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ABSTRACT

The importance of bottom topography in the linear baroclinic instability of zonal flows on the b plane is

examined by using analytical calculations and a quasigeostrophic eddy-resolving numerical model. The

particular focus is on the effects of a zonal topographic slope, comparedwith the effects of ameridional slope.A

zonal slope always destabilizes background zonal flows that are otherwise stable in the absence of topography

regardless of the slope magnitude, whereas the meridional slopes stabilize/destabilize zonal flows only through

changing the lower-level background potential vorticity gradient beyond a known critical value. Growth rates,

phase speeds, and vertical structure of the growing solutions strongly depend on the slope magnitude. In the

numerical simulations configuredwith an isolatedmeridional ridge, unstablemodes develop onboth sides of the

ridge and propagate eastward of the ridge, in agreement with analytical results.

1. Introduction

Generation of mesoscale motions in theWorld Ocean

is characterized by several stages, each involving in-

teractions and energy transfer between motions on vari-

ous spatial scales. The initial stage of eddy development

in a large-scale background flow is traditionally described

through the rapid growth of infinitesimal normal-mode

perturbations, which can, due to their spatial structure,

efficiently extract energy from the large-scale back-

ground state (e.g., Pedlosky 1987). The corresponding

linear instability theory can provide important insights

into the spatial structure of the most rapidly growing

(most unstable) modes. This initial stage is followed

by nonlinear development during which interactions

between linear modes become important. These in-

teractions and the corresponding energy transfer are in

large part determined by properties of dominant linear

modes. For this reason, the linear analysis is an important

stepping stone for understanding the dynamics of fully

nonlinear eddying flows.

The above mechanism of eddy generation relies on

the presence of amean potential vorticity (PV) gradient,

which preconditions large-scale currents for instability

(e.g., Pedlosky 1987) and controls nonlinear evolution of

eddying flow. Bottom topography can modify back-

ground PV gradient and thus play an important role in

the dynamics of eddy formation, as well as the stability

of background flows. Several previous studies recog-

nized the importance of the combined effect of a back-

ground flow and topographic slopes for baroclinically

unstable flows (Blumsack and Gierasch 1972; Mechoso

1980; Isachsen 2011; Pennel et al. 2012). Hart (1975a,b),

in a two-layer quasigeostrophic (QG) model on the f

plane, showed that a unidirectional zonal slope has

a destabilizing effect on a circular gyre and generates

an asymmetric mean current. A meridional slope can

produce small-scale fluctuations in vertically sheared

zonal flows (Steinsaltz 1987). More complex topographic

configurations lead to additional dynamical effects. In

particular, Samelson and Pedlosky (1990) demonstrated

that a zonal flow can become locally unstable due to

the presence of a localized meridional slope. Small-scale

topography can also significantly impact stability of zonal

currents (Reznik and Tsybaneva 1999; Benilov 2001). In

the absence of background flows, Samelson (1992) found

that free-wave modes become surface intensified in a

two-layer QGmodel with small-scale topography, whose

horizontal scale is similar to that of the waves. Hallberg

(1997) demonstrated that strong topography significantly

impacts vertical structure of linear waves and effectively

eliminates the barotropic component of the flow and

that the motions in the two layers are coupled when the

Corresponding author address: Igor Kamenkovich, Division of

MPO, Rosenstiel School of Marine and Atmospheric Science, Uni-

versity of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149.

E-mail: ikamenkovich@rsmas.miami.edu

790 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 43

DOI: 10.1175/JPO-D-12-0145.1

� 2013 American Meteorological Society



topographic and planetary vorticity gradients are parallel

or antiparallel.

Nonlinear development of eddying flows can sub-

stantially impact large-scale stratification and circulation,

often leading to the formation of new circulation pat-

terns. An important example of such eddy-driven pat-

terns is zonally elongated coherent structures observed

in stratified, rotating fluids, including planetary atmo-

spheres (e.g., Kondratyev and Hunt 1982) and oceans

(Nowlin and Klinck 1986; Orsi et al. 1995; Maximenko

et al. 2005; Sokolov and Rintoul 2007; van Sebille et al.

2011), as well as in high-resolution comprehensive (e.g.,

Nakano and Hasumi 2005; Richards et al. 2006) and

idealized (e.g., Rhines 1994) numerical simulations. In

uniform currents with a purely meridional PV gradient,

these patterns take a form of stationary zonal jets, al-

though in more complex configurations these patterns

can become nonzonal and time dependent. The dynamics

of these multiple zonal jets strongly rely on the action of

mesoscale eddies (e.g., Panetta 1993; Rhines 1994;

Berloff et al. 2009b; Kamenkovich et al. 2009;

Melnichenko et al. 2010). In particular, Berloff et al.

(2009a) demonstrated that jet formation is triggered and

controlled by the emergence of linear, meridionally ori-

ented (‘‘noodle’’) modes, whose structure determines

several important properties of final nonlinear solution.

Jet formation relies on the presence of a background

PV gradient (e.g., Vallis andMaltrud 1993) and has been

shown to be affected by topography. In particular,

Thompson (2010) showed that simple sinusoidal to-

pographic features affect jet spacing, pattern variabil-

ity, and meridional transport properties. Thompson

and Sall�ee (2012) demonstrated that idealized asym-

metric zonally orientated ridges destroy the continuity

of zonal jets and enhances baroclinicity of eddies

downstream of topography. Boland et al. (2012) found

that in both barotropic and baroclinic systems, jets

become tilted in the presence of a zonal topographic

slope and are nearly perpendicular to the barotropic

PV gradient.

