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Energy partition in the large-scale ocean circulation and the 
production of mid-ocean eddies 
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(Received 14 June 1973; in revised form 8 November 1973; accepted 8 November 1973) 

Abstract--It is shown that the available potential energy in the large-scale mean ocean circulation, 
excluding the boundary layers, is of order ( BI a) s times the kinetic energy, where B is the basin dimension 
and a == c / f  is the internal radius of deformation (c is the speed oflong internal waves andfthe Corinlis 
parameter). This ratio is of order 1000. The Sverdrup solution for a two-layer ocean is examined, and 
the rate of input of energy by the wind estimated. In the steady-state model, this energy is lost to the 
western boundary layer. It is then shown that potential energy available in the mean circulation can be 
converted into eddy energy by baroclinic instability. The stability properties depend only on the mean 
density field, and calculations are made for a number of cases. Maximum growth rates are obtained for 
eddies with wavelength of about 200 kin, typical e-folding times being about 80 days. These eddies have 
sj~,nificant velocities only in the surface layers. Secondary maxima in the growth rate curves are found 
for eddies with wavelengths of 300-500 km, e-folding times being 120 days or more. These eddies have 
sit, nificant velocities in deep water, their structure being something like that of the first baroclinlc mode. 

In the models examined, the conversion of available potential energy took place in the upper 400 m, 
and the rate of conversion can be related to the maximum eddy velocity. If it is supposed that eddies 
grow to such a size that mean energy is lust to eddies as fast as it is supplied by the large-scale wind field, 
then the larger eddies would have maximum velocities of about 0.08 m s -1 and the smaller surface 
trapped eddies would have maximum velocities of about 0.14 m s-L Observations indicate the existence 
of eddies of this strength, and with wavelength and periods of the same order as given by the baroclinic 
instability calculations. 

1. INTRODUCTION 

OVER THE past century, a picture of  the mean circulation of  the ocean has been built up 
from temperature and salinity measurements (DEFA~r, 1961). The mean currents 
(see Fig. I) are only a few centimeters per second except in special regions of  con- 
centrated currents like the Gulf  Stream. However, direct measurements of  currents 
have shown that the kinetic energy in time-dependent currents is greater than the 
kinetic energy of  the mean currents and that currents of  0-I m s - I  are commonly 
observed. The first direct current measurements over a long period (14 months) 
in mid-ocean were made in 1959 and 1960 in a region 5000 m deep about 
250 km west of  Bermuda. These measurements have been reported and discussed by 
CREASE (1962) and SWALLOW (1971). It appears that the eddies observed have wave- 
lengths (PHILLIPS, 1966) of  300--400 km and periods (SWALLOW, 1971) of  50--100 days. 

The U.S.S.R. POLYGON experiment (BR~HOVSKIKH, F~]n~OV, FOMIN, 
KOSHLYAKOV and YAMPOLSKY, 1971) has documented the progress of  such an eddy in 
great detail. Observations were made using an array of  current meters spread over a 
200-kin square. The measurements indicate (KOSHLYAKOV and GRACHEV, 1973) that 
an eddy of  elliptic shape (semi-axes 200 and 90 km) moved through the array at 
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0.04-0.06 m s -1. To give an impression of  the scale involved, an ellipse of  these 
d imensions  is d rawn in Fig. 1 at the site of  the P O L Y G O N  experiment .  This 
cor responds  to a wavelength of  about  360 km and a per iod of  abou t  120 days. F igure  2 
shows a progressive vector  d iagram of  currents  a t  1000 m dur ing the experiment .  
Clearly, the current  at any given t ime is little related to the long- term mean.  Compare ,  
for instance, the 10-day mean  currents  for the per iods  20th-30th  Apr i l  and  the 20th-30th 
June. In both per iods  the mean current  was over 0.1 m s -1 but  the direct ions were 
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Fig. I. Mean dynamic topography in the Atlantic Ocean (from DEFANT, 1961, Figs. 271,272) for 
(a) the ocean surface and (b) the 100=db surface. Contours are in dynamic crn. An ellipse with the 
dimensions of the eddy observed in the POLYGON experiment has been supcrimposeA in the 

appropriate position. 
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totally different. On the other hand, the average current over the whole 6-month 
period of the experiment was similar to that deduced by Defant from temperature and 
salinity data. 

An impression of how the eddies may be distributed in the horizontal at a particular 
time comes from measurements (Fig. 3) of  sound velocity at 800 m made by BECKERLE 
(1972) (see also BECKERLE and La CASCE, 1973). The sound velocity is related to density 
so the contours indicate vertical shear. The arrows indicate the direction of  motion for 
the layers above 800 m relative to those below. 
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Fig. 2. A progressive vector diagram of currents at 1000 m obtained in the POLYGON 
experiment (from BREKHOVSrdKH, FEDEROV, FOMIN, KOSHLYAKOV and YAMI'OLSKY, 1971, Fig. 4). 
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Fig. 3. Contours of sound velocity of 800 m in the Sargasso Sea (from BECKERLE, 1972). The 
sound velocity field is related to the density field and hence current shear. The arrows show the 

direction of this shear. 

The large eddies also appear as 'noise' on closely spaced hydrographic sections like 
those shown in the Atlantic Ocean Atlas of FUGLIS~V_m (1960) (a section from this atlas 
is reproduced in Fig. 6 below). The time taken to make a section is short compared with 
the period of an eddy and the station spacing (typically 100 km) is just small enough to 
indicate the presence of eddies without adequately resolving them. On the other hand, 
SECKVL (1968) reports a series of measurements between l0 and 26°N in the Pacific 
with 50-kin spacing, and this does appear adequate to resolve the most energetic eddies. 
WYRTKI (1967) has calculated the structure function for the depth of various isothermal 
surfaces, and finds a peak value at 250 kin, corresponding to a wavelength of about 
500 kin. The amplitude of the displacement is about 50 m, and the 17 months of record 
(see SECr~L, 1968, Fig. 6C) appears to cover about 3 periods. 

Further evidence of the presence of these energetic eddies may be found in the long 
time-series of temperature records obtained by the Panulirus at a station near Bermuda. 
The low frequency spectrum of the temperature at different depths is given by WUNSCH 
(1972b) and reproduced in Fig. 4. Most of the temperature variance comes from 
periods between 40 and 200 days. A similar feature is seen in the spectrum of dynamic 
height relative to 1500 db (WUNSCH, 1972a, Fig. 19). 

Given that such eddies exist, the question is raised about the source of their energy. 
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The temperature spectrum q~f) at a depth of 500-600 m at the Panulirus station near 
Bermuda (from WVNSCH, 1972b, Fig. 2b). The temperature variancef~,(f) is plotted as a function 

of frequency f 

We will examine the partition of energy in the main oceanic gyres and show that most 
of the energy is stored as potential energy. Further, there is sufficient energy available 
to produce eddies of the observed strength if the potential energy of the mean flow is 
converted into eddy energy. Conversion of energy can take place by baroclinic 
instability, and a model of this process is examined. For the examples considered, 
substantial transfer of energy is found to occur only in the top 400 m. The most unstable 
disturbances are confined to the surface layers and have wavelengths of 100-250 km and 
e-folding times of 80-100 days. Longer waves (wavelength 300-500 kin) are also 
unstable but with e-folding times of 120-200 days. These waves have vertical structure 
similar to that of the first baroclinic mode and their stability properties arc strongly 
affected by bottom topography. The unstable disturbances examined were found to 
travel westwards with propagation speeds close to the maximum mean velocity, i.e. 
4-5 km days -1. This corresponds to periods of 25-60 days for the short waves and 
60-100 days for the long waves. 

