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ABSTRACT

The low-frequency linear eigenmodes of the reduced-gravity shallow-water equations with weak friction are
calculated numerically and using an analytic approximation. For basins with a large variation of the Coriolis
parameter, large-scale eigenmodes emerge: the eigenfrequencies are integer multiples of the frequency for the
gravest mode, which, in turn, has a period given by the transit time of the slowest long Rossby wave. The e-
folding decay times are comparable to the period and independent of friction. These eigenmodes are excited by
stochastic wind forcing and this leads to a weak peak in the spectral response near the frequency of the least-
damped eigenmode. This decadal-frequency peak is most evident on the eastern and western boundaries and in
the equatorial region of the basin.

1. Introduction

Evidence of midlatitude decadal variability in the up-
per North Atlantic (Kushnir 1994), and in the North
Pacific (Miller et al. 1998; Deser et al. 1999) has re-
cently emerged. Because the oceanic circulation above
the thermocline is primarily wind-driven, a simple ex-
planation of this low-frequency variability is that the
ocean responds linearly and passively to random at-
mospheric wind forcing (Frankignoul 1979). How then
does the ocean dynamics filter stochastic atmospheric
forcing? Frankignoul et al. (1997) consider the response
of linear, planetary geostrophic dynamics to random
wind-stress-curl forcing using an idealized geometry,
namely, a semi-infinite basin, bounded to the east by a
solid boundary coincident with a meridian. In this ge-
ometry the Rossby waves generated at the eastern
boundary radiate westward without selecting any pre-
ferred timescale of response. Thus, in the model of Fran-
kignoul et al. (1997) there are no oceanic resonances
excited by atmospheric forcing. Moreover, the depen-
dence on latitude of the spectrum is parametric. That
is, the spectrum at one latitude can be obtained by scal-
ing transformations of the spectrum at any other latitude.

However, the analysis of model data by Capotondi
and Alexander (2001, hereafter CA) shows that, at least
in the Tropics, the variability is concentrated at decadal
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timescales even if the wind forcing has a white spec-
trum. The variability is characterized by signals prop-
agating westward at the local speed of long baroclinic
Rossby waves. The timescale of the observed response
is longer than the local transit time across the basin of
long Rossby waves: the response has the timescale of
Rossby waves in the middle latitudes.

In a closed basin, the quasigeostrophic analysis of
Cessi and Primeau (2001) has shown that weakly dis-
sipated basin modes can be resonantly excited at decadal
frequencies. The existence of free-basin modes suggests
the possibility of spectral peaks, associated with bas-
inwide resonances, and nontrivial spatial response pat-
terns.

The constraint of mass conservation is essential for
the existence of low frequency, large-scale basin modes
described by Cessi and Primeau (2001). In the context
of quasigeostrophy, the mass conservation constraint is
fulfilled by adjusting the boundary pressure, which is
independent of position, but is time dependent (Mc-
Williams 1977). The unsteady boundary pressure is the
source of Rossby waves that propagate westward into
the interior. In other words, the mass conservation con-
straint changes the linear response everywhere in the
basin, by producing coupling between different latitudes
and disparate scales (Cessi and Primeau 2001). This
coupling is not included in the analysis of Frankignoul
et al. (1997), and one of our goals here is to show how
the mass conservation constraint alters the linear re-
sponse to random wind forcing.

In the following we examine the linear, shallow-water
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FIG. 1. Scatterplot of the low-frequency eigenvalues, s, obtained
by solving numerically (6) for two values of the friction, r (the decay
rate is on the ordinate and the frequency on the abscissa). Also shown
(3) are the corresponding eigenvalues obtained using the approxi-
mate dispersion relation (16) that results from the interior eigen-
problem in the inviscid, planetary geostrophic limit.

modes of a reduced-gravity layer forced by wind stress
and dissipated by Rayleigh drag, in a closed domain of
simple geometry. Unlike Cessi and Primeau (2001), the
shallow-water formulation allows the full variation with
latitude of the long Rossby wave speed. Thus the transit
time of long Rossby waves varies from a few months
near the equator to decades at the northern boundary of
the domain. This strong variation in transit time has
remarkable consequences: the damping rate of the
modes does not depend on dissipation, as long as the
latter is small. We find that, in the limit of weak dis-
sipation, the real and imaginary parts of the eigenfre-
quencies can have comparable magnitudes and that the
gravest, least dissipated mode has a decadal period.

