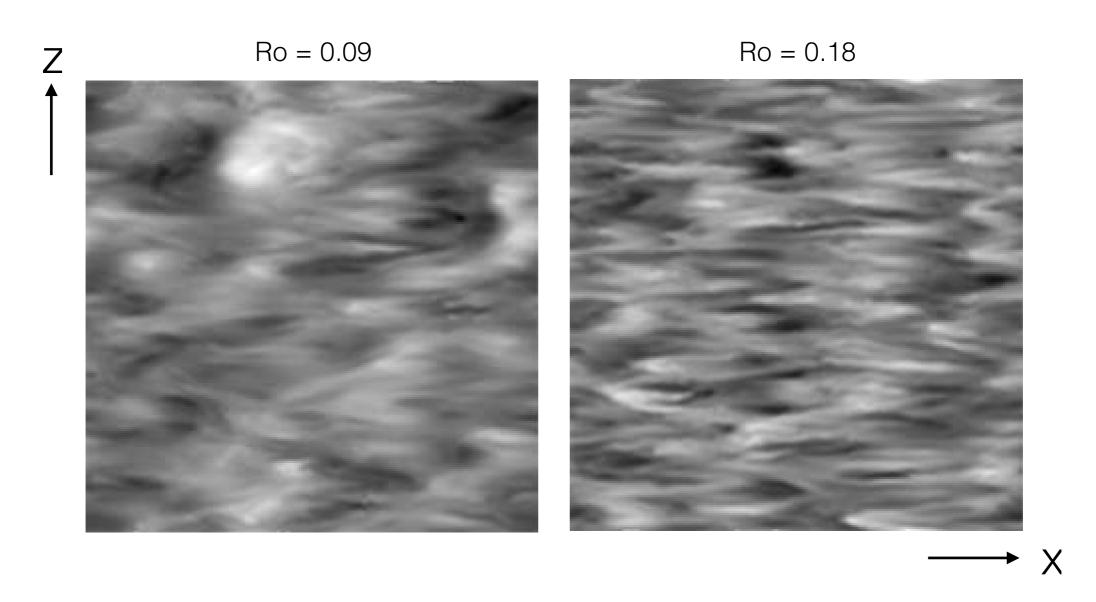
The transition from geostrophic to stratified turbulence

By MICHAEL L. WAITE† AND PETER BARTELLO

McGill University, 805 rue Sherbrooke ouest, Montréal, QC H3A 2K6, Canada



interpretation by Gregory Wagner

Waite and Bartello's parameter study

1. Force the triply-periodic Boussinesq equations at large-ish scales $(k_f = 5)$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + f \hat{\boldsymbol{z}} \times \boldsymbol{u} = -\nabla p + b' \hat{\boldsymbol{z}} + \boldsymbol{F}_{u} + D_{u}(\boldsymbol{u}),$$

$$\nabla \cdot \boldsymbol{u} = 0,$$

$$\frac{\partial b'}{\partial t} + \boldsymbol{u} \cdot \nabla b' + N^{2} w = F_{b'} + D_{b'}(b'),$$

Waite and Bartello's parameter study

1. Force the triply-periodic Boussinesq equations at large-ish scales $(k_f = 5)$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + f \hat{\boldsymbol{z}} \times \boldsymbol{u} = -\nabla p + b' \hat{\boldsymbol{z}} + \boldsymbol{F}_{u} + D_{u}(\boldsymbol{u}),$$

$$\nabla \cdot \boldsymbol{u} = 0,$$

$$\frac{\partial b'}{\partial t} + \boldsymbol{u} \cdot \nabla b' + N^{2} w = F_{b'} + D_{b'}(b'),$$

 Achieve an approximate steady-state by removing energy at small and large scales

$$\hat{D}_{\pmb{k}}(q) = -\left(\nu\left(k_h^8 + k_z^8\right) + r(\pmb{k})\right)\hat{q}_{\pmb{k}},$$
 hyperviscosity large-scale drag on k=1

Waite and Bartello's parameter study

1. Force the triply-periodic Boussinesq equations at large-ish scales $(k_f = 5)$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + f \hat{\boldsymbol{z}} \times \boldsymbol{u} = -\nabla p + b' \hat{\boldsymbol{z}} + \boldsymbol{F}_u + D_u(\boldsymbol{u}),$$

$$\nabla \cdot \boldsymbol{u} = 0,$$

$$\frac{\partial b'}{\partial t} + \boldsymbol{u} \cdot \nabla b' + N^2 w = F_{b'} + D_{b'}(b'),$$

 Achieve an approximate steady-state by removing energy at small and large scales

$$\hat{D}_{k}(q) = -\left(\nu\left(k_{h}^{8} + k_{z}^{8}\right) + r(k)\right)\hat{q}_{k},$$
 hyperviscosity large-scale drag on k,l =1

3. Hold N, forcing constant and vary $f \rightarrow N/f$ not constant

The simulations

f	N/f	Ro_{ω}	Fh_{ω}	Fz_{ω}	Ro_u	Fh_u	Fz_u
0	∞	∞	0.19	0.53	∞	0.026	0.056
1/16	128	25.0	0.19	0.52	3.4	0.026	0.056
1/8	64	12.0	0.19	0.52	1.7	0.026	0.055
1/4	32	6.3	0.19	0.52	0.83	0.026	0.054
1/2	16	3.2	0.19	0.51	0.39	0.025	0.051
3/4	32/3	2.2	0.21	0.49	0.25	0.024	0.051
1	8	1.7	0.21	0.47	0.18	0.022	0.048
3/2	16/3	1.2	0.22	0.42	0.12	0.022	0.040
2	4	0.89	0.22	0.37	0.090	0.022	0.033
4	2	0.47	0.23	0.21	0.048	0.024	0.018
8	1	0.24	0.23	0.10	0.024	0.024	0.0091

TABLE 1. The Coriolis parameters f used in our primary simulations (N=8) along with N/f and the microscale (vorticity-based) and macroscale (velocity-based) Rossby and Froude numbers. The Rossby and Froude numbers are from the simulations with large-scale damping, and are averaged over $70 \le t \le 100$.

$$Ro_{\omega} = \frac{\sqrt{\left[\omega_{z}^{2}\right]}}{f}, \qquad U = \sqrt{\left[u^{2} + v^{2} + w^{2}\right]}, \quad L = 2\pi \left(\frac{E^{(0)}}{\int k_{h}^{1/2} E_{h}^{(0)}(k_{h}) dk_{h}}\right)^{2}$$

The simulations

f	N/f	Ro_{ω}	Fh_{ω}	Fz_{ω}	Ro_u	Fh_u	Fz_u
0	00	∞	0.19	0.53	∞	0.026	0.056
1/16	128	25.0	0.19	0.52	3.4	0.026	0.056
1/8	64	12.0	0.19	0.52	1.7	0.026	0.055
1/4	32	6.3	0.19	0.52	0.83	0.026	0.054
1/2	16	3.2	0.19	0.51	0.39	0.025	0.051
3/4	32/3	2.2	0.21	0.49	0.25	0.024	0.051
1	8	1.7	0.21	0.47	0.18	0.022	0.048
3/2	16/3	1.2	0.22	0.42	0.12	0.022	0.040
2	4	0.89	0.22	0.37	0.090	0.022	0.033
4	2	0.47	0.23	0.21	0.048	0.024	0.018
8	1	0.24	0.23	0.10	0.024	0.024	0.0091

