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Abstract 
Total kinetic energy 3s  well as total vorticity squared arc integral quantitics which can- 

not change in the course of time in a tiiwfimerrricwd flow o f  a homogeneous, iiondivcrgent, 
and inviscid fluid when the fluid is isolatcd from the surroundings. The case is considcred 
where the fluid is defined orcr  the total region of thc surface of a sphere. The nature 
of the changes in  tinic of thc spcctral distribution of kinetic energy is discussed on the 
basis of the t w o  conservation rcquirenients mentioned above. It is found that only frac- 
tions of the initial energy can flow into sniallcr scales and that a greater fraction siniultanc- 
ously has t o  flow to components with largcr scales. The upper limits t o  the flow of 
kinetic encrzy into componcnts with scales less than a Sivcn one arc found. The con- 
scrvation theorems arc also used t o  discuss thc stability of a ccrtain stationary flow for a 
twodimcnsional motion which is not ncccssarily spherical. It is shown how iniportant it 
is for the proof of stability that not only the kinetic energy of the disturbance is supposed 
to be sniall but also its vorticitics. 

In  chapter I1 niolccular viscosity is taken into accoinit for the spherical flow. Finally 
some conclusivc rcinarks arc offered rcgardiiig the fundaniental difference betwecn two- 
and threeditncnsional flow. 

I. Twodimensional spherical flow. Inviscid 
fluid 
A twodimensional nondivergent flow of a 

homo eneous fluid defined over the total sur- 

lected in the first place. The absolute motion 
of the fluid is then governed by the equations 

face o B a sphere is considered. Viscosity is neg- 

(11 dV 
ot  
_ - -  - VsY-(V*VsV),  

and 
y = a univalued and twicc &f- 

ferentiablc function of the 

Total kinetic energy is obviously conserved 
for our fluid. Hence, with F denoting the total 
area of the surface of the sphere, 

spacc coordinates. (3) 

J ( V,W) dF = cons t. (4) 
F 

Here 
v =  

v s  = 

Y =  - (V' vsv), = 

V =  -vV,yxk. (2 )  Eliminating vS y from (I)  and using (2) one 
obtains 

k =  

velocity 
spherical deloperator 
pressure over density 
convective acceleration along 
the surface of the sphere 

where V ~ Y  represents the component of vortic- 
ity perpcndicular to the surface of the sphere. 

I Perpendicular to Multiplying ( 5 )  with - v ; y  and integrating 
the sphere 2 
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Important Questions

• Does energy flow from small to large scales, from 
large to small scales, or both?



Navier-Stokes on a sphere (no rotation)
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Eliminating
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An equation for the rate of change of vorticity
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Conservation of enstrophy
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enstrophy is the square of vorticity



Spectral decomposition into modes
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Define change in energy at wavenumber k
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Energy spreads out

(Salmon 1982)

• Energy begins at wavelength 
• We then assume that it spreads out

k1

• Which direction does it go?



Using 3 scales as an example

If the kinetic energy flows from the 
intermediate scale to both short and 

long scales

The change in kinetic energy change will be 
smallest for the short scales
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 enstrophy conservation



So what does this mean?
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i.e. 4 times as much energy flows to large 
scales than small scales

These results can be generalized to include all scales (rather than just 3).



is the rate of energy transfer past    and has unitsk

⌘ is the rate of enstrophy transfer past     and has unitsk
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enstrophy moves to higher wavenumbers in the flow.  The reason for this is that inviscid 
mechanics is time-reversible:  For every inviscid flow in which enstrophy moves to 
smaller scales of motion, there is an inviscid flow in which exactly the opposite occurs 
(namely, the first flow running backwards in time).  Thus, every example provides its 
own counter-example!  Our statistical hypotheses amount to statements that the example 
is more likely than the counter-example.  These hypotheses frequently enter as innocent, 
often tacit, assumptions, whose statistical nature is hidden.  For example, our “proofs” 
that enstrophy moves toward higher wavenumbers rest on the essentially statistical 
assumptions that a spectral peak will spread out (rather than sharpen), and that material 
lines get longer (rather than shorter).  We cannot escape such assumptions, but we can 
hope to find the simplest and most compelling ones possible.  Turbulence theory largely 
consists of linking plausible statistical hypotheses to interesting, even unexpected, 
consequences. 
 