Our motivation is the need to understand the role of

topography in the dynamics of eddies and eddy-driven

flow patterns (e.g., zonal jets) in the oceans. In this study,

we examine the influence of topographic variations on

the linear baroclinic instability of a uniform zonal flow.

Our particular focus here is on the effects of zonal to-

pographic slopes; an analysis of meridional slopes is

carried out for comparison. This initial linear stage is an

essential element in the process of eddy and jet forma-

tion, and linearized models have been proven to be

useful in describing complex nonlinear interactions

(Berloff et al. 2009a). This paper is organized as fol-

lows: the model is described in section 2; a necessary

instability condition and the dispersion relation for un-

stable modes in the presence of constant topographic

slopes (zonal and meridional) are derived in section 3,

where we also discuss the dependence of the most un-

stable mode on the direction of themean PV gradient; in

section 4, we use a numerical version of the linear model

to study the relevance of the constant-slope results of

section 3 to more realistic configurations with a meridi-

onal topographic ridge; and conclusions are drawn in

section 5.

2. The model

We consider a two-layer QG model with bottom to-

pography on the b plane. Potential vorticity qn in each of

the two dynamically active isopycnal layers is governed

by

›qn
›t

1 J(cn, qn)5 0 (n5 1, 2) , (1)

where the layer index starts from the top and cn is the

streamfunction in the nth layer. J(�,�) is the Jacobian

operator.

We are interested in the baroclinic instability of large-

scale zonal ocean currents with a vertical shear and

consider a horizontally uniform flow U in the upper

layer and a motionless lower layer:

c15u12Uy, c25u2 , (2)

where u1, u2 describe disturbances.

The isopycnal potential vorticities consist of several

components: relative vorticity of disturbances, b term,

and the stretching terms due to the mean flow, distur-

bances, and topography. They are presented in sequence

in the following equation:

qn 5=2un1 [b0 2 (21)nFnU]y1 (21)nFn(u12u2)

1 dn2f0
hb(x, y)

H2

, (3)

where b0 is the planetary vorticity gradient, Hn are the

depths of the upper and lower layers, hb(x, y) is the

spatially varying elevation of bottom topography, Fn 5
f 20 /(g

0Hn), f0 is the Coriolis parameter, g0 is a reduced-

gravity coefficient associated with the density jump be-

tween the isopycnal layers, and dn2 is theKronecker delta.

It needs to be pointed out that Eq. (3) is simplified by

applying the rigid-lid approximation. For convenience,

we also defineF as the inverse of the square of the internal

Rossby deformation radius: F5 f 20 (H1 1H2)/(g
0H1H2);
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and introduce two coefficients: a1 5 H2/(H1 1 H2) and

a2 5 H1/(H1 1 H2). It follows that

F15a1F, F2 5a2F . (4)

3. Linear stability analysis: Analytical study

a. Necessary instability condition

For tractability of the analytical analysis, we consider

an inviscid flow over a constant slope. First, by linear-

izing the PV equations we obtain

�
›

›t
1U

›

›x

�
[=2u12a1F(u12u2)]

1
›u1

›x
(b01a1FU)5 0, (5)

›

›t
[=2u21a2F(u12u2)]

1
›u2

›x
(b02a2FU1 Sy)2

›u2

›y
Sx5 0, (6)

where Sx [ sxf0/H2 5 ›hb/›xf0/H2, Sy [ syf0/H2 5 ›hb/

›yf0/H2, sx and sy are zonal and meridional topographic

slopes, respectively. The normal-mode solutions can be

sought in the form un 5 Ane
i(kx1ly2vt), which upon

substitution yields two coupled algebraic equations for

A1 and A2:

[(v2Uk)(k21 l2 1a1F)

1 k(b01a1FU)]A11a1F(Uk2v)A25 0, (7)

va2FA11 [2v(k21 l21a2F)

2 k(b02a2FU)2 k]A25 0, (8)

where k5 f0/H2(K3 $hb), which is proportional to the

cross product of wavevector K 5 (k, l) and topographic

slope $hb. The corresponding terms in the PV equation

represent vortex tube stretching in the lower layer due to

the motion over topography.

In the following section, we derive a necessary in-

stability condition. Multiplying Eqs. (7) and (8) by

a2FA1*/(U2 c) and a1FA2*/(2c), respectively, we get

a2FK
2jA2

1j1a1Fa2F(jA1j22A1
*A2)

2
a2FjA1j2(b01a1FU)

U2 c
5 0, (9)

a1FK
2jA2

2j1a1Fa2F(jA2j22A1A2
*)

2
a1FjA2j2(b02a2FU1 k/k)

2c
5 0, (10)

where K2 5 k2 1 l2, c 5 v/k and An* are the complex

conjugates of An. Summing up Eqs. (9) and (10), we

have

K2F(a2jA1j21a1jA2j2)1a1a2F
2[jA1j21 jA2j2

2 (A1*A2 1A1A2*)]2
a2FjA1j2(b01a1FU)

U2 c

2
a1FjA2j2(b02a2FU1 k/k)

2c
5 0. (11)

Taking the imaginary part of Eq. (11) leads to

"
a2FjA1j2(b01a1FU)

jU2 cj2
1

a1FjA2j2(b02a2FU1k/k)

j2cj2
#
vi

5 0, (12)

where vi is the imaginary part of v. Growing solutions

for k 6¼ 0 can exist only if

�
U1

b0

a1F

��
U2

b01 k/k

a2F

�
. 0. (13)

Perturbations with an infinitely long zonal scale, namely

k 5 0, are always stable. It is obvious that such pertur-

bations propagate perpendicular to the mean interface

slope between the upper and lower layers and cannot

feed on the available potential energy stored in the

background stratification.