TABLE 1. The Coriolis parameters f used in our primary simulations (N = 8) along with N/f and the microscale (vorticity-based) and macroscale (velocity-based) Rossby and Froude numbers. The Rossby and Froude numbers are from the simulations with large-scale damping, and are averaged over $70 \le t \le 100$.

$$Ro_{\omega} = \frac{\sqrt{\left[\omega_{z}^{2}\right]}}{f}, \qquad U = \sqrt{\left[u^{2} + v^{2} + w^{2}\right]}, \quad L = 2\pi \left(\frac{E^{(0)}}{\int k_{h}^{1/2} E_{h}^{(0)}(k_{h}) dk_{h}}\right)^{2}$$

"micro-scales"

The simulations

f	N/f	Ro_{ω}	Fh_{ω}	Fz_{ω}	Ro_u	Fh_u	Fz_u
0	∞	∞	0.19	0.53	00	0.026	0.056
1/16	128	25.0	0.19	0.52	3.4	0.026	0.056
1/8	64	12.0	0.19	0.52	1.7	0.026	0.055
1/4	32	6.3	0.19	0.52	0.83	0.026	0.054
1/2	16	3.2	0.19	0.51	0.39	0.025	0.051
3/4	32/3	2.2	0.21	0.49	0.25	0.024	0.051
1	8	1.7	0.21	0.47	0.18	0.022	0.048
3/2	16/3	1.2	0.22	0.42	0.12	0.022	0.040
2	4	0.89	0.22	0.37	0.090	0.022	0.033
4	2	0.47	0.23	0.21	0.048	0.024	0.018
8	1	0.24	0.23	0.10	0.024	0.024	0.0091

TABLE 1. The Coriolis parameters f used in our primary simulations (N=8) along with N/f and the microscale (vorticity-based) and macroscale (velocity-based) Rossby and Froude numbers. The Rossby and Froude numbers are from the simulations with large-scale damping, and are averaged over $70 \le t \le 100$.

$$Fz_{\omega} = \frac{\sqrt{\left[\omega_x^2 + \omega_y^2\right]/2}}{N}.$$

Brillant and Chomaz 2001:

$$H = \frac{U}{N}$$
 and $Fz = O(1)$

"stratified turbulence"

Snapshots

w(x, y)v(x,z)Ro = 0.18

Ro = 0.09

Why large-scale damping?

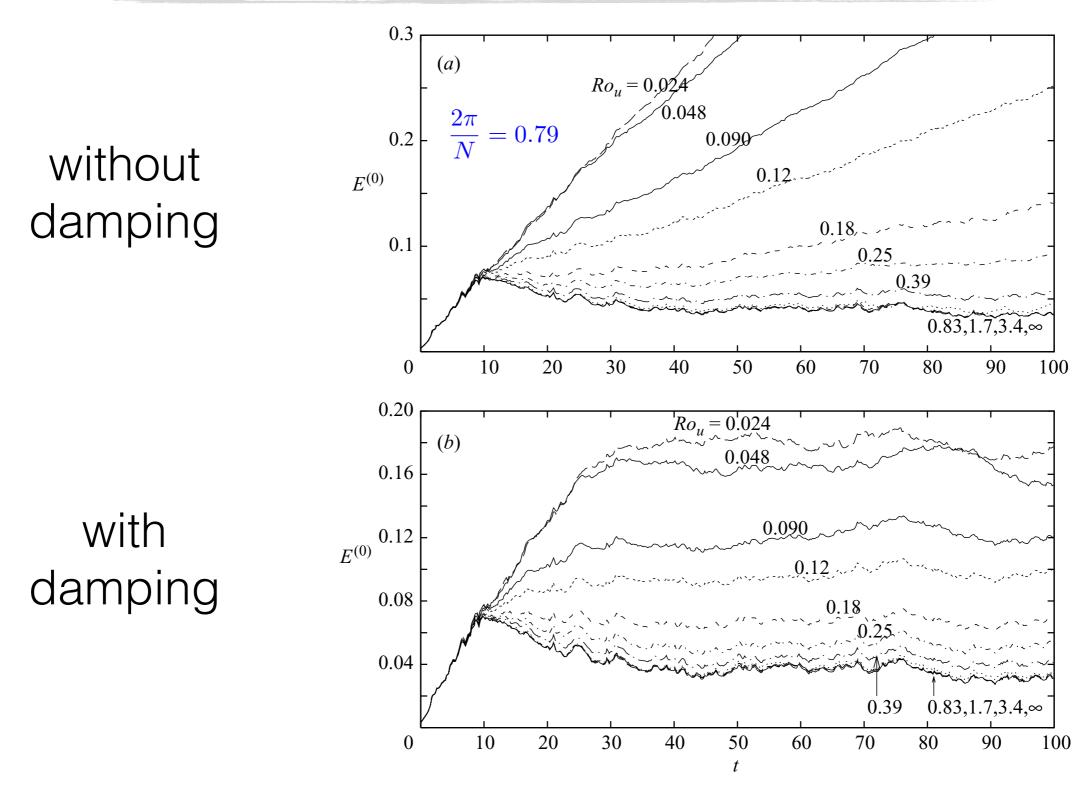


FIGURE 1. Time series of vortical energy for different Ro_u , (a) without and (b) with large-scale damping. At each time, the energy increases with decreasing Ro_u .

Main result (in my opinion)

small-scale dissipation

$$\epsilon_s = 2\nu \sum_{k} (k_h^8 + k_z^8) (|\hat{u}_k|^2 + |\hat{v}_k|^2 + |\hat{w}_k|^2 + |\hat{b}_k'|^2 / N^2),$$

large-scale dissipation

$$\epsilon_l = 2r_0 \sum_{1 \leq k_h \leq \sqrt{2}} (|\hat{u}_{k}|^2 + |\hat{v}_{k}|^2 + |\hat{w}_{k}|^2 + |\hat{b}'_{k}|^2 / N^2),$$

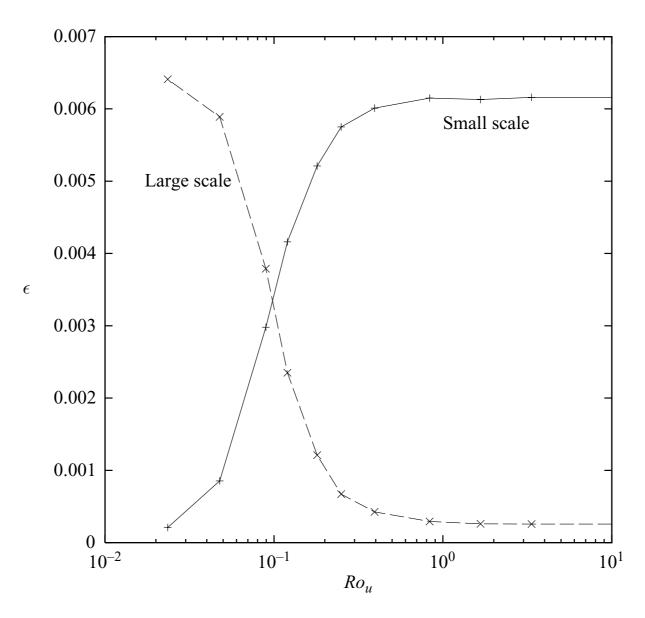


FIGURE 2. The small- and large-scale energy dissipation rates ϵ_s and ϵ_l .

