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ABSTRACT

The signatures of feedback between the atmosphere and the ocean are studied with a simple coupled model.
The atmospheric component, based on Lorenz’s 1984 model is chaotic and has intrinsic variability at all time-
scales. The oceanic component models the wind-driven circulation, and has intrinsic variability only in the
decadal band. The phase of the cospectrum of atmospheric and oceanic temperatures is examined and it is found
that in the decadal band, the oceanic signal leads the atmospheric one, while the opposite is true at shorter and
longer timescales. The associated atmosphere-only model, driven by the oceanic temperature derived from a
coupled run, synchronizes to the coupled run for arbitrary initial conditions. When noise is introduced in the
time series of oceanic driving, episodic synchronization still occurs, but only in summer, indicating that control
of the atmosphere by the oceanic variables is prevalent in this season.

1. Introduction

Recent observational (Deser and Timlin 1997) and
modeling (Saravanan et al. 2000) studies of the decadal
variability in the extratropical ocean–atmosphere system
indicate that, despite its large thermal inertia, the ocean
is a passive partner. This conclusion is mostly derived
from analyzing the time evolution of large-scale spatial
patterns of atmospheric and oceanic fields, for example,
sea level pressure (SLP) and sea surface temperature
(SST). It is typically found that the correlation is max-
imum when the leading patterns of oceanic variability
lag those of atmospheric variability.

There are two paradigms for the ‘‘passive ocean’’
driven by an active midlatitude atmosphere. One (Has-
selmann 1976) is that sea surface temperature acts as a
linear, low-pass filter of the atmospheric temperature
signal, which can be treated as a white noise stochastic
process. Additional coupling of the atmosphere to the
ocean (Bretherton and Battisti 2000) reduces the at-
mospheric damping at low frequencies reddening the
spectrum of atmospheric temperature.
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The other paradigm (Palmer 1993) considers the ex-
tratropical atmosphere as a low-order, chaotic system,
with the oceanic feedback that depends on the recent
history of the atmospheric state, without any intrinsic
oceanic variability. In this case the ocean provides in-
creased predictability by locking the atmosphere into
regimes for longer periods of time.

Both paradigms omit two important elements: first,
there is no doubt that the ocean possesses intrinsic var-
iability at interannual and interdecadal timescales, al-
though its effect on the extratropical atmosphere is elu-
sive (Saravanan et al. 2000). Second, the variability in
the midlatitude system is strongly modulated by the sea-
sonal cycle. Indeed seasonality is fundamental in the
increased predictability of atmospheric patterns from
oceanic data. In his early study, Davis (1978) finds a
statistically significant correlation between fall and win-
ter SLP anomalies in the North Pacific with anomalies
of SST three months earlier, but not in other months.
Recent work by Zhang et al. (1998) confirms these re-
sults.

In the following, we examine the effects of oceanic
variability and seasonality in a simple ocean–atmo-
sphere model. Our strategy for building a conceptual
model of the midlatitude coupled system pivots around
a low-order chaotic atmosphere that has intrinsic vari-
ability at all timescales. In particular, the ultralow fre-
quencies emerge through nonlinear interactions that
stem from a single imposed periodicity at the seasonal
cycle. This approach is at odds with the notion of a
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FIG. 1. Schematic of the spatial structure associated with the seven
variables that appear in the coupled ocean–atmosphere model de-
scribed by (4). There are three atmospheric variables: X, the amplitude
of the zonally average meridional temperature gradient; Y and Z, the
amplitudes of the cosine and sine longitudinal phases of a chain of
large-scale waves; and four oceanic variables: P, the zonally averaged
meridional temperature gradient at the sea surface; Q, the basin-
averaged SST; C 5 cr 1 ici, the complex streamfunction that de-
scribes the poleward transport of heat by large-scale gyres. The figure
illustrates the latitudinal structure associated with X and P and the
longitudinal structure associated with Y and Z.

stochastic linear atmosphere in which the spectral am-
plitudes of different frequency bands are uncorrelated
with each other.

The oceanic component has intrinsic time dependence
limited to a band centered around a single frequency:
this allows us to easily identify the oceanic signature in
the coupled system. The atmosphere and the ocean in-
teract by exchanging energy and momentum. We find
that although the coupling with the ocean is hard to
detect via analysis of the atmospheric time series, it still
plays an important role in the evolution of the system.