2. The model

We consider a rectangular basin with 0 , y , Ly as
the latitudinal coordinate and 0 , x , Lx as the lon-
gitudinal one. Our point of departure is the linear, re-
duced-gravity shallow-water equations, with friction
and wind forcing. Assuming that friction is in the form
of linear damping, the oceanic flow is governed by the
momentum equations

t(y, t)
u 2 f y 5 2g9h 1 2 ru, (1)t x rH

y 1 fu 5 2g9h 2 ry , (2)t y

and the mass conservation equation

h 1 H(u 1 y ) 5 0.t x y (3)

In (1)–(3):

f 5 f 0 1 by is the Coriolis parameter;
u and y are the zonal and meridional speed, respec-

tively;
r is the coefficient of linear drag;
g9 is the reduced gravity;
r is the mean density;
h is the displacement of the upper-layer depth around

the constant value H; and
t is the zonal wind stress and is assumed to depend

on y and t only.

Boundary conditions of no normal flow are imposed on
the solid walls, that is, u · n 5 0, so that total mass is
conserved:

L Lx y

h dy dx 5 0. (4)E E
0 0

The above integral constraint is obtained by integrating
the mass conservation equation (3) over the domain and
defining the mean layer thickness H as the initial average
depth of the layer.

a. The eigenproblem

The time-dependent response of the linear system
(1)–(3) depends both on the temporal and spatial struc-
ture of the forcing and on the intrinsic modes of vari-
ability of the unforced system. The latter can be obtained
by solving the eigenproblem associated with the system.
In other words, we assume that the solutions of the
unforced reduced-gravity shallow-water equations have
the form

h ĥ   
  

s tu 5 e û (x, y), (5)   
  
y ŷ   

which gives

ĥ ĥ   
  

s û 5 L û : (6)   
  
ŷ ŷ   

s are the eigenvalues of the matrix, L, that results from
the shallow-water equations plus the no-normal-flow
boundary conditions, and is given by

0 2H] 2H] x y
 

L 5 2g9] 2r f . (7) x 
2g9] 2 f 2r y

The eigenvalues, s, and the eigenvectors, (ĥ, û, ), areŷ
determined numerically by approximating L with a fi-
nite-difference C grid.

Figure 1 shows the low-frequency portion of the ei-
genspectrum obtained by solving (6) numerically (stars
and circles) for two values of the frictional parameter
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FIG. 2. (left) Real and (right) imaginary parts of the eigenfunctions,
ĥ, associated with the (top) smallest and (bottom) next-to-smallest
eigenvalues of Fig. 1 for r 5 8 3 1027 s21 (14.5 days)21. (top) For
mode 1 the eigenvalue is s 5 20.1658 1 i0.2504 in yr21, corre-
sponding to a period of 25.1 yr. (bottom) For mode 2 the eigenvalue
is s 5 20.2366 1 i0.4998 in yr21, corresponding to a period of 12.6
yr. Negative contours are shaded.

r. For this and subsequent calculations we use the fol-
lowing values:

25 21 211 21 21f 5 2 3 10 s , b 5 1.6 3 10 m s ,0

6L 5 L 5 7.5 3 10 m, H 5 500 m,x y

22g9 5 0.02 m s .
(8)

A band of weakly damped eigenvalues emerges, the
decay rate of which is much smaller than r. Moreover,
the eigenvalues for the gravest modes in this band are
independent of friction to leading order.

The eigenfunctions for ĥ are shown in Fig. 2 for the
two least damped eigenvalues. These modes are char-
acterized by a large-scale interior spatial structure, with
phase lines oriented southwest to northeast. A thin return
flow is present along the western boundary, with a
boundary layer width proportional to r.

b. The geostrophic, inviscid limit

Because the low-frequency eigenvalues in Fig. 1 are
almost independent of friction, and the corresponding
eigenfunctions have a large-scale structure away from
a thin region near the western boundary, we can neglect
both friction and inertia. This reduces the homogeneous,
reduced-gravity momentum equations (1) and (2) to the
statement of geostrophic balance, that is,

2 fy 5 2g9h ; fu 5 2g9h .x y (9)

These diagnostic relations, together with the mass con-
servation equation (3), lead to the planetary geostrophic
potential vorticity equation (PGPV):

h 2 ch 5 0,t x (10)

where c(y) [ bg9H/ f 2 is the long Rossby wave velocity
and is a strong function of latitude. Because the direction
of propagation of c is westward, the single boundary
condition allowed by (10) is u 5 0 at x 5 Lx. This
implies that h must be independent of latitude at the
eastern boundary or

h 5 h (t) at x 5 L .0 x (11)

This boundary condition is insufficient to completely
determine the layer depth. The boundary condition (11)
must be supplemented by the constraint of total mass
conservation (4). The application of the boundary con-
dition (11) plus the constraint (4) will be justified in
section 4 with an asymptotic analysis of the linear shal-
low-water equations valid for timescales longer than r21

with r K f . The conclusions of section 4 are the fol-
lowing.