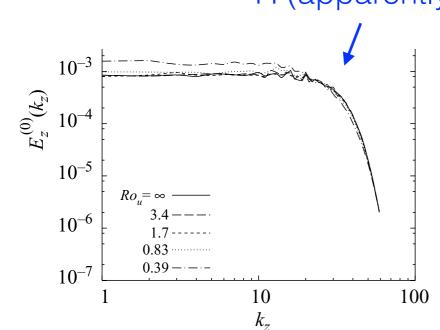
A transition in vertical scale

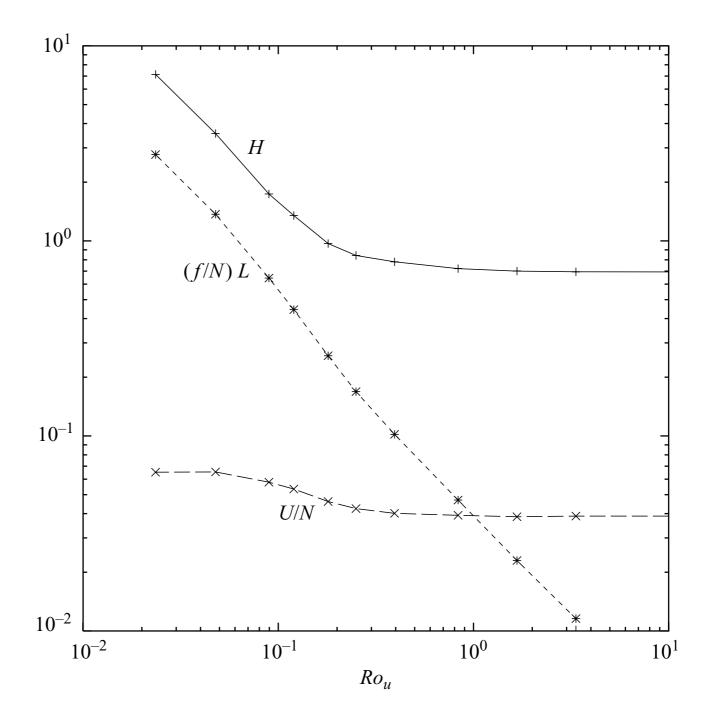
$$U = \sqrt{[u^2 + v^2 + w^2]},$$

$$L = 2\pi \left(\frac{E^{(0)}}{\int k_h^{1/2} E_h^{(0)}(k_h) dk_h} \right)^2$$

$$H = 2\pi \left(\frac{E^{(0)}}{\int k_z^{1/2} E_z^{(0)}(k_z) dk_z} \right)^2$$

H (apparently)





Vertical scales as a function of Ro: the measured vertical scale H, the QG scale (f/N)L, and U/N.

$$u_t - fv + p_x = -\mathbf{u} \cdot \nabla u$$

$$v_t + fu + p_y = -\mathbf{u} \cdot \nabla v$$

$$w_t - b + p_z = -\mathbf{u} \cdot \nabla w$$

$$b_t + wN^2 = -\mathbf{u} \cdot \nabla b$$

$$u_x + v_y + w_z = 0$$

$$\hat{u}_t - f\hat{v} + ik\hat{p} = 0$$

$$\hat{v}_t + f\hat{u} + i\ell\hat{p} = 0$$

$$\hat{w}_t - \hat{b} + im\hat{p} = 0$$

$$\hat{b}_t + \hat{w}N^2 = 0$$

$$ik\hat{u} + i\ell\hat{v} + im\hat{w} = 0$$

$$\hat{u}_t - f\hat{v} + ik\hat{p} = 0$$

$$\hat{v}_t + f\hat{u} + i\ell\hat{p} = 0$$

$$\hat{w}_t - \hat{b} + im\hat{p} = 0$$

$$\hat{b}_t + \hat{w}N^2 = 0$$

$$ik\hat{u} + i\ell\hat{v} + im\hat{w} = 0$$

$$\omega \stackrel{\text{def}}{=} v_x - u_y$$

$$\delta \stackrel{\text{def}}{=} u_x + v_y$$

$$\longrightarrow$$

$$\frac{\partial}{\partial t} \begin{bmatrix} \hat{\omega} \\ \hat{\delta} \\ \hat{b} \end{bmatrix} = i \begin{bmatrix} 0 & -if & 0 \\ -\frac{ifm^2}{|\mathbf{k}|^2} & 0 & -m\frac{k^2 + \ell^2}{|\mathbf{k}|^2} \\ 0 & -\frac{N^2}{m} & 0 \end{bmatrix} \begin{bmatrix} \hat{\omega} \\ \hat{\delta} \\ \hat{b} \end{bmatrix}$$

$$\boldsymbol{W}_{k}$$

$$L_{L}$$

$$\frac{\partial}{\partial t} \mathbf{W}_{k} = \mathrm{i} L_{k} \mathbf{W}_{k} \qquad \xrightarrow{L_{k} \mathbf{X}_{k}^{(j)} = \lambda_{k}^{(j)} \mathbf{X}_{k}^{(j)}} \qquad \frac{\mathrm{d} B_{k}^{(j)}}{\mathrm{d} t} + \mathrm{i} \lambda_{k}^{(j)} B_{k}^{(j)} = 0$$

$$\frac{\partial}{\partial t} \mathbf{W}_{k} = i L_{k} \mathbf{W}_{k}$$

$$L_{k} \mathbf{X}_{k}^{(j)} = \lambda_{k}^{(j)} \mathbf{X}_{k}^{(j)}$$

$$\frac{\mathrm{d} B_{k}^{(j)}}{\mathrm{d} t} + i \lambda_{k}^{(j)} B_{k}^{(j)} = 0$$

frequencies
$$\lambda_{k}^{(0)} = 0$$
, $\lambda_{k}^{(\pm)} = (N^{2}k_{h}^{2} + f^{2}k_{z}^{2})^{1/2}/k$,

 $B_{\mathbf{k}}^{(0)}$: vortical mode $B_{\mathbf{k}}^{(\pm)}$: wave modes

Mode by mode

Boussinesq equations

$$\frac{\mathrm{d}B_{k}^{(j)}}{\mathrm{d}t} + \mathrm{i}\lambda_{k}^{(j)}B_{k}^{(j)} = \sum_{k=p+q} \Gamma_{kpq}^{jrs}B_{p}^{(r)}B_{q}^{(s)} + \hat{F}_{k}^{(j)} + \hat{D}_{k}^{(j)}$$
$$\lambda_{k}^{(0)} = 0, \quad \lambda_{k}^{(\pm)} = (N^{2}k_{h}^{2} + f^{2}k_{z}^{2})^{1/2}/k,$$

*a multiple time-scale expansion to $O(\mathcal{E})$ yields the QG equation for the (0) modes

vortical modes satisfy

$$-fv + p_x = 0$$
$$fu + p_y = 0$$
$$-b + p_z = 0$$

waves have no linear PV.