2. Model formulation

We first describe the separate atmospheric and oce-
anic models and then introduce the coupling terms.

The atmospheric component is based on the low-order
atmospheric general circulation model introduced by
Lorenz (1984, 1990). It is defined by these three ordi-
nary differential equations:

2 2Ẋ 5 2(Y 1Z ) 2 aX 1 aF(t),

Ẏ 5 XY 2 bXZ 2 Y 1 G,

Ż 5 XZ 1 bXY 2 Z. (1)

The independent variable t indicates time, and the over-
dot indicates a time derivative. The three atmospheric
variables are shown in Fig. 1: X represents the amplitude
of the zonally averaged meridional temperature gradient
(or equivalently, from thermal wind balance, the
strength of the zonal mean shear); Y and Z denote the
amplitudes of the cosine and sine longitudinal phases
of a chain of large-scale waves. Although not shown by
Lorenz, these equations can be derived as a Galerkin
truncation of the two-layer, quasigeostrophic potential
vorticity equations in a channel. In the Lorenz model
the poleward heat transport is achieved by the eddies at

a rate proportional to Y 2 1 Z 2, and this heat transport
reduces the zonally averaged temperature gradient. The
term

F(t) 5 F 1 F cosvt0 1 (2)

represents the zonally averaged forcing due to the equa-
tor–pole difference in solar heating and it varies on a
seasonal timescale (v 5 2p yr21). Here G is a forcing
for the longitudinally dependent (nonsymmetric) com-
ponent representing the sources of east–west tempera-
ture differences such as orography and land–sea con-
trast.

The oceanic module simulates the wind-driven cir-
culation in a basin that occupies a fraction r of the
longitudinal extent of the atmosphere (Fig. 1). Its dy-
namics are described by a set of four ordinary differ-
ential equations, namely,

2 2Ṗ 5 2(c 1 c )P,r i

Q̇ 5 0,

ċ 5 2sc 2 Vc ,r r i

ċ 5 Vc 2 sc . (3)i r i

Here P represents the zonally averaged meridional tem-
perature gradient at the sea surface, while Q represents
the basin-averaged sea surface temperature. The pole-
ward heat transport is achieved by a large-scale flow,
at a rate proportional to 1 in (3). The average2 2c cr i

temperature Q is conserved in the absence of any cou-
pling with the atmosphere. The transport is represented
by two phases of the streamfunction, cr and ci. The
streamfunction undergoes damped oscillations with a
period, 2p/V, of 5.3 yr and a decay time, s21, of 17
yr. This damped oscillation is the only source of internal
variability in the ocean and is due to the intrinsic decadal
variability of the wind-driven circulation.

The equations for the two phases of the streamfunc-
tion in (3) can be derived as a Galerkin truncation of
the one-and-a-half-layer, quasigeostrophic potential vor-
ticity equation for long linear Rossby waves. These long
baroclinic waves take the form of basinwide modes of
the ocean. Recent work (Cessi and Primeau 2001;
LaCasce and Pedlosky 2002) suggests that basin modes
with decadal frequencies can be excited by stochastic
atmospheric forcing and represent a resonant response
of the ocean. This model essentially assumes that the
intrinsic decadal variability of the ocean wind-driven
circulation is described by one such mode. The quadratic
transport law for the zonally averaged temperature P in
(3) is derived in several works (Klinger 1996; Wang et
al. 1995; Gallego and Cessi 2000). These authors show
that for weak flow, the wind-driven gyres reduce the
zonally averaged north–south temperature gradient in a
basin at a rate proportional to their transport squared.
In our model the large-scale ocean gyres are described
by the two components of the streamfunction, C 5 cr
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TABLE 1. Nondimensional parameters used in the numerical simulations. The dimensional timescale is set to 5 days, so that 1 yr is 73
units long. The nondimensional parameter j that appears in the table has the value 8.4 3 1024.

a b F0 F1 G f r c g V s ar ai br bi

0.025 4 58.5 19.5 1 1 0.23 200 0.55 0.0162 0.000 81 j j/2 j/2 j/10

1 ici, and their squared transport is proportional to
1 .2 2c cr i

The feedbacks between the ocean and the atmosphere
are constructed so as to conserve total heat in the air–
sea exchange. Specifically we set