In the absence of topography, whether or not baroclinic

instability can develop is determined by such background

parameters as the velocity shear (U), stratification (a1F

and a2F), and planetary vorticity gradient (b0) (Pedlosky

1987). In the presence of topography, the stability prop-

erties also strongly depend on the magnitudes of the to-

pographic slope ($hb) and the wavevector (k, l), as well as

on the relative orientation of these two vectors.

When the topographic slope is purely meridional, k/k

reduces to Sy and is independent of the wavevector

magnitude and orientation. The slope exerts a stabilizing/

destabilizing effect on zonal background flow through

changing the background PV gradient in the lower layer.

As in the classical Phillips model with a flat bottom, the

flow remains stable for all perturbations as long asU does

not exceed critical values:

min

�
2

b0

a1F
,
b0 1Sy

a2F

�
,U,max

�
2

b0

a1F
,
b01 Sy

a2F

�
.

(14)

Note that the above condition implies that the back-

ground PV gradient does not change sign in the vertical.
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In the presence of a zonal slope, the stability proper-

ties are fundamentally different and become strongly

dependent on the wavevector of the perturbation itself.

Most importantly, for any combination of background

parameters, one can always find a perturbation that

satisfies (13) and can, therefore, grow. In particular,

even a small zonal slope can destabilize an otherwise

stable zonal background flow; a similar situation exists

for the background currents that are slightly nonzonal

(Kamenkovich and Pedlosky 1996). On the other hand,

the stability properties of the perturbations, whose

wavevectors are parallel to the direction of the topo-

graphic slope, are not affected by topography. In other

words, if the flow is stable over a flat bottom, the in-

troduction of topography can destabilize only those

modes whose wavevectors have across-slope compo-

nents; for a purely zonal slope, that means l 6¼ 0. In the

study of the effects of short-scale sinusoidal topography

on baroclinic instability, Benilov (2001) demonstrated

similar results: the perturbations are affected the most if

their wavevectors are parallel to the isobaths, while

those whose wavevectors are perpendicular to the iso-

baths are not affected by the topography.

In summary, a topographic slope changes the neces-

sary instability condition through modifying the mean

PV gradient in the lower layer. A meridional slope can

stabilize a zonal background flow by preventing the

meridional PV gradient from changing sign between the

layers. A zonal slope generates a zonal component of

the background PV gradient, which makes the concept

of critical shear largely irrelevant since any zonal back-

ground flow over a zonal slope can potentially become

unstable.

b. The dispersion relation

The necessary condition for instability (13) can only

indicate when a zonal background flow can be poten-

tially unstable: an actual solution is needed for de-

termining if growing solutions indeed exist. Nontrivial

solutions for A1 and A2 of Eqs. (7) and (8) exist only if

the determinant of the coefficients is zero. This condi-

tion leads to the dispersion relation:

[(k21 l21a1F)(k
21 l21a2F)2a1a2F

2]v22 [Uk(k21 l2)22 2k(b02a2FU)(k21 l2)2 k(k21 l21a1F)

2 kb0F(a11a2)]v2k[U(k21 l2)2b0][k(b02a2FU)1 k]5 0. (15)

To obtain a quantitative perspective on the effects of

topography in the rest of this paper, we set the Coriolis

parameter f0 5 0.83 3 1024 s21, the background plan-

etary vorticity gradient b0 5 2 3 10211 m21 s21 and

internal Rossby deformation radius equal to 25 km. The

isopycnal layers thicknesses are set to H1 5 1 km and

H2 5 3 km, unless stated otherwise. In the following we

examine the effects of meridional and zonal slopes first

on the f plane, which allows us to focus on the effects of

topography, and then on the b plane, where we in-

vestigate an interplay between the effects of the plane-

tary vorticity gradient and topography.

1) THE f PLANE

Topographic effects are most pronounced in the ab-

sence of the planetary vorticity gradient b. We, there-

fore, analyze these effects on the f plane first. By setting

b5 0 and solving the dispersion relation, we can get the

growth rate of unstable waves on the f plane as

vi 5 jkj
ffiffiffiffiffiffiffiffi
2D

p

2K2(K21F)
, (16)

where D 5 (K2 1 a1F)
2S2 1 2UK2(K4 1 a1FK

2 2
2a1a2F

2)S 1 U2K4(K4 2 4a1a2F
2) , 0, S 5 k/k. In the

flat-bottom case, the background zonal flow is always un-

stable for sufficiently long wavelengths. The corresponding

phase speed, the real part of c, is

cr 5
K21 2a2F

2(K21F)
U2

S(K21a1F)

2K2(K21F)
. (17)

The equations reveal at least two interesting proper-

ties. First, the waves over a flat bottom propagate in the

same direction as the mean current but with cr , U; Eq.

(17) suggests that the presence of bottom topography

can potentially change both the direction andmagnitude

of the phase speed. However, as we will see in the fol-

lowing analysis, the most unstable mode always has

a phase speed that is slower than the mean current in the

top layer. Second, two pairs of oppositely signedU and S

result in the same vi. In other words, the parameter of

importance is the relative orientation of the mean iso-

pycnal slope (which determines the sign of U) with re-

spect to the topographic slope. In the analysis of this

section, therefore, it is sufficient to consider an eastward

background (EB) flow only.