2. E N E R G Y  P A R T I T I O N  IN T H E  M A I N  O C E A N I C  G Y R E S  

The purpose of this section is to show, for a simple two-layer model of the ocean, 
that the potential energy stored in the main ocean gyres exceeds the kinetic energy by the 
large factor (B/a) ~, where B is the horizontal scale of the gyre and a is the (internal) radius 
of deformation. This is, in fact, a rather general property of quasi-gvostrophic flows 
(see Appendix). For the main oceanic gyres, B is of order 1000 km while a (at mid 
latitudes) is of order 30 kin, so the potential energy is of order 1000 times the kinetic. 
In particular, as STOMMEL (1965, p. 148) remarks, 'there is an immense store of available 
potential energy in the deep warm-water mass in the Sargasso Sea, more than a thousand 
times the kinetic energy of all the currents in the North Atlantic'. This fact is of great 
importance when considering possible sources of energy for the energetic eddies referred 
to in the introduction. 
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To demonstrate the result, consider the case of  geostrophic flow in a two-layer 
ocean, the lower layer of  which is at rest (c.f. STOMMEL, 1965, Chapter 8). This gives a 
reasonable order-of-magnitude approximation to the wind-driven flow in the main 
oceanic gyres, since the main currents are confined to the upper part  of the ocean. In this 
section, orders of  magnitude of the potential and kinetic energy will be compared. In 
the next section, more specific calculations will be made for the 'Sverdrup'  solution for 
an ocean gyre. 

Let x, y, z be co-ordinates such that x increases eastwards, y northwards and z 
upwards, and let u, v, w be the corresponding velocity components. Suppose the ocean 
surface is defined by 

= = , l ( x , y ) ,  

and the interface between the upper fluid (of density pl) and the lower fluid (of density 
p2) is given by 

z = --h(x ,y) .  

Then if g is the gravitational acceleration, the hydrostatic relation gives for the 
pressure, p, 

{ o l g ( ~  --  z) for --h < z < '/ 
p = (2.1) 

p l g ( ~ + h ) - -  p 2 g ( h + z )  f o r z  < - /7 .  

I f  the lower layer is motionless, p must be constant on horizontal surfaces so 

g~q = Fl(z) + g 'h ,  

where 

g '  = (p2 --  pl)g/Pz.  

Therefore, the pressure in the upper layer is given by 

p/p ,  = g'h + F2(z), 

where FI and F2 are functions of  z only. The velocities in the upper layer are given in 
terms of h through the geostrophic relation 

-- fv  = --Px/p1 = --g'hx 
(2.2) 

f u  - :  --Py/ pI ~--- - -g 'hy,  

except in a thin Ekman layer adjacent to the surface. 
The average kinetic and potential energy can now be estimated for a gyre with 

east-west scale L and north-south scale B with B < L. The overbar will be used to 
define the average over the main part  of  the gyre, e.g. 

h = I f  h dx  dy/I  I dx  dr,. 

The integration is confined to the region where the variations are on the large scales L 
and B and excludes the region of  strong boundary currents. The average kinetic energy, 
T, per unit area is given by 

T : ½Plh(u 2 + v z) : ½plg'h(hx 2 + hv2)/f 2. (2.3) 
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The available potential energy, V, is defined as the change in potential energy obtained 
by flattening the interface. The average value 17 per unit area is given by 

D = ½ptg'[h 2 - -  (h)2]. (2.4) 

Now let 

h = h + h',  (2.5) 

where h' is assumed to be either small compared with h or else the same order 
of  magnitude. It follows that, in order of  magnitude, 

T ,.., plg'Zh h '2 /B~f  2 (2.6) 

17 ~ rag' h'2. (2.7) 

The ratio 

where 

~/T ,,, B~/a ~, (2.8) 

a = ( g ' h ) t / f  = c ' / f  (2.9) 

is the (internal) radius of  deformation and c' the speed of  long internal waves. Hence 
the result that the potential energy exceeds the kinetic energy by the factor (B/a)  2. 

3. ENERGETICS OF SVERDRUP FLOW 

(a) Es t ima te s  o f  the mean  k ine t ic  and  mean  po ten t ia l  energy densit ies 

Specific results are easily calculated for the wind-driven Sverdrup flow (see STOM~L, 
1965, Chapters 7 and 11) in a two-layer ocean. Suppose the line x = 0 lies to the east of  
the western boundary region and the eastern boundary is at x = L. Suppose there is an 
eastward wind stress given by 

sin ( y / B ) .  

The divergence of  the Ekman transport driven by this stress results in a vertical velocity, 

W~.k -- --(r/fBpl) cos (y/B) (3.1) 

just below the Ekman layer and this drives the geostrophic flow which satisfies (2.2). It 
has been assumed that B is small compared with the radius of the Earth. The flow can 
be calculated by using the continuity equation for the part of the upper layer which 
excludes the Ekman layer, namely 

(hu)x + (hv)v + W~k = O. (3.2) 

By eliminating u, v in favour o fh  in (2.2) and (3.2) and using the condition of zero 
transport across x = L, there results 

h 2 = ho 2 + ( 2 f i / p l g ' B f l )  (L  - -  x )  cos ( y / B ) ,  (3.3) 

where h0 is a constant and fl = d f /dy .  
With the further assumption that h' ~ h, and hense that h' ~ h0, the mean energies 

can be calculated. Averages will be taken over the region 0 < x < L and over one period 
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in the y-direction. For  small h', it follows from (3.3) that 

h - ho + ( fr /mg'hoBfl)  (L -- x)  cos (y/B) 

- [(fi'/plg'hoB/3) (L  -- x) cos (y/B)]2/(2ho), (3.4) 

and so 

h ~ ho - [fTL/plg'hoB~]2](12ho). (3.5) 

It follows that 

and 

17 : [f~.L/hoB~]2/(12 plg') ,  (3.6) 

I '  ---: [r/B/3] 2 [(L 2 + 3B2)/B2]/(12plho). (3.7) 

It will be observed that for L >> B, 

~/7": (B/a)2. (3.8) 
For the following values in S.I. units; r : 0.1 N m - 2 , f - -  10 -4 s -1, p l  : =  103 kg m -3, 
/ 3 : 2  × 10 - l x m  - i s  - a , c '  = 3 m s  - l ( g ' =  0 . 0 2 m s  -2 ,h  = 500m), B :  10 era ,  
L = 5 × 10 e m, one obtains 

h'max = 250 m, :r : 100 J m -2, I 7 .... 105 J m -2. 

The value of 7' corresponds to mean currents in the upper layer of 0.02 m s -1. 

(b) Rate o f  input o f  energy into the Sverdrup f low 

Now that the partition of energy within the Sverdrup flow has been calculated, we 
go on to calculate the rates of input and output of energy. The relevant energy equation 
is obtained by multiplying the first of  (2.2) by plhU, the second of (2.2) by plhv, equation 
(3.2) by plg'h and adding all three. The result is 

0 : --plg'(uh2)~ -- pxg ' (vhZ)v -  plg'hw~k. 

