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Figure 5. Vertical slices (x, z) of the normal velocity v (left) and the normal vorticity ωy

(right) for Rou = ∞ (top), Rou = 0.18 (middle) and Ro = 0.090 (bottom) at t = 100.

when Rou =0.024 (not shown). Whether the remainder of w is due to genuine
internal gravity waves or to a higher-order balance than (4.3) is unclear from these
results.

The horizontal and vertical wavenumber spectra of vortical energy are computed
by binning at integer wavenumbers as
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(Received 1 April 2005 and in revised form 9 April 2006)

We present numerical simulations of forced rotating stratified turbulence dominated
by vortical motion (i.e. with potential vorticity). Strong stratification and various
rotation rates are considered, corresponding to a small Froude number and a wide
range of Rossby numbers Ro spanning the regimes of stratified turbulence (Ro = ∞)
to quasi-geostrophic turbulence (Ro ≪ 1). We examine how the energy spectra and
characteristic vertical scale of the turbulence vary with Rossby number between
these two regimes. The separate dependence on N/f , where N is the Brunt–Väisälä
frequency and f is the Coriolis parameter, is found to be of secondary importance.
As the macroscale Ro decreases below 0.4 and the microscale Ro (at our resolution)
decreases below 3, the horizontal wavenumber energy spectrum steepens and the flat
range in the vertical wavenumber spectrum increases in amplitude and decreases in
length. At large Rossby numbers, the vertical scale H is proportional to the stratified
turbulence value U/N , where U is the root mean square velocity. At small Ro, H
takes the quasi-geostrophic form (f/N)L, where L is the horizontal scale of the flow.
Implications of these findings for numerical atmosphere and ocean modelling are
discussed.

1. Introduction
The dynamics of the atmosphere and the ocean are influenced by stable density

stratification and the Earth’s rotation, and the importance of these effects varies with
scale. At the largest geophysical scales, rotation and stratification are both significant,
and the Rossby and Froude numbers

Ro =
U

f L
, Fh =

U

NL
, Fz =

U

NH
, (1.1)

are small. Quasi-geostrophic (QG) turbulence dominates at these scales. Here U ,
L and H are characteristic velocity, horizontal and vertical length scales that are
diagnosed from the flow (see (3.7) and (3.8)); f is the Coriolis parameter; and N
is the Brunt–Väisälä frequency. The influence of rotation and stratification weakens
as one moves downscale. According to the classical view, rotation weakens more
rapidly than stratification since N/f ∼ O(100) over most of the atmosphere and
ocean. The atmospheric mesoscale (horizontal scales of kilometres to hundreds
of kilometres) and oceanic submesoscale (tens of metres to tens of kilometres)
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this study is to investigate how this transition occurs. Dimensionally, H depends
independently on Ro and N/f , and takes the form

H =
U

N
G(Ro, N/f ), (1.2)

if dissipation effects can be neglected. Babin, Mahalov & Nicolaenko (1998) have
argued that very weak rotation will couple (‘glue’) the layers of stratified turbulence
together such that H takes the QG value (f/N)L even when Ro ≫ 1. However,
U/N > (f/N)L when Ro > 1, and so this coupling may be obscured by overturning
and small-scale turbulence unless Ro < 1. Billant & Chomaz (2001) have accounted
for this complication and argue that H transitions from (f/N)L (when Ro ≪ 1) to
U/N (when Ro ≫ 1) around Ro ∼ 1. In other words, G is a function of Ro alone and
not N/f . Lindborg (2005) finds that the transition from stratified to QG turbulence,
defined by the emergence of an inverse cascade, occurs at Ro ∼ 0.1. To the best of
our knowledge, however, a numerical study of the transition of H between these two
regimes has not been made.

To investigate these issues, we have performed a set of simulations of forced
strongly stratified turbulence over a wide range of rotation rates (O(0.1) ! Ro " ∞),
and examined how the energy spectra and length scales vary with Rossby number.
In the next section, we present the Boussinesq equations and discuss the normal
mode decomposition into vortical and wave parts. Our numerical methodology is
described in § 3. In § 4, we present the results of our primary simulations and show
how the energy spectra and vertical length scales vary with Ro. In § 5, we discuss the
dependence of our results on N/f . Conclusions are given in § 6.

2. Governing equations
Making the Boussinesq approximation, the equations of motion for a rotating

stratified fluid are

∂u
∂t

+ u · ∇u + f ẑ × u = −∇p + b′ ẑ + Fu + Du(u), (2.1a)

∇ · u = 0, (2.1b)

∂b′

∂t
+ u · ∇b′ + N2 w = Fb′ + Db′(b′), (2.1c)

where u = ux̂ + v ŷ +w ẑ is the velocity, b′ is the buoyancy, and p is the dynamic
pressure divided by a reference density. Dq(q) and Fq denote the dissipation and
forcing of the quantity q , respectively. We limit our study to homogeneous turbulence
and therefore take f and N to be constant.

When expressed in terms of the linear normal mode basis, the Fourier-transformed
Boussinesq equations take the compact form

dB
(j )
k

dt
+ iλ(j )

k B
(j )
k =

∑

k= p+q

Γ
jrs

k pqB
(r)
p B (s)

q + F̂
(j )
k + D̂

(j )
k , (2.2)

where j is 0 or ± (following Bartello 1995; see Appendix A). In (2.2), B (0)
k , B (+)

k and
B

(−)
k are the amplitudes of the three normal modes at wavevector k, and the Γ are

the interaction coefficients. The normal modes have linear frequencies λ(j )
k given by

λ(0)
k = 0, λ(±)

k =
(
N2k2

h + f 2k2
z

)1/2
/k, (2.3a, b)

(kf = 5)



Waite and Bartello’s parameter study
1. Force the triply-periodic Boussinesq equations at 

large-ish scales

Transition from geostrophic to stratified turbulence 91
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f N/f Roω Fhω Fzω Rou Fhu Fz u

0 ∞ ∞ 0.19 0.53 ∞ 0.026 0.056
1/16 128 25.0 0.19 0.52 3.4 0.026 0.056
1/8 64 12.0 0.19 0.52 1.7 0.026 0.055
1/4 32 6.3 0.19 0.52 0.83 0.026 0.054
1/2 16 3.2 0.19 0.51 0.39 0.025 0.051
3/4 32/3 2.2 0.21 0.49 0.25 0.024 0.051
1 8 1.7 0.21 0.47 0.18 0.022 0.048

3/2 16/3 1.2 0.22 0.42 0.12 0.022 0.040
2 4 0.89 0.22 0.37 0.090 0.022 0.033
4 2 0.47 0.23 0.21 0.048 0.024 0.018
8 1 0.24 0.23 0.10 0.024 0.024 0.0091

Table 1. The Coriolis parameters f used in our primary simulations (N = 8) along with
N/f and the microscale (vorticity-based) and macroscale (velocity-based) Rossby and Froude
numbers. The Rossby and Froude numbers are from the simulations with large-scale damping,
and are averaged over 70 ! t ! 100.

spontaneously. The forcing wavenumber kf was set to 5 and the amplitude a was
set, somewhat arbitrarily, to 0.049. This number has no geophysical significance, but
since it is related to the energy dissipation rate ϵ, it will determine how all other
parameters are to be selected. Velocity and buoyancy were dissipated by fourth-order
cylindrical hyperviscosity to maximize the inertial range, i.e.

Dq(q) = −ν

(
∇8

h +
∂8

∂z8

)
q. (3.3)

The dissipation coefficient (ν =6.0 × 10−14) was chosen to give a dissipation wave-
number kd = (ϵ/ν3)1/22 of approximately 50.

The balance between forcing and dissipation produces statistically stationary fields
in stratified turbulence (ignoring the slow growth of the shear modes), and so time
averages can be studied in place of ensemble averages. No such balance is obtained
in the QG limit, since vortical mode energy is transferred to large scales as well as
small. In order to achieve stationarity at all Rossby and Froude numbers, we have
modified the dissipation term to damp velocity and temperature at large scales. In
Fourier space, (3.3) is replaced with

D̂k(q) = −
(
ν
(
k8

h + k8
z

)
+ r(k)

)
q̂k, (3.4)

where

r(k) =

{
r0, 1 ! kh !

√
2,

0, otherwise,
(3.5)

and r0 = 0.05. All vertical wavenumbers are damped equally, so this process does not
bias the vertical scale of the turbulence. In the following section, simulations with
and without large-scale damping will be discussed.