1) Friction affects the solution only in thin boundary
layers, so that the mass conservation constraint can
be applied to the interior inviscid solution in the limit
of weak friction.

2) The boundary pressure, proportional to h0(t), cannot
be specified as an arbitrary constant. Instead, the time
evolution of h0(t) is determined by (48).

We now determine the eigenfunctions and eigenvalues,
by looking for solutions to (10) of the form

sth 5 e ĥ(x, y). (12)

The eigenvalue is s and ĥ is the eigenfunction, which
satisfies the boundary condition ĥ(Lx, y) 5 ĥ0, and is
subject to the constraint

L Lx y

ĥ dy dx 5 0. (13)E E
0 0

The solution of (10), which fulfills the eastern boundary
condition is

s[t1(x2L )/c]xh 5 ĥ e .0 (14)

Thus, the solution is a Rossby wave that propagates at
the local long Rossby wave speed, c. The longitudinal
wavelength of this wave is c(y)/s and, thus, decreases
with latitude. The eigenvalues are determined by en-
forcing the mass conservation constraint (13). Evalu-
ating the x integral in (13) gives

Ly

2sL /c(y)xc(y)[e 2 1] dy 5 0, (15)E
0

which is a special case of (48) obtained for t 5 0 and
h0 5 ĥ0est. Next, using the definition of c and perform-
ing the y integral in (15) gives the transcendental dis-
persion relation
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FIG. 3. (left) Real and (right) imaginary parts of the two gravest
planetary geostrophic, inviscid eigenfunctions, ĥ, given by (14). (top)
For the gravest mode the eigenvalue is s 5 20.1377 1 i0.2222 in
yr21. (bottom) For the next mode the eigenvalue is s 5 20.1684 1
i0.4504 in yr21. The contour level is the same as that used in Fig. 2
and negative contours are shaded.

FIG. 4. (top) Normalized decay rates, Re(sTS), and (bottom) fre-
quencies, Im(sTS), for the first two modes as a function of a [ bLy/
f 0 (solid line). The dashed line in the lower panels is the approxi-
mation vnTS ø 2pn(1 1 a)22 valid for large a.

22sT (11a)Se 1 a
2sTS2 e

1 1 a

1 ÏsT p erf ÏsT (1 1 a) 2 erf ÏsT 5 0,S S S5 6[ ] [ ]
(16)

where erf(z) is the error function, a [ bLy/ f 0, and

LxT [ (17)S c(0)

is the basin transit time of Rossby waves at the southern
boundary, y 5 0. The dispersion relation equation is
solved numerically. There is an infinitude of modes with
eigenvalue sn, which depend on the parameter a. The
gravest six eigenvalues for the parameter values in (8)
(corresponding to a 5 6) are shown in Fig. 1 (crosses).
There is good agreement between the interior PGPV
approximation and the full inertial and frictional prob-
lem for the gravest mode, n 5 1, and convergence, as
r → 0 is suggested for the higher modes. Moreover, the
eigenfunctions (14), shown in Fig. 3, agree with the
solutions of the shallow-water eigenproblem (cf. Figs.
2 and 3), except in the western and northern boundary
layers.

Figure 4 shows the decay rates and the frequencies
of the first two modes as a function of a. Notice that
the frequency of the gravest mode, n 5 1, is always
less than 2p/TS, so that the period is always longer than
the transit time at the southern boundary.

Specifically, the behavior of the frequency for large
a is approximately given by vn ø 2pn (1 1 a)2221T S

(dashed line in Fig. 4). Because of the equality TS(1 1
a)2 5 Lx/c(Ly), the eigenperiod in the limit of large a
approaches the transit time of the slowest Rossby wave.
In other words, the eigenperiod is given by the transit
time of the wave traveling along the northern boundary,
y 5 Ly, even though the apparent speed of the phase
lines equals the local long Rossby wave speed. These
features also characterize the thermocline variability ob-
tained by CA in an eddy-resolving ocean general cir-
culation model.