(i) Meridional slope: b0 5 0, sx 5 0, and sy 6¼ 0

When the slope is purely meridional, S reduces to Sy.

Figure 1a shows the growth rate as a function of (k, l) for
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U5 4 cm s21 over three negative (northward deepening)

meridional slopes: weak21023, intermediate253 1023,

and strong21022. Note that the growth rate depends only

on the magnitude of k and l, and the unstable waves are

shown here within an incomplete annulus in the (k, l)

plane. The greatest growth rate is found at l5 0; in other

words, the most unstable mode is a meridional ‘‘noodle’’

mode. As themeridional slope gets steeper, the unstable

wavenumber range moves away from the origin in the

(k, l) plane, indicating shorter zonal and meridional

wavelengths of the unstable modes, and becomes nar-

rower. This inverse relationship between the steepness

of the meridional slope and the zonal wavelength of the

most unstable mode is further illustrated Fig. 1c. In con-

trast, the zonal wavelength of the most unstable mode

increases with U.

Figure 2 shows the maximum growth rate and the

corresponding phase speed as a function of the meridi-

onal slope for EB flows, U 5 4, 5, and 6 cm s21. In-

terestingly, the maximum growth rate is found in the

flat-bottom case (Sy5 0). Consistent with (14), a positive

meridional slope (deepening southward) exerts a stabi-

lizing effect on the EB flows, resulting in the decrease of

the maximum growth rate and a complete elimination of

the unstable modes as the slope becomes sufficiently

steep. The corresponding ‘‘cutoff’’ value of the slope is

FIG. 1. Spatial structure of unstable modes in the presence of a meridional topographic slope. Greatest growth rates

(yr21) of the unstable modes in the EB flow of 4 cm s21 as a function of wavenumber for three different meridional

slopes21023,253 1023, and21022 on the (a) f plane and (b) b plane. (c)Wavenumber of themost unstablemode as

a function of themeridional slope for three different EBflows: 4, 5, and 6 cm s21 on the f plane (solid lines) and b plane

(dashed lines).
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determined by the necessary instability condition (13) and

satisfies Sy5UF2. As a negative (deepening northward)

meridional slope becomes steeper, themaximumgrowth

rate also decreases but remains positive (unstable). The

corresponding phase speeds, as shown in Fig. 2b, in-

crease in magnitude with the steepening of the negative

meridional slope but remain smaller than U. The most

unstable mode always propagates eastward, for both

positive and negative zonal wavenumbers.

(ii) Zonal slope: b0 5 0, sx 6¼ 0 and sy 5 0

The effects of a zonal slope on the growth rates are

similar to those of a meridional one (Fig. 3). In the flat-

bottom case, unstable modes are found within a sym-

metric circle in the (k, l) plane, with the exception of

k 5 0. A zonal slope distorts the symmetry, and the

unstable zonal wavelength becomes shorter. Addi-

tionally, slowly growing nearly zonally oriented modes

with large meridional wavenumbers emerge at larger

values of the slope. As in the case of a meridional slope,

the unstable wavenumber interval (the shaded area in

Fig. 3) shrinks as the slope becomes steeper, so in this

sense the effects of the zonal slope can be interpreted as

being stabilizing.

The zonal slope does not significantly influence the

wavelengths, growth rate, and corresponding phase

speed of themost unstablemode (figure not shown). The

most unstable mode has a nearly meridional orientation

with its zonal wavenumber exceeding its meridional one

by an order of magnitude for several values of the main

parameters (U 5 4, 5, 6 cm s21 and H2 5 3, 5 km). The

corresponding zonal wavelengths and phase speeds do

not vary much, regardless of the magnitude of the

zonal slope. This is consistent with the fact that the

‘‘noodle’’ mode is unaffected by the zonally sloping

topography, as discussed earlier (see section 3a). The

presence of both meridional and zonal slopes, as well

as zonal slopes on the b plane (see the next section)

can, however, significantly change the orientation of

the most unstable mode.

In summary, as topographic slopes become stronger

on the f plane, the unstable wavenumber interval shrinks

and the unstable wavelengths tend to become shorter,

especially for meridional slopes. The most unstable

mode has a purely zonal wavevector for meridional

slopes and a nearly zonal wavevector for purely zonal

slopes. In the next section, we will see that the latter

property will change on the b plane.

2) THE b PLANE

We next examine the effects of the interplay be-

tween the planetary vorticity gradient and topography

on the linear baroclinic instability of a zonal flow. The

b effect has a generally stabilizing influence on zonal

currents. In particular, a flow over a flat bottom is no

longer unstable for all values of U and can only support

growing modes if its vertical shear exceeds a critical

threshold. These critical shears, for our choice of pa-

rameters, are 21: _6 cm s21 and 5.0 cm s21. In the fol-

lowing, ‘‘supercritical’’ refers to the shears with U .
5.0 cm s21 and U, 21: _6 cm s21, while ‘‘subcritical’’

refers to all other values of U. We will demonstrate that

the subcritical values of the velocity shear can be desta-

bilized by topography.

FIG. 2. Time dependence of the most unstable mode in the presence of a meridional topographic slope: (a) the

greatest growth rate and (b) the corresponding phase speed for the EB flows with speeds of 4, 5, and 6 cm s21 on the

f plane (solid lines) and b plane (dashed lines).
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(i) Meridional slope: b0 6¼ 0, sx 5 0, and sy 6¼ 0

As is discussed above, a meridional slope can stabilize

a current by affecting the meridional PV gradient in the

lower layer and preventing it from changing sign in the

vertical. Alternatively, subcritical flows can become

unstable because of the presence of a meridional slope.