We have performed our primary simulations at a single stratification over a range
of f . N =8 was chosen to yield a small Froude number, while the f values (between
0 and 8; see table 1) were chosen to span a wide range of Rossby numbers. These
are not realistic geophysical values for N and f , and must be interpreted through the
Rossby and Froude numbers that they, along with the forcing parameters, produce.
Note that by varying f at fixed N , we are not allowing the two parameters Ro and

hyperviscosity large-scale drag on k=1

(kf = 5)

2. Achieve an approximate steady-state by removing 
energy at small and large scales
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3.  Hold    , forcing constant and vary 

Transition from geostrophic to stratified turbulence 93

f N/f Roω Fhω Fzω Rou Fhu Fz u

0 ∞ ∞ 0.19 0.53 ∞ 0.026 0.056
1/16 128 25.0 0.19 0.52 3.4 0.026 0.056
1/8 64 12.0 0.19 0.52 1.7 0.026 0.055
1/4 32 6.3 0.19 0.52 0.83 0.026 0.054
1/2 16 3.2 0.19 0.51 0.39 0.025 0.051
3/4 32/3 2.2 0.21 0.49 0.25 0.024 0.051
1 8 1.7 0.21 0.47 0.18 0.022 0.048

3/2 16/3 1.2 0.22 0.42 0.12 0.022 0.040
2 4 0.89 0.22 0.37 0.090 0.022 0.033
4 2 0.47 0.23 0.21 0.048 0.024 0.018
8 1 0.24 0.23 0.10 0.024 0.024 0.0091

Table 1. The Coriolis parameters f used in our primary simulations (N = 8) along with
N/f and the microscale (vorticity-based) and macroscale (velocity-based) Rossby and Froude
numbers. The Rossby and Froude numbers are from the simulations with large-scale damping,
and are averaged over 70 ! t ! 100.

spontaneously. The forcing wavenumber kf was set to 5 and the amplitude a was
set, somewhat arbitrarily, to 0.049. This number has no geophysical significance, but
since it is related to the energy dissipation rate ϵ, it will determine how all other
parameters are to be selected. Velocity and buoyancy were dissipated by fourth-order
cylindrical hyperviscosity to maximize the inertial range, i.e.

Dq(q) = −ν

(
∇8

h +
∂8

∂z8

)
q. (3.3)

The dissipation coefficient (ν =6.0 × 10−14) was chosen to give a dissipation wave-
number kd = (ϵ/ν3)1/22 of approximately 50.
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in stratified turbulence (ignoring the slow growth of the shear modes), and so time
averages can be studied in place of ensemble averages. No such balance is obtained
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and r0 = 0.05. All vertical wavenumbers are damped equally, so this process does not
bias the vertical scale of the turbulence. In the following section, simulations with
and without large-scale damping will be discussed.

We have performed our primary simulations at a single stratification over a range
of f . N =8 was chosen to yield a small Froude number, while the f values (between
0 and 8; see table 1) were chosen to span a wide range of Rossby numbers. These
are not realistic geophysical values for N and f , and must be interpreted through the
Rossby and Froude numbers that they, along with the forcing parameters, produce.
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We have performed our primary simulations at a single stratification over a range
of f . N =8 was chosen to yield a small Froude number, while the f values (between
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N/f to vary independently. We will explore the separate dependences on these para-
meters with additional simulations at different N in § 5.

In order to determine the Rossby and Froude numbers of a computed flow, we must
measure U , L and H ; these measurements can be made in different ways. Perhaps the
most straightforward approach is to deduce U/L and U/H directly from the r.m.s.
vorticity, which yields vorticity-based Rossby and Froude numbers

Roω =

√[
ω2

z

]

f
, Fhω =

√[
ω2

z

]

N
, Fzω =

√[
ω2

x + ω2
y

]
/2

N
. (3.6a–c)

We have employed this definition in previous studies (Waite & Bartello 2004, 2006).
However, as pointed out by a referee, these numbers favour the smallest scales when
the energy spectrum is sufficiently shallow, and are therefore possibly dependent on
the Reynolds number. We refer to Roω, Fhω and Fzω as the microscale Rossby and
Froude numbers.

A second approach is to measure U , L and H independently. We take U to be the
r.m.s. velocity, i.e.

U =
√

[u2 + v2 + w2], (3.7)

and deduce L and H from the spectra of vortical mode energy (defined below in
equation (4.5)) as

H = 2π

(
E(0)

∫
k

1/2
z E

(0)
z (kz) dkz

)2

, L = 2π

(
E(0)

∫
k

1/2
h E

(0)
h (kh) dkh

)2

. (3.8a, b)

This definition of H exploits the fact that the vertical wavenumber spectrum of
vortical energy in a stratified fluid is relatively flat at small wavenumbers and falls off
at large wavenumbers. The flat range indicates the vertical scales over which the flow
is decoupled. The definition of H in (3.8a) is designed to pick out the length scale of
this transition in the spectrum, and L is defined consistently. These scales are discussed
at length in Waite & Bartello (2004). We refer to Rou, Fhu and Fzu as the macroscale
Rossby and Froude numbers. Note that the macroscale numbers are defined in terms
of a single dominant length and velocity scale, while the microscale numbers are
essentially integrals over all scales. In what follows, we will use the macroscale Rossby
number to distinguish our simulations. However, the microscale Froude numbers
should be kept in mind for comparisons with Waite & Bartello (2004).

All simulations were initialized with a small amount of seed energy with an isotropic
spectrum of the form

E(k) ∝ k4 exp(−2(k/kf )2), (3.9)

and random phases. The initial energy was 0.01 equipartitioned between vortical and
wave modes. Simulations were then integrated from t = 0 to 100. This is an integration
length of around 130 buoyancy periods and 20 eddy turnover times, which we define
as τ = L/U . Various quantities were averaged over 500 samples from the last 30 %
of the integration. Time-averaged Rossby and Froude numbers are given in table 1.
The microscale and macroscale values differ by an O(10) factor, even at small Rossby
numbers where (as we shall see below) the energy spectra are steep. Some of this
discrepancy is probably due to the factor of 2π, which is included in (3.8) but not
(3.6).
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We have employed this definition in previous studies (Waite & Bartello 2004, 2006).
However, as pointed out by a referee, these numbers favour the smallest scales when
the energy spectrum is sufficiently shallow, and are therefore possibly dependent on
the Reynolds number. We refer to Roω, Fhω and Fzω as the microscale Rossby and
Froude numbers.

A second approach is to measure U , L and H independently. We take U to be the
r.m.s. velocity, i.e.

U =
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and deduce L and H from the spectra of vortical mode energy (defined below in
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This definition of H exploits the fact that the vertical wavenumber spectrum of
vortical energy in a stratified fluid is relatively flat at small wavenumbers and falls off
at large wavenumbers. The flat range indicates the vertical scales over which the flow
is decoupled. The definition of H in (3.8a) is designed to pick out the length scale of
this transition in the spectrum, and L is defined consistently. These scales are discussed
at length in Waite & Bartello (2004). We refer to Rou, Fhu and Fzu as the macroscale
Rossby and Froude numbers. Note that the macroscale numbers are defined in terms
of a single dominant length and velocity scale, while the microscale numbers are
essentially integrals over all scales. In what follows, we will use the macroscale Rossby
number to distinguish our simulations. However, the microscale Froude numbers
should be kept in mind for comparisons with Waite & Bartello (2004).

All simulations were initialized with a small amount of seed energy with an isotropic
spectrum of the form

E(k) ∝ k4 exp(−2(k/kf )2), (3.9)

and random phases. The initial energy was 0.01 equipartitioned between vortical and
wave modes. Simulations were then integrated from t = 0 to 100. This is an integration
length of around 130 buoyancy periods and 20 eddy turnover times, which we define
as τ = L/U . Various quantities were averaged over 500 samples from the last 30 %
of the integration. Time-averaged Rossby and Froude numbers are given in table 1.
The microscale and macroscale values differ by an O(10) factor, even at small Rossby
numbers where (as we shall see below) the energy spectra are steep. Some of this
discrepancy is probably due to the factor of 2π, which is included in (3.8) but not
(3.6).

94 M. L. Waite and P. Bartello

N/f to vary independently. We will explore the separate dependences on these para-
meters with additional simulations at different N in § 5.

In order to determine the Rossby and Froude numbers of a computed flow, we must
measure U , L and H ; these measurements can be made in different ways. Perhaps the
most straightforward approach is to deduce U/L and U/H directly from the r.m.s.
vorticity, which yields vorticity-based Rossby and Froude numbers

Roω =

√[
ω2

z

]

f
, Fhω =

√[
ω2

z

]

N
, Fzω =

√[
ω2

x + ω2
y

]
/2

N
. (3.6a–c)

We have employed this definition in previous studies (Waite & Bartello 2004, 2006).
However, as pointed out by a referee, these numbers favour the smallest scales when
the energy spectrum is sufficiently shallow, and are therefore possibly dependent on
the Reynolds number. We refer to Roω, Fhω and Fzω as the microscale Rossby and
Froude numbers.

A second approach is to measure U , L and H independently. We take U to be the
r.m.s. velocity, i.e.

U =
√

[u2 + v2 + w2], (3.7)

and deduce L and H from the spectra of vortical mode energy (defined below in
equation (4.5)) as

H = 2π

(
E(0)

∫
k

1/2
z E

(0)
z (kz) dkz

)2

, L = 2π

(
E(0)

∫
k

1/2
h E

(0)
h (kh) dkh

)2

. (3.8a, b)

This definition of H exploits the fact that the vertical wavenumber spectrum of
vortical energy in a stratified fluid is relatively flat at small wavenumbers and falls off
at large wavenumbers. The flat range indicates the vertical scales over which the flow
is decoupled. The definition of H in (3.8a) is designed to pick out the length scale of
this transition in the spectrum, and L is defined consistently. These scales are discussed
at length in Waite & Bartello (2004). We refer to Rou, Fhu and Fzu as the macroscale
Rossby and Froude numbers. Note that the macroscale numbers are defined in terms
of a single dominant length and velocity scale, while the microscale numbers are
essentially integrals over all scales. In what follows, we will use the macroscale Rossby
number to distinguish our simulations. However, the microscale Froude numbers
should be kept in mind for comparisons with Waite & Bartello (2004).