$$N^2\omega + fb_z = 0$$

Mode by mode

Boussinesq equations

$$\frac{\mathrm{d}B_{k}^{(j)}}{\mathrm{d}t} + \mathrm{i}\lambda_{k}^{(j)}B_{k}^{(j)} = \sum_{k=p+q} \Gamma_{kpq}^{jrs}B_{p}^{(r)}B_{q}^{(s)} + \hat{F}_{k}^{(j)} + \hat{D}_{k}^{(j)}$$

$$\lambda_{\mathbf{k}}^{(0)} = 0, \quad \lambda_{\mathbf{k}}^{(\pm)} = \left(N^2 k_h^2 + f^2 k_z^2\right)^{1/2} / k,$$

*a multiple time-scale expansion to $O(\mathcal{E})$ yields the QG equation for the (0) modes

Energy

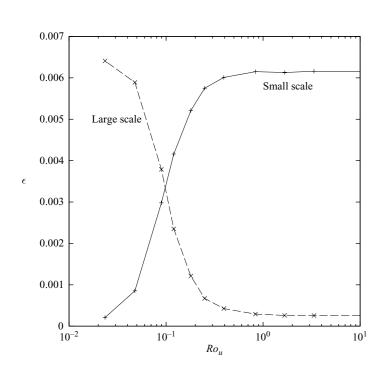
vortical
$$E^{(0)} = \frac{1}{2} \sum_{k_h \neq 0} |B_k^{(0)}|^2$$
,

wave
$$E^{(\pm)} = \frac{1}{2} \sum_{k_h \neq 0} \left| B_k^{(+)} \right|^2 + \left| B_k^{(-)} \right|^2,$$

"shear"
$$E^{(S)} = \frac{1}{2} \sum_{k_k=0} |\hat{u}_k|^2 + |\hat{v}_k|^2 + |\hat{b}_k'|^2 / N^2$$

Note: only the vortical mode is forced.

Energy partition vs. Ro



Notes:

- Rotation suppresses energy transfer to wave modes.
- "spontaneous emission" $e^{-1/Ro}$

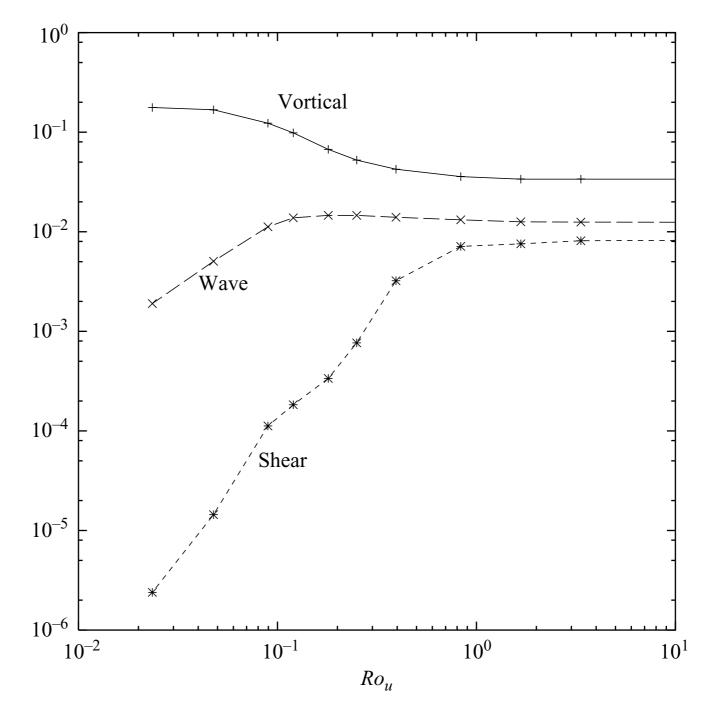


FIGURE 4. The time-averaged vortical, wave and shear mode kinetic energy as defined in §2 for the simulations with large-scale damping.

Energy partition vs. Ro and N

Low Ro Notes:

- Energy in vortical and shear modes is independent of N/f
- Energy in wave modes is not?

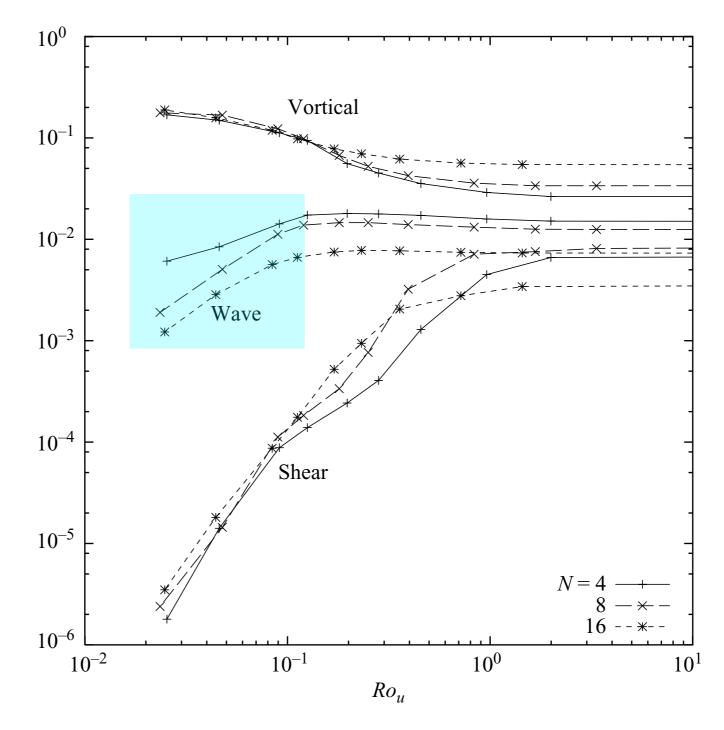
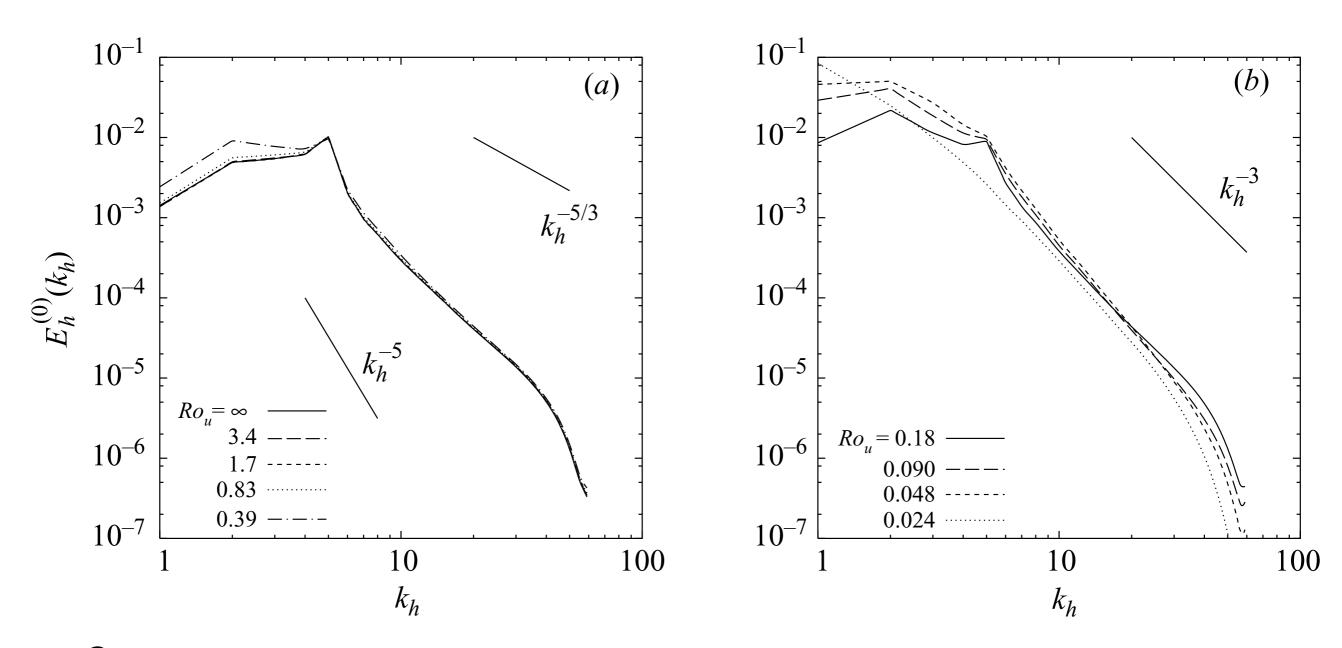


