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mesoscales 
2 km < … < 600 km

synoptic scales 
1000 km < … < 5200 km
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• forward cascade predicted by 3D 
isotropic homogeneous arguments 

• internal gravity waves

tropopause 10-12 km —> 
—> 3D effects only for scales <2 km 

ruled out by Gage & Nastrom 1986

Some possible (early) explanations

• forward enstrophy inertial range             
(as in KBL theory) 

• Charney 1971 

synoptic scales are definitely not 
inertial 
(baroclinic instability energetic scales) 

(several problems…)

k�3



Tung & Orlando 2003 
reproduced an energy spectrum similar to 
Gage & Nastrom with a 2-layer QG system

Tulloch & Smith 2006 
(argued that Tung & Orlando are wrong and) 

reproduced an energy spectrum similar to 
Gage & Nastrom with a finite height SQG system  
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adjusted parameters to resemble 
midlatitude tropopause
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FIG. 7. Nondimensional fluxes of total energy (top) and potential
enstrophy (bottom), time-averaged at equilibrium, for the 129-km
case. Thin solid curve in the bottom panel is energy flux times m2.
Very thin horizontal line indicates zero flux.

etary waves but with a small amount downscale towards
the subsynoptic scales and beyond, as shown in Fig. 6.
The fact that this part of the energy spectrum—even in
the energy injection region—approximately follows the
23 power law predicted for inertial subranges (without
forcing or dissipation) is fortuitous.7 There is, however,
an explanation for this power law due to baroclinic in-
stability, as discussed in Welch and Tung (1998b).8
In some previous studies this synoptic region was

mistakenly identified as an inertial subrange, but such
a range is only possible well away from the scales of
energy injection.

b. The planetary scales
The planetary scales, m 5 1–2, receive transient en-

ergy from the large synoptic scales through upscale en-

7 The slope in the energy injection region does not follow a uni-
versal power law and is dependent on the static stability N 2. This
may explain why in the observed data, the slope is different at dif-
ferent heights in the troposphere over the synoptic scales (Boer and
Shepherd 1983; Straus and Ditlevsen 1999).

8 The wavenumbers 3–12 are linearly unstable to baroclinic insta-
bility, but their growth saturates because the earth’s radiative forcing
is so highly supercritical. The saturation first occurs for the linearly
most unstable waves, then for the next unstable wave upscale, then
the next, etc., until saturation reaches the dominant mode. The sat-
urated part of the spectrum has a characteristic shape: the heat flux
spectrum shows roughly a k24 dependence, and consequently the
energy spectrum is slightly steeper than k23. There is, however, height
dependence in the spectral shape (see previous footnote). The spec-
trum is otherwise robust; it is independent of the level of forcing, as
long as it is highly supercritical. This is consistent with observations,
which show very little seasonal dependence of the spectrum for wave-
numbers m . 6 [see the comparison with Randel and Held (1991)
in Welch and Tung (1998b) Fig. 11], while the wavenumber of the
peak heat flux shifts from 6 to 5 between summer and winter.

ergy transfer via wave–wave interaction. The planetary
waves themselves are stable with respect to baroclinic
instability (Welch and Tung 1998b) and so do not re-
ceive significant energy injection from the mean flow;
the energy they gain from wave–wave transfer is bal-
anced at equilibrium mainly by Ekman damping (Fig.
6). Some variability is evident at these scales (and for
the synoptic scales as well) in Fig. 3. This is also found
in analyses over time: even when statistical equilibrium
has been reached in diagnostic values such as subgrid
energy dissipation and subgrid enstrophy dissipation,
large variability can still be seen in the energy at large
scales. This can be decreased somewhat by shortening
the timescale of Ekman damping (i.e., raising n), which
also decreases the level of energy in the largest scales.
However, such a practice makes our model less, not
more, realistic; in fact there is low-frequency variability
on large scales in the real atmosphere (Wallace and
Blackmon 1983). Hence we have retained our realistic
timescale for Ekman damping and not attempted to elim-
inate all variability in, nor pinpoint the energy level of,
the planetary scales.