All simulations were initialized with a small amount of seed energy with an isotropic
spectrum of the form

E(k) ∝ k4 exp(−2(k/kf )2), (3.9)

and random phases. The initial energy was 0.01 equipartitioned between vortical and
wave modes. Simulations were then integrated from t = 0 to 100. This is an integration
length of around 130 buoyancy periods and 20 eddy turnover times, which we define
as τ = L/U . Various quantities were averaged over 500 samples from the last 30 %
of the integration. Time-averaged Rossby and Froude numbers are given in table 1.
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f N/f Roω Fhω Fzω Rou Fhu Fz u

0 ∞ ∞ 0.19 0.53 ∞ 0.026 0.056
1/16 128 25.0 0.19 0.52 3.4 0.026 0.056
1/8 64 12.0 0.19 0.52 1.7 0.026 0.055
1/4 32 6.3 0.19 0.52 0.83 0.026 0.054
1/2 16 3.2 0.19 0.51 0.39 0.025 0.051
3/4 32/3 2.2 0.21 0.49 0.25 0.024 0.051
1 8 1.7 0.21 0.47 0.18 0.022 0.048

3/2 16/3 1.2 0.22 0.42 0.12 0.022 0.040
2 4 0.89 0.22 0.37 0.090 0.022 0.033
4 2 0.47 0.23 0.21 0.048 0.024 0.018
8 1 0.24 0.23 0.10 0.024 0.024 0.0091

Table 1. The Coriolis parameters f used in our primary simulations (N = 8) along with
N/f and the microscale (vorticity-based) and macroscale (velocity-based) Rossby and Froude
numbers. The Rossby and Froude numbers are from the simulations with large-scale damping,
and are averaged over 70 ! t ! 100.

spontaneously. The forcing wavenumber kf was set to 5 and the amplitude a was
set, somewhat arbitrarily, to 0.049. This number has no geophysical significance, but
since it is related to the energy dissipation rate ϵ, it will determine how all other
parameters are to be selected. Velocity and buoyancy were dissipated by fourth-order
cylindrical hyperviscosity to maximize the inertial range, i.e.

Dq(q) = −ν

(
∇8

h +
∂8

∂z8

)
q. (3.3)

The dissipation coefficient (ν =6.0 × 10−14) was chosen to give a dissipation wave-
number kd = (ϵ/ν3)1/22 of approximately 50.

The balance between forcing and dissipation produces statistically stationary fields
in stratified turbulence (ignoring the slow growth of the shear modes), and so time
averages can be studied in place of ensemble averages. No such balance is obtained
in the QG limit, since vortical mode energy is transferred to large scales as well as
small. In order to achieve stationarity at all Rossby and Froude numbers, we have
modified the dissipation term to damp velocity and temperature at large scales. In
Fourier space, (3.3) is replaced with

D̂k(q) = −
(
ν
(
k8

h + k8
z

)
+ r(k)

)
q̂k, (3.4)

where

r(k) =

{
r0, 1 ! kh !

√
2,

0, otherwise,
(3.5)

and r0 = 0.05. All vertical wavenumbers are damped equally, so this process does not
bias the vertical scale of the turbulence. In the following section, simulations with
and without large-scale damping will be discussed.

We have performed our primary simulations at a single stratification over a range
of f . N =8 was chosen to yield a small Froude number, while the f values (between
0 and 8; see table 1) were chosen to span a wide range of Rossby numbers. These
are not realistic geophysical values for N and f , and must be interpreted through the
Rossby and Froude numbers that they, along with the forcing parameters, produce.
Note that by varying f at fixed N , we are not allowing the two parameters Ro and
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Transition from geostrophic to stratified turbulence 93

f N/f Roω Fhω Fzω Rou Fhu Fz u

0 ∞ ∞ 0.19 0.53 ∞ 0.026 0.056
1/16 128 25.0 0.19 0.52 3.4 0.026 0.056
1/8 64 12.0 0.19 0.52 1.7 0.026 0.055
1/4 32 6.3 0.19 0.52 0.83 0.026 0.054
1/2 16 3.2 0.19 0.51 0.39 0.025 0.051
3/4 32/3 2.2 0.21 0.49 0.25 0.024 0.051
1 8 1.7 0.21 0.47 0.18 0.022 0.048

3/2 16/3 1.2 0.22 0.42 0.12 0.022 0.040
2 4 0.89 0.22 0.37 0.090 0.022 0.033
4 2 0.47 0.23 0.21 0.048 0.024 0.018
8 1 0.24 0.23 0.10 0.024 0.024 0.0091

Table 1. The Coriolis parameters f used in our primary simulations (N = 8) along with
N/f and the microscale (vorticity-based) and macroscale (velocity-based) Rossby and Froude
numbers. The Rossby and Froude numbers are from the simulations with large-scale damping,
and are averaged over 70 ! t ! 100.

spontaneously. The forcing wavenumber kf was set to 5 and the amplitude a was
set, somewhat arbitrarily, to 0.049. This number has no geophysical significance, but
since it is related to the energy dissipation rate ϵ, it will determine how all other
parameters are to be selected. Velocity and buoyancy were dissipated by fourth-order
cylindrical hyperviscosity to maximize the inertial range, i.e.

Dq(q) = −ν

(
∇8

h +
∂8

∂z8

)
q. (3.3)

The dissipation coefficient (ν =6.0 × 10−14) was chosen to give a dissipation wave-
number kd = (ϵ/ν3)1/22 of approximately 50.

The balance between forcing and dissipation produces statistically stationary fields
in stratified turbulence (ignoring the slow growth of the shear modes), and so time
averages can be studied in place of ensemble averages. No such balance is obtained
in the QG limit, since vortical mode energy is transferred to large scales as well as
small. In order to achieve stationarity at all Rossby and Froude numbers, we have
modified the dissipation term to damp velocity and temperature at large scales. In
Fourier space, (3.3) is replaced with

D̂k(q) = −
(
ν
(
k8

h + k8
z

)
+ r(k)

)
q̂k, (3.4)

where

r(k) =

{
r0, 1 ! kh !

√
2,

0, otherwise,
(3.5)

and r0 = 0.05. All vertical wavenumbers are damped equally, so this process does not
bias the vertical scale of the turbulence. In the following section, simulations with
and without large-scale damping will be discussed.

We have performed our primary simulations at a single stratification over a range
of f . N =8 was chosen to yield a small Froude number, while the f values (between
0 and 8; see table 1) were chosen to span a wide range of Rossby numbers. These
are not realistic geophysical values for N and f , and must be interpreted through the
Rossby and Froude numbers that they, along with the forcing parameters, produce.
Note that by varying f at fixed N , we are not allowing the two parameters Ro and

Transition from geostrophic to stratified turbulence 93

f N/f Roω Fhω Fzω Rou Fhu Fz u

0 ∞ ∞ 0.19 0.53 ∞ 0.026 0.056
1/16 128 25.0 0.19 0.52 3.4 0.026 0.056
1/8 64 12.0 0.19 0.52 1.7 0.026 0.055
1/4 32 6.3 0.19 0.52 0.83 0.026 0.054
1/2 16 3.2 0.19 0.51 0.39 0.025 0.051
3/4 32/3 2.2 0.21 0.49 0.25 0.024 0.051
1 8 1.7 0.21 0.47 0.18 0.022 0.048

3/2 16/3 1.2 0.22 0.42 0.12 0.022 0.040
2 4 0.89 0.22 0.37 0.090 0.022 0.033
4 2 0.47 0.23 0.21 0.048 0.024 0.018
8 1 0.24 0.23 0.10 0.024 0.024 0.0091

Table 1. The Coriolis parameters f used in our primary simulations (N = 8) along with
N/f and the microscale (vorticity-based) and macroscale (velocity-based) Rossby and Froude
numbers. The Rossby and Froude numbers are from the simulations with large-scale damping,
and are averaged over 70 ! t ! 100.

spontaneously. The forcing wavenumber kf was set to 5 and the amplitude a was
set, somewhat arbitrarily, to 0.049. This number has no geophysical significance, but
since it is related to the energy dissipation rate ϵ, it will determine how all other
parameters are to be selected. Velocity and buoyancy were dissipated by fourth-order
cylindrical hyperviscosity to maximize the inertial range, i.e.

Dq(q) = −ν

(
∇8

h +
∂8

∂z8

)
q. (3.3)

The dissipation coefficient (ν =6.0 × 10−14) was chosen to give a dissipation wave-
number kd = (ϵ/ν3)1/22 of approximately 50.

The balance between forcing and dissipation produces statistically stationary fields
in stratified turbulence (ignoring the slow growth of the shear modes), and so time
averages can be studied in place of ensemble averages. No such balance is obtained
in the QG limit, since vortical mode energy is transferred to large scales as well as
small. In order to achieve stationarity at all Rossby and Froude numbers, we have
modified the dissipation term to damp velocity and temperature at large scales. In
Fourier space, (3.3) is replaced with

D̂k(q) = −
(
ν
(
k8

h + k8
z

)
+ r(k)

)
q̂k, (3.4)

where

r(k) =

{
r0, 1 ! kh !

√
2,

0, otherwise,
(3.5)

and r0 = 0.05. All vertical wavenumbers are damped equally, so this process does not
bias the vertical scale of the turbulence. In the following section, simulations with
and without large-scale damping will be discussed.