2 2Ẋ 5 2(Y 1 Z ) 2 aX 1 aF(t) 1 rf (P 2 X 2 g),

Ẏ 5 XY 2 bXZ 2 Y 1 G 1 rf (Q 2 Y ),

Ż 5 XZ 1 bXY 2 Z,
2 2 21Ṗ 5 2(c 1 c )P 1 fc (X 2 P 1 g),r i

21Q̇ 5 fc (Y 2 Q),

ċ 5 2sc 2 Vc 1 a X 1 b Y,r r i r r

ċ 5 Vc 2 sc 1 a X 1 b Y. (4)i r i i i

The air–sea heat fluxes are proportional to the difference
between the oceanic and the atmospheric temperature:
these are the terms f (P 2 X) and f (Q 2 Y) (Haney
1971). The bulk transfer coefficient, f , is assumed to
be constant. In the atmospheric model this term needs
to be multiplied by the fraction of earth covered by
ocean, r. In the oceanic model the air–sea flux is divided
by c, which is the ratio of the vertically integrated heat
capacities of the atmosphere and the ocean. The constant
g represents the fraction of solar radiation that is ab-
sorbed directly by the ocean. There is no heat exchange
between the atmospheric standing wave Z and the ocean,
because Z represents the sine phase of the longitudinal
eddies and has zero zonal mean across the ocean (Fig.
1). A feedback between Z and the ocean would appear
if we added an equation for the longitudinal temperature
gradient of the ocean.

The effect of the wind stress acting on the ocean is
represented as a linear forcing proportional to X and Y
in the equations for the streamfunction, c. The coupling
constants ar, ai, br, and bi are chosen to produce re-
alistic values for the oceanic heat transport.

Different experiments showed that the results pre-
sented in the rest of paper are quite robust to changes
in the parameters that appear in (4) as long as the model
remains chaotic, as explained in the following section.
However the variables retain realistic values only for a
limited range of the external parameters. This consid-
eration dictated the particular set given in Table 1, which
is used throughout the paper.

3. Results

The uncoupled Lorenz model in (1) admits several
regimes depending on the parameters, including a cha-

otic regime and an intransitive regime. The latter is
characterized by one of two possible periodic solutions,
each selected by the initial conditions. The amplitude
of the forcing, F, is one of the parameters controlling
which dynamical regime is achieved. When the forcing
is time dependent, as in (2), a judicious choice of the
parameters leads to an unpredictable alternation of the
two periodic regimes during the summer months, while
the winters are chaotic. Because the onset of any of
these regimes is unpredictable, the atmospheric system
has interannual variations. The ultralow frequency thus
obtained leads to a spectrum that is flat for periods lon-
ger than one year. However, because of the strong lock-
ing to the seasonal cycle the phases of the atmospheric
signal are not random as those of a stochastic process.
The point here is that the atmospheric spectrum is close
to that of a white noise signal, as suggested by Has-
selmann (1976), but the atmospheric dynamics are not
stochastic. In other words, spectra, by themselves, do
not adequately describe atmospheric variability.

The atmospheric temperature gradient, X, displays the
same behavior in the coupled model, as shown in Fig.
2 (top): some summers have small amplitude oscilla-
tions while others are locked into a weak temperature
gradient. Winters exhibit larger variability and are cha-
otic. A comparison with the atmosphere-only model (1)
for the same parameter values shows that the residence
time in the quiet summer regime is longer in the coupled
system, while the winter’s variability is comparable to
that obtained in the atmosphere-only calculations (Palm-
er 1993). It appears as if the coupling with the ocean
has little effect on the atmosphere. However, we will
demonstrate that this is not the case.

The coupled dynamics

Before describing the variability of the coupled mod-
el, it is worth mentioning that for the choice of param-
eters in Table 1, the time-averaged variables have values
consistent with observations of the present climate. In
particular, we find that the ratio of the atmospheric to
the oceanic heat transport is given by

2 2 2 2yT /yT 5 (Y 1 Z )/rc(c 1 c )P ø 8.5, (5)atm ocn r i

in rough agreement with the estimates for the midlati-
tude North Atlantic recently summarized by Trenberth
and Caron (2001). Similarly, the ratio of atmospheric
to oceanic mean temperature gradient is given by

T /T 5 X /P ø 1.8.atm ocn (6)

Other aspects of this low-order model are less real-



878 VOLUME 16J O U R N A L O F C L I M A T E

FIG. 2. Time series of the of (top) atmospheric, X, and (bottom)
oceanic, P, temperature gradients from a 50-yr run of the coupled
model in (4) with the parameters given in Table 1. Six ‘‘quiet sum-
mers’’ (years 0.5, 1.5, 4.5, 5.5, 7.5, and 8.5) are noted in the at-
mospheric series.