c. The subsynoptic scales

Figures 5 and 6 show that the wave–mean flow in-
teraction term (the energy injection) becomes insignif-
icant for zonal wavenumbers m * 13. These scales are
baroclinically stable at equilibrium (Welch and Tung
1998b) and so do not receive energy from the mean
flow. Their dynamics (and those of the mesoscales) are
dominated by wave–wave interaction, as shown in Fig.
5 bottom.9 As can be seen in Fig. 3, these subsynoptic
scales, with zonal wavenumber m $ 13, follow a k23

power law consistent with inertial subrange theory of
Kraichnan (1967) for a forward (potential) enstrophy-
cascading range. To be a strict inertial range these scales
would have to experience zero damping. We see from
Figs. 5 and 6 that this is effectively true. As confir-
mation, we removed Ekman damping from all but m 5
1–4 and found only negligible change in the spectrum
or diagnostics (not shown).
These subsynoptic waves form part of an inertial sub-

range with the mesoscales, as discussed further in section
4d. While we leave theoretical consideration of the spec-
tral shape to a later work, here we briefly discuss the
shape in terms of simple dimensional analysis. Figure 7
shows the nondimensional fluxes of total energy and po-
tential enstrophy at equilibrium (thick solid curves).
There are simultaneously a downscale potential enstro-

9 Figure 5 bottom shows that some waves gain energy while others
lose it in this time average at equilibrium. Another average taken
over later times would look similar, except that some m which gained
(lost) energy in Fig. 5 would now lose (gain) energy. Much longer
time averages would cancel out some of these oscillations but are
computationally too expensive. Note that the spectra are not altered
by such variation in nonlinear interactions; Fig. 3 gives an example.

Tung & Orlando 2003
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FIG. 7. Nondimensional fluxes of total energy (top) and potential
enstrophy (bottom), time-averaged at equilibrium, for the 129-km
case. Thin solid curve in the bottom panel is energy flux times m2.
Very thin horizontal line indicates zero flux.

etary waves but with a small amount downscale towards
the subsynoptic scales and beyond, as shown in Fig. 6.
The fact that this part of the energy spectrum—even in
the energy injection region—approximately follows the
23 power law predicted for inertial subranges (without
forcing or dissipation) is fortuitous.7 There is, however,
an explanation for this power law due to baroclinic in-
stability, as discussed in Welch and Tung (1998b).8
In some previous studies this synoptic region was

mistakenly identified as an inertial subrange, but such
a range is only possible well away from the scales of
energy injection.

b. The planetary scales
The planetary scales, m 5 1–2, receive transient en-

ergy from the large synoptic scales through upscale en-

7 The slope in the energy injection region does not follow a uni-
versal power law and is dependent on the static stability N 2. This
may explain why in the observed data, the slope is different at dif-
ferent heights in the troposphere over the synoptic scales (Boer and
Shepherd 1983; Straus and Ditlevsen 1999).

8 The wavenumbers 3–12 are linearly unstable to baroclinic insta-
bility, but their growth saturates because the earth’s radiative forcing
is so highly supercritical. The saturation first occurs for the linearly
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urated part of the spectrum has a characteristic shape: the heat flux
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numbers m . 6 [see the comparison with Randel and Held (1991)
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instability (Welch and Tung 1998b) and so do not re-
ceive significant energy injection from the mean flow;
the energy they gain from wave–wave transfer is bal-
anced at equilibrium mainly by Ekman damping (Fig.
6). Some variability is evident at these scales (and for
the synoptic scales as well) in Fig. 3. This is also found
in analyses over time: even when statistical equilibrium
has been reached in diagnostic values such as subgrid
energy dissipation and subgrid enstrophy dissipation,
large variability can still be seen in the energy at large
scales. This can be decreased somewhat by shortening
the timescale of Ekman damping (i.e., raising n), which
also decreases the level of energy in the largest scales.
However, such a practice makes our model less, not
more, realistic; in fact there is low-frequency variability
on large scales in the real atmosphere (Wallace and
Blackmon 1983). Hence we have retained our realistic
timescale for Ekman damping and not attempted to elim-
inate all variability in, nor pinpoint the energy level of,
the planetary scales.