We have performed our primary simulations at a single stratification over a range
of f . N =8 was chosen to yield a small Froude number, while the f values (between
0 and 8; see table 1) were chosen to span a wide range of Rossby numbers. These
are not realistic geophysical values for N and f , and must be interpreted through the
Rossby and Froude numbers that they, along with the forcing parameters, produce.
Note that by varying f at fixed N , we are not allowing the two parameters Ro and

94 M. L. Waite and P. Bartello

N/f to vary independently. We will explore the separate dependences on these para-
meters with additional simulations at different N in § 5.

In order to determine the Rossby and Froude numbers of a computed flow, we must
measure U , L and H ; these measurements can be made in different ways. Perhaps the
most straightforward approach is to deduce U/L and U/H directly from the r.m.s.
vorticity, which yields vorticity-based Rossby and Froude numbers
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We have employed this definition in previous studies (Waite & Bartello 2004, 2006).
However, as pointed out by a referee, these numbers favour the smallest scales when
the energy spectrum is sufficiently shallow, and are therefore possibly dependent on
the Reynolds number. We refer to Roω, Fhω and Fzω as the microscale Rossby and
Froude numbers.

A second approach is to measure U , L and H independently. We take U to be the
r.m.s. velocity, i.e.

U =
√

[u2 + v2 + w2], (3.7)

and deduce L and H from the spectra of vortical mode energy (defined below in
equation (4.5)) as
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This definition of H exploits the fact that the vertical wavenumber spectrum of
vortical energy in a stratified fluid is relatively flat at small wavenumbers and falls off
at large wavenumbers. The flat range indicates the vertical scales over which the flow
is decoupled. The definition of H in (3.8a) is designed to pick out the length scale of
this transition in the spectrum, and L is defined consistently. These scales are discussed
at length in Waite & Bartello (2004). We refer to Rou, Fhu and Fzu as the macroscale
Rossby and Froude numbers. Note that the macroscale numbers are defined in terms
of a single dominant length and velocity scale, while the microscale numbers are
essentially integrals over all scales. In what follows, we will use the macroscale Rossby
number to distinguish our simulations. However, the microscale Froude numbers
should be kept in mind for comparisons with Waite & Bartello (2004).

All simulations were initialized with a small amount of seed energy with an isotropic
spectrum of the form

E(k) ∝ k4 exp(−2(k/kf )2), (3.9)

and random phases. The initial energy was 0.01 equipartitioned between vortical and
wave modes. Simulations were then integrated from t = 0 to 100. This is an integration
length of around 130 buoyancy periods and 20 eddy turnover times, which we define
as τ = L/U . Various quantities were averaged over 500 samples from the last 30 %
of the integration. Time-averaged Rossby and Froude numbers are given in table 1.
The microscale and macroscale values differ by an O(10) factor, even at small Rossby
numbers where (as we shall see below) the energy spectra are steep. Some of this
discrepancy is probably due to the factor of 2π, which is included in (3.8) but not
(3.6).
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in the QG limit, since vortical mode energy is transferred to large scales as well as
small. In order to achieve stationarity at all Rossby and Froude numbers, we have
modified the dissipation term to damp velocity and temperature at large scales. In
Fourier space, (3.3) is replaced with
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where
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and r0 = 0.05. All vertical wavenumbers are damped equally, so this process does not
bias the vertical scale of the turbulence. In the following section, simulations with
and without large-scale damping will be discussed.

We have performed our primary simulations at a single stratification over a range
of f . N =8 was chosen to yield a small Froude number, while the f values (between
0 and 8; see table 1) were chosen to span a wide range of Rossby numbers. These
are not realistic geophysical values for N and f , and must be interpreted through the
Rossby and Froude numbers that they, along with the forcing parameters, produce.
Note that by varying f at fixed N , we are not allowing the two parameters Ro and
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N/f to vary independently. We will explore the separate dependences on these para-
meters with additional simulations at different N in § 5.

In order to determine the Rossby and Froude numbers of a computed flow, we must
measure U , L and H ; these measurements can be made in different ways. Perhaps the
most straightforward approach is to deduce U/L and U/H directly from the r.m.s.
vorticity, which yields vorticity-based Rossby and Froude numbers
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We have employed this definition in previous studies (Waite & Bartello 2004, 2006).
However, as pointed out by a referee, these numbers favour the smallest scales when
the energy spectrum is sufficiently shallow, and are therefore possibly dependent on
the Reynolds number. We refer to Roω, Fhω and Fzω as the microscale Rossby and
Froude numbers.

A second approach is to measure U , L and H independently. We take U to be the
r.m.s. velocity, i.e.

U =
√

[u2 + v2 + w2], (3.7)

and deduce L and H from the spectra of vortical mode energy (defined below in
equation (4.5)) as
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This definition of H exploits the fact that the vertical wavenumber spectrum of
vortical energy in a stratified fluid is relatively flat at small wavenumbers and falls off
at large wavenumbers. The flat range indicates the vertical scales over which the flow
is decoupled. The definition of H in (3.8a) is designed to pick out the length scale of
this transition in the spectrum, and L is defined consistently. These scales are discussed
at length in Waite & Bartello (2004). We refer to Rou, Fhu and Fzu as the macroscale
Rossby and Froude numbers. Note that the macroscale numbers are defined in terms
of a single dominant length and velocity scale, while the microscale numbers are
essentially integrals over all scales. In what follows, we will use the macroscale Rossby
number to distinguish our simulations. However, the microscale Froude numbers
should be kept in mind for comparisons with Waite & Bartello (2004).

All simulations were initialized with a small amount of seed energy with an isotropic
spectrum of the form

E(k) ∝ k4 exp(−2(k/kf )2), (3.9)

and random phases. The initial energy was 0.01 equipartitioned between vortical and
wave modes. Simulations were then integrated from t = 0 to 100. This is an integration
length of around 130 buoyancy periods and 20 eddy turnover times, which we define
as τ = L/U . Various quantities were averaged over 500 samples from the last 30 %
of the integration. Time-averaged Rossby and Froude numbers are given in table 1.
The microscale and macroscale values differ by an O(10) factor, even at small Rossby
numbers where (as we shall see below) the energy spectra are steep. Some of this
discrepancy is probably due to the factor of 2π, which is included in (3.8) but not
(3.6).
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f N/f Roω Fhω Fzω Rou Fhu Fz u

0 ∞ ∞ 0.19 0.53 ∞ 0.026 0.056
1/16 128 25.0 0.19 0.52 3.4 0.026 0.056
1/8 64 12.0 0.19 0.52 1.7 0.026 0.055
1/4 32 6.3 0.19 0.52 0.83 0.026 0.054
1/2 16 3.2 0.19 0.51 0.39 0.025 0.051
3/4 32/3 2.2 0.21 0.49 0.25 0.024 0.051
1 8 1.7 0.21 0.47 0.18 0.022 0.048

3/2 16/3 1.2 0.22 0.42 0.12 0.022 0.040
2 4 0.89 0.22 0.37 0.090 0.022 0.033
4 2 0.47 0.23 0.21 0.048 0.024 0.018
8 1 0.24 0.23 0.10 0.024 0.024 0.0091

Table 1. The Coriolis parameters f used in our primary simulations (N = 8) along with
N/f and the microscale (vorticity-based) and macroscale (velocity-based) Rossby and Froude
numbers. The Rossby and Froude numbers are from the simulations with large-scale damping,
and are averaged over 70 ! t ! 100.

spontaneously. The forcing wavenumber kf was set to 5 and the amplitude a was
set, somewhat arbitrarily, to 0.049. This number has no geophysical significance, but
since it is related to the energy dissipation rate ϵ, it will determine how all other
parameters are to be selected. Velocity and buoyancy were dissipated by fourth-order
cylindrical hyperviscosity to maximize the inertial range, i.e.

Dq(q) = −ν

(
∇8

h +
∂8

∂z8

)
q. (3.3)

The dissipation coefficient (ν =6.0 × 10−14) was chosen to give a dissipation wave-
number kd = (ϵ/ν3)1/22 of approximately 50.

The balance between forcing and dissipation produces statistically stationary fields
in stratified turbulence (ignoring the slow growth of the shear modes), and so time
averages can be studied in place of ensemble averages. No such balance is obtained
in the QG limit, since vortical mode energy is transferred to large scales as well as
small. In order to achieve stationarity at all Rossby and Froude numbers, we have
modified the dissipation term to damp velocity and temperature at large scales. In
Fourier space, (3.3) is replaced with

D̂k(q) = −
(
ν
(
k8

h + k8
z

)
+ r(k)

)
q̂k, (3.4)

where

r(k) =

{
r0, 1 ! kh !

√
2,

0, otherwise,
(3.5)

and r0 = 0.05. All vertical wavenumbers are damped equally, so this process does not
bias the vertical scale of the turbulence. In the following section, simulations with
and without large-scale damping will be discussed.

We have performed our primary simulations at a single stratification over a range
of f . N =8 was chosen to yield a small Froude number, while the f values (between
0 and 8; see table 1) were chosen to span a wide range of Rossby numbers. These
are not realistic geophysical values for N and f , and must be interpreted through the
Rossby and Froude numbers that they, along with the forcing parameters, produce.
Note that by varying f at fixed N , we are not allowing the two parameters Ro and
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of f . N =8 was chosen to yield a small Froude number, while the f values (between
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are not realistic geophysical values for N and f , and must be interpreted through the
Rossby and Froude numbers that they, along with the forcing parameters, produce.
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N/f to vary independently. We will explore the separate dependences on these para-
meters with additional simulations at different N in § 5.