Unless a is small the decay rate is of the same mag-
nitude as the frequency. For small a, s can be deter-
mined from (16) as an expansion in powers of a, and
we find

2
2 2 3sT 5 2p in(1 2 a 1 a ) 2 (apn) 1 O(a ). (18)S 3

The quasigeostrophic limit is recovered in the limit a
→ 0, and in this case the eigenvalue predicted by the
inviscid limit is purely imaginary, in accord with the
results of Cessi and Primeau (2001).

For finite a, the eigenvalues, sn, of the inviscid PGPV
problem have a negative real part. Remarkably, this
means that for small friction, r K f , the damping rate
Re(s) is, to leading order, independent of the friction r
and can be determined without having to resolve the
details of the frictional boundary layers on the northern,
western, and southern boundaries necessary to close the
circulation. Inspection of the eigensolutions (14) reveals
that, except in the quasigeostrophic limit, the phase lines
at the western wall are tilted, so that the component of
the flow into the boundary is returned in a viscous layer,
where some of the energy is dissipated. In this respect
the planetary geostrophic equations differ crucially from
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FIG. 5. Power spectrum of h0(t) for four different shapes g̃(y). The
spectral peaks are located at (a) vTS 5 0.10, (b) 0.13, (c) 0.11, and
(d) 0.16. In (d) the power spectrum obtained by averaging 100 re-
alizations of the numerical solutions of (25) for r 5 4 3 1027 s21 is
also shown (thin line), illustrating the good agreement with the in-
terior analytic approximation (thick line).

the quasigeostrophic limit examined by Cessi and Pri-
meau (2001), where the interior phase lines are parallel
to the boundary, and no dissipation occurs to leading
order.

In summary, the reduced-gravity shallow-water equa-
tions possess a set of low-frequency, weakly damped,
decadal basin modes. Because these modes are large
scale and not influenced by friction, they are accurately
described by the interior planetary geostrophic dynam-
ics and mass conservation.

3. Stochastic forcing

In this section we examine the response to a wind
stress that is stochastic in time. The goal is to determine
whether the existence of damped, large-scale modes
leads to a preferred timescale of response. Thus, we
examine the solution of the stochastically forced, in-
viscid planetary geostrophy formulation (10)

t
h 2 ch 5 , (19)t x 1 2f r

y

subject to (4) and (11). A detailed derivation of this
approximation from the shallow-water equations is giv-
en in section 4.

Following Frankignoul et al. (1997), we consider a
wind forcing:

t(y, t) 5 t w(t)g(y),0 (20)

where g(y) is the spatial shape of the forcing and w(t)
is a random number, picked at every time step from a
Gaussian distribution, with zero average and a power
spectrum with unit amplitude.

Solutions are readily obtained by taking the Fourier
transform of (19), that is,

ivĥ 2 cĥ 5 ŵg̃,x

ĥ(L , y, v) 5 ĥ (v),x 0

L Lx y

dx ĥ dy 5 0. (21)E E
0 0

Here we have defined g̃ [ [t0g/(r f )]y, and the hat in-
dicates the Fourier transform. The solution of (21) is

21 21 iv (x2L )/cxĥ 5 2iv ŵg̃ 1 (ĥ 1 iv ŵg̃)e , (22)0

where ĥ0 is the Fourier transform of the depth at the
eastern boundary. The mass constraint determines ĥ0 to
be

21Ly

2ivL /c(y)xĥ (v) 5 ŵ c(y)(e 2 1) dy0 E[ ]
0

Ly

21 2ivL /c(y)x3 g̃(y)[L 2 iv c(y)(e 2 1)] dy,E x

0

(23)

which is a special case of (48). The spectrum is obtained
by forming the square of the absolute value of (22), and
ensemble averaging with ^ | ŵ | 2& 5 1. Because all the
eigenvalues are complex the denominator in (23) does
not have a zero for v real.