Integrating over the region, this becomes 

0 : plg'[Suh 2 dy]x= 0 -- pig' ~ hwEk dx  dy.  (3.9) 

The second term represents the rate of input of energy into the Sverdrup flow by the 
working of pressure forces at the base of the Ekman layer, i.e. this is the rate of  input of 
energy to the region below the Ekman layer which results from the action of  the wind. 
This is balanced by the first term representing the output of  energy which is lost to the 
western boundary region. The average rate, ~, of input can be calculated using (3.1) 
and (3.4), viz. 

t~ : plg'hWEk -- T2L/4plhoB2/3 - 10 -3 Wm -2. (3.10) 

A summary of the results is given schematically in Fig. 5. This number is important 
when we consider possible instabilities of the Sverdrup region, for instabilities imply 
transfer of some of  the energy of the mean flow into eddy energy. Obviously, the rate 
of transfer of energy to eddies cannot be greater than the rate of supply of energy to 
the mean state by the wind. 

The rate of energy input to the mean flow can be compared with the energy con- 
tained in the mean flow. The ratio 

17/1~ -- L/3/3a z ~ 3 yr (3.11) 
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Fig. 5. A sketch showing the energy budget for the Sverdrup solution in a two-layer ocean in 
which the lower layer is at rest. The sketch shows the position of the interface, the energy transfer 
across the surface, the energy transfer to the western boundary current and energy stored. The 
expressions for R, Fand fare  given in the text. The estimates are based on values given in the text. 

is the time it would take to build up the mean flow at the mean rate of  input if the energy 
of the mean flow were suddenly removed. 

4. MAXIMUM POSSIBLE S T R E N G T H  OF E D D I E S  

Suppose now, that, by some mechanism as yet undefined, energy from the mean flow 
described above is converted into eddies. How strong can the eddies be ? Clearly, there 
is little kinetic energy available for the eddies to draw on, but there is a considerable 
store of  potential energy. To find the maximum possible average strength of eddies, we 
can calculate the average energy, P-~day, if  all the energy in the mean flow were converted 
into eddies. In this case 

~eddy = /7, (4.1) 

i.e. the average eddy energy equals the average available energy. Let the wave number of  
the eddy be k. I f k  -1 is greater than the radius of  deformation, then the eddy energy is 
mostly potential energy, Fedd~, so 

/Teddy -~- ff--addF = /7. (4.2) 

The average kinetic energy, Teddy, is less by a factor (ka) 2, so 

~eddF = (ka)~ /7 = (kB) z •. (4.3) 

Thus the eddy kinetic energy can be much larger than the mean kinetic energy if their 
scale is less than that of  the mean flow. For  instance, if k-1 = 100 km and B = 1000 kin, 
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the eddy kinetic energy could be 100 times bigger, viz. 0-2 m s - t  compared with 
0.02 m s -1 for the mean flow. 

A pictorial interpretation of this result can be given in terms of the two-layer model 
in which the average potential energy is proportional to the mean square displacement of 
the interface whereas the average kinetic energy is proportional to the mean square slope 
of the interface. For the mean flow the interface has a small slope because the scale is 
large. If  the potential energy of the mean flow is converted into eddies, the mean square 
displacement of the interface is unchanged but the mean square slope is greatly increased 
if the scale of the eddies is small compared with the scale of the mean flow. 

An impression of how much energy is in the larger eddies and how much is in the 
mean flow can be obtained from examining oceanographic sections. For  instance, the 
temperature section at 50°W (Fig. 6) from FUGLISTER (1960) shows that the thermocline 
(8-16°C) between 25 and 35°N slopes down to the north, dropping about 140 m in 
this distance. (Between 15 and 35°N, the same isotherms descend about 400 m.) The 
wiggles on these isotherms represent displacements of ±25  m, i.e. the displacements due 
to eddies are rather less than the displacements in the mean flow. This indicates that the 

potential energy (which is proportional to h '2) of the eddies is 15-20 ".,~ of that available 
in the mean flow over the 10 ° interval (25-35°N), and a much smaller fraction (a few 
per cent) of the energy available over the 20 ° interval. 

I f  the thermocline slopes from north to south, the baroclinic eddies can extract most 
energy when they have a large north-south scale and the proportion of this which is 
kinetic energy is largest when they have a small east-west scale. The impression from 
the Fuglister section is that the eddies have the energy obtainable by extracting that 
available in a north-south distance of order 500 km. 

5. C O N V E R S I O N  OF A V A I L A B L E  E N E R G Y  TO E D D Y  E N E R G Y  

Although there is a vast store of potential energy available in the mean circulation 
of the ocean, it is not obvious that this can easily be drawn on to form eddies. In fact, 
the constraints imposed by the rotation of the Earth make the energy conversion rather 
difficult. However, the analyses of CrtARNEY (1947) and EADY (1949) have shown that 
this energy conversion can take place in the atmosphere. G~EN (1970) has shown that 
the observed structure of  atmospheric eddies, as represented by their transfer properties, 
is consistent with perturbation theory. Moreover, the eddy intensity and the magnitude 
of the transfer is consistent with the conversion of available potential energy into eddy 
kinetic energy. SCHULMAN (1967) has made calculations for an ocean circulation with a 
rather weak thermocline and found unstable eddies with an e-folding time of about a 
year, but he felt that stronger growth would occur with a more realistic mean circulation. 
The remainder of this paper will be devoted to examining the stability of different mean 
flow profiles. The results are quite sensitive to the profiles taken, and for that reason a 
variety of profiles will be considered. 

We consider small disturbances to a mean state in which the density p varies with 
both depth and horizontal position. The horizontal scale, k -1, of the perturbation is 
assumed to be small compared with the horizontal scale of the density variations, so 
that locally the perturbation can be considered to be a superposition of plane wave 
solutions, and the only properties of the mean field on which the solution depends are 
the variations of # and of its horizontal gradient with depth. The perturbed motion is 



Fig. 6. The meridional temperature section at 5O”W, from FUGLISTER (1960). 
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assumed to be quasi-geostrophic and hydrostatic, in which case (see, for example, 
GREEN, 1960, or CHARNEY and STERN, 1962) a disturbance stream function ~ can be 
introduced, which, for a plane wave, has the form 

~(x , z , t )  = R e { ¢ ( z )  e ~ ( z -e t )  }, (5.1) 

the x-axis being chosen to be in the direction of phase propagation. The perturbation 
pressure, p, the perturbation density, a, and the perturbation velocity components, 
u, v, w are given in terms of ~k by 

p - - -  po f¢  

U ~ - - ~ b y  

v = ~ z  (5.2) 

g a  = - -  po f~b z 

NZw = --f(~bzt + OCzz- Oz~bx), 

where p0 is a representative value of the density and the equation satisfied by the complex 
amplitude, ¢, of the stream function is 

( U  - -  c) {[ ( fZ /NZ)  $dz -- kZ¢} + Qua/' = 0, (5.3) 
where 

Qv = j8 - -  [ ( f2 /N~)  Oz]:. (5.4) 

In the above equation, O is the component of the current in the x-direction and so is 
related to the y-derivative of p by the equation 

f U z  = gPv/Po. (5.5) 

Also, the function N ( z )  which appears in the equations is the Brunt-Viiisiilii 
frequency, defined by 

N ~ = - -gpz /po ,  (5.6) 

and fl is the y-component of the gradient o f f  Since the mean density gradients in the 
ocean are mainly in the north-south direction, the disturbances which can most easily 
draw on the potential energy available are those which travel in the east-west direction. 
Therefore, in the examples, the x-axis is normally chosen as pointing eastwards, in 
which case fl has its usual meaning. 