FIG. 3. Spectral estimates of typical simulations (40 realizations
each 53 yr long): (top) the spectrum of the atmospheric temperature
gradient X (black) has peaks at the seasonal cycle and its superhar-
monics, while the spectrum of the oceanic temperature gradient P
(gray) has an additional peak centered at V/2p 5 0.19 yr21; (bottom)
the coherence of X and P (black) is close to unity for periods shorter
than five years, and the phase (gray) is negative indicating that the
ocean, P, lags the atmosphere, X. In the decadal band the coherence
is somewhat smaller, though still significant, and the phase is positive,
implying that P leads X.

istic; for example, two clear regimes exist in summer,
while in the present atmosphere four regimes are iden-
tified and they are most evident in winter (Corti et al.
1999). However, the formulation in (4) captures the
qualitative notion that the climate attractor has a mul-
timodal probability density function, and atmospheric
low-frequency variability largely arises from transitions
among these regimes.

Because the model ocean is driven by the atmosphere,
oceanic variability is a low-pass-filtered image of the
atmospheric variability, except at the period of 5.3 yr.
This is illustrated in Fig. 2, which shows a portion of
the time series of the atmospheric and oceanic variables
for a calculation with the parameters set to the values
in Table 1.

Spectra of atmospheric, X, and oceanic, P, tempera-
ture gradients are shown in Fig. 3 (top). Both spectra
are dominated by the seasonal cycle and its harmonics,
and the ocean also exhibits a peak at its intrinsic fre-
quency (1/5.3 yr21).

We also calculated the cospectrum of X and P (Bendat
and Piersol 1986); at almost all frequencies the coher-
ence is close to unity and the corresponding phase is
negative implying that the ocean follows the atmosphere
(Fig. 3, bottom). At periods longer than about 5 yr, the
coherence drops, but is still high for periods less than
10 yr: in the band with periods between 5 and 10 yr
the phase is positive indicating that the ocean leads the
atmosphere.

Linear thinking would suggest that an atmosphere
lagging an oscillating ocean should exhibit a spectral
peak at the oceanic frequency. However, there is no
evidence of the oceanic intrinsic frequency in the at-
mospheric spectrum (Fig. 3, top). But absence of evi-
dence is not evidence of absence: the ocean is not pas-
sive, as demonstrated by the phase of the cospectrum.
The oceanic role is not apparent because at these low
frequencies the atmosphere has a broadband intrinsic
variability that masks the oceanic contribution.

Our results show that the phase of the cospectrum is
a robust diagnostic for uncovering the relationship be-
tween signals in a given frequency band. Other diag-
nostics, such as the correlation, average the cospectrum

over many frequencies so that any lead by the ocean in
specific frequency bands is masked by the atmospheric
lead at other frequencies.

Notice that despite the complexity of the atmospheric
temperature gradient time series (Fig. 2, top), and the
broadness of its low-frequency spectrum (Fig. 3, top),
the dynamics are chaotic, and not stochastic. This im-
plies a strong phase correlation between the atmosphere
and the ocean at all timescales. To illustrate this con-
nection an atmosphere-only model is used, driven by
the oceanic variables Pc(t) and Qc(t) obtained from a
separate coupled run with the same parameters and a
different initial condition. That is, we integrate (4) with
prescribed Pc(t) and Qc(t). This is typically referred to
as a driven system.

Figure 4a shows the time series of the difference in
the atmospheric temperature gradients obtained with the
coupled model, Xc(t), and with the prescribed ocean-
temperature model, Xu(t): after about 15 years the un-
coupled time series synchronizes to the coupled time
series (Fig. 4a). The synchronization occurs for every
initial condition, although the time of synchronization
depends on the initial state. This is an example of syn-
chronized chaos (Strogatz 1994): regardless of the initial
state of the atmosphere, when the atmosphere is driven
by (rather than coupled to) the oceanic variables, Pc(t)
and Qc(t), the resulting system is no longer chaotic.