c. The subsynoptic scales

Figures 5 and 6 show that the wave–mean flow in-
teraction term (the energy injection) becomes insignif-
icant for zonal wavenumbers m * 13. These scales are
baroclinically stable at equilibrium (Welch and Tung
1998b) and so do not receive energy from the mean
flow. Their dynamics (and those of the mesoscales) are
dominated by wave–wave interaction, as shown in Fig.
5 bottom.9 As can be seen in Fig. 3, these subsynoptic
scales, with zonal wavenumber m $ 13, follow a k23

power law consistent with inertial subrange theory of
Kraichnan (1967) for a forward (potential) enstrophy-
cascading range. To be a strict inertial range these scales
would have to experience zero damping. We see from
Figs. 5 and 6 that this is effectively true. As confir-
mation, we removed Ekman damping from all but m 5
1–4 and found only negligible change in the spectrum
or diagnostics (not shown).
These subsynoptic waves form part of an inertial sub-

range with the mesoscales, as discussed further in section
4d. While we leave theoretical consideration of the spec-
tral shape to a later work, here we briefly discuss the
shape in terms of simple dimensional analysis. Figure 7
shows the nondimensional fluxes of total energy and po-
tential enstrophy at equilibrium (thick solid curves).
There are simultaneously a downscale potential enstro-

9 Figure 5 bottom shows that some waves gain energy while others
lose it in this time average at equilibrium. Another average taken
over later times would look similar, except that some m which gained
(lost) energy in Fig. 5 would now lose (gain) energy. Much longer
time averages would cancel out some of these oscillations but are
computationally too expensive. Note that the spectra are not altered
by such variation in nonlinear interactions; Fig. 3 gives an example.
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FIG. 2. Schematic diagrams of energy spectrum, injection, dissi-
pation, and fluxes vs wavenumber: (a) traditional 2D turbulence think-
ing, (b) Lilly’s (1989) proposal, and (c) our proposal. See text for
details.

turbulence, involving a downscale energy flux, and by
Kraichnan (1967) for 2D homogeneous isotropic tur-
bulence on the large-scale side of energy injection, in-
volving an upscale energy flux (see Fig. 2a). Frisch
(1995) found it ‘‘paradoxical’’ that in the observed spec-
trum the k25/3 part occurs on the short-wave side of the
k23 part of the spectrum, in contrast to the prediction
of Kraichnan (1967).
Three-dimensional turbulence arguments for the k25/3

spectrum rely on an assumption of isotropy in three
dimensions, which is not applicable to the atmospheric
mesoscales, where horizontal dimensions are much larg-
er than the vertical dimension (except at horizontal
scales of a few kilometers). It is possible that motion
in the mesoscales might be isotropic in the horizontal
dimensions, allowing for the possibility of 2D turbu-
lence. Yet, because of the property of upscale energy
cascade, 2D theories require a large energy source at
the short-wave end of the spectrum, strong enough to
pump energy upscale through several decades of scales
(as in Fig. 2b). While sufficient energy can probably be
provided by thunderstorms in the form of stratified tur-
bulence or gravity waves (Lilly 1983), it is not clear
that forcing at the short-wave end of the spectrum in
the microscales, which are 3D, would not simply cas-
cade energy into still shorter scales, as in 3D turbulence.
Furthermore, even if a small portion of the energy (ap-
proximately 2%) could somehow escape into 2D tur-

bulence (Smith et al. 1996) and subsequently move up-
scale (Vallis et al. 1997), there have been problems in
simulating the spectrum with two energy sources.
First, there is the question of a sink (Larsen et al.

