found to be
critical to the eigenspectrum. For all forcing magnitudes, including forcings with closed geostrophic contours,
oscillatory modes with decay rates independent of friction emerge. For forcings with closed geostrophic
contours, two important classes of eigenmodes with comparable decay rates emerge: purely decaying modes
confined to the region of closed contours, and basin-scale oscillatory modes. The purely decaying modes also
exist without the constraint of total mass conservation but their decay rates depend on the magnitude of
friction to leading order.

1. Introduction

Early investigators of the low-frequency variability
of the ocean examined the dynamics of two layers lin-
earized about a state of rest (Veronis and Stommel
1956). For surface forcing periodic in time, these au-
thors identified the basin crossing time of the long bar-
oclinic Rossby wave as the crucial timescale. For forc-
ing periods much shorter than this crossing time, the
flow is mainly barotropic, with the magnitude of the
baroclinic flow proportional to the period of the forcing.
If the period of the forcing is much larger than the basin
crossing time, the flow is in quasi-static Sverdrup bal-
ance and the lower layer is at rest. Forcing periods on
the order of the basin crossing time create a flow in
both layers; this flow is a combination of a quasi-static
barotropic flow and a time-dependent baroclinic flow.

Modern observations of long baroclinic Rossby
waves using satellite-based altimetric measurements in-
dicate that the phase speed of such waves is faster than
that predicted by linear theory (Chelton and Schlax
1996). This discrepancy has motivated a resurgence of
interest in time-dependent large-scale flows (Killworth
et al. 1997; Dewar 1998; de Szoeke and Chelton 1999).
Of primary interest in these works is the effect of the
mean circulation on the time-dependent response of
multilayer basins; particularly, how the mean flow af-
fects the first baroclinic mode. In Dewar (1998) and de
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Szoeke and Chelton (1999) a three-layer model that in-
corporates a steady flow successfully resolves the dis-
crepancy between observed and linear long first-mode
baroclinic wave speeds. Specifically, the interaction be-
tween the mean vertical shear (especially the projection
of the mean flow on the second baroclinic mode) and
the first baroclinic mode accelerates the wave speed of
the latter. Interestingly, Dewar (1998) shows that the
interaction between the first baroclinic mode and the
steady barotropic flow has little effect on the phase
speed of the first baroclinic planetary wave. In these
studies the inclusion of the third layer is necessary to
achieve the increase in phase speed; it is necessary for
the vertical structure of the steady flow to differ from
the first baroclinic mode.

Liu (1999) used a 2½-layer model to study the long
planetary wave response of a gyre forced by both un-
steady surface Ekman pumping and surface buoyancy
forcing, with particular interest in the ray paths of the
two baroclinic modes. In his formulation, both forcings
are split into a steady component, which drives a steady
circulation, and an unsteady component, which forces
a time-dependent response. Liu finds the response to
unsteady Ekman pumping to be confined to the first
baroclinic mode; that is, the two dynamic layers move
synchronously with a phase speed approximately 50%
larger than the linear prediction, and the direction of
propagation is unchanged from the linear theory. The
response to unsteady buoyancy forcing is mainly con-
fined to the second baroclinic mode and propagates
along the streamlines of the mean circulation.

In all the above-mentioned studies, the time-depen-
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dent response of the ocean is associated with a time-
dependent forcing. Here, we present a complementary
view of understanding the time-dependent transient ad-
justment in an ocean basin by examining the eigenmodes
of the system when the forcing is steady. We consider
a two-layer formulation of the wind-driven flow, and
examine how the mean, steady flow affects the eigen-
problem for the first baroclinic mode on decadal time-
scales and basinwide spatial scales. In this regard, our
approach is global and must take into account boundary
conditions that conserve the mass of each layer. More-
over, by considering the time-dependent adjustment of
the baroclinic mode with steady forcing, we naturally
examine an initial value problem and the role of the
baroclinic eigenmodes in this process.

We find that the constraint of total mass conservation
allows for eigenmodes characterized by large spatial
scales, low frequencies, and small decay rates indepen-
dent of friction. These characteristics are not surprising
in light of the previous studies regarding long-wave
basin modes. Specifically, Cessi and Primeau (2001,
henceforth CP01) find that the eigenmodes of a rect-
angular reduced-gravity 1½-layer basin have frequen-
cies in multiples of 2p divided by the transit time of a
long Rossby wave. These basin modes are also reported
in LaCasce (2000), where the forced response of a qua-
sigeostrophic 1½-layer square basin is examined with
mass-conserving boundary conditions.

These modes exist because the energy fluxed into the
western boundary as long Rossby waves is not all re-
flected into short Rossby waves, as is the case for non–
mass-conserving boundary conditions where the bound-
ary pressure is prescribed. Rather, some energy goes
into the boundary pressure and is thus transmitted in-
stantaneously to the eastern boundary. The angle be-
tween the western boundary and long Rossby wave
phase lines determines the efficiency of this process.
For rectangular quasigeostrophic basins this angle is
zero and all of the westward propagating energy goes
into excitation of the boundary pressure, except for a
small amount removed by dissipation. Thus the decay
rate of the basin modes depends on the square root of
friction. If the angle between Rossby wave crests and
the western boundary is different from zero, some of
the energy goes into short Rossby waves, and this
amount is completely dissipated in the western bound-
ary layer. As a result, the decay rate of these large-scale
eigenmodes is independent of friction to leading order
(Cessi and Louazel 2001; Primeau 2002; LaCasce and
Pedlosky 2002).

Several authors interpret the instantaneous boundary
pressure adjustment as a parameterization of Kelvin
waves. However, using a shallow-water formulation,
Primeau (2002) clearly demonstrates that the low-fre-
quency modes are a combination of long Rossby waves
and low-frequency gravity waves forced by the Rossby
waves. In other words, no free gravity wave is excited.
In particular, no free Kelvin wave exists at these low

frequencies, since it would have a wavelength several
orders of magnitude larger than the size of the basin.

What is the relevance of these modes to a time de-
pendent process? CP01 find that the adjustment of a 1½-
layer mass-conserving basin is accomplished by these
eigenmodes; that is, there are damped oscillations with
periods equal to the transit time of the long baroclinic
Rossby wave speed. This is contrary to the prediction
by Anderson and Gill (1975) that the spinup is achieved
by a single crossing time of a long baroclinic Rossby
wave.