The analysis of an EB flow on the f plane is repeated

here on the b plane and the results are plotted by the

dashed lines in Figs. 1 and 2. Overall, the dependence of

the wavelengths, growth rate, and phase speed of the

most unstablemode on ameridional slope is very similar

between the b and f planes. The results for westward

background (WB) flows are also similar and not dis-

cussed here.

(ii) Zonal slope: b0 6¼ 0, sx 6¼ 0, and sy 5 0

The effects of a zonal slope are considered next for

three values of EB flows—subcritical (4 cm s21), crit-

ical (5 cm s21), and supercritical (6 cm s21)—and WB

flows for three supercritical values (22, 23, and

24 cm s21). Positive (deepening westward) and

negative (deepening eastward) zonal slopes with the

same magnitude have the same effects on the greatest

growth rate and the corresponding phase speed;

this is because two pairs of oppositely signed l/k and

sx correspond to the same k and, consequently, the

same solution to the dispersion relation. Thus, we

only consider positive zonal slopes in the following

analysis.

FIG. 3. Unstable modes in the presence of zonal slopes on the f plane: growth rates (yr21) as a function of the zonal

and meridional wavenumber for zonal slopes (a) 0, (b) 13 1023, (c) 53 1023, and (d) 13 1022 and the EB flow with

a speed of 4 cm s21.
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Even a small zonal slope can destabilize a subcritical

zonal background flow. For example, a small zonal

slope of 1024 makes a current with U 5 4 cm s21 un-

stable in a limited range of wavenumbers (red contours

in Fig. 4a). The unstable wavenumber range increases

substantially when the zonal slope is as large as 1023

(black contours). As the zonal slope gets even larger,

unstable wavenumbers are squeezed into a narrow

wavenumber interval similar to that observed on the

f plane. The unstable wavenumber range changes in a

similar manner for the supercritical flow of U5 6 cm s21

and large slopes. In contrast, smaller values of U

correspond to very narrow unstable wavenumber ranges

(figure not shown).

Unlike a zonal/meridional topographic slope on the

f plane or ameridional topographic slope on the b plane,

a zonal slope on the b plane modifies the shape of the

most unstable mode, which is no longer themeridionally

oriented ‘‘noodle’’ mode. Figure 4b shows the zonal and

meridional wavenumbers of the most unstable mode as

the zonal slope increases from 0 to 1022 and forU5 4, 5,

and 6 cm s21. As expected, only the supercritical flow

U 5 6 cm s21 is unstable at a zonal slope of 0, where

the most unstable mode has the shape of a meridional

FIG. 4. Unstable modes in the presence of a zonal topographic slope and EB flows on the b plane. (a) The greatest

growth rates (yr21) for the EB flow with a speed of 4 cm s21 as a function of the zonal and meridional wavenumber

for the three zonal slopes 1024, 1023, and 1022. (b) The wavenumber of the most unstable mode for U 5 4, 5, and

6 cm s21 as a function of the zonal slope, which increases along the curves and three values are shown: 1024 (open

circles), 1023 (asterisks), and 1022 (diamonds); the dots being the results from numerical simulations for sx5 53 1024

and 1023 and the three different EB flows. (c) The greatest growth rate in curves and the numerical results (dots with

error bars) for sx5 53 1024 and 1023 and the three different EB flows and (d) the corresponding phase speed and the

numerical results (dots with error bars) for sx 5 5 3 1024 and 1023 and for the same values of U.
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‘‘noodle’’ mode (l 5 0). The wavevector of the most

unstable mode for U 5 6 cm s21 (blue curve) rotates

first counterclockwise in the (k, l) plane as the zonal

slope increases, changing from a meridional ‘‘noodle’’

mode (l 5 0) to a slanted mode (l ’ k), and then

clockwise for very large slopes. For the subcritical/

critical shears U5 4 and 5 cm s21, unstable modes start

emerging for a zonal slope as small as 1024 and the most

unstable wavevector rotates clockwise in the (k, l)

plane, changing its orientation from nearly meridional

to nearly zonal.

In contrast to the f plane, as shown in Figs. 4c and 4d,

the growth rate of the most unstable mode increases

sharply with the zonal slope, before approaching a nearly

constant value at the slope of ;5 3 1023. The phase

speed exhibits similar behavior and remains eastward for

both negative and positive values of k.

Several effects of a zonal slope on WB flows on

b plane are qualitatively similar to those of supercritical

EB flows (Fig. 5). In particular, the range of unstable

wavenumbers shrinks as the slope magnitude increases

(Fig. 5). The growth rate increases, and the wavevector

of the most unstable mode rotates counterclockwise as

the slope gets larger (Fig. 5d). The most unstable mode

of a WB flow also propagates downstream (westward),

but its phase speed magnitude decreases with the zonal

slope (figure not shown).

(iii) Vertical structure

The vertical structure of the most unstable mode

shows a strong dependence on meridional and zonal

slopes. The most unstable mode becomes more surface

intensified as a negative meridional slope becomes

steeper. As shown in Fig. 6a the ratios between the

amplitudes of the most unstable mode in the top (A1)

and bottom (A2) layers for U5 4 and 6 cm s21 increase

sharply with the slope magnitude. These changes are

explained by the increase in the relative importance of

the baroclinic component of the mode. The corre-

sponding ratio between the barotropic mode Ab 5
(A1H1 1 A2H2)/(H1 1 H2) and the residual baroclinic

one in the upper layerAz5A12Ab is shown in Fig. 6b.