In Fig. 5 we plot the power spectrum at the eastern
boundary, ^ | ĥ0 | 2&, with ĥ0 given by (23), for the fol-
lowing shapes of the forcing:

1) g̃(y) 5 1,
2) g̃(y) 5 y(Ly 2 y)/ ,2Ly

3) g̃(y) 5 sin(2py/Ly),
4) g̃(y) 5 [(y(Ly 2 y)/ 2 sin(1.9py/Ly))/ f ]y.2Ly

In all cases the parameters have the values given in (8),
and all of the spectra have a peak at low frequencies.1

For the shape 4 we also performed computations using
the planetary geostrophic equation (25) with r 5 4 3
1027 s21. The spectrum in this case is obtained by av-

1 In this linear formulation the amplitude of the response is directly
proportional to the amplitude of g̃, which is set to a number of order
unity in all cases.
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FIG. 6. Power spectrum of h at the outer edge of the western
boundary for different latitudes. The forcing is g̃ 5 {[y(Ly 2 y)/ 2Ly

2 sin(1.9py/Ly)]/ f}y.

FIG. 7. Power spectrum of h at y 5 4/5Ly on the western boundary
(solid line) and on the eastern boundary (dashed line), obtained by
averaging 90 realizations of the numerical solutions of (25), for r 5
4 3 1027 s21. The forcing and parameters are the same as in Fig. 6.

eraging 100 realizations of the solutions of (25), each
312 yr long (the time step is 0.0012 yr). There is a close
correspondence between the spectrum obtained with and
without friction, although in the latter case the spectral
peak occurs at a slightly lower frequency, as expected
from the comparison shown in Fig. 1. Figure 5 illustrates
that a preferred decadal timescale emerges regardless of
the shape of the forcing. Specifically, expression (23)
shows that ĥ0(v) does not vanish when the average of
g̃(y) is zero, in contrast to the quasigeostrophic limit of
Cessi and Primeau (2001). As suggested by the analysis
of the damped harmonic oscillator, the maximum of the
forced response does not occur at the real part of the
eigenfrequency. Moreover, different spatial wind stress
configurations have different efficiencies in the exci-
tation of the free modes, so that the position of the
spectral maximum depends weakly on the wind pattern.
But, despite these details, in all cases a low-frequency
spectral peak is produced by the random forcing.

Away from the eastern boundary, the spectrum has a
complicated spatial dependence. This is in contrast with
the results of Frankignoul et al. (1997), where the spec-
trum has the same shape everywhere. As an illustration,
we show in Fig. 6 the spectrum of h at the seaward
edge of western boundary for g̃ in (iv) for different
values of y. The spectrum is obtained by evaluating the
interior approximation (22) at x 5 0. The peak at decadal
frequency found on the eastern boundary is also present
on the western side of the basin only near the equator.
However, as higher latitudes are reached, the peak mi-
grates to zero frequency, and approaches the spectrum
calculated by Frankignoul et al. (1997).

The interior approximation (22) is not valid in the
frictionally controlled western boundary layer. In order
to calculate the spectrum on the western wall we inte-
grated numerically the planetary geostrophic equation

(25) subject to the no-normal-flow conditions on the
four solid boundaries. The wind stress is the same as
that used for Fig. 6 and r 5 4 3 1027 s21. Ninety
realizations, each 312 yr long, were averaged to obtain
the spectrum shown in Fig. 7. Although we only show
one latitude, y 5 4Ly/5, this is representative of the
whole spectrum at the western boundary. The spectral
peak obtained on the eastern boundary (dashed line) is
clearly discernible on the western boundary as well (sol-
id line), above the directly forced low-frequency spec-
trum. The emergence of a peak associated with the least
damped eigenmode on the western boundary should be
contrasted with the prediction from the interior approx-
imation: the spectrum at the seaward side of the western
boundary current at the same latitude, shown as solid
line in Fig. 6, has a minimum in the frequency band
where the boundary spectra have a maximum. This re-
sult reinforces the importance of the time-varying
boundary pressure in the excitation of the low-frequency
basin modes.

Thus, different frequencies dominate the response to
stochastic forcing in different parts of the basin. Al-
though the details of the spectrum shape vary with the
distribution of forcing, the decadal spectral peak due to
the excitation of the basin modes dominates on the
boundaries and in the equatorial region. The zero-fre-
quency saturation discussed in Frankignoul et al. (1997)
applies on the seaward side of the western boundary
layer.

4. The boundary layers

In this section we provide a detailed analysis to justify
the application of the constraint (4) as a supplement to
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the eastern boundary condition (11) in the large-scale,
low-frequency, weakly damped limit.