When a two-layer rectangular basin forced by a steady
surface wind stress is considered, the baroclinic long
Rossby wave speed is a function of latitude and lon-
gitude due to the interaction with the barotropic wind-
driven flow. Moreover, unlike the systems examined
previously, the long Rossby wave speed can vanish and
even become eastward. Nevertheless, the system is char-
acterized by oscillatory modes with small decay rates
and low-frequencies independent of friction to a first
order. Hence, the adjustment of this two-layer basin to
steady state is accomplished through damped oscilla-
tions, analogous to the results of CP01.

2. Two-layer formulation

We consider a two-layer rigid-lid model of the ocean
where the upper layer has depth H1 and density r1, and
the lower layer has depth H2 and density r2. We take
H1 5 1000 m and H2 5 3000 m throughout. The gov-
erning quasigeostrophic potential vorticity equations are

f02 2q 1 J(c , q ) 5 2r¹ c 1 k¹ q 1 w ,1t 1 1 1 1 EH1

2 2q 1 J(c , q ) 5 2r¹ c 1 k¹ q . (1)2 t 2 2 2 2

The potential vorticities for the upper and lower layer
are

2f 02q 5 ¹ c 1 by 1 (c 2 c ),1 1 2 1g9H1

2f 02q 5 ¹ c 1 by 1 (c 2 c ). (2)2 2 1 2g9H2

The upper-and lower-layer streamfunctions are c1 and
c2, respectively; g9 is the reduced gravity, taken to be
1.33 3 1022 m s22; and J(a, b) [ axby 2 aybx. We also
take f 0 5 1024 s21 and b 5 2 3 10211 m21 s21.

The upper layer is forced by Ekman pumping, wE.
Dissipation is equal in both layers and in the form of
potential vorticity diffusion and linear drag. This for-
mulation ‘‘decouples’’ the barotropic mode from the
baroclinic one in the large-scale limit while still closing
the barotropic streamfunction with a frictional boundary
layer. Downgradient diffusion of potential vorticity cou-
ples the layers; without this term, c2 would be identi-
cally zero in steady state. We choose a value of diffu-
sivity, k 5 1000 m2 s21, appropriate for scales larger
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than the deformation radius. The linear drag r is as-
sumed to be small, r 5 1027 s21. Following Salmon
(1998, chapter 2), we define the barotropic streamfunc-
tion C, and the baroclinic streamfunction Q, as

H c 1 H c1 1 2 2C 5 , Q 5 c 2 c , (3)2 1H

where H [ H1 1 H2 5 4000 m is the total depth of
the basin.

The coupled dimensional equations for the barotropic
and baroclinic streamfunctions are

H H1 22 2 2¹ C 1 J(C, ¹ C) 1 J(Q, ¹ Q) 1 bCt x2H

fo 2 45 w 2 r¹ C 1 k¹ CEH

H 2 H1 22 22 2 2(¹ Q 2 R Q) 1 J(Q, ¹ Q) 1 J(Q, ¹ C)t H
2 221 J(C, ¹ Q) 1 J(Q, by 1 R C)

f0 22 2 45 2 w 2 (r 1 kR )¹ Q 1 k¹ Q. (4)EH1

The internal deformation radius is defined as R2 5
g9H1H2/( H) and, using the numbers previously quot-2f 0

ed, R 5 3.16 3 104 m.
The nondimensional barotropic and baroclinic equa-

tions are obtained using the following scalings:

(x, y) 5 L(x̂, ŷ), t 5 t t̂,0

C 5 C C, Q 5 C Q, (5)0 0

where

L f L0t [ , C [ w . (6)0 0 E02bR bH

Thus, the spatial coordinates are scaled by the size of
the basin and we take L 5 5 3 106 m. Time is scaled
by the crossing time of a long internal Rossby wave,
which is about 8 yr, and both the barotropic and bar-
oclinic streamfunctions are scaled assuming Sverdrup
balance. Assuming an amplitude of the Ekman pumping
wE0 5 1.9 3 1026 m s21, we get C0 5 1.2 3 103 m2

s21. The nondimensional equations for the barotropic
and baroclinic streamfunctions are

H H1 22 2 2e¹ C 1 egJ(C, ¹ C) 1 eg J(Q, ¹ Q ) 1 Ct x2H
2 45 W 2 d¹ C 1 en¹ C,

H 2 H1 22 2 2(e¹ Q 2 Q ) 1 eg J(Q, ¹ Q ) 1 egJ(Q, ¹ C)t H
21 egJ(C, ¹ Q ) 1 J(Q, y 1 gC)

H
2 45 2 W 2 (n 1 d)¹ Q 1 en¹ Q. (7)

H1

All variables are now nondimensional: W is the nor-
malized forcing with maximum unit amplitude, and we
take it of the form

W 5 2sin(py). (8)

We consider a double-gyre basin; hence, 0 # x # 1 and
0 # y # 2.

There are four nondimensional parameters controlling
the double-gyre problem:

2R C r k0e 5 , g 5 , d 5 , n 5 .
2 21 2L bLR bL bLR

(9)

Using the values just cited, we find e 5 4 3 1024, d
5 1023, n 5 1022, and g 5 0.12. Therefore, the phys-
ically relevant ordering of parameters, e K d K n K
1, is assumed throughout this paper.

The parameter e measures the ratio of the deformation
radius to the zonal extent of the basin or equivalently
the importance of inertia to vortex stretching, d is the
ratio of the decay rate due to Rayleigh drag and the
frequency of a planetary barotropic Rossby wave, and
n is the ratio of the baroclinic Rossby wave crossing
time to the time to diffuse potential vorticity across the
basin. The parameter g measures the speed of the bar-
otropic flow relative to the phase speed of a long Rossby
wave and is thus a measure of the strength of the wind
stress forcing. If the time to diffuse potential vorticity
is much less than the timescale of the Rayleigh drag, d
K n, the steady solution has homogenized lower-layer
potential vorticity in the region of closed geostrophic
contours (Young and Rhines 1982), also known as the
‘‘pool’’ region. This is the limit in which vorticity is
more easily exchanged between the layers than is lost
to Rayleigh friction.