Although this ratio is about 1 when the meridional slope

is very small, it decreases to less than 0.5 as the slope

becomes steeper.

A zonal slope exerts distinct effects on subcritical and

supercritical background flows. For the subcritical EB

flow of 4 cm s21A1 andA2 are nearly the same when the

zonal slope is very small (Fig. 7a). As in the case of

a meridional slope, the most unstable mode becomes

more surface intensified as the zonal slope gets larger,

but this effect is weaker than in the case of a meridional

slope, and A1/A2 reaches a nearly constant value of

about 4.5. These changes are attributed to the increase

in the relative importance of the baroclinic component

of the mode; although the barotropic component tends

to dominate over the baroclinic one for all slopes,Ab/Az

decreases sharply from more than 5 to almost 1, as the

zonal slope increases (Fig. 7b). For the supercritical EB

flow of 6 cm s21, as in the subcritical case, the most

unstable mode is surface intensified for all zonal slopes.

The ratio A1/A2 decreases slightly in the beginning, but

increases afterward as the zonal slope increases. In

contrast to the subcritical case, however, Ab/Az for U 5
6 cm s21 is around 1 for all zonal slopes, indicating a mix

of barotropic and baroclinic components of the most

unstable mode. Changes in a negative zonal slope lead to

a similar dependence.

c. Effects of the orientation of the background PV
gradients

The largest dynamical effect of the introduction of

a zonal topographic slope is to make the background PV

gradient in the lower layer nonmeridional. The effects of

this rotation on the most unstable mode are explicitly

explored in this section, by keeping themagnitude of the

PV gradient fixed, but changing its orientation. This is

readily achieved by changing Sx and Sy simultaneously.

The spatial structure of the most unstable mode is

characterized by the orientation of the wavevector (k, l)

with respect to the y axis and denoted as angle ukl.

For example, ukl 5 908 corresponds to a meridional

‘‘noodle’’ mode.

We follow Flierl (1978) and define barotropic and

baroclinic potential vorticity, qBT and qBC in the fol-

lowing way:

qBT 5a2q11a1q2 , (18)

qBC5
ffiffiffiffiffiffiffiffiffiffiffi
a1a2

p
(q12 q2) . (19)

The barotropic and baroclinic PV gradients, $qBT and

$qBC are

$qBT 5a1Sxi1 (b01a1Sy)j , (20)

$qBC 52
ffiffiffiffiffiffiffiffiffiffiffi
a1a2

p
Sxi1

ffiffiffiffiffiffiffiffiffiffiffi
a1a2

p
(FU2 Sy)j . (21)

We begin by examining the relationship between ukl
and the orientation of the barotropic PV gradient,

quantified by u$qBT , the angle between this gradient and

the x axis (u$qBT 5 908 in the absence of topography).

Note that u$qBT 5 ukl means that the wavevector is per-

pendicular and the velocity vector is parallel to the di-

rection of the barotropic PV gradient. We are also

interested in how the relationship between ukl and u$qBT
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is affected by the vertical shear and stratification. For

this purpose, we will also vary U and H2.

First, we consider three EB flows: weak (1 cm s21),

intermediate (6 cm s21), and strong (12 cm s21), while

keeping the depths of the two isopycnal layers H1 5
1 km and H2 5 3 km. We maintain the same magni-

tude of $qBT as 2b0 and rotate it from northward (908)
to eastward (08) directions by changing the bottom

slopes from (Sx, Sy) 5 (0, b0, a1) to (Sx, Sy) 5 (2b0/a1,

2b0/a1).

Both EB flows of 1 and 6 cm s21 are stable when$qBT
points to the north with a purely meridional slope. A

very small zonal component of the PV gradient (u$qBT is

slightly less than 908), however, destabilizes these flows,

and the most unstable mode is nearly zonally oriented

and has an almost meridional wavevector (ukl is close to

08). For the EB flow of 1 cm s21, as $qBT becomes more

zonal, ukl is always shifted by 908 with respect to u$qBT
(red line in Fig. 8a). This indicates that themost unstable

wavevector is parallel to the barotropic PV gradient for

FIG. 5. Unstable modes in the presence of a zonal topographic slope and WB flows on the b plane. Growth

rate (yr21) as a function of the zonal and meridional wavenumber is shown for different zonal slopes: (a) 1 3 1024,

(b) 1 3 1023, and (c) 1 3 1022 for the WB flow with a speed of 23 cm s21. (d) Wavenumber of the most unstable

mode forU524,23, and22 cm s21—the zonal slope increases along the curves and four values are shown: 53 1024

(circles), 7 3 1024 (asterisks), 1.1 3 1023 (diamonds), and 1.3 3 1023 (cross); beyond the slope value of ;1023, it

becomes very difficult to accurately calculate the wavelength of the most unstable mode, because unstable modes are

found in an increasingly narrow interval near the origin in the (k, l) plane and the corresponding growth rates are too

close to be distinguished within the computation accuracy.
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a background flow as weak as 1 cm s21. A similar situa-

tion is observed for U5 4 cm s21 and small zonal slopes

in the previous section. For a stronger background

velocity shear of 6 cm s21, this parallel orientation of the

most unstable wavevector and the barotropic PV gradi-

ent is less obvious.