FIGURE 11. The time-averaged vortical, wave and shear mode kinetic energy as defined in §2 for the sets of simulations with N = 4, N = 8 (as in figure 4) and N = 16.

But what about the spectra?!?



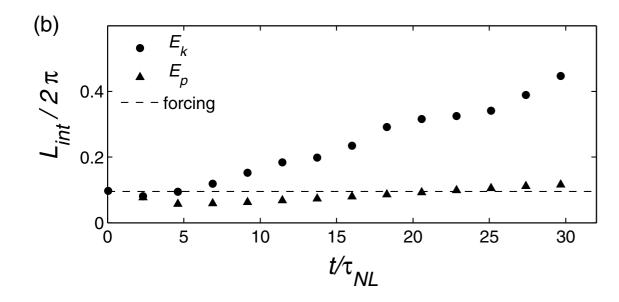
Comments:

- 1. Spectra steepen at low Ro, but the effect is very subtle on a log-log plot.
- 2. Resolution is too low for a proper inertial range.

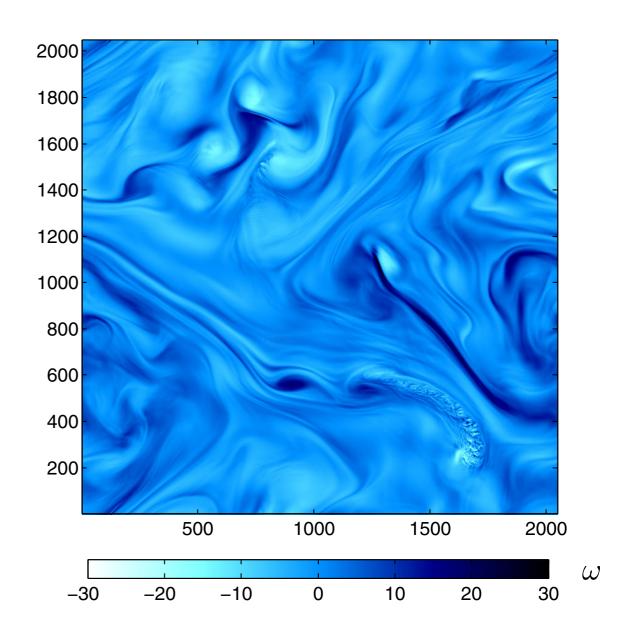
Resolving the Paradox of Oceanic Large-Scale Balance and Small-Scale Mixing

R. Marino, 1,2,3 A. Pouquet, 4,1 and D. Rosenberg⁵

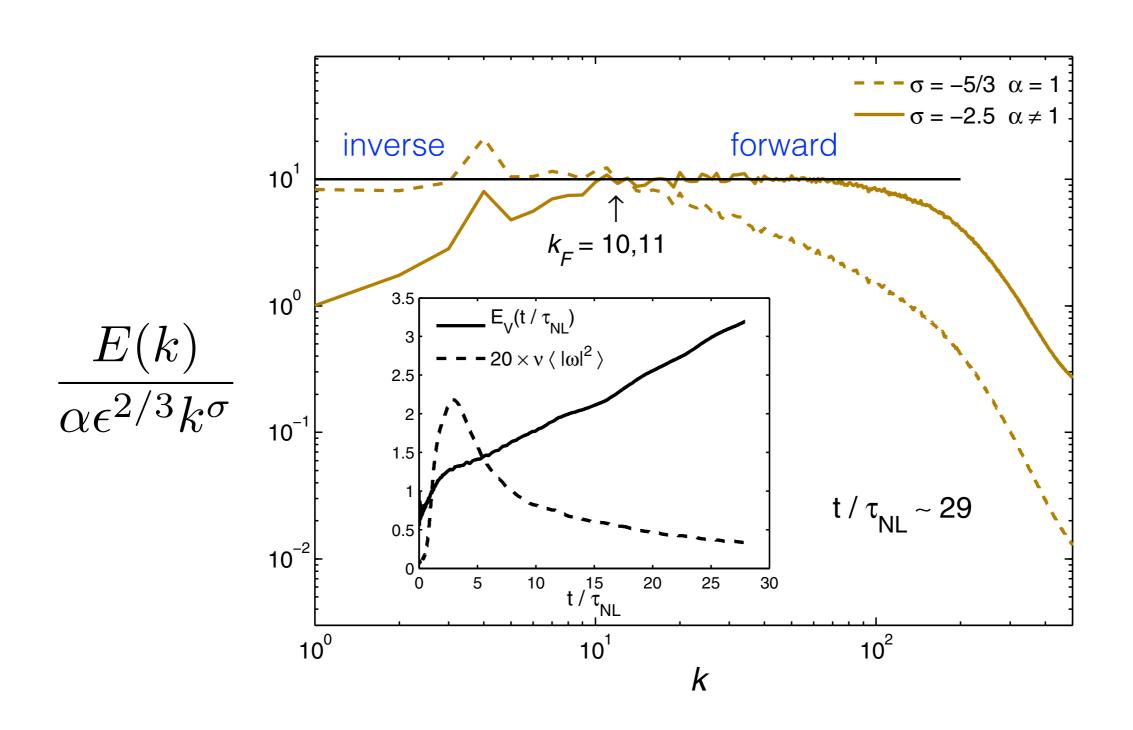
- Boussinesq simulations at 1024³ and 2048³ resolution
- Forced at k = 10,11
- "DNS": no hyperviscosity or large-scale drag



The simplest observation stemming from this extensive high-resolution study is that the flux ratio varies substantially.