In the limit where e is the smallest parameter, the
evolution of the barotropic mode C is decoupled from
that of Q and (7) reduces to

2C 5 W 2 d¹ Cx

H
22Q 1 J(Q, y 1 gC) 5 2 W 2 (n 1 d)¹ Q. (10)t H1

On large spatial scales, and on the long timescales of
baroclinic evolution, the barotropic equation responds
instantaneously to the forcing W. In this formulation all
time dependence is in the baroclinic mode, Q, and this
is the focus of our study.

To obtain the baroclinic time-dependent eigenmodes,
Q is separated into steady and unsteady components:

Q(x, y, t) 5 Q(x, y) 1 Q9(x, y, t), (11)

while the barotropic mode is steady, C(x, y, t) 5 (x, y)C
as long as the forcing is steady, W 5 (x, y). BecauseW
the problem is quasi-linear, this decomposition allows
us to solve for the steady state separately from the time-
dependent component, without any assumption regard-
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FIG. 1. Geostrophic contours are plotted for two values of g . The
contour interval is 0.1 in each plot. Closed geostrophic contours occur
if g . 1/p. The bold contour separates the region of open contours
and the region of closed contours. For these plots d 5 0.02 to make
the western boundary layer clearly visible.

ing their relative amplitude. We thus obtain two equa-
tions for the steady state, and one equation for the un-
steady part, namely

2C 5 W 2 d¹ C (12)x

H
2J(Q, y 1 gC ) 5 2 W 2 (n 1 d)¹ Q (13)

H1

22Q9 1 J(Q9, y 1 gC ) 5 2(n 1 d)¹ Q9. (14)t

The boundary conditions for this system are no flow
through the boundaries

C z 5 C , Q z 5 Q , Q9z 5 Q9(t),]V 0 ]V 0 ]V 0

(15)

and the constraint of mass conservation in the lower
layer, namely

]
Q9 dV 5 0. (16)E]t

V

The basin area is denoted by V and the boundary by
]V. To obtain the constants in (15) for the steady stream-
functions we enforce #V dV 5 #V dV 5 0, but forC Q
the double-gyre forcing, (8), the integrals are zero, hence

0 5 0 5 0.C Q
The steady state satisfies (12) and (13), that is, the

problem studied in Young and Rhines (1982, henceforth
YR). The time-dependent solution is governed by a ho-
mogeneous equation, (14), and thus depends only on
the initial condition and on the barotropic steady state.

Prior to examining the time dependence of the bar-
oclinic mode we briefly review the steady-state solution
of (12) and (13). Given the subtropical gyre forcing (8),
the steady barotropic streamfunction is the classic Stom-
mel solution. To first order it is

x
C 5 1 2 x 2 exp 2 sin(py). (17)1 2[ ]d

The geostrophic contours, given by lines of constant q̂,
defined as

q̂ [ y 1 gC , (18)

are paramount in determining the steady-state solution
to the baroclinic problem. With the solution given by
(17) the geostrophic contours depend solely on the size
of g. This parameter dictates whether or not there are
closed geostrophic contours. Figure 1 shows q̂ for two
different values of g. There exists a region of closed
geostrophic contours if there is a maximum of q̂ in the
domain; that is,

1 1
g . ø . (19)

p(1 1 d logd 2 d) p

In the two-layer formulation presented here, the estimate
of g is 37% of this critical value.

The steady-state theory established in YR states that
if there are no closed geostrophic contours the nondi-

mensional lower-layer streamfunction, 2, is O(n) ev-ĉ
erywhere. However, if there are closed geostrophic con-
tours, the same theory predicts that the lower-layer po-
tential vorticity is given by

d
q 5 const 1 ĉ (20)2 2n

inside the closed geostrophic contours. In the limit of
d/n K 1 this leads to a pool of homogeneous q2 and a
steady circulation of order one inside the region of
closed geostrophic contours. Outside of the closed geo-
strophic contours, the shadow zone, 2 5 O(n). Nu-ĉ
merical solutions to the steady-state problem, (12) and
(13), are displayed in Fig. 2 and are in agreement with
the theory of YR.

How is this steady state achieved from arbitrary initial
conditions? One way to understand the initial value
problem is to examine the eigenmodes of the baroclinic
component.

3. Baroclinic eigenmodes

We find the eigenmodes of the baroclinic system by
looking for time-dependent solutions of (14) in the form
Q9(x, y, t) 5 exp(st) u(x, y). Thus (14) becomes

22su 1 J(u, y 1 gC) 5 2(n 1 d)¹ u. (21)

The eigensolutions depend on , solution of (12), asC
well as on the two parameters g, and d 1 n. In the limit
of small friction, the critical parameter is g, because it
determines if the geostrophic contours, q̂, are blocked
or closed.

If 0 , g , 1/p there are no closed geostrophic con-
tours but the deformation of q̂ produces long Rossby
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FIG. 2. The steady-state solution for the two-layer quasigeostrophic
problem is contoured. The parameters are g 5 1, d 5 0.001, and n
5 0.01. All solutions are nondimensional: Q is scaled by C0 and q2

is scaled by bL. The bold contour separates the region of closed
contours and open contours. Note the quasi homogenization of q2 in
the region of closed contours.

wave speeds that are latitude and longitude dependent.
Nevertheless, there is always a westward component of
propagation for long baroclinic Rossby waves. This is
illustrated by examining the local nondimensional
phase speed, given by c (x)(x, y) 5 21 1 g y(x, y) andC
c (y)(x, y) 5 g x(x, y). For c (x) , 0, all geostrophicC
contours are ‘‘blocked.’’ In the subtropical gyre, 0 # y
# 1, waves emanating from the northern portion of the
eastern boundary slow down as they move west and
then south, and waves emanating from the southern por-
tion of the eastern boundary speed up as they move
west (cf. the left panel of Fig. 1).

If g . 1/p, c (x) changes sign inside the domain, and
there is a pocket of closed geostrophic contours, which
do not touch any boundary. When there exists a region
of closed geostrophic contours, the inviscid approxi-
mation used by CP01, Cessi and Louazel (2001), and
Primeau (2002) to estimate the frequencies and decay
rates of the baroclinic eigenmodes cannot be applied
and we must resort to numerical methods.