9.  More two-dimensional turbulence 
 
 Now suppose that ν ≠0 and consider the statistically steady two-dimensional 
turbulence that arises from a stirring force acting at wavenumber k1 (Figure 4.8).  The 
energy and enstrophy put in by the stirring force spread to other wavenumbers by the 
nonlinear terms in the equations of the motion.  At some high wavenumber, kD, viscosity 
becomes effective, and energy and enstrophy are removed.  If the container has size L, 
then the lowest wavenumber, k0, has size 1/L.   If the flow is unbounded, then k0=0. 
 First, consider the inertial range between k1 and kD.  If kD/k1 is large, then there are 
many cascade steps between the stirring at k1 and the dissipation near kD.  Within this 
inertial range the energy spectrum E(k) then plausibly depends only on the wavenumber 
k;  on ε, the rate of energy transfer past k to higher wavenumbers; and on η, the rate of 
enstrophy transfer past k.  If all of the energy and enstrophy passing through the inertial 
range on [k1,kD] is removed at wavenumbers greater than kD,  then 
 
  η > kD

2ε . (9.1) 
 
Now let k1 be fixed, and let kD→∞.  This corresponds to the limit ν→0 of a very wide 
inertial range, with many cascade steps between k1 and kD.  In this limit ε must vanish, or, 
by (9.1), η  would blow up (which is impossible, because the stirring force supplies a 
finite enstrophy to the fluid, and the nonlinear interactions conserve enstrophy).  We thus 
conclude that, in the inertial range on [k1,kD], the rightward energy transfer is 
asymptotically zero, and the spectrum E(k) therefore depends only on k and η.  It then 
follows from dimensional analysis that 
 

  E k( ) = C1 η
2 / 3k−3, kD ~

η
ν3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
1/ 6

 (9.2) 

 
where C1 is a universal constant.14 

If all energy with wave numbers higher than     is removed at higher wave numbers than kD
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where C1 is a universal constant.14 

However, if viscosity

" ! 0

 

IV-25 

enstrophy moves to higher wavenumbers in the flow.  The reason for this is that inviscid 
mechanics is time-reversible:  For every inviscid flow in which enstrophy moves to 
smaller scales of motion, there is an inviscid flow in which exactly the opposite occurs 
(namely, the first flow running backwards in time).  Thus, every example provides its 
own counter-example!  Our statistical hypotheses amount to statements that the example 
is more likely than the counter-example.  These hypotheses frequently enter as innocent, 
often tacit, assumptions, whose statistical nature is hidden.  For example, our “proofs” 
that enstrophy moves toward higher wavenumbers rest on the essentially statistical 
assumptions that a spectral peak will spread out (rather than sharpen), and that material 
lines get longer (rather than shorter).  We cannot escape such assumptions, but we can 
hope to find the simplest and most compelling ones possible.  Turbulence theory largely 
consists of linking plausible statistical hypotheses to interesting, even unexpected, 
consequences. 
 
9.  More two-dimensional turbulence 
 
 Now suppose that ν ≠0 and consider the statistically steady two-dimensional 
turbulence that arises from a stirring force acting at wavenumber k1 (Figure 4.8).  The 
energy and enstrophy put in by the stirring force spread to other wavenumbers by the 
nonlinear terms in the equations of the motion.  At some high wavenumber, kD, viscosity 
becomes effective, and energy and enstrophy are removed.  If the container has size L, 
then the lowest wavenumber, k0, has size 1/L.   If the flow is unbounded, then k0=0. 
 First, consider the inertial range between k1 and kD.  If kD/k1 is large, then there are 
many cascade steps between the stirring at k1 and the dissipation near kD.  Within this 
inertial range the energy spectrum E(k) then plausibly depends only on the wavenumber 
k;  on ε, the rate of energy transfer past k to higher wavenumbers; and on η, the rate of 
enstrophy transfer past k.  If all of the energy and enstrophy passing through the inertial 
range on [k1,kD] is removed at wavenumbers greater than kD,  then 
 
  η > kD

2ε . (9.1) 
 
Now let k1 be fixed, and let kD→∞.  This corresponds to the limit ν→0 of a very wide 
inertial range, with many cascade steps between k1 and kD.  In this limit ε must vanish, or, 
by (9.1), η  would blow up (which is impossible, because the stirring force supplies a 
finite enstrophy to the fluid, and the nonlinear interactions conserve enstrophy).  We thus 
conclude that, in the inertial range on [k1,kD], the rightward energy transfer is 
asymptotically zero, and the spectrum E(k) therefore depends only on k and η.  It then 
follows from dimensional analysis that 
 

  E k( ) = C1 η
2 / 3k−3, kD ~

η
ν3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
1/ 6

 (9.2) 

 
where C1 is a universal constant.14 

Therefore at high wavenumbers       is not important for determining the shape of the 
spectrum.  
The only important variables are       and    ⌘ k
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is an important case of (8.9). 
 To investigate the consequences of the conservation of E and Z in inviscid two-
dimensional turbulence, we first consider spatially unbounded flow with Fourier 
transform 
 
  ψ x, y,t( ) = dxψ k, t( )eik⋅x∫∫ , ψ k,t( ) =ψ −k, t( )*. (8.11) 
 
However, our most important results also apply to infinitely-periodic flow and to 
bounded flow.  Substituting (8.11) into (8.8) and (8.10), we see that the energy, 
 