1982) for such an upscale energy flux in the transition
region of 600–1000 km. Lilly (1989) suggested that
there was probably no need for a sink for the energy
cascading up from forcing at the smaller scales and for
the enstrophy flux cascading down from forcing at the
large scales, but numerical simulations of 2D turbulence
by Maltrud and Vallis (1991) with forcing at both ends
of the spectrum produced a slope steeper than k23 on
the long-wave side of the transition region. (Of course,
this artifact may be unrelated to forcing at the small
scales.) Also, the transition region itself was found to
be more abrupt in the numerical result using two energy
sources than in atmospheric data. Borue (1994) found,
in 2D numerical simulations with a small-scale force,
that with longer runs the energy spectrum in the inverse
energy cascading range deviates strongly from the 25/3
slope and becomes closer to 23. According to the au-
thor, this was due to the emergence of coherent vortices
at all scales, although the problem may simply be due
to resolution. Most importantly, Gage and Nastrom
(1986) pointed out that the ‘‘remarkable degree of uni-
versality’’ in spectral amplitude and spectral shape over
the entire range of wavelengths encompassing both the
k23 and the k25/3 parts of the spectrum is ‘‘hard to ex-
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enstrophy/energy fluxes based on their model
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for numerical stability
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θ = �zψ � ψ̂(k, z = 0) =
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kt � f/(NH)regime transition at scale

what does that imply for energy spectra?

1
2
ψ2 �

�
P(k)dk

E =

�
k2P(k)dk �

�
E(k)dk

T =
1
2
θ2 �

�
T (k)dk =

�
[σk tanh(k/kt)]2P(k)dk

ε � kT (k)
[k5P(k)]�1/2 = const.

E(k) � ε2/3[σ tanh(σhk)]�4/3k�5/3
k � (σH)�1 � θ̂(k, 0) � σ2k2Hψ̂(k, 0)

k � (σH)�1 � θ̂(k, 0) � σkψ̂(k, 0)

� k�3

� k�5/3

some 
fiddling 
around
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The spectral slopes can be predicted as follows. Defining the
spectral density of the streamfunction by the relation !2!2 !

!(k)dk, the conserved invariants have the form

"s"k# " #k tanh"k!k t#!"k# , [6a]

#"k# " k tanh"k!k t#$
2!"k# . [6b]

In the present context, we are interested in the influence
synoptic-scale stirring on the mesoscales, presumably due to
baroclinic instability, and so we restrict our attention to the
forward cascade regime, in which the conservation of temper-
ature variance determines the spectrum by means of the stan-
dard phenomenology (30, 31). The temperature variance spec-
trum (Eq. 6b) has the same dimensions as kinetic energy, and so
it is the flux of this boundary-f low energy that is constant in its
inertial range

$ " k#"k#%%1"k# " constant, [7]

where %(k) is the turbulent timescale at wavenumber k. Because
the turbulent timescale is the advective timescale, we can express
it in terms of the streamfunction spectrum, %(k) " [k5!(k)]%1/2.
Using this expression in Eq. 7 and eliminating !(k) with the help
of Eq. 6b reveals that

#"k# " CT$2/3 tanh" Hk#$2/3k%5/3, [8]

where CT is the appropriate Kolmogorov constant.
It is the temperature variance spectrum that determines all

other spectra in the direct cascade range, and so, for example, we
can derive !(k) through elimination of #(k) between Eqs. 6b
and 8, and similarly for $S(k). More to the point, the kinetic
energy spectrum is

k2!"k# " tanh" Hk#$%2#"k# , [9]

which thus takes on the small- and large-scale limits

k2!"k# " #CT$2/3" 2H#%4/3k%3, k && kt

CT$2/3 %4/3k%5/3, k '' k t
. [10]

To summarize, the hypothesis is that synoptic-scale stirring
produces a balanced, forward cascade of temperature variance at
the tropopause (and perhaps at the ground as well). At large
scales, the flow is quasi-barotropic because the penetration
depth is large enough to interact with the interior flow (or the
lower boundary as an upper limit), and here the cascade exhibits
the same kinetic energy spectrum as in Charney’s theory (3) of
quasigeostrophic turbulence. As the cascade proceeds, the pen-
etration depth of temperature anomalies decreases. When the
vertical scale is small compared with the depth over which
the tropospheric interior potential vorticity is homogenized, the
cascade flattens to a %5!3 slope, recovering its essential SQG-
like nature. The accompanying temperature spectrum is consid-
ered in the discussion. The small-scale filter is adjusted for each
simulation so that it acts only near the highest resolved wave-
number, as explained above. Each spectrum was calculated by
averaging over time (for the portion of the simulation over which
the flow was in steady state) and azimuthal angle in the
horizontal plane.