The essential question that we can address is whether
or not the decay rate and frequencies of the eigenmodes
of the system are independent of friction to first order,
as the parameter g is increased past the closed geo-
strophic contours threshold.

We thus approximate (21) with a discrete eigenvalue
problem, Au 5 sBu, which we solve numerically. The
matrices A and B are the discrete equivalents of the
linear operators in (21): A is equivalent to (d 1 n)¹2

1 q̂y]x 2 q̂x]y and B is the matrix representing the
undifferentiated operator. The matrices A and B are ob-
tained using a Galerkin approximation of (21) assuming
a Jacobi polynomial expansion for the eigenfunctions

and test functions (the details are in the appendix). This
formulation is useful because the mass-conserving
boundary condition is easily enforced and the boundary
layers are efficiently resolved.

a. Blocked geostrophic contours

1) INVISCID MODES

When all the geostrophic contours are blocked, thus
the entire basin is a shadow zone, an analytic approx-
imation to the solutions of (21) is possible in the limit
d 1 n K 1. In this limit, friction closes the problem by
generating thin boundary layers on the southern, north-
ern, and western boundaries. These small boundary lay-
ers only affect the eigenspectrum at second order.

To leading order, we neglect friction and (21) be-
comes

su 5 J(u, q̂). (22)

In this inviscid approximation, we can also omit the
western boundary layer of thickness d in the expression
for the barotropic streamfunction, , so that the geo-C
strophic contours are approximately given by

q̂ 5 y 1 g(1 2 x) sin(py). (23)

Then (22) can be solved using the method of charac-
teristics. First, we change to a new pair of independent
variables, q 5 q̂ and s 5 y. This leads to the separable
ordinary differential equation

]u s u
5 . (24)

]s g sin(ps)

The solution in terms of the new independent variables is
s/gpu(q, s) 5 F(q)[tan(ps/2)] . (25)

The function F(q) is obtained by enforcing the boundary
condition, u 5 u0 at the eastern boundary, x 5 1. In
terms of the new variables, this is u(q, s 5 q) 5 u0 and
we find

2s/gpF(q) 5 u [tan(pq/2)] .0 (26)

Changing back to the independent variables x and y
results in

2s/gp

p
tan [y 1 g(1 2 x) sin(py)]5 62

u(x, y) 5 u . (27)0

py7 8tan1 22

The eigenvalues s in (27) are determined by applying
the constraint of mass conservation (16), which corre-
sponds to #V u(x, y) dV 5 0. For small g we obtain

4p
2 2s 5 62pni 2 n g

4
6p

2 2 2 4 62 n (9p n 1 46 7 12pni)g 1 O(g ), (28)
576
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FIG. 3. The decay-rate and frequency of the first four baroclinic
eigenmodes as a function of g using the inviscid approximation. The
markers correspond to the modes displayed in Fig. 4, and the arrow
in the frequency panel denotes when a mode is ‘‘in transition.’’

thus recovering the solution of CP01 for g 5 0. To find
the eigenvalues for all g , 1/p, we numerically find
the zeros of the complex function

1 2

S (s) 5 dx dy u(x, y). (29)E E
0 0

The resulting eigenvalues for the first four eigenmodes
as a function of g are shown in Fig. 3.

We order the eigenmodes by increasing n in the limit
as g → 0. Hence, the gravest mode for g 5 0 is obtained
for n 5 1 and will be denoted as SM-1 for shadow mode
one. Because Fig. 3 represents the dependence of the
eigenspectrum on the forcing g in the limit d 1 n →
0 a careful explanation is required. We will begin by
focusing on SM-2 (dashed line) at g 5 0. As g increases
from zero, the frequency (lower panel) remains constant,
about 4p, and the decay rate (upper panel) increases
quadratically as predicted by (28). At g ø 0.1 the decay
rates of SM-2 and SM-3 (dashed–dotted line) cross, and
the frequencies of SM-2 and SM-3 are almost equal.
This implies that at this value of g the two eigenmodes
are nearly identical since their structure is uniquely de-
termined by the eigenvalue, as shown by (27). However,
the eigenvalues are not exactly the same and the fre-
quencies of SM-2 and SM-3 ‘‘bounce.’’

As g is increased past 0.1 the frequency of SM-2
decreases linearly with g while the frequency of SM-3
stays constant. Still following SM-2 as g increases past
0.1, we see that the decay-rate of this mode (upper pan-
el) equals the decay rate of SM-1 (solid line) at g ø
0.1875 while the frequencies of these two modes bounce
at this g. This results in SM-2 now having a constant
frequency of 2p, and the frequency of SM-1 decreasing
linearly with g. Now SM-2 has the frequency that SM-
1 had at g 5 0. We consider the IM’s to be ‘‘in tran-

sition,’’ indicated by an arrow in the lower panel of Fig.
3, when the frequency decreases linearly after a bounce.
We conclude that the crossing of decay rates coincides
with a bouncing of frequencies. This leads to eigen-
modes with frequencies close to or equal to 2np and
eigenmodes with frequencies in transition. From Fig. 3
we see that the least-damped mode always has a fre-
quency of about 2p.

Figure 4 shows the corresponding eigenfunctions (the
imaginary part) for the eigenvalues denoted by markers
in Fig. 3. Notice that the eigenmodes are symmetric
around the zero wind stress curl line, y 5 1, so that
mass is exchanged across the gyres. Here, g increases
to the right for each of the three modes. The spatial
scale of the modes at y 5 1 in the western portion of
the basin decreases as g → 1/p. This is due to the
vanishing of the wave speed in the x direction as g goes
to 1/p near y 5 1. Indeed the expansion of u(x, y) near
x 5 0 and y 5 1 is

sx
u(x ; 0, y ; 1) ; exp . (30)1 21 2 pg

The wavenumber in the x direction goes to infinity as
g goes to 1/p for any eigenvalue with an imaginary
component and the e-folding distance of each mode goes
to zero for any eigenvalue with a real component. In
fact, a singularity of the inviscid approximation (27)
occurs for q̂ 5 1, with the numerator becoming infinite
and the denominator bounded as long as y ± 1. Indeed
all inviscid eigenmodes are degenerate at the singularity
g ø 1/p, hence it is difficult to accurately integrate (29)
when g ø 1/p. Despite this difficulty, there are eigen-
modes at g 5 1/p for which the inviscid eigenvalues,
given by (27) and (29), are accurate. To find these ei-
genvalues the singularity in (27) is avoided by inte-
grating (29) in the y direction from zero to q̂ 5 1 2 a
and insuring that the eigenvalues converge as a is de-
creased and the resolution of the integration is increased.
In this fashion we find that SM-3 in Fig. 3 (dash–dot)
at g 5 1/p has an eigenvalue of 8.05i 2 1.06. Notice
that this is the least-damped mode and has a frequency
close to 2p. We will see shortly that when friction is
added to the problem and then progressively decreased,
the eigenvalue given above is verified.