The EB flow of 12 cm s21 is, in contrast, baroclinically

unstable when the barotropic PV gradient is purely

meridional (u$qBT 5 908) and ukl is also 908 (the meridi-

onal ‘‘noodle’’ mode); the velocity vector is parallel to

$qBT. This is a typical situation for the modes growing in

the baroclinic shear, as this orientation enables these

modes to most efficiently extract energy from the

background state (Pedlosky 1987). For nonzero zonal

slopes, the difference between ukl and u$qBT increases.

When the PV gradient is zonal (u$qBT 5 0), this differ-

ence is 908 and the wavevector is parallel to the PV

gradient.

The relationship between the barotropic PV gradient

and the most unstable wavevector is sensitive to the

mean stratification. We consider here the EB flow of

6 cm s21 and three different values ofH2: 1, 3, and 5 km.

The upper layer is 1 km for all the three cases. These

values can be interpreted as the cases with thermoclines

that are deep, intermediate, and shallow in comparison

to the total depth of the ocean. Note that, when the

FIG. 6. Vertical structure of the most unstable modes in the case of EB flows over meridional topographic slopes:

(a) ratio between themagnitude of the upper and lower layer streamfunctions forU5 4 and 6 cm s21 as a function of

the meridional slope and (b) the corresponding ratio between the barotropic and the baroclinic modes in the upper

layer.

FIG. 7. As in Fig. 6, but over zonal topographic slopes and the ratio as a function of the zonal slope.
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bottom is flat, a larger H2 (and smaller a2) implies an

increased stability of the background flows. For a deep

lower layer of 5 km, ukl is always nearly parallel to $qBT
(Fig. 8b). The difference between u$qBT and ukl shifts

away from 908 as the lower layer becomes thinner (black

and red curves).

The relationship between ukl and u$qBC has also been

examined, but the former angle does not appear to be

sensitive to the orientation of the baroclinic PV gradient

and is not discussed here.

4. Meridional ridge: Numerical results

The linear baroclinic instability properties of zonal

flows over topography are studied next in a linearized

numerical QG model. The model is exactly the one

described in section 2, except it is confined in a zonally

reentrant channel centered at 458N. Its meridional width

is Ly 5 3600 km; its zonal length is Lx 5 4Ly. Grid

resolution is 7 km. This numerical code is adapted from

Berloff et al. (2009a) with nonlinear advection terms

turned off. All parameters are the same as those used in

section 3. The model is initialized with random perturba-

tions, among which some wavenumbers become unstable

and grow exponentially.

By assuming that the most unstable mode tends to

dominate the flow evolution in the model at long times,

we can estimate the growth rate, phase speed, and spa-

tial structure of the most unstable mode. Specifically, we

calculate the growth rate from the last 100 days of each

simulation (before the model becomes numerically un-

stable) by fitting an exponent into the energy time

evolution. The phase speed is estimated from the slope of

Hovm€oller diagrams during the same time period. Er-

rors in both the growth rate and phase speed are esti-

mated by bootstrapping. The zonal and meridional

wavelengths of the most unstable mode are deter-

mined by eye, by counting the number of maxima (as in

Fig. 9b). Note that the model domain allows only a

discrete set of wavenumbers: consequently, the model

may not permit the analytically most unstable mode.

This bias is, however, found to be not significant in

the cases considered below. The ability of these

methods to capture the main properties of the most

unstable modes is first verified in the case of a constant

topographic slope. The corresponding linear numerical

FIG. 8. Orientation of the wavevectors and the barotropic PV gradient for (a) three EB flows,H25 3 km, and (b) the

EB flow with a speed of 6 cm s21 and three different values of H2.

FIG. 9. Linear numerical results: (a) schematic of the meridional

ridge and (b) the disturbance streamfunction for the EB flow with

a speed of 4 cm s21, scaled to the streamfunction magnitude; ver-

tical black lines denote positions of the edges and center of the

ridge. These most unstable mode are patchy instead of being uni-

form due to boundary effects of the channel walls.
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solutions are very close to those from the analytical dis-

persion relation of Eq. (15). Specifically, the growth rate

from themodel is only 4% smaller than the analytical one;

the wavelength and phase speed of the most unstable

mode are also nearly the same as the analytical values.

We next proceed with a numerical analysis of the

linear solutions over a topographic ridge and examine

the extent to which the unstablemodes, developing in the

presence of the ridge, can be described using our ana-

lytical results with a constant zonal slope. We need to

point out that the numerical results, even in the vicinity of

the ridge itself can, in general, be very different from the

analytical ones due to the more complicated topography

and boundary conditions in the former case.We, however,

find that the numerical solutions are generally consistent

with the local stability properties from theory. The nu-

merical results for several parameters are shown in Figs.

4b–d by solid dots with error bars.

We begin with the EB flow of 4 cm s21 over a ridge

with the slopes of 61023, which is subcritical over a flat

bottom. The meridional ridge is shown in Fig. 9a; it has

a height of 1500 m and a width of 3000 km. The nu-

merical results exhibit slanted orientations on both sides

of this symmetric ridge and very small amplitudes over

the flat bottom section of the channel (Fig. 9b). The

spatial structure of this numerical solution closely

matches that of the most unstable mode from the

analytical model with a constant zonal slope of 1023.