For timescales much longer than a day the acceler-
ation terms are negligible compared with the Coriolis
term in the shallow-water momentum equations, so that

t(y, t)
2 f y 5 2g9h 1 2 ru;x rH

fu 5 2g9h 2 ry . (24)y

Combining the planetary geostrophic equations (24)
with mass conservation (3), a single evolution equation
for h is obtained:

2 2f 2 r
h 2 bg9H ht x2 2 2( f 1 r )

=h 1 f t
5 rg9H= 1 , (25)

2 2 2 21 2 1 2r 1 f r r 1 f
y

with u and y related diagnostically to h by
rt

2 2(r 1 f )u 5 2g9(rh 1 fh ) 1 , (26)x y rH

f t
2 2(r 1 f )y 5 g9( fh 2 rh ) 2 . (27)x y rH

The requirement of no normal velocity gives the
boundary conditions

rt
2g9(rh 1 fh ) 1 5 0x y rH

at x 5 0 and at x 5 L , (28)x

f t
g9( fh 2 rh ) 2 5 0x y rH

at y 5 0 and at y 5 L , (29)y

The evolution equation (25) with the boundary condi-
tions (28) and (29) imply total mass conservation, that
is,

L Lx y

h dy dx 5 0. (30)E E
0 0

In the following we will show that the enforcement
of global mass conservation (30) determines the interior
solution in the limit of small drag without becoming
involved in the details of the frictional boundary layers.

a. The limit of small drag

In a closed domain the pressure on the eastern bound-
ary cannot be arbitrarily set to zero as in Frankignoul
et al. (1997). Instead, the boundary pressure is an un-
known that must be determined as part of the solution
by enforcing the no-normal-flow conditions and global
mass conservation. However, in the planetary geo-
strophic formulation, the role of the eastern boundary
pressure is not so obvious as in the quasigeostrophic

case considered by McWilliams (1977). In the following
we clarify this point.

In the limit where r K f , and away from the equator,
(25) can be simplified as follows:

=h t
h 2 c(y)h 5 rg9H= 1 , (31)t x 21 2 1 2f f r

y

where c(y) [ bg9H/ f 2 is the wave velocity. The first
term on the right-hand side of (31) is negligble except
in boundary layers.

b. Interior problem

The interior solution of (31), hI(x, y, t), satisfies

t
h 2 c(y)h 5 . (32)It Ix 1 2f r

y

Because waves propagate westward, the eastern bound-
ary does not support a viscous boundary layer, and we
enforce the eastern boundary condition on the interior
solution. Also, when applying (28) at x 5 Lx, we can
neglect the terms proportional to r, so that to leading
order in r/ f K 1 we have

h 5 h (t) at x 5 L .I 0 x (33)

Applying this eastern boundary condition, the solu-
tion of (32) is

x 2 Lxh (x, y, t) 5 h t 1I 01 2c(y)

t t(y, t9)
1 dt9. (34)E [ ]f rt1(x2L )/c(y)x y

Because we anticipate that the corrections to the interior
solution are confined to thin frictional boundary layers,
we can apply the constraint of total mass conservation
(4) to the interior solution, hI. This requirement deter-
mines the eastern boundary depth, h0(t). Thus, we sub-
stitute (34) into

L Lx y

h dy dx 5 0, (35)E E I

0 0

and obtain the integral equation that governs the evo-
lution of h0(t):

Ly

c(y) dyE
0

t t(y, s)
3 h (s) 1 [s 2 t 1 T(y)] ds 5 0,E 05 6[ ]f rt2T(y) y

(36)
where the transit time is T(y) [ Lx/c(y). The eastern
boundary depth h0(t) thus depends on the structure of
the wind at all latitudes. For example, in the steady case
where t only depends on y, and where h0 is a constant,
we find
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FIG. 8. The top two panels show snapshots of the depth of the
layer, h, on the boundaries from the numerical solution of the shallow-
water equations (s.w.e.) (25) and from the approximation in (40). The
values on the northern and southern boundaries are on the top panel,
while the values on the eastern boundary are in the middle panel.
Notice the narrow range of values on the eastern boundary. The lower
panel shows a time series of the layer’s depth on the eastern boundary
from the numerical solution, normalized by the maximum value ob-
tained in the basin. The shape of the forcing is given in (41), and v
5 0.28 yr21.

Ly21L tyh 5 2 T dy. (37)0 E 1 22 f r0 y

Now we have to check that the heuristic argument
leading to the approximation (35) is consistent with the
existence of thin frictional boundary layers that allow
the full application of the no-normal-flow conditions
(28) and (29).

c. Boundary layers

In order to determine h on the northern, southern, and
western boundaries, it is necessary to estimate the
boundary layer widths.