The boundary conditions are those of no normal flow. At the surface z = 0, this 
condition is w = 0, which in terms of ¢, gives 

$z/¢  = Oz l (O  - -  c) at z = 0. (5.7) 

The boundary condition at the bottom z = - - H  is 

$z/¢  = (Oz + N ~ H y / f ) [ ( O  - -  c) at z = - -H.  (5.8) 

For given wavenumber, k, the equations and boundary conditions define an eigenvalue 
problem for c. A complex c with positive imaginary part implies the existence of a mode 
which grows with time, and the flow U(z) is then said to be baroclinically unstable. For 
the case of a flat bottom (Hv = 0), necessary conditions for instability are (GREEN, 1960; 
CBARNEY and Slw_.RN, 1962) that either 

(i) Qv change sign in - - H  < z < 0, 
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or (ii) the sign of Qu be opposite to that of Oz at z = 0, 
or (iii) the sign of Qv be the same as that of 0z at z = -- H. 
A trivial modification of the argument shows that, for the general case, the last condition 
should be 

(iii) the sign of Qv be the same as that of 0z + N2Hy]fat z = - H .  
The above conditions can be exploited to show that some profiles are stable. When the 
necessary conditions are satisfied, however, a detailed stability analysis is required to 
show if the flow is in fact unstable, and, when it is, to find the growth rates, etc. 

From the way the positive quantity N ~ appears in (5.3), it can be seen that minor 
details in the form of the profile N2(z) are not critical. In the calculations reported here, 
the profile 

NZlf ~ = 10 4 e z/a (5.9) 

has been used, with d = 900 m. This should model the reduction of N 2 with depth in 
the deep layers reasonably well. The effect of a reduction of N 2 near the surface was 
calculated for one ease only, and the results are given later. 

The values ~ = 2 × 10 -11 m -1 s -x and H = 4500 m have been used throughout. 
The critical profile for stability considerations is that of Qy (which depends on Oz) and 
so is [see (ii) above] the sign of Oz at the surface. Now Oz is proportional [see (5.5)] to the 
horizontal density gradient, so a major factor affecting stability is the way in which the 
horizontal density gradient varies with depth. In fact, substituting (5.5) and (5.6) in (5.4), 

Qv = [3 + f(Pu/Pz)z, (5.10) 

and depends on the slope Pv[#z oftbe isopycnals. It will be found that when this slope is 
uniform, only westward currents are unstable, which corresponds to having denser 
water toward the equator. However, at the surface, the denser water is normally toward 
the poles, so the slope of the isopycnals can reverse near the surface (see Fig. 6). 

In order to examine the effects of such a reversal, we will examine the stability of the 
profiles shown in Fig. 7. In all cases, the maximum velocity is 0.05 m s -1 Profile [1] 
has the same exponential form as in (5.9), namely 

O(z) = UoeJ a, (5.11) 

with U0 = --0-05 m s -t.  This corresponds to a uniform slope of the isopycnals. The 
value of the slope depends on f ,  and is 0.8 × 10 -a at 30 ° and 1-1 × 10 -a at 20 ° latitude. 
These values are about 60 ~o of the maximum values observed in the section shown in 
Fig. 6. 

The other profiles shown in Fig. 7 are given by 

U(z) = Uo ~la _ U1 ~la. (5.12) 

The maximum velocity of Um,x ----- -0"05 m s -1 is achieved at a depth z = --zraax, and 
so the profiles are completely specified by the choices of a and Zmax. a is 100 m for 
profiles [2], [3] and 400 m for profiles [4], [5]. Zmx is zero for profiles [2], [4] and 100 m 
for profiles [3], [5]. Thus, for profiles [2] and [4], the slope oftbe isopyenals becomes zero 
at the surface. For profile [2], the change in slope is rapid while for profile [4] it is slow. 
For profiles [3] and [5] the slope of the isopycnals reverses at 100 m. The change in slope 
is rapid for profile [3] and slow for profile [5]. 
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Fig. 7. Mean velocity profiles O(z) for which a stability analysis has been carried out. For clarity, 
profiles [4] and [5] have been displaced to the right and profile [1] is drawn twice. Note that the scale 
of z is limited to less than half the total depth. The mean currents below 2000 m are very small. 

The necessary condition for instability can now be applied. For  profile [1], since the 
isopycnals have uniform slope 

Q~ = ~, (5.13) 

i.e. is independent ofz .  Thus the necessary condition can only be satisfied if Oz has the 
appropriate sign at the boundaries. Oz is so small at the lower boundary that only a 
weak instability can occur when this has the appropriate sign. Otherwise, instability can 
only occur when U0 < 0 so that Oz has the opposite sign to Qv at the surface. This 
corresponds to a westward current with isopycnals sloping upwards towards the equator. 

For  the remaining profiles, Qy is close to ~ near the bottom and departs from/3 by 
increasing amounts as the surface is approached. The surface value is given by 

Qy = f1-4- 10 -4 (Umax/ad) e z~'~la. 

If  Umax is negative (westward currents), Qy changes sign if 

a e -zm*xl~ < --10 --4 Umx/~d ~- 278 m,  

which does happen for the two profiles with a = 100 m but not for the profiles with 
a ---- 400 m. Thus profile [4] must be stable. Profile [5] could only be unstable if Um,x 
were positive (an eastward current) so that Oz at the surface would have the opposite 
sign to Qu. However, Oz has such a small value that [fan instability occurred it would be 
very weak. Thus the stability analysis is only carried out for profiles [1], [2] and [3] with 
westward flow. 
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It is important to note that the stability problem requires only a knowledge of the 
mean density field. This is because only velocities relative to a reference level appear in 
the equations and boundary conditions. If 0 is changed by a constant (i.e. an amount 
independent of depth), (5.3), (5.4), (5.7) and (5.8) show that the only effect is to change 
the wave speed Cr by the same amount. The growth rate is unaffected. It is, therefore, 
possible to use the density data available in data banks to divide the ocean into regions 
with different baroclinic stability properties e.g. categories such as 'stable', 'weakly 
unstable' and 'strongly unstable'. Perhaps experience with a relatively small number of 
mean profiles would allow a crude classification like this to be made. The necessary 
condition for instability would allow some areas to be classified as stable without 
detailed analysis. The results discussed in the next section show that the density structure 
in the top 400 m can strongly affect the stability, and so conditions can change seasonally. 
Since e-folding times are 3 months or more, it would be necessary to assess what the 
average effect over a whole year would be using the stability properties for each 
individual season. 

6. STABILITY RESULTS FOR C O N T I N U O U S  PROFILES 

Numerical solutions were obtained for the profiles [1]-[3] by taking an initial 
guess for c which determines, by (5.7), the value of ~bz/~ at z = 0. Then (5.3) was inte- 
grated to find the value of ~z/~b at z ---- - - H  and this was compared with the value given 
by (5.8). The exact value of c was subsequently obtained by iteration. 

Figure 8 shows the growth rate, kc~, and wave speed, cr, as functions of k for the 
exponential profile [1]. cr and c~ are the real and imaginary parts of c. For the case of a 
flat bottom, the wave speed was found to vary only a little, with values ranging from 
44-50 mm s-L This corresponds to a 'steering level', i.e. the level at which 0 equals cr, 
somewhere between the surface and a depth of  100 m. Results are shown for three 
different values of the non-dimensional bottom slope [see (5.8)] 

s : ( N ~ / f ( l z ) ~ = _ n H v  = (#z /~v)~=_nHv,  (6.1) 

namely s = - -  10, s = 0 and s = 10. s is negative when the bottom slopes the same way 
as the isopycnals. The value s = 10 corresponds to a bottom slope of 0.6 × 10 -a when 
f = 10-4 S-1. 