2) THE EFFECT OF FRICTION

With the explicit inclusion of friction, d 1 n, the
singularity at g 5 1/p is removed, and some changes
are observed even for g # 1/p. The eigenvalues of the
two least-damped eigenmodes are displayed in Fig. 5
for two different values of friction. This figure should
be compared to Fig. 3, the eigenvalues of the inviscid
approximation. The bold line denotes higher friction, d
5 0.0013 and n 5 0.005, and the thin line is for d 5
0.0013 and n 5 0. SM-1 corresponds to the solid lines
and SM-2 to the dashed lines. The eigenvalues for n 1
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FIG. 4. The structural dependence of the first three baroclinic basin modes in the inviscid
approximation as a function of g . Specifically, the imaginary part of the eigenmode is contoured:
g increased to the right and the top panels correspond to SM-1, the middle panels to SM-2 and
the bottom panels to SM-3.

FIG. 5. The eigenvalues of the first two modes as a function of g
for two different values of friction. The solid lines are SM-1 and the
dashed lines are SM-2. Thin lines correspond to d 5 0.0013 and n
5 0, and thick lines corresponds to d 5 0.0013 and n 5 0.005. The
markers indicate the eigenmodes displayed in Fig. 6.

d 5 0.0013 (thin lines) are nearly identical to the in-
viscid approximation. The important similarity is the
switching of the least-damped mode near g ø 0.2. How-
ever, for n 5 0.005 (bold lines) neither frequency tran-
sitions nor decay-rate crossings between SM-1 and SM-

2 occur, and SM-1 is always the least-damped mode.
Thus, there are critical values of friction above which
frequency transitions and the related decay-rate cross-
ings do not take place. Hence, for these ‘‘large’’ values
of friction SM-1 is always the least-damped and always
has a frequency close to 2p for all g , 1/p. Despite
the complicated dependence of s on mode number, fric-
tion, and g, the least-damped mode always has a fre-
quency close to 2p for all values of g , 1/p and for
any small value of friction. This can be seen in Fig. 5
at g 5 1/p where for small friction this mode is denoted
by the thin dashed line, and for the larger value of
friction this mode is denoted by the thick solid line.

The effect of friction on the spatial structure of the
eigenmodes is as follows. As g goes to 1/p the zonal
wavenumber of a shadow mode goes to infinity near y
5 1 and because friction acts to remove small scales,
it limits the zonal wavenumber of the modes. This re-
sults in erasing the high zonal wave number structure
seen in the inviscid approximation while leaving the
structure in the southern and northern portion of the
basin unaffected. Figure 6 shows the effect of friction
on mode structure, namely the top panels show the
imaginary part of SM-1 as a function of g with small
friction, d 5 0.0013 and n 5 0, and the bottom panels
show the imaginary part of SM-1 with larger friction,
d 5 0.0013 and n 5 0.005. Thus, the bottom panels
indicate the g dependence of SM-1 when it is always
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FIG. 6. The imaginary part of the eigenfunctions for SM-1 for (top) d 5 0.0013 and n 5 0 ,
and (bottom) d 5 0.0013, n 5 0.005 for the values of g in Fig. 4. For all panels, except the
upper right, SM-1 is the least-damped eigenmode. The geostrophic contours are the dashed
contours.

the least-damped mode. Note the difference in structure
in the right panels and the corresponding difference in
eigenvalues of SM-1 in Fig. 5. Interestingly, for this
value of g, the decay rate of SM-1 is larger and the
frequency smaller for the smaller value of friction.

b. Closed contours

Just as friction allows for the existence of eigenmodes
for g 5 1/p, it also cures the singularity of the inviscid
approximation (27) along the line q̂ 5 1, that is, along
the separatrix between the pool and the shadow zone.
Moreover, with the inclusion of friction we find two
categories of weakly damped eigenmodes for g . 1/p.
One type is the continuation of the inviscid modes for
g , 1/p, characterized by basinwide scales and oscil-
latory behavior. We still call these modes SMs. The
eigenmodes in the other class are confined to the pool
zone, hence they are called pool modes (PMs). The PMs
are both oscillatory and nonoscillatory. However, the
least damped ones are purely decaying.

1) SHADOW MODES

The oscillatory shadow modes are a continuation of
the inviscid modes discussed in section 3a and thus
they exist only with the mass conserving boundary
condition. The real and imaginary parts of the least

damped oscillating SM is shown in the upper two pan-
els of Fig. 7 for g 5 1 and small friction parameters.
Because this mode is the least-damped SM, it is con-
sidered SM-1 regardless of its origin at g 5 0. In fact,
examining the evolution of the SM-1 for increasing
values of g . 1/p reveals that it originates from the
least-damped SM for g 5 1/p as discussed in section
3a. Notice that the numbering scheme has changed: in
the closed geostrophic contour regime: it makes more
sense to number the eigenmodes by increasing decay
rate, not increasing n at g 5 0. Interestingly, for small
values of friction, roughly d 1 n , 0.0063, this mode
originates as SM-2 or higher SM mode number, and
for larger values of friction it originates as SM-1 at g
5 0.

The eigenvalues of SM-1 for 1/p # g # 1 are dis-
played in the middle panel of Fig. 7 for a ‘‘larger’’ value
of friction, d 5 0.0013 and n 5 0.005. The solid line
is the decay rate, 2Re(s), and the dashed line is the
frequency, Im(s). Note that the eigenvalues in this figure
are an extension of the thick solid lines of Fig. 5 for
g . 1/p. Also, notice from this figure that both the
frequency and the decay rate increase nearly linearly
with g for SM-1.