  E = 2π( )2 dk k2 ψ k,t( ) 2∫∫ ≡ dkE k( )
0

∞

∫ , (8.12) 

 
and enstrophy, 
 

  Z = dk k2 E k( )
0

∞

∫ , (8.13) 

 
are the zeroth and second moments of the energy spectrum E(k).   
 Now suppose that ν =0 and that the energy is initially concentrated at some 
wavenumber k1.  If the energy subsequently spreads to both higher and lower 
wavenumbers, then more energy must move toward the lower wavenumbers than toward 
higher wavenumbers, in order to conserve both (8.12) and (8.13).  The transfer of energy 
from small to large scales of motion is the opposite of the transfer usually observed in 
three-dimensional turbulence, and has sometimes been called negative eddy viscosity.11 
 Suppose that the energy originally at k1 subsequently flows into the two 
wavenumbers k0=k1/2 and k2=2k1.  By conservation of energy, 
 
  E0 + E2 = E1 , (8.14) 
 
and by conservation of enstrophy, 
 

  
k1
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2

E0 + 2k1( )2 E2 = k1
2E1 . (8.15) 

 
It follows that 
 
  E0 = 4

5 E1 and E2 = 1
5 E1 , (8.16) 

 
so that 80% of the energy ends up in the lower wavenumber.  However, since the 
enstrophy in this wavenumber is 
 

k1

kD is the scale at which viscosity becomes important and         has units [1/L]k



At low wavenumbers energy must be removed somewhere if we are in a 
steady state
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 The spectrum at low wavenumbers is more problematic.   Since the energy dissipated 
by the viscosity ν  is asymptotically zero, the total energy of the flow must increase with 
time, and no statistically steady state is possible.  If k0=0, this energy moves toward ever-
lower wavenumbers, perhaps following the similarity theory proposed by Batchelor 
(1969).  In the more realistic case k0≠0 of bounded flow, the energy piles up near k0. But 
suppose that something (another type of dissipation, an Ekman drag perhaps) removes 
this energy near k0, so that an equilibrium state becomes possible.  What then is the 
nature of the turbulence in the inertial range on [k0,k1]?  By the same reasoning as above, 
we conclude that, in the asymptotic limit k0/k1→0, the enstrophy transfer across [k0,k1] 
vanishes, and the spectrum therefore depends only on k and ε, the rate of energy 
dissipation near k0.  Dimensional analysis then yields 
 
  E k( ) = C2ε 2 / 3k−5 / 3 , (9.3) 
 
where C2 is a universal constant.  The spectrum (9.3) in the energy-cascading inertial 
range has the same form as in three-dimensional turbulence.  Of course, in three-
dimensional turbulence, the energy tranfer is from large to small scales of motion. 
 Meteorologists and oceanographers often use these results by imagining that 
atmosphere and ocean obey the equations for two-dimensional turbulence, and that the 
stirring force at wavenumber k1 represents baroclinic instability injecting energy at scales 
of motion comparable to the deformation radius.  (In Chapter 6 we pursue the much 
better strategy of generalizing the theory to equations that better apply to the atmosphere 
and ocean.)  Then the above theory predicts a k -3 spectrum on wavenumbers between 
k1 and kD, the wavenumber at which the Rossby number UkD/f exceeds unity.  At higher 
wavenumbers, rotation cannot keep the flow two-dimensional, and the enstrophy passes 
into smaller-scale three-dimensional turbulence. 
 Although observations support a k -3 spectrum in the ocean and atmosphere, there are 
at least three reasons to question this explanation: 
 (1)  The dynamics (8.7) of pure two-dimensional turbulence omit too much of the 
physics.  In particular, the beta-effect and density stratification are very important in the 
atmosphere and ocean. 
 (2)  Even if we ignore objection (1), the hypotheses about two-dimensional 
turbulence required to establish (9.2) and (9.3) are not satisfied by the atmosphere and 
ocean.  In neither fluid are the separations between k0, k1, and kD large enough to justify 
the picture of a turbulent cascade.  Furthermore, on scales larger than the deformation 
radius, the atmosphere and ocean show very large departures from statistical 
homogeneity and isotropy. 
 (3)  Even if we ignore objections (1) and (2), the inertial range theory of two-
dimensional turbulence is not strictly self-consistent. 
 In Chapter 6, we shall consider generalizations of (8.7) that partly answer objection 
(1), and we shall avoid the strong hypotheses criticized in objection (2).  In the remainder 
of this section we look more closely at objection (3), arriving at a picture of enstrophy 
transfer to small spatial scales that is, in some respects, the antithesis of a cascade.   

As ⌘ ! 0

k1

k�3

k�5/3

kD

enstrophy

energy

Therefore,      is not important for determining the shape of the spectrum⌘

kR/k1 ! 0

kR is the wavenumber at which energy is removed



In 2D turbulence, energy flows from small scales to large scales, and 
enstrophy flows for large scales to small scales.  

The energy spectrum for 2D turbulence can be found from dimensional 
analysis. 

Conclusions