This is a striking demonstration that, at least in this
model, although ocean variability has no expression in
atmospheric spectra its dynamics are essential to the
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FIG. 4. Synchronization. (a) Difference between the atmospheric
gradient, Xc, obtained by running a coupled simulation with an active
ocean and Xu, obtained by running a simulation with the ocean var-
iables, Pc and Qc, given by the coupled run. The two runs differ in
the initial condition of the atmosphere. (b) Difference between Xc

and Xu, where Xu is now obtained by running a simulation with the
ocean temperature given by the coupled run plus a noise with e 5
1023. (c), (d) Same as (b) but with noises of amplitude e 5 1022 and
e 5 1021, respectively.

FIG. 5. A subsection of the uncoupled atmospheric temperature
gradient Xu for two runs with the oceanic variables, Pc and Qc cor-
rupted with noise of amplitude (a) e 5 1021 and (b) e 5 1022. The
gray patches highlight periods during which Xu is synchronized with
the coupled run, Xc; that is, time intervals of at least 30 days in which
| Xu 2 Xc | , 1022. Notice that synchronization is seasonal and only
occurs during ‘‘quiet’’ summers, i.e., summers where the atmospheric
gradient is weak and slowly varying.

behavior of the atmospheric component. For our choice
of parameters both the coupled ocean–atmosphere sys-
tem, (4), and the atmosphere-only system, (1), are cha-
otic, but the driven ocean-temperature model is not. That
is, the prescribed ocean puts the atmosphere on a specific
trajectory in phase space and eliminates the sensitive
dependence on initial conditions. Indeed, it can be
shown (Pecora and Carroll 1990) that all the Lyapunov
exponents of the driven system are negative. This raises
questions of what we mean by a passive ocean. Our
ocean has no visible effect on the atmospheric spectrum
and lags the atmosphere at nearly all frequencies. How-
ever the ocean clearly plays a major part in the coupled
evolution of the system. Prescribing the ocean variables
eliminates the unpredictable behavior of the atmosphere.

Recovery of the ‘‘true solution’’ is only achieved if
the oceanic time series used in the uncoupled model are
‘‘perfect.’’ Adding noise to the prescribed ocean tem-
perature model inhibits a permanent synchronization to
the coupled time series. However even with an ‘‘im-

perfect’’ knowledge of the ocean, the ‘‘true’’ atmosphere
is recovered over finite intervals of time, and we obtain
‘‘episodic synchronization.’’ Figures 4b,c,d show Xc 2
Xu for 50-yr runs in which the atmosphere is forced by
the prescribed ocean temperature from the coupled mod-
el, Pc and Qc, corrupted with white noise. That is at
every time step, we add to Pc and Qc a random variable
sampled uniformly between 6e. Figures 4b,c,d are ex-
amples with e equal to 1023, 1022, and 1021, respec-
tively. These amplitudes correspond to rms errors in Pc

and Qc of 0.05%, 0.5%, and 5%, respectively.
As illustrated in Fig. 5, synchronization is established

at the beginning of summers characterized by a weak
temperature gradient, because in these quiet and per-
sistent summers the atmosphere displays a quasiperiodic
behavior that is easily driven by the oceanic tempera-
ture. Indeed, the coupled system during these periods
shows no evidence of chaotic behavior and this portion
of the attractor is not sensitive to small differences in
the initial conditions.

There are, however, stretches of many years in which
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FIG. 6. Correlation coefficient as a function of the noise amplitude
e between Xc obtained by running a coupled simulation with an active
ocean and Xu obtained by running a simulation with the ocean tem-
perature given by the coupled run. Because of the initial transient,
the correlation does not approach unity as e → 0 for time series of
finite length.

synchronization is not observed. This is because syn-
chronization can only occur in summer, never during
the chaotic winters, and the asynchronous years have
summers that fall on a different periodic orbit, char-
acterized by rapid oscillations. For large noise, syn-
chronization is lost by the beginning of the following
winter, while as the noise decreases it persists through
winters and sometimes for multiple years.