1) SOUTHERN AND NORTHERN BOUNDARY LAYERS

The width of the meridional boundary layers is de-
termined by a balance between bhx and 2rhyy in (31).
This balance implies that the width of the southern (and
northern) boundary layer is O( ). Thus, in (29),ÏrL /bx

the frictional term, rhy, is proportional to , and con-Ïr
sequently rhy is negligible compared to fhx if r K f .
Thus, the approximate boundary condition on the south-
ern boundary is

h 5 t /(g9rH ) 1 O(ÏrbL / f ) at y 5 0. (38)x x

Equation (38) can be integrated to give

h(x, 0, t) ø (x 2 L )t /(g9rH ) 1 h (t)x 0

at y 5 0. (39)

Notice that, in the quasigeostrophic approximation, the
southern boundary condition would be h(x,0,t) 5 h0(t).
Thus, we expect (x 2 Lx)t/(g9rHh0) K 1 in the qua-
sigeostrophic limit. Equation (36) indicates that the or-
der of magnitude of the variation of h 0 is
Lxtf (bLyrg9H)21, in accord with Sverdrup balance.
With this estimate, the ratio of the first to the second
term on the right-hand side of (39) is O(bLy/ f ), which
is indeed small in the quasigeostrophic approximation.
The treatment of the northern boundary follows that of
the southern boundary. In summary, the boundary val-
ues of h are given by

h(x, L , t) ø (x 2 L )t /(g9rH ) 1 h (t),y x N 0

h(x, 0, t) ø (x 2 L )t /(g9rH ) 1 h (t),x S 0

h(L , y, t) ø h (t), (40)x 0

where tN and tS are the values of the wind stress at the
northern and southern boundaries, respectively.

Figure 8 compares the approximate prediction (40)
with the results of a numerical integration of the intertia-
less shallow-water equation (25). For this calculation
we used the parameter values given in (8) and r 5 4
3 1027 s21. The wind stress is assumed periodic in time
of the form

22t 5 [L (y 2 L /5)(y 2 L )y y y

1 sin(1.9py/L )] cos(vt). (41)y

The approximation (40) is very good on the eastern and
northern boundaries, but less so on the southern bound-
ary where the frictional parameter, / f 0, is notÏrbLx

much less than unity. Also shown in Fig. 8 (bottom) is
a time series of the boundary depth at the eastern bound-
ary for the numerical solution of (25). The amplitude
of the boundary depth has been normalized by the max-
imum value in the basin within an oscillation to em-
phasize that the variations in time of the boundary depth
are substantial.

2) WESTERN BOUNDARY

On the western wall we anticipate that friction will
be important, and the width of the boundary layer is
found by assuming a balance between bhx and rhxx. In
this case the width of the western boundary layer is
proportional to r and the western boundary condition
is, to leading order in r/ f ,

rh 1 fh 5 0 at x 5 0.x y (42)

Unlike the other three boundaries, we must retain the
frictional term, and the determination of the western
value of h, denoted by h1(y, t), requires the analysis of
the western boundary layer. The solution within this
region is the sum of the interior flow, hI plus a western
boundary layer correction, hW. The interior flow is given
by (34), and the correction satisfies
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(rh 1 bh ) 5 0,Wx W x (43)

subject to the boundary conditions

h (0, y, t) 1 h (0, y, t) 5 h , lim h 5 0. (44)I W 1 W
x→`

From (43) and (44),

h (x, y, t) 5 h (y, t) 2 h [t 2 T(y)]W 1 05
t1 t(y, t9)

2(bx /r)2 dt9 e . (45)E 6[ ]r ft2T(y) y

To evaluate h1(y, t), the condition (42) is applied to hI

1 hW. To leading order in r, we obtain:

th b 1 t(y, t9)1 5 2 h [t 2 T(y9)] 1 dt9 .0 E21 2 5 6[ ]f f r ft2T(y)y y

(46)

Thus, the variation of h1 along the western boundary is

O(bLy/ f ) and can be neglected in the quasigeostrophic
limit. Therefore, in the quasigeostrophic approximation
h is independent of the boundary arc length on all
boundaries (McWilliams 1977).