Dual cascades



A speculative scaling

$$R_{\Pi} = \frac{\text{flux to large scales}}{\text{flux to small scales}} = \left| \frac{\epsilon_L}{\epsilon_S} \right|$$

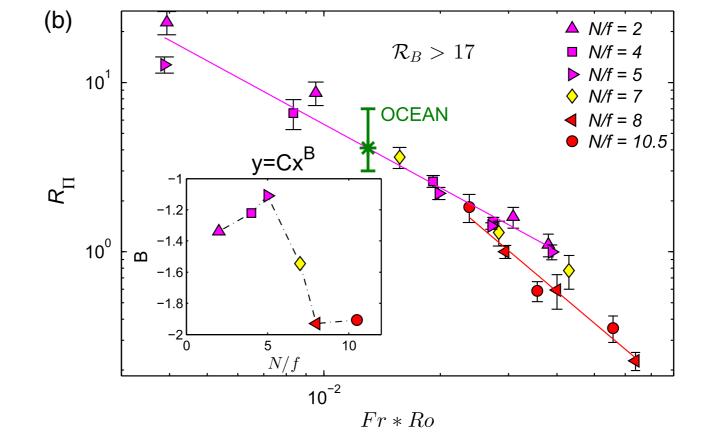
$$\epsilon_S \sim Fh$$
 and

stratification controls forward cascade

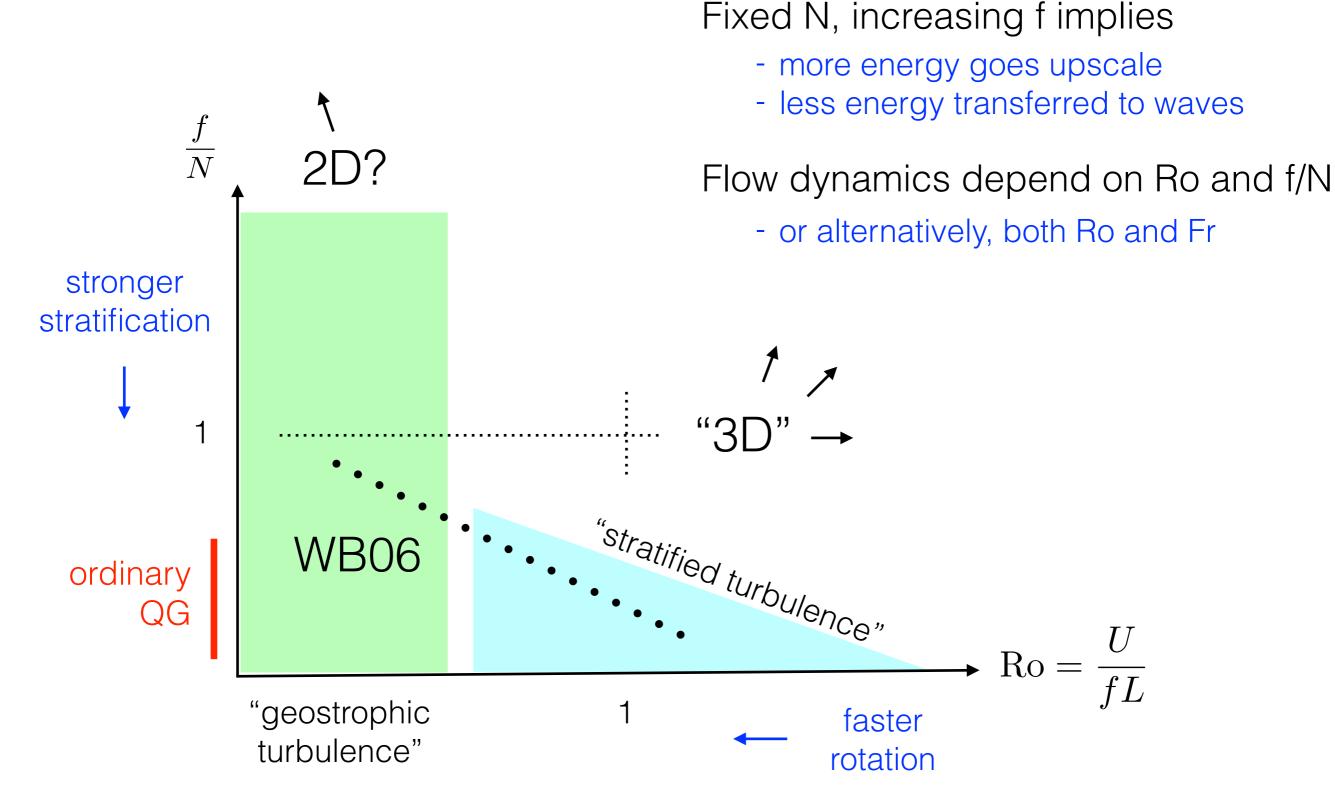
$$\epsilon_L \sim \frac{1}{Ro} \longrightarrow R_{\Pi} \sim \frac{1}{Fh \cdot Ro}$$

rotation controls inverse cascade

sort of works for small N/f.



Rotating, stratified turbulence



Questions

 Waves are energetic and directly forced.

Does direct forcing of waves change geostrophic turbulent dynamics?

 Boundary processes can produce small-scales.

"Intrinsic cascade" versus direct transfer to small-scales

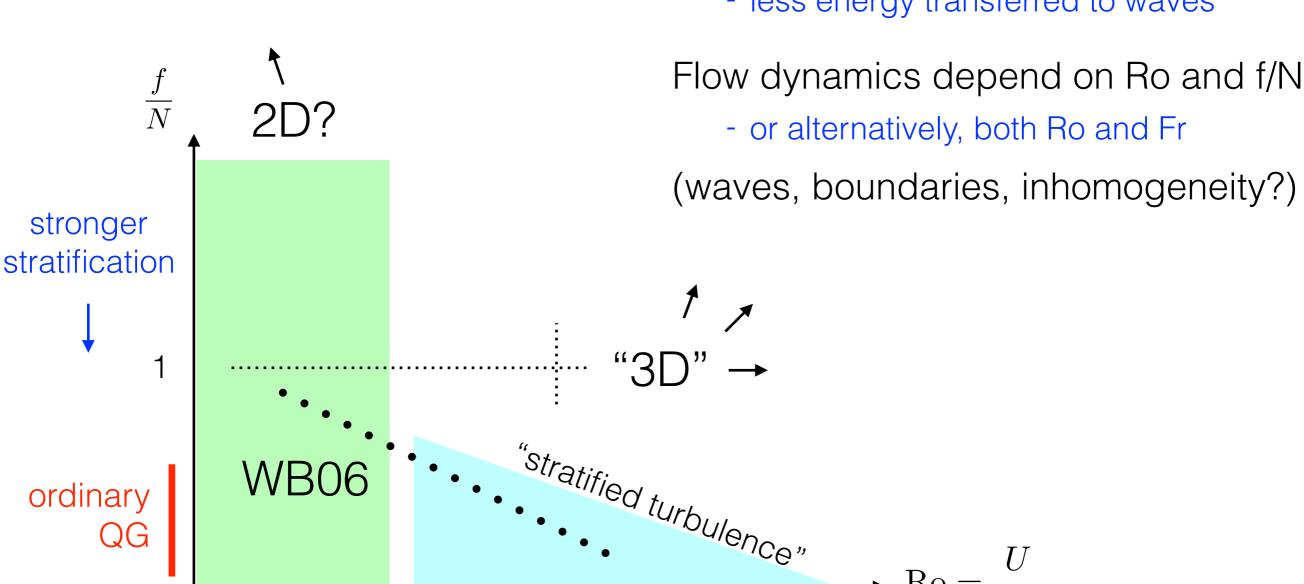
Non-uniform stratification, rotation?