For wavenumbers above 0.03 km -x, the stability characteristics are practically 
independent of s. The minimum e-folding time of  80 days is achieved for a wave length of 
190 km. For  smaller k, the growth rate curves all show a secondary maximum, but the 
value and position of this maximum are strongly dependent on s. For s -- 0, it occurs at a 
wavelength of 330 km, where the e-folding time is 120 days. 

An indication of  the way in which the value ofs  affects stability comes from the third 
alternative of the necessary conditions for instability, namely that Qu has the same 
sign as Oz (1 + s). For  profile [1], westward currents (Oz < 0) are destabilized only when 
s < -- 1, i.e. when the bottom slopes up towards the equator. This seems consistent with 
the result (Fig. 8) that the negative s case is the most unstable for small k. For  eastward 
currents (Oz > 0), the necessary condition is satisfied when s > --1. Presumably the 
most favourable conditions for instability are obtained when s is large and positive. This 
also corresponds to the bottom sloping upwards towards the equator. 
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Fig. 8. Phase speed, c,, and growth rate, kc, as functions of wavenumber k for the exponential 
profile Ill. Values are shown for three values of the non-dimensional bottom slope s = 0 4- 10. s is 

the bottom slope divided by the slope of the isopycnals at the bottom. 

The wave speeds and growth rates for profiles [2] and [3] are shown in Fig. 9. The 
main feature is that the growth rates are generally smaller. Typical e-folding times are 
30-40% larger for profile [2] than profile [1], while the e-folding times for profile [3] 
are typically double those for profile [1]. In other words, reducing the slope of  the 
isopycnals near the surface reduces the growth rate, and reversal of the slope of 
the isopycnals at the surface reduces the growth rate still further. Thus changes in the 
conditions in the top 100 or 200 m can make large changes in the stability properties. 
Such changes do occur with the progression of  the seasons (which h aw  a time scale 
comparable with the e-folding time) so seasonal changes will have important effects on 
thegrowth of  disturbances. The wave speeds again are close to the maximum velocity of  
50 m m s  -1 and can even be greater. PEDLOSKY (1964, p. 211) has shown that this is 
possible when the t-effect is important. 

One further calculation was made in which N 2 was substantially reduced near the 
surface, so the maximum value was at 800 m. Below 800 m, N/fwas the same as for the 
other profiles, i.e. as given by (5.9). However, between 800 and 200 m, N/ f  changed 
approximately linearly from 63 at 800 m to 35 at 200 m, and remained approximately 
constant at this value to the surface. This corresponds to a reduction o f N  9- at the surface 
by a factor of  8 relative to the other cases. The slope of  the i sopycnals was kept constant, 
so Q~ - fl as for profile [1]. This implies a reduction of  shear near the surface. The 
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Fig. 9. Phase speed, Cr, and growth rate, kc,, as functions of  wavenumber k for profiles 
[2] and [3]. These differ f rom the exponential  profile near  the surface. Profile [2] corresponds to the 
case where the isopyenals have zero slope at the surface and  profile [3] to the case where the slope 

rever~-'s in the top  I00 m. 

maximum value of U was again set at 50 mm s -1. The results for growth rate and wave 
speed were very similar to those shown in Fig. 9 for profile [2], except that the growth 
rate did not fall off so quickly at the larger values of k. Thus the drastic reduction in N z 
reduced the growth rates only by about 30 ~ relative to those for profile [1]. In addition, 
the steering level remained near the surface, so was not associated with the position of 
maximum N 2. 

A selection of disturbance stream function (and hence velocity) profiles are shown in 
Figs. 10 and 1 I. The graphs show the changes of both amplitude and phase of ~ with 
depth. The disturbance profiles for the quickest growing modes are shown in Fig. 10. 
The disturbance amplitude falls off rapidly with depth, i.e. the disturbance is trapped in 
the near-surface layers. The disturbances in this circumstance are rather similar to those 
(with constant Oz and N/f)  studied by CrL~NnY (1947). The depth scale over which the 
disturbance is confined is of order 

fzOz/N2# = f#y/##z 

and the wavenumber k is of order 

[3N/fUz = [3(pogpz)t/g#y. 

The details of the solution, however, differ considerably from Charney's because Oz is 
not constant over the depth in which the disturbance is significant. 

The disturbance profiles shown in Fig. 11 correspond to the longer waves for which 
the growth rate has a secondary maximum. These profiles have a structure similar to that 
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Fig. 10. Disturbance velocity profiles for the most rapidly growing disturbances, showing the 
amplitude and the phase. The amplitude is shown relative to its maximum value, and the phase 
relative to the value at the bottom. Only values for the top 2000 m are shown, as the amplitude is 
very small below this depth. The wavenumbers of th¢ disturbances are [1] 0.033 kra-l ,  

[2] 0.0285 km -1 and [3] 0.0275 kra -1. 

of the first baroclinic mode (which is the disturbance profile in the absence of shear). 
The amplitude has a minimum value at a depth of about 1000 kin, with a phase change of 
180 ° between levels a few hundred meters above and below. Thus at any given time, the 
velocity profile shows a change in sign at depth of about 1000 kin. Because the amplitude 
of this disturbance is significant in deep water, the properties of the disturbance are 
significantly affected by bottom topography, as Fig. 8 demonstrates. 

7. ESTIMATES OF THE ENERGY CONVERSION RATES AND 
BUOYANCY FLUXES 

The previous calculations allow estimates to be made of the rates at which available 
potential energy is converted into eddy energy provided the amplitude of the eddies is 
known. This can then be compared with the estimate of Section 3 of the rate at which 
available potential energy is being created by the large-scale wind field. One can also 
calculate the north-south buoyancy flux produced by the eddies. Before doing this, an 
interesting fact emerges as to the sign of this transfer. Because of the effect of ~ on the 
stability, the most favourable conditions for instability are found where the isopycnals 
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Fig. 11. Disturbance velocity profiles for the long waves where the secondary maximum in the 
growth rate is found, showing the amplitude and the phase. The amplitude is shown relative 
to its maximum value and the phase relative to its value at the bottom. The wavenambers of the 
disturbances are [1] s = 0, k = 0.0195 km -1 ; [1] s = -- 10, k = 0.012 krn -1 ; [2] k ---- 0.01825 km -1. 

slope upwards  towards the equator,  i.e. at a given level, cold water is near the equator  
and warm water towards the poles. The instability tends to reduce this gradient and so 
heat is transferred toward the equator  by the eddies. Thus the eddy transfer does not  
help to transfer heat f rom low latitudes to high (see, e.g. LORENZ, 1967) but  opposes it. 
Since heat budgets indicate (see, e.g. L o ~ N z ,  1967, Fig. 29) a significant poleward heat 
transfer in the ocean, one concludes that this heat transfer is achieved by the mean ocean 
circulation rather than by the eddies. This seems to be consistent with estimates (JUNO, 
1952; BRYAN, 1962) o f  heat transfer by the mean circulation, al though such estimates 
are subject to some uncertainty. 

The energy density E o f  the perturbation is given by 

E---- ½po(#= z q- f~bzZlN2), (7.1) 

the first term representing kinetic energy and the second potential energy. The average 
rate o f  change o f  E over a cycle is equal to the average value o f  

(fs/Nz) O, ~bx~b~. (7.2) 
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Expressing ~ in terms of its amplitude A(z) and phase 0(z), i.e. 