Since friction is essential for the existence of the ei-
genmodes for g . 1/p, while they originate from modes
that had eigenvalues independent of friction to leading
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FIG. 7. (top) The real (Re) and imaginary (Im) parts SM-1 for g
5 1, d 5 0.005,n 5 0. The bold contour is q̂ 5 1; i.e., it separates
the pool and shadow zones. (middle) The SM-1 eigenvalue depen-
dence of g for n 1 d 5 0.0063. (bottom) The SM-1 eigenvalue as
a function of n 1 d with fixed g 5 1. In both the middle and bottom
panels the decay rate, 2Re(s), is the solid line, and the frequency,
Im (s), is the dashed line.

FIG. 8. (top) The real part (there is no imaginary part, the eigen-
values are real) of PM-1 and PM-2 for g 5 1, d 5 0.005,n 5 0. The
bold contour is q̂ 5 1; i.e., it separates the pool and shadow zones.
(middle) The PM-2 eigenvalue dependence on g for n 1 d 5 0.0063.
(bottom) The PM-2 eigenvalue as a function of n 1 d with fixed g
5 1. In both the middle and bottom panels the decay rate, 2Re(s),
is the solid line, and the frequency, Im(s), is the dashed line.

order, it is not obvious that this property persists for g
. 1/p. The bottom panel of Fig. 7 shows the decay rate
(solid line) and frequency (dashed line) of SM-1 as a
function of friction at the fixed value g 5 1. In this
calculation d is fixed at 0.0013 and the parameter n is
varied. We find that both the frequency and the decay-
rate of SM-1 are independent of friction to leading order.
In fact, for g 5 1, fitting the eigenvalues of SM-1 using
least squares gives

s ø 21.5 1 12.5i 2 CÏd 1 n 2 iDÏd 1 n.SM-1

(31)

Least squares fittings carried out for various values of
g . 1/p shows that for SM-1 the decay rates and fre-
quencies are independent of friction to first order, an
interesting result considering that friction is essential to
overcome the inviscid singularity along the line q̂ 5 1.
In fact, for g 5 1/p we find that least-damped mode
has the eigenvalue 8.05i 2 1.06, the same eigenvalue
obtained in the inviscid approximation.

2) POOL MODES

Unlike the shadow modes that have large-scale struc-
ture throughout the basin, the pool modes are confined

to the region of blocked geostrophic contours. This is
clear from the top panels of Fig. 8 where the two least-
damped pool modes, PM-1 (s1 5 21.65) and PM-2 (s2

5 22.32), are contoured for g 5 1, d 5 0.0013, and
n 5 0 along with the separatrix between the pool and
shadow regions (thick contour). In this figure only the
real part of the eigenfunction is contoured because the
eigenvalues and eigenfunctions are purely real, hence
these modes are purely decaying.

Can either PM-1 or the slightly more damped PM-2
be related to the SM’s of section 3a? The middle panel
of Fig. 8 displays the dependence of the eigenvalue for
PM-2 on g for d 5 0.0013 and n 5 0.005. The frequency
(dashed line) is zero for 0.5 , g , 1 but it is non-zero
for 1/p , g , 0.5. This indicates that PM-2 originates
as an oscillatory SM. From which SM does PM-2 orig-
inate? Following PM-2 back to g 5 0 we find that it
originates from a highly damped SM for large values
of friction, roughly if n 1 d . 0.0063, and for smaller
values of friction is originates as SM-1. This can be
seen in Fig. 5, if n 1 d , 0.0063 SM-1 goes into
transition at g ø 0.2 and eventually becomes PM-2 for
g . 1/p. Unlike PM-2, the antisymmetric PM-1 cannot
be related to the symmetric SMs for decreasing g.

The PMs are also unlike SMs in the way friction
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FIG. 9. The least-damped pool mode for g 5 1, d 5 0.1, and m
5 d 1 n 5 0.01. The dashed contours are the ‘‘streamlines’’ q̂. (top)
The real part of PM-1 and PM-2 (recall there is no imaginary part).
(bottom) The real and imaginary part of the least-damped oscillatory
pool mode, OPM-1.

affects the eigenmodes. The eigenvalues frictional val-
ues are chosen to emphasize the analogy with solid body
rotation, even though they imply a negative n, which is
not physically reasonable. In particular, if a physically
appropriate value of m $ d is used for d 5 0.1, both
the oscillatory and purely decaying eigenmodes are no
longer confined to the pool region. On the other hand,
if a smaller value of d is chosen, the analogy to solid
body rotation is less apparent. Thus, a ‘‘large’’ value of
d and a ‘‘small’’ value of m is chosen.

In the example of Fig. 9 there is little ‘‘angular’’
(along streamline) dependence for PM-1 and PM-2
while OPM-1 clearly has streamline dependence. Thus,
PM-1 and PM-2 are the gravest purely ‘‘radial’’ eigen-
functions, and OPM-1 is the gravest mode with ‘‘an-
gular’’ dependence. The specific eigenvalues for these
parameters are sPM21 5 20.54, sPM22 5 20.60, and
sOPM 5 21.88 1 5.33i.

Interestingly, the PMs are more damped for decreas-
ing western boundary layer width and small fixed d 1
n. This occurs because diffusion is enhanced in the west-
ern boundary layer (see Young 1984). Despite the com-
plicated dependence on g, d, and n, the least-damped

eigenmodes for the relevant parameter range, d , 0.01
and d , n 1 d , 0.01, are a stationary symmetric PM,
a stationary antisymmetric PM, and SM-1. The least-
damped mode can either be SM-1 or PM-1 depending
on the specific values of g, d, and n.

4. An initial value problem

The relevance of the two-layer baroclinic eigenmodes
is examined by considering an initial value problem.
The time evolution of (10) is obtained for an Ekman
pumping given by (8) and g 5 0.1. The initial condition,
Q(x, y, 0), is the steady solution of (10) given an Ekman
pumping W 5 2sin(py) 2 sin(py/2), again with g 5
0.1. Thus, there are no closed geostrophic contours and
the final steady flow is confined to the upper layer. This
problem corresponds to the adjustment of a two-layer
basin to an abrupt change in the Ekman pumping; the
initial state is a double-gyre circulation with more trans-
port in the subtropical gyre, and the final steady state a
double-gyre circulation with equal transport in both
gyres. We are primarily concerned with the unsteady
baroclinic streamfunction Q9, as defined in (11). As-
suming an instantaneous adjustment of the barotropic
mode, the initial unsteady baroclinic streamfunction is
the steady solution of a single-gyre forcing, and it de-
cays to zero as t → `.