Relationship between inhomogeneous and homogeneous dynamics?

Summary and questions

Fixed N, increasing f implies

- more energy goes upscale
- less energy transferred to waves



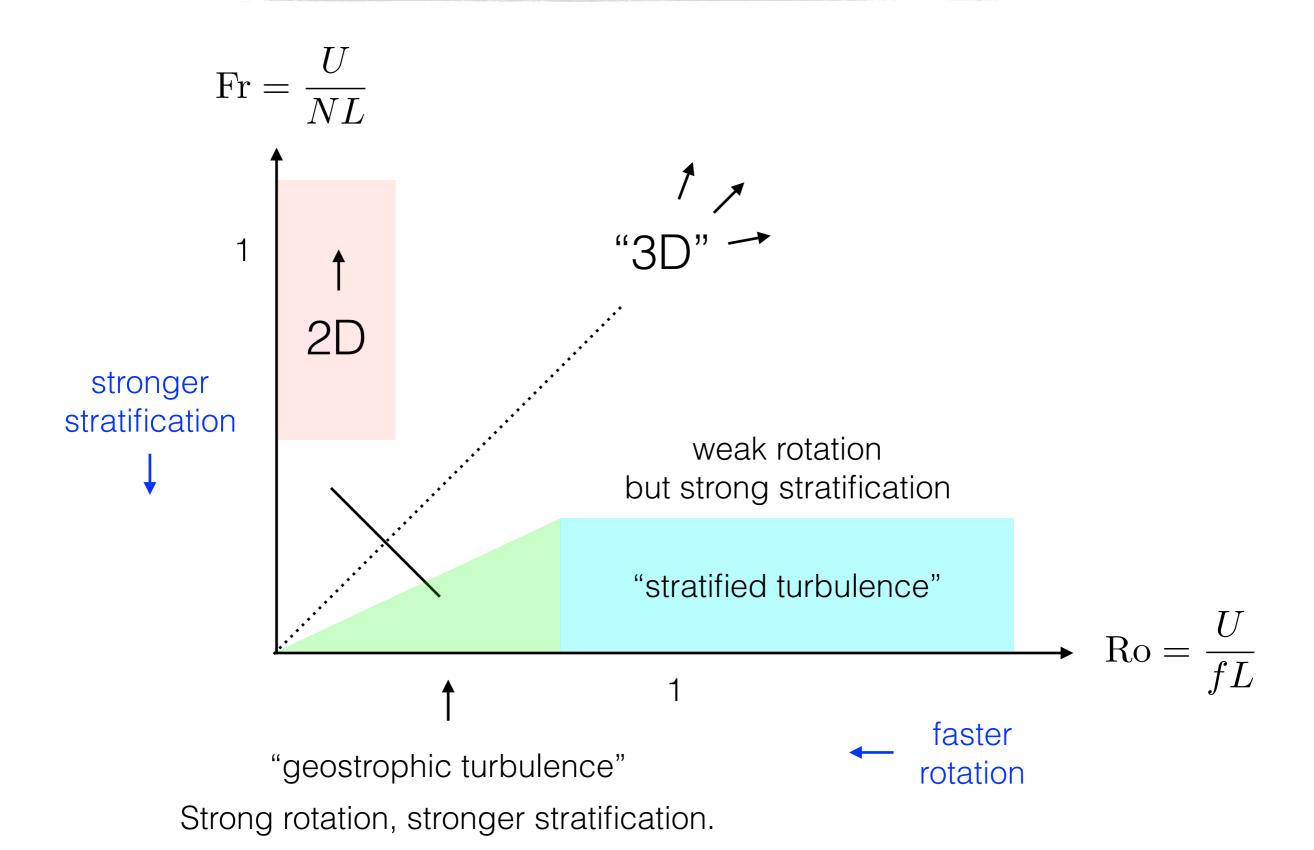
"geostrophic turbulence"