@ = Ae  ~°, (7.3) 

(5.1) gives 

@ = A(z) exp(kc~t) cos [k(x -- crt) + O(z)], (7.4) 

so the average value of (7.2) over a cycle is 

½Po(f/N) 20z kOz [A exp(kc~0] 2. (7.5) 

Figure 12 shows how this quantity varies with z in selected cases. In all cases considered, 
nearly all the energy transfer takes place in the top 400 m. Integrating over the depth, 
one can calculate the rate, Rtrsns, of  energy transfer for a given value of  

Vmax = maxz [kA exp(kcd)]. 

The transfer rate is given by 

Rtrsns  = BVnmx 2, (7.6) 

where 

B = ½POf°n k -1 ( f / N )  2 OzOz(A/Am,,x) ~ dz ,  (7 .7)  

and values o r b  are given for various cases in Table 1. The values are in S.I. units so that 
if Vm~x is given in m s -1, Rtrans is obtained in W m -2. Note that for a given value of  Vmax, 
the larger eddies transfer two or three times as much energy as the smaller eddies. 
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Fig. 12. The rate o f  conversion o f  available potential  energy to eddy energy, shown as a funct ion 
o f  depth.  The scale is chosen so that  the integral with respect to depth  (in m) gives B in W m -4 s e. 
The cases shown are [1] s = 0, k = 0.033 km -1, [1] s = 0, k = 0.0195 km -x, [2] k = 0"0285 kin -1, 

[3] k = 0"0275 km -1, 
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Table 1. Values of  various quantities at the primary and secondary growth rate maxima. 
I f  B is multiplied by the square of  the maximum disturbance velocity, Vmax, it gives the 
rate of  transfer of  available potential energy to eddy energy in W m -2. The values ofvmax 
shown are those which make this rate o f  transfer equal to 10 -3 W m -2, the estimated rate 
at which the wind puts energy into the mean flow. I f D  is multiplied by vmax (in m s - i)  it 
gives the rate of  heat transport by the eddies in gigawatts/m (GW m-i) .  The last column 
gives the equatorward heat transport so obtained (in M W  m -a) when the values Of Vmax in 

column 6 are used. 

Profile s Wave- Growth B Vmax D Heat 
number rate transport 
(kin -1) (day -1) (W rn-~ s 2) (m s -1) (GW m -a s ~) (MW m -x) 

[1] 0 0.033 0"0121 0.048 0.144 -- I "74 36"1 
[2] 0 0 " 0 2 8 5  0.0086 0.054 0.136 --2.43 44.9 
[3] 0 0.0275 0.0058 0"088 0.106 --5'41 6.1 
[1] 0 0 " 0 1 9 5  0.0084 0-147 0.082 -5'30 35.6 
[2] 0 0.0183 0.0063 0"143 0.084 --5.76 40.6 
[3] 0 0 " 0 1 7 4  0.0042 0'186 0-073 - 1  "34 7"1 
[1] 10 0 " 0 0 8 9  0.0008 0.092 0.104 -3"33 36.0 
[1] --10 0"012 0.0049 0"159 0-079 -5 '74  35'8 

Values o f  Vmax required to transfer energy at a given rate can now be calculated. Table 1 
shows the values o f  Vmax obtained if energy is removed by the eddies at the same rate as 
it is supplied by the wind, i.e. 10 -3 W m -2 if (3.10) is a reasonable estimate. This gives 
values o f  Vmax of  about  0-08 m s - i  for the larger eddies. This is of  the same order as the 
observed values o f  Vmax indicating that removal o f  available potential energy by 
baroclinic eddies is important  in the ocean. Alternatively, if one expects eddies to 
remove available potential energy at a rate comparable  to the rate at which it is built up 
by the large-scale wind patterns, then one would expect to find eddies with maximum 
velocities like those shown in the table. I f  the small and the large eddies contribute 
equally, then one would expect the velocity field below 1500 m to be dominated by the 
large eddies with velocity profiles like those shown in Fig. 11. Wavelengths would be 
300-500 km and velocities in the deep water o f  order 0.05 m s -1. In the upper 500 m, one 
would expect the velocity field to be dominated by the smaller eddies with velocity 
profiles like those shown in Fig. 10. Wavelengths would be about  200 km and the 
maximum velocities around 0.14 m s -i .  The evidence quoted in Section 1 supports this 
picture at least for the deeper layers. 

The rate, ntrans o f  heat transfer, per unit length, across a latitude circle can be 
estimated in a si~nilar fashion if the density variations are assumed to result mainly f rom 
temperature variations. This rate is given by 

H~rans = Dvmax 2, (7.8) 

where 

D -- ½po ~°_ R (cpfO~/~gk) (A/Amax) 2 dz. (7.9) 

Some values o f  D are listed in Table 1. The values are given in S.I. units assuming that 
p0 --  10 3 kg m -3, f = 10 -a s - i ,  cp = 4.2 × 10 z J kg-I  (oc)-a and that 
a = 2-1 × 10 -4 (°C) -1. The last column gives the equatorward heat transport  in W m -1 
if Vmax is given the value shown in the sixth column of  the table. Typical values are 
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between 0.3 × l0 s and 0.4 × 10 s W m -1. These values can be compared with the 
maximum poleward transfer of heat in the ocean. The value obtained from Fig. 29 of 
LORENZ (1967) is about 0.8 × l0 s W m -1. A more recent estimate (VoNOER HAAR and 
OORT, 1973) gives 1-6 × l0 s W m -1. 

8. D I S T I N G U I S H I N G  FEATURES OF B A R O C L I N I C A L L Y  

UNSTABLE DISTURBANCES 

One would like to be able to determine from field observations if the baroclinic 
instability mechanism is important in the ocean, as it undoubtedly is in the atmosphere 
(GravEN, 1970). To do this, one needs to be able to distinguish unstable waves from other 
waves, such as baroclinic planetary waves which are not exchanging energy with the 
environment. The best way of making such a distinction would be to measure the 
amount of energy exchange taking place from long-term correlations between density 
perturbation and velocity perturbations. Failing this, one asks if there is any other 
distinguishing feature of the baroclinically unstable disturbance? The velocities of 
propagation are not greatly different from those of baroclinic Rossby waves, and the 
vertical structure of the longer waves is similar to that of the baroclinic Rossby waves. 
The one point of difference which may allow a distinction to be made is the change o f  
phase with depth in the layers in which the energy transfer is taking place. In our model, 
this was always the top 400 m, and thephase increases downwards where energy is being 
fed to the disturbance. For the plane wave solution (7.4), the velocity v at a fixed point 
(x --- 0, for example) is given by 

v = kA(z )exp(kc~t )cos  [--kcrt q- O(z)]. (8.1) 

Since Cr is negative and 0 increases downwards, the phase velocity is upwards and this 
upward phase propagation can be seen in Fig. 13 where profiles are drawn at different 
times. To detect such phase changes will necessitate some form of processing of the 
records to remove the higher frequency parts of the spectrum e.g. by time averaging to 
obtain successive pictures like those shown in Fig. 13, or by Fourier analysis to determine 
the phase as a function of frequency and depth. The indications from our analysis are 
that the large phase changes will occur in the top 400 m, so perhaps special attention 
should be paid to this region. (For a given area, the stability analysis based on the 
observed mean density field would indicate where phase changes are most likely to 
occur.) 