The driven runs in which the oceanic temperature is
prescribed can be considered as a reanalysis in which
oceanic observations are assimilated in the atmospheric
model. The onset of synchronization in summer suggests
that control of the atmosphere from the ocean is higher
in this season. The time series of oceanic temperature
drives the atmosphere on the attractor during quiet sum-
mers and provides the correct initial conditions for the
coupled run. During chaotic winters synchronization is
unlikely to be initiated. This scenario is different from
that of a linear ocean coupled to a stochastic atmosphere.
In that case the ocean acts as a low-pass filter of the
atmospheric variables. Assimilating such an ocean into
the coupled model could recover only the low-frequency
variability of the atmosphere.

In chaotic models, a long enough time series of even
one single variable contains enough information to re-
construct the whole system. This is because the deter-
ministic dynamics locks the phases of different variables
at all frequencies. Thus, although the phase of the cos-
pectrum in Fig. 3 suggests a role of the ocean limited
to long periods, all timescales are important. Our noisy
synchronization results indicate that the behavior of the
coupled system can be recovered most efficiently during
certain times of the year, that is, in the quiet summers.

The seasonality of synchronization is consistent with
the behavior observed by Davis (1978) in the analysis
of SST and SLP anomalies in the North Pacific. Fall
and winter SLP tends to be well predicted by summer
SST. Similarly, in our system synchronization is estab-
lished in the summer and lasts for a few months in the
fall (Fig. 5b).

The correlation coefficient between Xc and Xu is a
good indicator of how robust synchronization is to the

addition of noise (Fig. 6). As the noise added to the
oceanic variables grows, the correlation coefficient de-
creases from a value of 1, indicating that the model
spends less and less time in the synchronized state.

4. Conclusions

We take the point of view that midlatitude atmo-
spheric variability is generated by nonlinear interactions
between baroclinic eddies and the mean zonal flow lead-
ing to chaotic motions. The variability is strongly mod-
ulated by the seasonal cycle. These dynamics alone pro-
vides a spectrum that is white at timescales longer than
one year, but whose phases are not random as those of
a stochastic process. A conceptual atmospheric model
that fulfills these criteria is Lorenz (1984, 1990) and we
study the effect of coupling this model to an ocean
model.

Although the atmosphere has interannual and inter-
decadal intrinsic variability, we find that an ocean with
intrinsic decadal oscillations leads the atmospheric fluc-
tuations at these timescales when the two systems are
coupled. The phase relation between the atmosphere and
the ocean is best revealed by examining the cospectrum
of the two signals.

By examining the associated system where an at-
mosphere-only model is driven by the oceanic variables
obtained from a coupled run, we establish that the lead-
ing role of the ocean is due to phase locking of the
atmospheric to the oceanic signal during summers char-
acterized by a persistent state. During these seasons the
atmosphere has a weak temperature gradient, the bar-
oclinic activity is reduced, and there is no chaotic var-
iability. Then, prescription of the oceanic temperature
into an atmosphere-only model leads to phase locking.
The phase locking becomes permanent if the driving
oceanic variables are known perfectly. If the driving
oceanic variables are degraded by noise, the atmospheric
signals from the driven and coupled systems synchro-
nize episodically during these quiet summer months.
Furthermore, because the atmospheric Lorenz model (1)
without an ocean has fewer and less persistent quiet
summers for the same values of parameters, we spec-
ulate that coupling to the ocean leads to increased pre-
dictability and that this effect is achieved during these
quiet summers. The stabilizing role of the ocean in the
midlatitude atmosphere has also been remarked upon
by Palmer (1993). Our model further indicates that the
stabilizing effect of the midlatitude atmosphere by the
ocean is prevalent in summer. Seasonal dependence is
also found in El Niño predictions, although it is not
clear whether it arises from the extrinsic seasonal mod-
ulation or from the intrinsic timing of the perturbations’
amplification (Samelson and Tziperman 2001).

This model suggests that in midlatitudes the feed-
backs between the ocean and the atmosphere are difficult
to detect, because the atmospheric variability is domi-
nated at all frequencies by forcing at the seasonal cycle.
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However there are strong correlations between the phas-
es of the two systems, especially in the summer season,
as supported by Davis’s (1978) analysis of North Pacific
data. The observational challenge is to find appropriate
statistics that extract these seasonal phase relations. The
situation is different in the Tropics, where the seasonal
modulation is weaker. As a result coupled patterns, like
El Niño, are apparent in the time series of the atmo-
spheric and oceanic patterns and not only in the phase
correlations between the two systems.
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