This initial value problem was solved numerically
using a spectral representation in (x, y) (see the appen-
dix), and a Crank–Nicholson time stepping scheme. Fig-
ure 10 shows snapshots of the unsteady baroclinic
streamfunction at four different times. A westward trav-
eling wave dominates the adjustment process. This wave
clearly feels the effect of the geostrophic contours; it
has maximum velocity in the western portion of the
basin near the northern and southern boundaries, and
has minimum velocity in the western portion of the basin
between the subtropical and subpolar gyres.

A projection of the time-dependent solution on the
eigenmodes of the baroclinic system discussed in sec-
tion 3a reveals that the evolution is dominated by the
first eigenmode. We can express the time-dependent so-
lution as an infinite sum of the eigenmodes

Q9(x, y, t) 5 a exp(s t)u (x, y). (32)O n n n
n

The coefficient of each mode an is

†Q9(x, y, 0)u (x, y) dVE n

V

a 5 , (33)n

†u (x, y)u (x, y) dVE n n

V

where is the nth eigenvector of the associated adjoint†un

problem with eigenvalue sn, and the eigenvalues are
ordered by increasing decay rate. Note that the adjoint
eigenvalues are the same as the original eigenvalues.
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FIG. 10. Four snapshots of the time-dependent solution of (10) at
t 5 0.00, 0.33, 0.66, and 1.00 are contoured. The initial condition is
the steady solution given a single-gyre forcing. Time is nondimen-
sionalized by the crossing time of a long baroclinic Rossby wave,
distance is scaled by the longitudinal extent of the basin, and the
streamfunction is nondimensionalized assuming Sverdrup balance.
The contour interval is 0.25 and positive values are shaded. For this
figure g 5 0.1, and d 5 n 5 0.005.

FIG. 11. A time series of Q9 at the point (x, y) 5 (0.5, 1.0) (thick
dashed), the projections on the first five eigenmodes at the same
location (thin solids), and the sum of these projections (thick dash-
dotted) are plotted. Time is nondimensionalized by the crossing time
of a long baroclinic Rossby wave and the streamfunction is nondi-
mensionalized assuming Sverdrup balance.

Figure 11 compares the time series of Q9 at the point
(x, y) 5 (0.5, 1.0), with its projection onto each of the
first five eigenmodes, as well as with the sum (32) trun-
cated to the first five terms. Notice that the solution is
quickly dominated by the first eigenmode due to its
small decay rate, and the adjustment to final steady state
is achieved by the damped oscillation of this mode. This
is the thin line in Fig. 11, which eventually dominates
the solution for larger times.

Why not consider a mere strengthening of the cir-
culation by just changing g and using the double-gyre
forcing? In this case there would always be zero vor-
ticity input to the ocean, and in the long-wave limit, no
net displacement. Therefore, the mass-conserving con-
straint (16), would be automatically satisfied and Q(x,
y, t) 5 0 on the boundary for all times. Hence, the
oscillatory, weakly damped, basin modes that result
from the mass-conserving boundary condition would
not be excited. This point is also discussed by CP01
and LaCasce (2000). Additionally, the amplitude of the
damped oscillation is proportional to the difference be-
tween the initial and final vorticity input to the basin.

The same experiment but with g 5 1—that is, with
closed geostrophic contours—leads to similar results re-
gardless of whether the analysis is done in the pool or
shadow zone. This is eviendent from the eigenfunction
in top panels of Fig. 7, which shows loading both in
the pool and shadow zones. If the initial condition pro-
jects onto the weakly damped first oscillatory mode, the
time evolution to steady state is eventually dominated
by the oscillations of this mode.

5. Summary and conclusions

The linear eigenmodes of a quasigeostrophic two-
layer basin forced by a steady wind stress are found in
the limit where the internal Rossby deformation radius
is small compared to the size of the basin. For decadal
time scales, much longer than the adjustment of the
barotropic flow, the time evolution of the baroclinic flow
can be studied by examining the associated eigenprob-
lem.

Two different behaviors emerge depending on wheth-
er the geostrophic contours are blocked or closed. In
the blocked geostrophic contour regime, expected for
typical oceanic gyres in this two-layer formulation, the
eigenmodes are related to the long-wave basin modes
examined in CP01. Specifically, the eigenmodes are
modified by the steady barotropic flow, which makes
the long baroclinic Rossby wave speed a function of
position. The spatial dependence of the baroclinic Ross-
by wave speed results in eigenmodes with decay rates
and frequencies independent of friction. In the closed
contour regime, the Rossby wave speed is eastward on
the westward side of the intergyre boundary and two
categories of weakly damped eigenmodes are obtained:
oscillatory modes which have basin-scale structure and
modes confined to the pool zone, marked by zero fre-
quency.

The oscillatory ones originate from the least damped
eigenmodes obtained in the blocked-contour regime and
their eigenvalues are independent of friction to leading
order. This is surprising because friction is needed in
the closed contour regime in order to overcome an in-
viscid singularity at the separatrix.

The eigenmodes confined to the pool zone have decay
rates that depend on diffusivity to leading order, and
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thus the gravest pool mode is the least-damped one in
the limit of infinitesimal dissipation. These modes are
responsible for the homogenization of potential vorticity
within the closed contours, which occurs on a diffusive
timescale (cf. Dewar et al. 1984).

In the two-layer model, the long Rossby wave speed
of the first baroclinic mode is not consistent with recent
observations (Chelton and Schlax 1996). Dewar (1998),
among others, shows that it is the vertically sheared
component of the steady circulation that affects the wave
speed of the first baroclinic mode. Such a component
is missing in our present formulation and future research
will address this issue and its effect on basin modes.
Interestingly, preliminary research that includes a sec-
ond baroclinic mode indicates that the work presented
here is actually more closely related to the second bar-
oclinic mode of three layer formulations (see also Liu
1999). Our work is a starting point to understand the
eigenmodes of multilayer basins where the steady cir-
culation is included, and where the baroclinic long wave
speeds are consistent with observations.