L. Fomin (private communication) has some evidence from the POLYGON 
experiment which may be indicative of such phase changes. He has plotted the hodo- 
graph of a 20-day average velocity as a function of depth, the result being reproduced in 
Fig. 14. Such a result cannot be explained by a single plane wave disturbance, but a 
superposition of waves may give a picture with features like those found in Fig. 14. For 
instance, a simple superposition gives a stream function of the form 

4J = Re {~(z) exp[ii(x -- ct)]} sin my,  (8.2) 

with k 2 = l S q- mL Using (5.1) and (7.3), one finds the velocity components at a fixed 
point and time (for example x ----- t = 0) given by 

u = - -mA(z )  cos O(z) cos my 
(8.3) 

J v = --lA(z)  sin O(z) sin my. 
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Fig. 13. Disturbance velocity profiles at intervals of ~ of a period for the exponential mean 
profile [1] with s ---- 0 (flat bottom) (a) corresponds to the most unstable (short-wave) disturbance 
whose amplitude and phase is shown in Fig. 10, and (b) to the secondary maximum in the growth 

rate i.e. the long-wave disturbance whose amplitude and phase is shown in Fig. 11, 
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A hodograph of 20-day average currents as a function of depth as found in the 
POLYGON experiment (Fomin, private communication). 

I f  the phase 0 did not vary with z, the hodograph would be a straight line. There is no 
preferred direction of  rotation in (8.3), for under the transformationy ~ --y, v ~ --v, 
and the direction of rotation is reversed. 

9. A TWO-LAYER MODEL 

Before studying the continuously stratified model, we did some calculations for a 
two-layer model. This exhibits a baroclinic instability which may be compared with the 
low wavenumber instability of the continuously stratified case. The model consists of 
two layers each of constant density p~ but of variable depth H~. The suffix i takes the 
value 1 for the upper layer and 2 for the lower layer. The total depth H = / / 1  + H~. The 
motion is assumed to be quasi-geostrophic, so that potential vorticity is conserved in 
each layer. Such models have been considered by PHmLn'S (1951), who considered the 
case//1 =/- /2,  and PEDLOS~Y (1964), who found some general properties for disturb- 
ances in a channel. The disturbance is assumed to vary on a scale small compared with 
the mean circulation, so that the mean potential vorticity gradient can be taken as a 
constant. A frame of reference moving with the mean velocity of the lower layer is used. 

A disturbance with a given wavenumber, k*, will be considered, and the x-axis will 
be chosen to be in the direction of k*. Thus disturbance quantities are proportional to 
e x p [ i k * ( x  - -  c't)] and the disturbance velocity is therefore in the y-direction. It follows 
that only changes in the mean potential vorticity in this direction are of dynamical 
significance, so only the y-derivatives off , / - /1  and H appear in the equations. It is 
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convenient to define the non-dimensional quantities 

t~ ---'- H l f y / f ,  ft : - - n l y ,  g : -  - - a l l y ,  a ---- H 1 / H 2  
(9.1) 

k2 : g(pz  - -  pl)  Hi(k*) 2 d - -  p.z f c *  

p 2 f  2 g(pz -- Pl)" 

(Note that ~ is a non-dimensional component of gradJ; not  the magnitude of grad f.) 
Then, the equivalent equation to (5.3), i.e. the one expressing conservation of potential 
vorficity, is 

,/,~1(4,2 - 4,~) = k2 - (1~, + a)!(a - 6) } (9.2) 
a~1/¢~  = - k  ~ - ( ~  ~- ~ - a a ) / d .  • 

The non-dimensional potential vorticity gradient [c.f. (5.4)] is 

{ /~ 4:- ti in the upper layer 

/~ ÷ g -- a~ in the lower layer. 

Elimination of 4,1/¢2 from (9.2) gives a quadratic equation for d, namely 

[(1 -+- k 2) d q-/] -- kM] (kzd q-/~ + g) ÷ 3(d -- a) (kzd - kza ÷ / ] )  = 0, (9.3) 

and solutions for d can be written down explicitly. When the solutions are complex 
(? ---- ~r + id0, growing disturbances are possible and the growth rate 

~ fc& (9.4) 

is given by 
[2~(1 q-- ~2 _~ a)~]2 --- 48/~z(~ q_/J) (~z~ q_ g) _ [j~4 a ÷ (1 ÷ k z) g ÷ (1 ÷ 8) ~]]2 

= 4 a ( ~  + / ~ )  (aa - g - ~)  (9 .5)  
- [k4a + (1 + ~2)~ + (I + a) ~ - 2a(a + ~)]2. 

For fixed k, a, the contours of constant growth rate are ellipses in the/~, g plane whose 
envelope is the wedge-shaped region, 

(~ la)  + 1 >  o "( 
(9.6) 

(l~la) + (~la) - a < o, 

agreeing with a result of P~DLOSKY (1964) that the potential vorticity gradients must 
have opposite signs in the two layers. 

In the limit as a---> 0 (a is small in oceanographic applications) the ellipses of constant 
growth rate collapse into points allowing a simple representation of the solution. When 

== 0, the roots of (9.3) are real, being 

6 . . . .  (t~ -}- g)ffcz, (9.7.) 

representing a barotropic Rossby wave, and 

e = (--/~ + kza)/(l + k2), (9.8) 

representing a divergent baroclinic Rossby wave. Growth can only occur when the 
above two roots almost coincide, and the growth rate is then of order a~. For given 
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~/fi and ~/~, the max imum value o f  o/~ can be found. This maximum value is given 
parametrically in terms of  d and k 2 by 

1 + ~ - - "  (9.9) 

By (9.7) and (9.8), the curves o f  constant  ~/t~ and k s in the 8/t~, 8/t~ plane are straight 
lines, so that  maximum growth rate can be calculated readily by drawing these lines 
and then using the expression (9.9) for ~,. The results o f  this calculation are shown in 
Fig. 15. The maximum value o f  oz in the whole plane is 

O'max 2 = ¼8t~ 2, (9 .10)  

this being achieved when 

k ---- 0,  $ = ½t~, /~ = --½t~, d = ½t~. (9.11) 

In Fig. 15, contours  o f  ~ are shown as percentages o f  *mx. 

to ~" 
O °" 

\ 

^ 

I 

o 

o 

B- 

Fig. 15. Phase speed ~, wavenumber k and growth rate o (expressed as a percentage of Omax)  of 
the unstable disturbances for a two-layer model in the limit as 6 --+ 0, i.e. as the depth of the lower 
layer tends to infinity./] is the gradient of the Coriolis parameter along the wave crests, and s the 
bottom slope in the same direction. The quantities are made non-dimensional as described in the 

text. 
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10. COMPARISON OF THE TWO-LAYER MODEL WITH THE 

CONTINUOUSLY STRATIFIED MODEL 

The two-layer model readily gives results for the whole range of parameters/~/t~ and 
g[a whereas the continuously stratified model has been solved for only a few point values 
of these parameters. Thus the two-layer model would be extremely useful if it could give 
a reasonable estimate of the stability properties for the continuously stratified case. 
However, the change in properties for the latter case when changes are made in a thin 
region near the surface indicate that this is not likely to be the case. We will make the 
comparison for the exponential profile in the case of zero bottom slope (g = 0) and find 
that judicious choice of the parameters can lead to good estimates of certain properties 
of the low wavenumber instability. The agreement, however, relies rather heavily on 
choosing the parameters to make the results agree, and even when this is done the 
stability curve obtained is very different from the one obtained for the continuous case. 