In order to determine the Rossby and Froude numbers of a computed flow, we must
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We have employed this definition in previous studies (Waite & Bartello 2004, 2006).
However, as pointed out by a referee, these numbers favour the smallest scales when
the energy spectrum is sufficiently shallow, and are therefore possibly dependent on
the Reynolds number. We refer to Roω, Fhω and Fzω as the microscale Rossby and
Froude numbers.

A second approach is to measure U , L and H independently. We take U to be the
r.m.s. velocity, i.e.

U =
√

[u2 + v2 + w2], (3.7)

and deduce L and H from the spectra of vortical mode energy (defined below in
equation (4.5)) as
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This definition of H exploits the fact that the vertical wavenumber spectrum of
vortical energy in a stratified fluid is relatively flat at small wavenumbers and falls off
at large wavenumbers. The flat range indicates the vertical scales over which the flow
is decoupled. The definition of H in (3.8a) is designed to pick out the length scale of
this transition in the spectrum, and L is defined consistently. These scales are discussed
at length in Waite & Bartello (2004). We refer to Rou, Fhu and Fzu as the macroscale
Rossby and Froude numbers. Note that the macroscale numbers are defined in terms
of a single dominant length and velocity scale, while the microscale numbers are
essentially integrals over all scales. In what follows, we will use the macroscale Rossby
number to distinguish our simulations. However, the microscale Froude numbers
should be kept in mind for comparisons with Waite & Bartello (2004).

All simulations were initialized with a small amount of seed energy with an isotropic
spectrum of the form

E(k) ∝ k4 exp(−2(k/kf )2), (3.9)

and random phases. The initial energy was 0.01 equipartitioned between vortical and
wave modes. Simulations were then integrated from t = 0 to 100. This is an integration
length of around 130 buoyancy periods and 20 eddy turnover times, which we define
as τ = L/U . Various quantities were averaged over 500 samples from the last 30 %
of the integration. Time-averaged Rossby and Froude numbers are given in table 1.
The microscale and macroscale values differ by an O(10) factor, even at small Rossby
numbers where (as we shall see below) the energy spectra are steep. Some of this
discrepancy is probably due to the factor of 2π, which is included in (3.8) but not
(3.6).

vertical Froude number

H = U
N and Fz = O(1)

“stratified turbulence”



Snapshots
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Figure 7. Horizontal slices (x, y) of the normal velocity w (left) and the normal vorticity ωz

(right) for Rou = ∞ (top), Rou = 0.18 (middle) and Ro = 0.090 (bottom) at t = 100.

with U/N and (f/N)L against Rossby number. H increases with decreasing Rou as
expected from figures 5 and 9, but so does (to a lesser degree) U/N . The increase
in the layer thickness appears to be accounted for by an enhanced U/N as Rou

decreases to 0.25, but at smaller Rou, H and U/N diverge rapidly. We note that
when Rou > 0.25, U/N appears to under-predict H by a factor of 10 using the
precise definitions that we have adopted; nevertheless, in the next section we show
that the scaling H ∝ U/N holds. When Rou ! 0.18, H is proportional to the QG
scale (f/N)L.
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Figure 5. Vertical slices (x, z) of the normal velocity v (left) and the normal vorticity ωy

(right) for Rou = ∞ (top), Rou = 0.18 (middle) and Ro = 0.090 (bottom) at t = 100.

when Rou =0.024 (not shown). Whether the remainder of w is due to genuine
internal gravity waves or to a higher-order balance than (4.3) is unclear from these
results.

The horizontal and vertical wavenumber spectra of vortical energy are computed
by binning at integer wavenumbers as
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Figure 1. Time series of vortical energy for different Rou, (a) without and (b) with
large-scale damping. At each time, the energy increases with decreasing Rou.

4. Results: fixed N

Time series of vortical energy (with and without large-scale damping) are shown in
figure 1. The total energy of the flow has vortical, wave and shear mode contributions,
which are given by

E(0) =
1

2

∑

kh ̸=0

∣∣B (0)
k

∣∣2, (4.1a)

E(±) =
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2
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k

∣∣2 +
∣∣B (−)

k

∣∣2, (4.1b)

E(S) =
1

2

∑

kh=0

|ûk|2 + |v̂k|2 + |b̂′
k|2/N2. (4.1c)

Below we will consider only the kinetic energy in E(S); this is the quantity that
was found to grow by Smith & Waleffe (2002) and that corresponds to the energy of
inertial oscillations when f ̸=0. Vortical energy is injected directly by the forcing, while
wave and shear energy are generated via nonlinear interactions. Even without large-
scale damping, statistical stationarity is obtained when Rou ! 0.39. At smaller Rossby
numbers, though, vortical energy grows systematically along the entire integration
when no large-scale damping is employed. With damping, stationary time series

without 
damping

with 
damping

2⇡

N
= 0.79
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Figure 2. The small- and large-scale energy dissipation rates ϵs and ϵl .

are obtained at all Rossby numbers, although the amount of energy at stationarity
increases with decreasing Ro. The strength of the upscale and downscale energy
transfer can be quantified by the large-scale and small-scale energy dissipation rates
ϵl and ϵs , which are given by

ϵl = 2r0

∑

1!kh!
√

2

(|ûk|2 + |v̂k|2 + |ŵk|2 + |b̂′
k|2/N2), (4.2a)

ϵs = 2ν
∑

k

(
k8

h + k8
z

)
(|ûk|2 + |v̂k|2 + |ŵk|2 + |b̂′

k|2/N2), (4.2b)

and are plotted in figure 2. The transition from a regime dominated by downscale
transfer (i.e. stratified turbulence) to one dominated by upscale transfer (i.e. QG
turbulence) begins around Rou ≈ 0.4, and the upscale transfer dominates when
Rou < 0.1. These findings agree with those of Lindborg (2005).

A closer look at other quantities, however, reveals that stationarity is in fact not
obtained even when rotation is weak. In figure 3, we plot time series of kinetic energy
in the shear modes from the undamped simulations (large-scale damping slightly
enhances the growth of these modes). The shear mode energy grows in our simulations
when Rou " 0.39. This growth appears to be inhibited at smaller Rossby numbers,
although it may simply be very slow (much longer simulations are required to say for
sure). These results suggest that the transfer of energy into the shear modes does not
occur, or is greatly inhibited, when the Rossby number is small enough to produce
a QG inverse cascade. This transition happens at Rou between 0.2 and 0.4, and has
N/f > 10. QG motion therefore dominates over the shear modes at large scales when
the Rossby number is small, even if resonant three-wave interactions are possible, as
is the case outside the range 1/2 ! N/f ! 2. This result can be compared with those
of Smith & Waleffe (2002), taking note of the different forcing and time scales.
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(|ûk|2 + |v̂k|2 + |ŵk|2 + |b̂′
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and are plotted in figure 2. The transition from a regime dominated by downscale
transfer (i.e. stratified turbulence) to one dominated by upscale transfer (i.e. QG
turbulence) begins around Rou ≈ 0.4, and the upscale transfer dominates when
Rou < 0.1. These findings agree with those of Lindborg (2005).

A closer look at other quantities, however, reveals that stationarity is in fact not
obtained even when rotation is weak. In figure 3, we plot time series of kinetic energy
in the shear modes from the undamped simulations (large-scale damping slightly
enhances the growth of these modes). The shear mode energy grows in our simulations
when Rou " 0.39. This growth appears to be inhibited at smaller Rossby numbers,
although it may simply be very slow (much longer simulations are required to say for
sure). These results suggest that the transfer of energy into the shear modes does not
occur, or is greatly inhibited, when the Rossby number is small enough to produce
a QG inverse cascade. This transition happens at Rou between 0.2 and 0.4, and has
N/f > 10. QG motion therefore dominates over the shear modes at large scales when
the Rossby number is small, even if resonant three-wave interactions are possible, as
is the case outside the range 1/2 ! N/f ! 2. This result can be compared with those
of Smith & Waleffe (2002), taking note of the different forcing and time scales.
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between these dependencies. Billant & Chomaz (2001) have argued that the N/f
dependence is not significant, and that (N/U )H is therefore a universal function of
Ro as long as dissipation effects are unimportant. Additional simulations at different
N are required to determine whether this is indeed the case.

We have performed two further sets of simulations, one at N = 4 and the other at
N = 16, with ten f values between 0 and 8 and large-scale damping. We followed
the same methodology and employed the same forcing and dissipation parameters as
described above. The time-averaged vortical, wave and shear kinetic energy are plotted
against Rou for all three sets of simulations in figure 11. The vortical energy curves
collapse for Rou < 0.2, suggesting that dependence on N/f is weak in this regime. At
larger Rossby numbers, the vortical energy is insensitive to rotation but dependent
on stratification, as expected from Waite & Bartello (2004). The shear energy behaves
similarly. The wave energy, by contrast, does not collapse, and appears to depend
independently on both Rou and N/f .