Numerical Tests of the Predicted Spectra
Here we present the results of a series of simulations of the fSQG
model, forced by large-scale stirring and dissipated scale-
selectively at both the domain and grid scales. The system
modeled is just with added forcing and dissipation terms,
coupled with the !̂–&̂ inversion for the finite-depth model. The
calculation is performed in the spectral domain, corresponding

to a 2'-periodic physical domain, by using a de-aliased fast
Fourier transform method to calculate the nonlinear terms, by
means of the staggered grid method of Orszag (32). Stirring is
generated at kf ! 4 by a random Markovian process that is highly
correlated in time (so that the decorrelation time is longer than
the eddy turnover time in the cascade). Large-scale dissipation
of the inverse cascade is accomplished with a strong linear drag
on temperature. The forward cascade of temperature variance is
dissipated by using a highly scale-selective exponential cutoff.
The filter is explicitly restricted to act only on k ( 2kmax!3 but
in fact affects a much smaller range of wavenumbers close to
kmax. The details of the filter are discussed in ref. 21. In all cases,
the filter is sufficiently strong that the high-wavenumber spec-
trum is minimally influenced by the filter but strong enough to
ensure that our effective Kolmogorov scale is resolved.

Fig. 1 shows a plot of the kinetic energy spectra k2!(k) for a
series of simulations performed at resolutions ranging from 2562

(kmax ! 127) to 2,0482 (kmax ! 1,023), all using ! 1 and H !
1!50, so that the input transition wavenumber is kt ! 50. Also
shown for reference is the result of a simulation of standard 2D
Euler turbulence, forced and dissipated identically to the other
runs, performed at 2,0482 resolution, and the theoretical spec-
trum, with constant chosen to match the large-scale spectra. The
small-scale filter is adjusted for each simulation so that it acts
only near the highest-resolved wavenumber, as explained above.
Each spectrum was calculated by averaging over time (for the
portion of the simulation over which the flow was in steady state)
and azimuthal angle in the horizontal plane.

At large scales, all fSQG spectra follow the 2D Euler spectra.
That said, all are steeper than a %3 slope near the forcing scale,
but this is not uncommon for the direct cascade range in 2D
turbulence. The consistency at large scales between the fSQG
and 2D Euler simulations indicates that deviations from %3 at
wavenumbers near the forcing scale reflect the forcing mecha-
nism and intrinsic dynamics of forced 2D turbulence with drag,
not the intrinsic dynamics of the fSQG model. The shallow slope
for all fSQG runs at k ' kt approaches %5!3, as expected.
Crucially, the series of simulations represented in Fig. 1 shows
that the transition scale is independent of resolution and small-
scale dissipation.

To check that the transition scale that arises from the simu-
lation is truly proportional to the input transition wavenumber

Fig. 1. fSQG kinetic energy spectra at z ! 0 with kt ! 50, computed at
different horizontal resolutions. The thin solid line shows a calculation of
regular 2D turbulence for reference, and the thin dashed line is the theoretical
spectrum (Eq. 9), with constant chosen to match the large-scale spectra.

14692 $ www.pnas.org!cgi!doi!10.1073!pnas.0605494103 Tulloch and Smith
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kt = 50

and they checked their prediction of kt by doing several simulations with varying σ



Discussion

The Nastrom & Gage observed atmospheric spectrum is essentially captured 
by the very simple models presented 
TO03 predict that                        while TS06 that                       (known params) 
Nastrom & Gage spectrum is a bit less steep than -3 at synoptic scales while 
TO03 and TS06 are more steep there 
There is also the work of Cho & Lindborg J Geophys Res 2001 that computed 
3-correllators from observations (4/5-law) 

TS06 speculate that perhaps fully a continuously stratified QG model might 
resolve any inadequacies their simple model has — see paper by Deusebio & 
Lindborg JFM 2013 

kt =
�

η/ε kt = f/(NH)

�δuLδuLδuL� = �4
5
ε(ξ � ξ �)

the sign of this term determines whether 
there is forward or inverse energy cascade



part of the whole story…
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