Take the case g -- 0, with the x-axis eastwards and/~ a fixed positive value. Then 
(9.5) shows that instability can only occur for westward currents (a < 0) in agreement 
with the result for continuous profiles. Furthermore, instability can occur only when ]ul 
is above a threshold value, equal to/~, i.e. it is necessary (9.1) that 

H l v / H 1  > f v / f .  (10.l) 

For a latitude of 30 °, this requires the slope of the interface to be more than 1.2 × 10 -4 
if HI = 900 m, above 0.8 × 10 -4 if H1 ----- 600 m, and above 0.4 × 10 -4 if HI = 300 m. If  
we equate H l v  to the slope (0.8 × 10 -4 at 30 ° latitude) of the isopycnals in the con- 
tinuous case, we see that the two-layer model will be stable if we choose HI = d == 900 m, 
the e-folding scale for the exponential profile. To get instability at all, it is necessary to 
choose//1 less than 600 m. Suppose a choice is made so that 

q = - -  ~[~ = 6 0 0 [ H x  > 1. (10.2) 

Then the small 8 analysis shows that instability will occur only when k is within a 
distance of  order M of the value which simultaneously satisfies (9.7) and (9.8), namely 

k = q-t.  (10.3) 

The corresponding value of ~ given by (9.9) is 

-~ =: 8tq! ~q' -- 1 i ' .  /~ \q t  + 1! (10.4) 

These results show that the wavenumber at which the instability occurs is not very 
sensitive to the value of q, but the value of cr is. 

For quantitative comparison, it is necessary to choose not only H1 but the density 
difference between the layers. One way of doing this is to make the radius of deformation 
for the two-layer model the same as the radius of deformation, a = 56 km, for the 
continuous model, i.e. 

g ( p 2  - -  Pl) H I  
( a f )  e . (10.5) 

p2(l + 8) 

Then the scale for ~ is (t !- ~)-~ a -1 ~_ 0.017 km -~ and the scale for ~ is 
(l !_ ~)-t (fla)-I ~ 0.10 days -1. To give reasonable growth rates, a value of 
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//1 = ½d = 450 m is about right. Then q = 4/3 and (10.4) gives a growth rate of about 
0-01 days -1. Figure 16 shows the complete stability curve calculated from (9.5), i.e. with- 
out making the small 8 approximation, for this case. 

Thus reasonable values of  the growth rate can be obtained, but only by choosing 
parameters to make it so. Even then, the two-layer model only gives instability over a 
narrow range of  wavenumbers, whereas the continuous model is unstable for a wide 
range of wavenumbers. The instability which gave the largest growth rates, i.e. the one 
for the surface trapped mode, cannot be represented by the two-layer model at all. The 
reason for the inability of the two-layer model to approximate the continuous one is 
probably because the energy conversion in the former case can only take place at the 
interface. In the continuous model, the energy conversion took place near the surface, 
and that is perhaps why a rather small value of / /1  was necessary to give a reasonable 

Growth 
Rote 

-01 doy "l -O.I 

o.s ~ 
i ~ 

'01 km "! .02 km -2 
Wavenumber 

Fig. 16. The growth rate ¢ as a function of  wavenumber ~ for the two-layer model when 8 = 0.1, 
--- 0 and d ---- -4~/3.  Dimensional values correspond to a choice described in the text. 

growth rate. But choosing a small value o f / / 1  means that the disturbance velocity 
structure will not be well represented and so, among other things, effects of bottom 
topography will not be well modelled. The values ofs = -- 10 and q- 10 in the continuous 
case correspond to ~/~ = 1 and -- I, respectively, in the two-layer model. From Fig. 15, 
~/t~ = 1 gives stable solutions while $/~ = --1 gives weaker growth and shorter unstable 
waves. This seems to have little to do with the results (Fig. 8) for the continuous case 
when s = --10 and s ---- -kl0. 

]I. DISCUSSION 

The observations discussed in Section 1 indicate eddies with wavelengths and 
periods of the larger eddies given by the baroclinic instability calculations, so it seems 
reasonable to suppose that the observed eddies are produced by this process. Their 
source of energy, therefore, is the available potential energy of the large-scale mean 
circulation, which can be produced (Section 3) by the action oftbe large-scale mean wind 
field. In addition, the eddies are strong enough to remove energy from the mean 
circulation at a rate comparable to the rate at which this energy is supplied by the wind. 
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This suggests that the strength of the observed eddies is limited by the rate at which 
energy can be supplied to the ocean by the large-scale wind field. 

The baroclinic instability theory also indicates that eddies with smaller horizontal 
dimensions can be found in the surface layers. These require higher horizontal resolu- 
tion for their detection, and have shorter periods since their phase velocities are similar 
to those of the larger eddies. If tbey contribute to energy transfer at the same rate as the 
larger eddies, their maximum velocities would be nearly twice as great. 

The baroclinic stability properties depend on the large-scale density field of the 
ocean which is well known for most of the ocean. Our calculations give an indication of 
what to expect but have been done for only a few cases. It would be worthwhile to carry 
out such calculations for various parts of the ocean using the observed density structure, 
so that the properties of the unstable waves in these regions would be known. 

The calculations of Section 7 indicate that eddies can remove available potential 
energy from the mean circulation as fast as it is supplied by the wind. This implies that 
to model the ocean circulation correctly, account will need to be taken of the eddies in 
some way, e.g. by using sufficient resolution to incorporate the eddies or by para- 
meterizing their effect in a suitable way (c.f. GREEN, 1970). Studies of finite amplitude 
unstable waves (c.f. I~OLOSKY, 1970) may help in this respect. 

Identification of the eddies observationally requires information over a long period 
of time and with high horizontal resolution, requiring an array of sensors. However, 
there are certain features which may be detectable using a single mooring with good 
vertical resolution in the upper layers, with suitable filtering of the signals. As discussed 
in Section 7, the unstable waves show characteristic phase changes with depth, which 
may be detectable from velocity measurements only. A more difficult measure- 
ment which also can be made from a single mooring is to estimate the rate of energy 
conversion using (7.2). This requires an estimate of  the correlation, at low frequencies, 
between velocity and density fluctuations, and a knowledge of  the mean horizontal 
density gradient. 

The combination of the observational information now available with the estimates 
of energy transfer rates based on the calculation in this paper shows that mid-ocean 
eddies can play an important role in the general circulation of  the ocean. Future 
observational and model studies should aim to clarify this role in detail for different 
parts of  the ocean. 
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APPENDIX 

The relationship between kinetic energy and potential energy for quasi-geostrophic motion 
Equation (7.1) gives the expressions for the kinetic energy density (first term on the right-hand side) 

and the potential energy density (second term on the fight-hand side). The horizontal variations of 
may be expressed as a sum of Fourier components, and the vertical variations as a sum of orthogoual 
normal modes (c.f. TAYLOR, 1936). Each term in this double expansion has the form 

= e ~)" ÷~,(z), (AI) 

where the normal mode profile #s(z) satisfies the equation 

dldz[(f21N 2) d~,/dz] + ~nla~ 9 -~ O. (A2) 

The eigenvalue, a,,, in this equation is the Rossby radius of deformation for the particular mode in 
question, and the boundary conditions are 

d~n/dz .~ 0 at z ---- 0, - -H.  (A3) 

The contribution of the term (AI) to the energy density per unit area is obtained by integrating (7.1) 
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over the depth. The kinetic energy per unit area is thus 

½9o/¢ ~ j'° a ~,.~(z)dz, (A4) 

and the potential energy per unit area is 

½Po fo (fZ/N2)(d~n/dz) zOz. 

Multiplying (A2) by ~n and integrating over the depth, using the boundary conditions (A3), shows that 
the above expression is equal to 

½,ooaa -2 S°a ~n2(z) dz. (A5) 

Comparison of (A4) and (A5) shows that the kinetic energy in wavenumber k and mode n is (kan) ~ times 
the potential energy in the same component. 