In figure 12, we plot (N/U )H as a function of Rou for each set of simulations.
Our data collapses reasonably well to a single curve which goes to the QG limit
((N/U )H ∝ 1/Rou) when Rou ≪ 1 and the stratified turbulence limit ((N/U )H ≈ 20)
when Rou ≫ 1. The transition between these two regimes occurs around Rou ≈ 0.2.
There are, however, some exceptions to this universal scaling. At the lowest Rossby
number for N = 4, (Rou = 0.025), (N/U )H is much larger than the corresponding
values at N = 8 and 16. Energy in this case is unable to escape from the forced
two-dimensional modes, and so H , as defined in (3.8a), is greatly enhanced. Unlike
the others, this simulation has stronger rotation than stratification (N < f ).

The collapse of the curves also fails at large Rossby numbers. This regime was
investigated in detail by Waite & Bartello (2004), who found that H scales like U/N
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N/f to vary independently. We will explore the separate dependences on these para-
meters with additional simulations at different N in § 5.

In order to determine the Rossby and Froude numbers of a computed flow, we must
measure U , L and H ; these measurements can be made in different ways. Perhaps the
most straightforward approach is to deduce U/L and U/H directly from the r.m.s.
vorticity, which yields vorticity-based Rossby and Froude numbers
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N
. (3.6a–c)

We have employed this definition in previous studies (Waite & Bartello 2004, 2006).
However, as pointed out by a referee, these numbers favour the smallest scales when
the energy spectrum is sufficiently shallow, and are therefore possibly dependent on
the Reynolds number. We refer to Roω, Fhω and Fzω as the microscale Rossby and
Froude numbers.

A second approach is to measure U , L and H independently. We take U to be the
r.m.s. velocity, i.e.

U =
√

[u2 + v2 + w2], (3.7)

and deduce L and H from the spectra of vortical mode energy (defined below in
equation (4.5)) as

H = 2π

(
E(0)

∫
k

1/2
z E

(0)
z (kz) dkz

)2

, L = 2π

(
E(0)

∫
k
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h E

(0)
h (kh) dkh

)2

. (3.8a, b)

This definition of H exploits the fact that the vertical wavenumber spectrum of
vortical energy in a stratified fluid is relatively flat at small wavenumbers and falls off
at large wavenumbers. The flat range indicates the vertical scales over which the flow
is decoupled. The definition of H in (3.8a) is designed to pick out the length scale of
this transition in the spectrum, and L is defined consistently. These scales are discussed
at length in Waite & Bartello (2004). We refer to Rou, Fhu and Fzu as the macroscale
Rossby and Froude numbers. Note that the macroscale numbers are defined in terms
of a single dominant length and velocity scale, while the microscale numbers are
essentially integrals over all scales. In what follows, we will use the macroscale Rossby
number to distinguish our simulations. However, the microscale Froude numbers
should be kept in mind for comparisons with Waite & Bartello (2004).

All simulations were initialized with a small amount of seed energy with an isotropic
spectrum of the form

E(k) ∝ k4 exp(−2(k/kf )2), (3.9)

and random phases. The initial energy was 0.01 equipartitioned between vortical and
wave modes. Simulations were then integrated from t = 0 to 100. This is an integration
length of around 130 buoyancy periods and 20 eddy turnover times, which we define
as τ = L/U . Various quantities were averaged over 500 samples from the last 30 %
of the integration. Time-averaged Rossby and Froude numbers are given in table 1.
The microscale and macroscale values differ by an O(10) factor, even at small Rossby
numbers where (as we shall see below) the energy spectra are steep. Some of this
discrepancy is probably due to the factor of 2π, which is included in (3.8) but not
(3.6).
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(a) (b)

Figure 8. Horizontal slices (x, y) of QG vertical velocity wg given by (4.3) for (a) Rou = 0.18
and (b) 0.090 at t = 100.
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Figure 9. Horizontal wavenumber spectra (a, b) and vertical wavenumber spectra (c, d) of
vortical energy for 0.39 ! Rou ! ∞ (a, c) and 0.024 ! Rou ! 0.18 (b, d).

5. Dependence on N/f

The simulations described above cover a wide range of Rossby numbers at a fixed
stratification of N =8. The characteristic vertical scale H may depend independently
on Ro and N/f , and a set of simulations at a fixed N is not able to distinguish

H (apparently)
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+ ŵN2 = 0 (0.27)
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ẑ +rb
�
= fN2 + fb

z

+N2! + ! ·rb . (0.32)

⇧ = N2


f + v

x

� u
y

+
fb

z

N2

�
+ ! ·rb . (0.33)

⇧
def

= fN2 + fb
z

+N2 (v
x

� u
y

) + ! ·rb (0.34)

D⇧

Dt
= 0 (0.35)

⇧ ⇡ fb

(N2)
z

= �fb⇤
z

N2

(0.36)

u
0

˜

t

� f
0

v
0

= 0 , (0.37)

v
0

˜

t

+ f
0

u
0

= 0 . (0.38)

Z
1

2

w2 dV (0.39)

Q
def

= ⇧�⇧⇤(z � ⇣) (0.40)

Q = N2


v
x

� u
y

+

✓
fb

N2

◆

z

�
+ ! ·rb� f

0

⇤
zz

N2

1

2

b2 +O(b3) (0.41)

D⇧

Dt
=

D(z � ⇣)

Dt
= 0 (0.42)

DQ

Dt
= 0 (0.43)

u
0

+ iv
0

= e�if0˜tLA (0.44)



Bartello’s key: the modal decomposition
2

û
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= ikû+ i`v̂ (0.35)

u =
X

k

û
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resolutions, !z = (f/N)!x may be an appropriate choice, but at higher resolutions,
!z is constrained instead by the need to resolve overturning, which sets in at
H ∼ U/N (O(1) km in the atmosphere and O(10) m in the ocean). !z need not be as
small as (f/N)!x as long as it is sufficiently smaller than U/N . These conclusions are
based on our simulations of turbulence dominated by vortical motion. In the future,
the influence of rotation on breaking internal waves, which make up an important
part of the dynamics of the atmospheric mesoscale and oceanic submesoscale, should
also be considered.
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Appendix A. Normal modes
We briefly state the linear normal modes of the Boussinesq equations (2.1) (see

Bartello 1995 for details). The Fourier-transformed equations can be written in terms
of the three independent variables
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when kh ̸= 0 and kz ̸= 0. Expressed in this basis, the linear Boussinesq equations
without forcing or dissipation take the Hermitian form
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W k can be expanded in an orthonormal basis given by the eigenvectors of Lk as
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The amplitudes are expressed in the variables (A 1) as
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k =
σkkDk ∓ if kzζk ∓ NkhTk√
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. (A 7)

A(0)
k and A(±)

k are the vortical and wave modes (or, when f ̸= 0, the geostrophic and
ageostrophic modes). Both vertical vorticity and (when f ̸= 0) vertical buoyancy shear
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+ ŵN2 = 0 (0.27)
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+ fû+ i`p̂ = 0 (0.25)

ŵ
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resolutions, !z = (f/N)!x may be an appropriate choice, but at higher resolutions,
!z is constrained instead by the need to resolve overturning, which sets in at
H ∼ U/N (O(1) km in the atmosphere and O(10) m in the ocean). !z need not be as
small as (f/N)!x as long as it is sufficiently smaller than U/N . These conclusions are
based on our simulations of turbulence dominated by vortical motion. In the future,
the influence of rotation on breaking internal waves, which make up an important
part of the dynamics of the atmospheric mesoscale and oceanic submesoscale, should
also be considered.
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this study is to investigate how this transition occurs. Dimensionally, H depends
independently on Ro and N/f , and takes the form

H =
U

N
G(Ro, N/f ), (1.2)

if dissipation effects can be neglected. Babin, Mahalov & Nicolaenko (1998) have
argued that very weak rotation will couple (‘glue’) the layers of stratified turbulence
together such that H takes the QG value (f/N)L even when Ro ≫ 1. However,
U/N > (f/N)L when Ro > 1, and so this coupling may be obscured by overturning
and small-scale turbulence unless Ro < 1. Billant & Chomaz (2001) have accounted
for this complication and argue that H transitions from (f/N)L (when Ro ≪ 1) to
U/N (when Ro ≫ 1) around Ro ∼ 1. In other words, G is a function of Ro alone and
not N/f . Lindborg (2005) finds that the transition from stratified to QG turbulence,
defined by the emergence of an inverse cascade, occurs at Ro ∼ 0.1. To the best of
our knowledge, however, a numerical study of the transition of H between these two
regimes has not been made.

To investigate these issues, we have performed a set of simulations of forced
strongly stratified turbulence over a wide range of rotation rates (O(0.1) ! Ro " ∞),
and examined how the energy spectra and length scales vary with Rossby number.
In the next section, we present the Boussinesq equations and discuss the normal
mode decomposition into vortical and wave parts. Our numerical methodology is
described in § 3. In § 4, we present the results of our primary simulations and show
how the energy spectra and vertical length scales vary with Ro. In § 5, we discuss the
dependence of our results on N/f . Conclusions are given in § 6.

2. Governing equations
Making the Boussinesq approximation, the equations of motion for a rotating

stratified fluid are

∂u
∂t

+ u · ∇u + f ẑ × u = −∇p + b′ ẑ + Fu + Du(u), (2.1a)

∇ · u = 0, (2.1b)

∂b′

∂t
+ u · ∇b′ + N2 w = Fb′ + Db′(b′), (2.1c)

where u = ux̂ + v ŷ +w ẑ is the velocity, b′ is the buoyancy, and p is the dynamic
pressure divided by a reference density. Dq(q) and Fq denote the dissipation and
forcing of the quantity q , respectively. We limit our study to homogeneous turbulence
and therefore take f and N to be constant.