Specifically, the wavevector (scaled by the internal

Rossby deformation radius) of the most unstable mode

from the numerical simulation is (k, l) 5 (0.69, 0.48),

which is very close to the analytical result (k, l) 5 (0.68,

0.43) for the positive (eastward deepening) slope of

1023 (Fig. 4b). The negative slope corresponds to the

oppositely signed l. The calculated growth rate is

4.89 yr21, which is somewhat lower than the analytical

one, 5.91 yr21 (Fig. 4c). This can also be partly due to the

fact that several unstable modes grow in this simulation

together with the most unstable mode, but at lower

rates. Nearly negligible motions away from the ridge are

also consistent with local stability properties of this

subcritical current, which is stable over the flat bottom.

The propagating speed of the most unstable mode is

0.0065 m s21 and eastward, which is slightly lower than

the analytical result of 0.0076 m s21. We remind the

reader that the most unstable wave modes over the

negative and positive zonal slopes of the ridge propagate

eastward with the same phase speed.

The results for the meridional ridges with slopes of

65 3 1024 and 61023 and the EB flows U 5 4, 5, and

6 cm s21 are also generally consistent with local stability

properties. In particular, unstable modes exhibit slanted

structures over the ridges; away from the ridges, the

amplitudes are very small, and the meridional ‘‘noodle’’

mode in the flat-bottom case is not visible. In other

words, the disturbances are strongly trapped to the

ridges. This is generally consistent with the growth rates

over a flat bottom being significantly smaller than those

over a zonal slope (Fig. 4). The growth rates of the nu-

merical solutions are 13%–19% lower than the analyti-

cal ones, and the phase speeds are within 20% of the

analytical ones. Other experiments configured with dif-

ferent topographic features, such as a double ridge and

a trough, exhibit a similar agreement with the local an-

alytical results (figures not shown).

5. Summary and conclusions

This study demonstrates the importance of bottom

topography in the linear baroclinic instability of oceanic

currents. Constant topographic slopes are shown to

significantly modify stability properties of zonal flows,

through the changes in the background PV gradient. A

zonal slope introduces a zonal component in the PV

gradient, which has a strong destabilizing effect on the

flow: this is also consistent with the enhanced eddy ki-

netic energy over zonal slopes found by Boland et al.

(2012). In particular, even a small zonal slope can de-

stabilize a flow that is otherwise stable in the absence of

topography, and the growth rates of the most unstable

modes increase with the magnitude of the slope. In

contrast, a meridional slope can stabilize/destabilize

a zonal flow only through changing the background PV

gradient in the lower layer beyond a known threshold.

The spatial structure of the fastest-growing modes is

also sensitive to the orientation of topographic slopes.

The importance of the baroclinic component of themost

unstable mode increases with the increase of zonal slope

magnitude, and the mode becomes surface intensified.

Surface-intensified modes are also found in a linear two-

layer QG model in Samelson (1992), in which the hori-

zontal scales of the topography are comparable to that

of the waves, and inHallberg (1997), where they become

coupled with bottom-intensified flows when the topo-

graphic gradient is meridional. Northward- or zonally

sloping topography in our study also leads to the short-

ening of the most unstable wavelength, in comparison

with the flat bottom.

When the slope is purely meridional or zero, the most

unstable mode has the shape of a meridional ‘‘noodle’’

mode and the wavevector has a purely zonal orientation.

This orientation allows the most efficient extraction of

energy from the background stratification (Pedlosky

1987). The introduction of the zonal slope causes the

most unstable modes to become slanted horizontally.

The relationship between the PV gradient and the
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orientation of the most unstable wavenumber depends

on how stable (subcritical) the zonal flow is. For a weak

zonal flow or a thick lower layer, the orientation of

the wavevector is parallel (and the velocity vector is

perpendicular) to the barotropic PV gradient, which

indicates a strong topographic control on the mode

orientation. A similar and strong relationship between

eddy-driven jets and the barotropic PV gradient is re-

ported by Boland et al. (2012). This is consistent with the

mechanism of jet formation proposed by Berloff et al.

(2009a), in which jets form as a result of the secondary

instability of the primary unstable modes; in their model

with a flat bottom the jets are perpendicular to the most

unstable ‘‘noodle’’ modes of the linear problem. Most

unstable modes in strong (supercritical) currents, in

contrast, exhibit a weak relation between the orienta-

tions of their wavevector and the barotropic PV gradi-

ent. These wavevectors, instead, appear to be primarily

controlled by the direction of the velocity shear.

The results of the linearized numerical simulations

with meridional ridges/troughs are generally consistent

with the local stability properties. In particular, the

dominant growing solution is localized to the ridge and

has the spatial structure and growth rate consistent with

those predicted by the linear theory over a constant

zonal slope. This ‘‘trapping’’ of the modes to the ridge

can be explained by the enhanced instability due to the

zonal slopes on the sides of the ridge. The entire growing

anomaly propagates to the east in the eastward back-

ground current and to the west in the westward one.

During the nonlinear evolution stage, one can therefore

expect coherent structures to form downstream of the

ridge. This result may help explain the highly energetic

eddy activity downstream of topography observed in

Thompson and Sall�ee (2012) and our nonlinear simu-

lation. This property can also have important implica-

tions for the formation of the eddy-driven jets next to

the meridional ridges, which is observed in our non-

linear study (in progress).

The results of this idealized study can help to interpret

eddy generation over more complex topographic fea-

tures in the real ocean andmore sophisticated numerical

models. The demonstrated importance of topography

strongly suggests that the traditional stability analysis

based entirely on the vertical shear in zonal ocean cur-

rents is insufficient for predicting the basic properties of

growing disturbances. Topography, as well as such fea-

tures of themean current as its nonzonal orientation and

spatial variability, can be expected to be critical factors

in oceanic eddy generation.
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