In the shallow-water case, h1 varies along the western
boundary according to (46), which must be integrated
subject to matching at y 5 0, with the value on the
southwest corner given by (39). Therefore,

yh h (t) L t b1 0 x S5 2 2 h [t 2 T(y9)]E 025f f g9rHf f0 0 0

t t(y9, t9)
1 dt9 dy9.E 6[ ]f rt2T(y9) y9

(47)
The continuity of h all around the rim of the basin
requires h1 to match the value on the northwest corner
as given by (40), and this places the following constraint
on h0

L tyh (t) h (t) L t t b t(y, t9)0 0 x N S2 5 2 2 h [t 2 T(y)] 1 dt9 dy, (48)E 0 E25 6[ ] [ ]f f g9rH f f f f rN 0 N 0 0 t2T(y) y

where f N is the northerly value of f . This same con-
straint is obtained if the interior equation (32) is inte-
grated over the domain, and the interior eastern bound-
ary condition (33) and integral condition (35) are ap-
plied. Thus, the interior problem posed in section 3a,
with the eastern boundary condition in (33) and the
integral constraint (35), is a consistent approximation
in the limit of small friction.

5. Conclusions

The weakly dissipated linear reduced-gravity shal-
low-water equations in a closed domain have been ex-
amined. The low-frequency eigenmodes of this system
are characterized by large-scale oscillations with de-
cadal periods. For a basin spanning a large latitudinal
band, the period of the gravest mode is given by the
transit time of the slowest long Rossby wave in the
basin. The modes are characterized by long Rossby
waves with phase speeds and wavenumbers that strongly
vary with latitude. The basinwide coupling of these
Rossby waves occurs on the eastern boundary, where
the pressure signal is synchronized. The eastern bound-
ary pressure rearranges the density field so as to fulfill
the global constraint of mass conservation, and its time
evolution is governed by (48).

In the limit of weak friction the damping rate of each
eigenmode has a magnitude comparable to its frequency
and, thus, approximately independent of friction. The

damping arises because long Rossby waves are partially
absorbed on the western boundary. The absorption is
especially effective in basins of large latitudinal extent
because the wavefronts are tilted by the differential
phase speed. Since for Rossby waves the velocity is
parallel to the wave crests, the more the waves are slant-
ed in the east–west direction the more dissipation occurs
in the western boundary layer. Indeed, the modal damp-
ing rate increases with the difference between the lowest
and highest Rossby wave speeds.

Because the interior spatial structure of the eigen-
modes is of large scale, their dynamics relies only on
geostrophic balance and mass conservation. We thus
anticipate that these findings are robust to changes in
the details of the basin geometry. Specifically, given the
high-latitude loading of the eigenmodes, the presence
of a solid wall located in the proximity of the equator
is of no consequence. To be sure, we repeated the ei-
genvalue calculation shown in Fig. 1 for a basin that
straddles the equator symmetrically, and the low-fre-
quency eigenvalues and eigenfunctions were almost un-
changed.

The damped basin modes are excited by stochastic
wind forcing, and the spectrum of the forced response
exhibits a weak decadal peak on the eastern and western
boundaries and in the equatorial region of the basin.
Because of the wave properties of the oceanic response,
the forced disturbances propagate at the local speed of
long Rossby waves, as found by CA in an analysis of
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an ocean general circulation model. We thus interpret
the decadal peak found in CA as a basinwide, quasi-
resonant response to wind forcing.

It is surprising that a decadal peak is more apparent
near the equator, where the transit time of Rossby waves
is fastest. However, all the latitudes are coupled by the
pressure at the boundary, and the response at any given
latitude depends on the global forcing as well as on the
local one, with the latter dominating at higher latitudes.
Thus, the excitation of basin modes is a mechanism by
which midlatitudes exert control over the Tropics on
decadal timescales.

As the western boundary is approached, the response
depends on the time history of the wind forcing, from
the time when the Rossby waves left the eastern bound-
ary up to the present [cf. the expression for the interior
depth (34)]. Thus, the interior response on the western
side of the basin is dominated by ultra-low frequencies,
which mask the decadal quasi-resonance. However, as
the western wall is reached, the boundary pressure sig-
nal becomes prominent, and the spectral peak due to the
least damped eigenmode emerges.

In this model the wind stress is prescribed as a random
variable. However, several authors (Jin 1997; Munich
et al. 1998) have suggested that the upper-ocean heat
content (proportional to h in the present model), influ-
ences the wind itself. We conjecture that the basin
modes, if coupled to the wind stress, can become sus-
tained instead of damped, thus contributing to the de-
cadal band of climate variability.
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