When expressed in terms of the linear normal mode basis, the Fourier-transformed
Boussinesq equations take the compact form

dB
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k

dt
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k B
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k =
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k pqB
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k , (2.2)

where j is 0 or ± (following Bartello 1995; see Appendix A). In (2.2), B (0)
k , B (+)

k and
B

(−)
k are the amplitudes of the three normal modes at wavevector k, and the Γ are

the interaction coefficients. The normal modes have linear frequencies λ(j )
k given by

λ(0)
k = 0, λ(±)

k =
(
N2k2

h + f 2k2
z

)1/2
/k, (2.3a, b)
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resolutions, !z = (f/N)!x may be an appropriate choice, but at higher resolutions,
!z is constrained instead by the need to resolve overturning, which sets in at
H ∼ U/N (O(1) km in the atmosphere and O(10) m in the ocean). !z need not be as
small as (f/N)!x as long as it is sufficiently smaller than U/N . These conclusions are
based on our simulations of turbulence dominated by vortical motion. In the future,
the influence of rotation on breaking internal waves, which make up an important
part of the dynamics of the atmospheric mesoscale and oceanic submesoscale, should
also be considered.

This paper benefited greatly from the suggestions of Erik Lindborg and two
anonymous reviewers. Financial support from the Natural Sciences and Engineering
Research Council of Canada is gratefully acknowledged, as are the computer resources
generously provided by the Consortium Laval–UQAM–McGill et l’Est du Québec.
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resolutions, !z = (f/N)!x may be an appropriate choice, but at higher resolutions,
!z is constrained instead by the need to resolve overturning, which sets in at
H ∼ U/N (O(1) km in the atmosphere and O(10) m in the ocean). !z need not be as
small as (f/N)!x as long as it is sufficiently smaller than U/N . These conclusions are
based on our simulations of turbulence dominated by vortical motion. In the future,
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part of the dynamics of the atmospheric mesoscale and oceanic submesoscale, should
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ikû+ i`v̂ + imŵ = 0 (0.28)

@

@t

2

4
!̂
�̂
b̂

3

5 = i

2

64
0 �if 0

� ifm

2

|k|2 0 �mk

2
+`

2

|k|2

0 �N

2

m

0

3

75

2

4
!̂
�̂
b̂

3

5 (0.29)

w
t

= i Lw (0.30)

L�̂ = ��̂ (0.31)

!
def

= v
x

� u
y

(0.32)

�
def

= u
x

+ v
y

(0.33)

(0.34)

!̂
def
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⇧ = (f ẑ + !) ·
�
N2
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resolutions, !z = (f/N)!x may be an appropriate choice, but at higher resolutions,
!z is constrained instead by the need to resolve overturning, which sets in at
H ∼ U/N (O(1) km in the atmosphere and O(10) m in the ocean). !z need not be as
small as (f/N)!x as long as it is sufficiently smaller than U/N . These conclusions are
based on our simulations of turbulence dominated by vortical motion. In the future,
the influence of rotation on breaking internal waves, which make up an important
part of the dynamics of the atmospheric mesoscale and oceanic submesoscale, should
also be considered.
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this study is to investigate how this transition occurs. Dimensionally, H depends
independently on Ro and N/f , and takes the form

H =
U

N
G(Ro, N/f ), (1.2)

if dissipation effects can be neglected. Babin, Mahalov & Nicolaenko (1998) have
argued that very weak rotation will couple (‘glue’) the layers of stratified turbulence
together such that H takes the QG value (f/N)L even when Ro ≫ 1. However,
U/N > (f/N)L when Ro > 1, and so this coupling may be obscured by overturning
and small-scale turbulence unless Ro < 1. Billant & Chomaz (2001) have accounted
for this complication and argue that H transitions from (f/N)L (when Ro ≪ 1) to
U/N (when Ro ≫ 1) around Ro ∼ 1. In other words, G is a function of Ro alone and
not N/f . Lindborg (2005) finds that the transition from stratified to QG turbulence,
defined by the emergence of an inverse cascade, occurs at Ro ∼ 0.1. To the best of
our knowledge, however, a numerical study of the transition of H between these two
regimes has not been made.

To investigate these issues, we have performed a set of simulations of forced
strongly stratified turbulence over a wide range of rotation rates (O(0.1) ! Ro " ∞),
and examined how the energy spectra and length scales vary with Rossby number.
In the next section, we present the Boussinesq equations and discuss the normal
mode decomposition into vortical and wave parts. Our numerical methodology is
described in § 3. In § 4, we present the results of our primary simulations and show
how the energy spectra and vertical length scales vary with Ro. In § 5, we discuss the
dependence of our results on N/f . Conclusions are given in § 6.

2. Governing equations
Making the Boussinesq approximation, the equations of motion for a rotating

stratified fluid are
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+ u · ∇b′ + N2 w = Fb′ + Db′(b′), (2.1c)

where u = ux̂ + v ŷ +w ẑ is the velocity, b′ is the buoyancy, and p is the dynamic
pressure divided by a reference density. Dq(q) and Fq denote the dissipation and
forcing of the quantity q , respectively. We limit our study to homogeneous turbulence
and therefore take f and N to be constant.

When expressed in terms of the linear normal mode basis, the Fourier-transformed
Boussinesq equations take the compact form
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/k, (2.3a, b)
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resolutions, !z = (f/N)!x may be an appropriate choice, but at higher resolutions,
!z is constrained instead by the need to resolve overturning, which sets in at
H ∼ U/N (O(1) km in the atmosphere and O(10) m in the ocean). !z need not be as
small as (f/N)!x as long as it is sufficiently smaller than U/N . These conclusions are
based on our simulations of turbulence dominated by vortical motion. In the future,
the influence of rotation on breaking internal waves, which make up an important
part of the dynamics of the atmospheric mesoscale and oceanic submesoscale, should
also be considered.
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k

kz
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H ∼ U/N (O(1) km in the atmosphere and O(10) m in the ocean). !z need not be as
small as (f/N)!x as long as it is sufficiently smaller than U/N . These conclusions are
based on our simulations of turbulence dominated by vortical motion. In the future,
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resolutions, !z = (f/N)!x may be an appropriate choice, but at higher resolutions,
!z is constrained instead by the need to resolve overturning, which sets in at
H ∼ U/N (O(1) km in the atmosphere and O(10) m in the ocean). !z need not be as
small as (f/N)!x as long as it is sufficiently smaller than U/N . These conclusions are
based on our simulations of turbulence dominated by vortical motion. In the future,
the influence of rotation on breaking internal waves, which make up an important
part of the dynamics of the atmospheric mesoscale and oceanic submesoscale, should
also be considered.
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Appendix A. Normal modes
We briefly state the linear normal modes of the Boussinesq equations (2.1) (see

Bartello 1995 for details). The Fourier-transformed equations can be written in terms
of the three independent variables

ζk = i(kxv̂k − kyûk), Dk = i
k

kz

(kxûk + kyv̂k), Tk =
kh

N
b̂′

k, (A 1)

when kh ̸= 0 and kz ̸= 0. Expressed in this basis, the linear Boussinesq equations
without forcing or dissipation take the Hermitian form

∂
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W k can be expanded in an orthonormal basis given by the eigenvectors of Lk as

W k =
∑

j

A
(j )
k X (j )

k , (A 4)

where j is summed over 0, + and −. The eigenvectors are
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where

σ 2
k =

N2k2
h + f 2k2

z

k2
. (A 6)

The amplitudes are expressed in the variables (A 1) as

A(0)
k =

Nkhζk + if kzTk

σkk
, A(±)

k =
σkkDk ∓ if kzζk ∓ NkhTk√

2σkk
. (A 7)

A(0)
k and A(±)

k are the vortical and wave modes (or, when f ̸= 0, the geostrophic and
ageostrophic modes). Both vertical vorticity and (when f ̸= 0) vertical buoyancy shear

: vortical modeB(0)
k B(±)

k : wave modes
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this study is to investigate how this transition occurs. Dimensionally, H depends
independently on Ro and N/f , and takes the form

H =
U

N
G(Ro, N/f ), (1.2)

if dissipation effects can be neglected. Babin, Mahalov & Nicolaenko (1998) have
argued that very weak rotation will couple (‘glue’) the layers of stratified turbulence
together such that H takes the QG value (f/N)L even when Ro ≫ 1. However,
U/N > (f/N)L when Ro > 1, and so this coupling may be obscured by overturning
and small-scale turbulence unless Ro < 1. Billant & Chomaz (2001) have accounted
for this complication and argue that H transitions from (f/N)L (when Ro ≪ 1) to
U/N (when Ro ≫ 1) around Ro ∼ 1. In other words, G is a function of Ro alone and
not N/f . Lindborg (2005) finds that the transition from stratified to QG turbulence,
defined by the emergence of an inverse cascade, occurs at Ro ∼ 0.1. To the best of
our knowledge, however, a numerical study of the transition of H between these two
regimes has not been made.