Our preliminary conclusion (cf. also Cessi and Pri-
meau 2001; Cessi and Louazel 2001; LaCasce 2000;
Primeau 2002; LaCasce and Pedlosky 2002) is that re-
gardless of the magnitude of forcing, and the shape of
the basin, low-frequency (decadal) weakly damped
large-scale modes will exist in the large-scale limit.
These results are encouraging as intrinsic oceanic modes
are a potential source of decadal variability in the ocean:
they are excited during the process of adjustment to
changing winds, and can be resonantly excited by low-
frequency forcing. Future work will determine more
precisely the role of intrinsic oceanic basin modes in
ocean variability by examining the time-dependent re-
sponse of more complex and realistic models.
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APPENDIX

Numerical Methods
The numerical methods used to solve (21) are stated

because we use a nontraditional method for incorpo-
rating the mass-conserving boundary conditions. To
solve the eigenvalue equations we employ a spectral
method with Jacobi polynomials as the basis set [com-
plete details are in Ierley (1997)]. Jacobi polynomials
denoted by (see Abramowitz and Stegun 1965,(i,j)Pn

chapter 22), are a complete set on the interval [21, 1].
Thus, we solve the eigenvalue problem in (21) by first
changing variables x̂ 5 2x 2 1 and ŷ 5 y 2 1 and
letting

M N 4
2 2u(x̂, ŷ) 5 a (1 2 x̂ )(1 2 ŷ ) 2 d dO O mn 0m 0n[ ]9m50 n50

(1,1) (1,1)3 P (x̂)P ( ŷ), (A1)m n

where dab is the Kronecker delta of a and b. The un-
knowns are now the spectral coefficients amn. This ex-
pansion guarantees mass conservation because the in-
tegral of u is identically zero in [21, 1] 3 [21, 1]. The
discrete generalized eigenvalue problem1 is obtained
with a Galerkin projection on (21) using the test func-
tions

2 2 (1,1) (1,1)f (x̂, ŷ) 5 (1 2 x̂ )(1 2 ŷ )P (x̂)P (ŷ).kl k l (A2)

The test functions include all possible functions with
zero value on the domain boundary. Substituting (A1)
into (21), multiplying by (A2) and integrating over the
domain, we obtain

1 1

dx̂ dŷE E
21 21

3 {f (x̂, ŷ)L [u(x̂, ŷ)] 5 sf (x̂, ŷ)u(x̂, ŷ)}, (A3)kl kl

where L represents the linear operator in the eigenvalue
problem (21).

The advantage of this method is that Jacobi poly-
nomials concentrate the resolution near the solid bound-
aries, making this basis set ideal for problems with
boundary layers. Moreover, the basis set in (A1) is the
same if the boundary conditions are u 5 0 (clamped),
except that the terms proportional to the Kronecker del-
tas are zero. Thus, only the m 5 n 5 0 basis function
for the mass conserving problem is different from the
basis set for the clamped problem. This results in chang-
ing only the undifferentiated operator for the mass-con-
serving problem from that of the clamped problem. Spe-
cifically, the undifferentiated operator for the mass-con-
serving boundary conditions differs from that with
clamped boundary conditions only in the (1, 1) element
by a constant. This property makes comparisons be-
tween mass-conserving boundary conditions and
clamped boundary conditions effortless.

REFERENCES

Abramowitz, M., and I. Stegun, Eds.,1965: Handbook of Mathemat-
ical Functions. Dover, 1046 pp.

Anderson, D. L. T., and A. E. Gill, 1975: Spin-up of a stratified ocean
with applications to upwelling. Deep-Sea Res., 22, 583–596.

Cessi, P., and S. Louazel, 2001: Decadal oceanic response to sto-
chastic wind forcing. J. Phys. Oceanogr., 31, 3020–3029.

——, and F. Primeau, 2001: Dissipative selection of low-frequency
modes in a reduced-gravity basin. J. Phys. Oceanogr., 31, 127–
137.

Chelton, D., and M. Schlax, 1996: Global observations of oceanic
Rossby waves. Science, 272, 234–238.

de Szoeke, R., and D. Chelton, 1999: The modification of long plan-
etary wave by homogeneous potential vorticity layers. J. Phys.
Oceanogr., 29, 500–511.

Dewar, W., 1998: On ‘‘too fast’’ baroclinic planetary waves in the
general circulation. J. Phys. Oceanogr., 28, 1739–1758.

1 Because the kernal function (1 2 x2) (1 2 y2) is used for both
the trial functions and the test functions, the undifferentiated operator
is not diagonal.



622 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

——, P. B. Rhines, and W. R. Young, 1984: The nonlinear spin-up
of a stratified ocean. Geophys. Astrophys. Fluid Dyn., 30, 169–
197.

Ierley, G., 1997: A class of sparse spectral operators for inversion of
powers of the Laplacian in n dimensions. J. Sci. Comput., 12,
57–73.

Killworth, P., D. Chelton, and R. de Szoeke, 1997: The speed of
observed and theoretical long extratropical planetary waves. J.
Phys. Oceanogr., 27, 1946–1966.

LaCasce, J., 2000: Baroclinic Rossby waves in a square basin. J.
Phys. Oceanogr., 30, 3161–3178.

——, and J. Pedlosky, 2002: Baroclinic Rossby waves in irregular
basins. J. Phys. Oceanogr., 32, 2828–2847.

Liu, Z., 1999: Forced planetary wave response in a thermocline gyre.
J. Phys. Oceanogr., 29, 1036–1055.

Primeau, F., 2002: Long Rossby wave basin-crossing time and the
resonance of low-frequency basin modes. J. Phys. Oceanogr.,
32, 2652–2665.

Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford
University Press, 378 pp.

Veronis, G., and H. Stommel, 1956: The action of variable wind
stresses on a stratified ocean. J. Mar. Res., 15, 43–75.

Young, W. R., 1984: The role of western boundary layers in gyre-
scale ocean mixing. J. Phys. Oceanogr., 14, 478–483.

——, and P. B. Rhines, 1982: A theory of the wind-driven circulation.
ii. Gyres with western boundary layers. J. Mar. Res., 40, 849–
872.