WB06

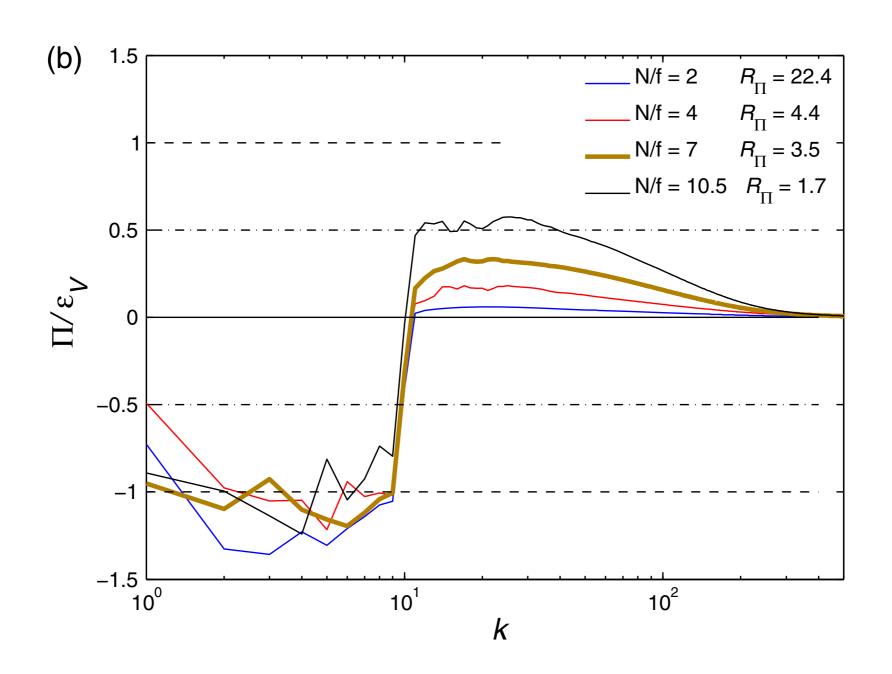
ordinary

faster rotation

Rotating, stratified turbulence



The dual cascade

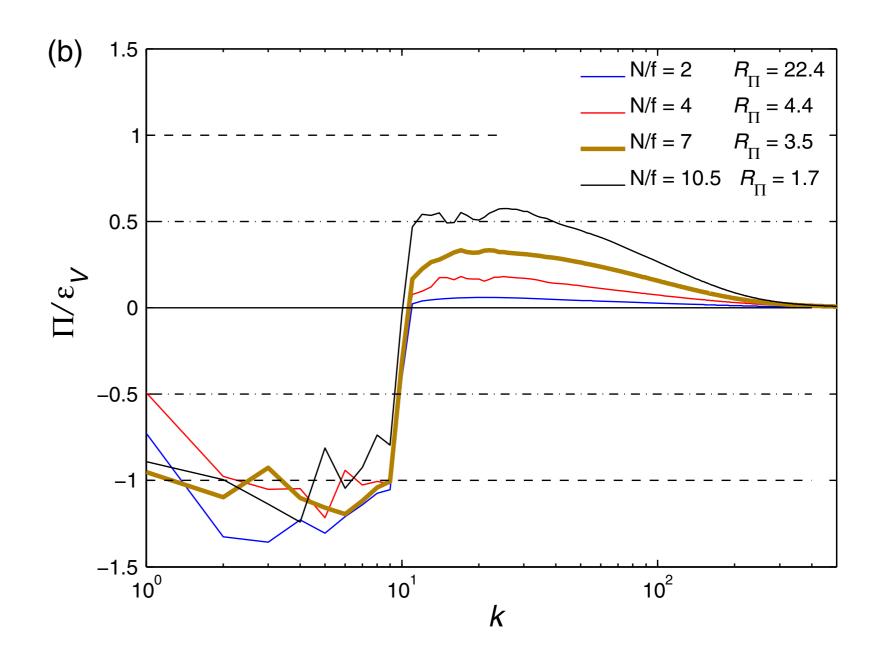


$$\Pi_{V}(k) = \int_{k_{\min}}^{k} T_{V}(q) dq, \qquad T_{V}(q) = -\sum_{C_{q}} \hat{\mathbf{u}}_{\mathbf{q}}^{\star} \cdot (\hat{\mathbf{u}} \cdot \nabla \hat{\mathbf{u}})_{\mathbf{q}}$$

"Dual cascades"

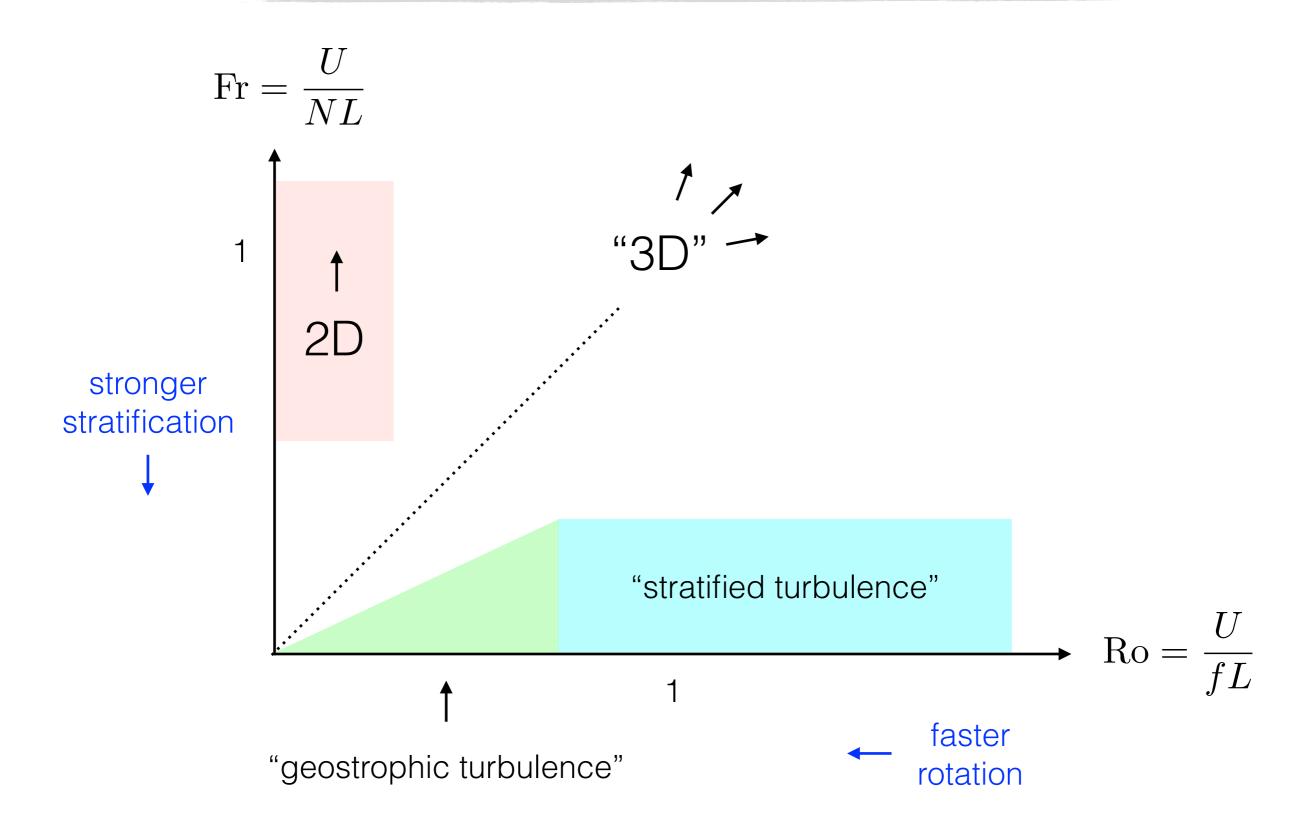
Notes:

 Increasing N/f implies increased forward cascade.



$$\partial_t E(k) + \int_0^k \Pi(p) \, \mathrm{d}p = -\epsilon_F - \epsilon_S$$

Rotating, stratified turbulence



Shear mode

"shear"
$$E^{(S)} = \frac{1}{2} \sum_{k_h=0} |\hat{u}_k|^2 + |\hat{v}_k|^2 + |\hat{b}_k'|^2 / N^2$$

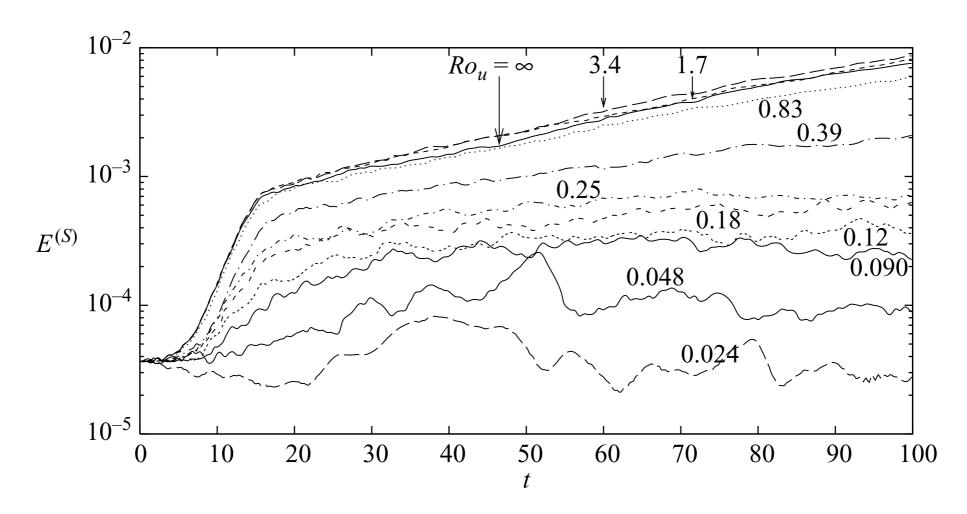


FIGURE 3. Time series of shear mode kinetic energy for different Rossby numbers without large-scale damping. When damping is employed, the growth is slightly enhanced.

"Dual cascades"