To investigate these issues, we have performed a set of simulations of forced
strongly stratified turbulence over a wide range of rotation rates (O(0.1) ! Ro " ∞),
and examined how the energy spectra and length scales vary with Rossby number.
In the next section, we present the Boussinesq equations and discuss the normal
mode decomposition into vortical and wave parts. Our numerical methodology is
described in § 3. In § 4, we present the results of our primary simulations and show
how the energy spectra and vertical length scales vary with Ro. In § 5, we discuss the
dependence of our results on N/f . Conclusions are given in § 6.

2. Governing equations
Making the Boussinesq approximation, the equations of motion for a rotating

stratified fluid are

∂u
∂t

+ u · ∇u + f ẑ × u = −∇p + b′ ẑ + Fu + Du(u), (2.1a)

∇ · u = 0, (2.1b)

∂b′

∂t
+ u · ∇b′ + N2 w = Fb′ + Db′(b′), (2.1c)

where u = ux̂ + v ŷ +w ẑ is the velocity, b′ is the buoyancy, and p is the dynamic
pressure divided by a reference density. Dq(q) and Fq denote the dissipation and
forcing of the quantity q , respectively. We limit our study to homogeneous turbulence
and therefore take f and N to be constant.

When expressed in terms of the linear normal mode basis, the Fourier-transformed
Boussinesq equations take the compact form
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where j is 0 or ± (following Bartello 1995; see Appendix A). In (2.2), B (0)
k , B (+)

k and
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(−)
k are the amplitudes of the three normal modes at wavevector k, and the Γ are

the interaction coefficients. The normal modes have linear frequencies λ(j )
k given by
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this study is to investigate how this transition occurs. Dimensionally, H depends
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H =
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if dissipation effects can be neglected. Babin, Mahalov & Nicolaenko (1998) have
argued that very weak rotation will couple (‘glue’) the layers of stratified turbulence
together such that H takes the QG value (f/N)L even when Ro ≫ 1. However,
U/N > (f/N)L when Ro > 1, and so this coupling may be obscured by overturning
and small-scale turbulence unless Ro < 1. Billant & Chomaz (2001) have accounted
for this complication and argue that H transitions from (f/N)L (when Ro ≪ 1) to
U/N (when Ro ≫ 1) around Ro ∼ 1. In other words, G is a function of Ro alone and
not N/f . Lindborg (2005) finds that the transition from stratified to QG turbulence,
defined by the emergence of an inverse cascade, occurs at Ro ∼ 0.1. To the best of
our knowledge, however, a numerical study of the transition of H between these two
regimes has not been made.

To investigate these issues, we have performed a set of simulations of forced
strongly stratified turbulence over a wide range of rotation rates (O(0.1) ! Ro " ∞),
and examined how the energy spectra and length scales vary with Rossby number.
In the next section, we present the Boussinesq equations and discuss the normal
mode decomposition into vortical and wave parts. Our numerical methodology is
described in § 3. In § 4, we present the results of our primary simulations and show
how the energy spectra and vertical length scales vary with Ro. In § 5, we discuss the
dependence of our results on N/f . Conclusions are given in § 6.
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+ u · ∇b′ + N2 w = Fb′ + Db′(b′), (2.1c)

where u = ux̂ + v ŷ +w ẑ is the velocity, b′ is the buoyancy, and p is the dynamic
pressure divided by a reference density. Dq(q) and Fq denote the dissipation and
forcing of the quantity q , respectively. We limit our study to homogeneous turbulence
and therefore take f and N to be constant.

When expressed in terms of the linear normal mode basis, the Fourier-transformed
Boussinesq equations take the compact form
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where j is 0 or ± (following Bartello 1995; see Appendix A). In (2.2), B (0)
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k are the amplitudes of the three normal modes at wavevector k, and the Γ are

the interaction coefficients. The normal modes have linear frequencies λ(j )
k given by
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⇧ = (f ẑ + !) ·
�
N2
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Figure 1. Time series of vortical energy for different Rou, (a) without and (b) with
large-scale damping. At each time, the energy increases with decreasing Rou.

4. Results: fixed N

Time series of vortical energy (with and without large-scale damping) are shown in
figure 1. The total energy of the flow has vortical, wave and shear mode contributions,
which are given by

E(0) =
1

2

∑

kh ̸=0

∣∣B (0)
k

∣∣2, (4.1a)

E(±) =
1

2

∑

kh ̸=0

∣∣B (+)
k

∣∣2 +
∣∣B (−)

k

∣∣2, (4.1b)

E(S) =
1

2

∑

kh=0

|ûk|2 + |v̂k|2 + |b̂′
k|2/N2. (4.1c)

Below we will consider only the kinetic energy in E(S); this is the quantity that
was found to grow by Smith & Waleffe (2002) and that corresponds to the energy of
inertial oscillations when f ̸=0. Vortical energy is injected directly by the forcing, while
wave and shear energy are generated via nonlinear interactions. Even without large-
scale damping, statistical stationarity is obtained when Rou ! 0.39. At smaller Rossby
numbers, though, vortical energy grows systematically along the entire integration
when no large-scale damping is employed. With damping, stationary time series
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this study is to investigate how this transition occurs. Dimensionally, H depends
independently on Ro and N/f , and takes the form

H =
U

N
G(Ro, N/f ), (1.2)

if dissipation effects can be neglected. Babin, Mahalov & Nicolaenko (1998) have
argued that very weak rotation will couple (‘glue’) the layers of stratified turbulence
together such that H takes the QG value (f/N)L even when Ro ≫ 1. However,
U/N > (f/N)L when Ro > 1, and so this coupling may be obscured by overturning
and small-scale turbulence unless Ro < 1. Billant & Chomaz (2001) have accounted
for this complication and argue that H transitions from (f/N)L (when Ro ≪ 1) to
U/N (when Ro ≫ 1) around Ro ∼ 1. In other words, G is a function of Ro alone and
not N/f . Lindborg (2005) finds that the transition from stratified to QG turbulence,
defined by the emergence of an inverse cascade, occurs at Ro ∼ 0.1. To the best of
our knowledge, however, a numerical study of the transition of H between these two
regimes has not been made.

To investigate these issues, we have performed a set of simulations of forced
strongly stratified turbulence over a wide range of rotation rates (O(0.1) ! Ro " ∞),
and examined how the energy spectra and length scales vary with Rossby number.
In the next section, we present the Boussinesq equations and discuss the normal
mode decomposition into vortical and wave parts. Our numerical methodology is
described in § 3. In § 4, we present the results of our primary simulations and show
how the energy spectra and vertical length scales vary with Ro. In § 5, we discuss the
dependence of our results on N/f . Conclusions are given in § 6.
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Making the Boussinesq approximation, the equations of motion for a rotating
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where u = ux̂ + v ŷ +w ẑ is the velocity, b′ is the buoyancy, and p is the dynamic
pressure divided by a reference density. Dq(q) and Fq denote the dissipation and
forcing of the quantity q , respectively. We limit our study to homogeneous turbulence
and therefore take f and N to be constant.
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and examined how the energy spectra and length scales vary with Rossby number.
In the next section, we present the Boussinesq equations and discuss the normal
mode decomposition into vortical and wave parts. Our numerical methodology is
described in § 3. In § 4, we present the results of our primary simulations and show
how the energy spectra and vertical length scales vary with Ro. In § 5, we discuss the
dependence of our results on N/f . Conclusions are given in § 6.

2. Governing equations
Making the Boussinesq approximation, the equations of motion for a rotating

stratified fluid are

∂u
∂t

+ u · ∇u + f ẑ × u = −∇p + b′ ẑ + Fu + Du(u), (2.1a)

∇ · u = 0, (2.1b)

∂b′

∂t
+ u · ∇b′ + N2 w = Fb′ + Db′(b′), (2.1c)

where u = ux̂ + v ŷ +w ẑ is the velocity, b′ is the buoyancy, and p is the dynamic
pressure divided by a reference density. Dq(q) and Fq denote the dissipation and
forcing of the quantity q , respectively. We limit our study to homogeneous turbulence
and therefore take f and N to be constant.

When expressed in terms of the linear normal mode basis, the Fourier-transformed
Boussinesq equations take the compact form

dB
(j )
k

dt
+ iλ(j )

k B
(j )
k =

∑

k= p+q

Γ
jrs

k pqB
(r)
p B (s)

q + F̂
(j )
k + D̂

(j )
k , (2.2)

where j is 0 or ± (following Bartello 1995; see Appendix A). In (2.2), B (0)
k , B (+)

k and
B

(−)
k are the amplitudes of the three normal modes at wavevector k, and the Γ are

the interaction coefficients. The normal modes have linear frequencies λ(j )
k given by

λ(0)
k = 0, λ(±)

k =
(
N2k2

h + f 2k2
z

)1/2
/k, (2.3a, b)

Boussinesq equations

*a multiple time-scale expansion to O(ℇ) yields the QG equation for the (0) modes

Energy
Note: only the 
vortical mode is 
forced.
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Figure 3. Time series of shear mode kinetic energy for different Rossby numbers without
large-scale damping. When damping is employed, the growth is slightly enhanced.
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Figure 4. The time-averaged vortical, wave and shear mode kinetic energy as defined in § 2
for the simulations with large-scale damping.

The time-averaged vortical, wave and shear mode energies are plotted against Rou

in figure 4. Vortical energy dominates in all cases, but when Rou > 1 there is also
significant wave and shear energy (this problem was considered in detail in Waite &
Bartello 2004). The presence of rotation enhances the amount of vortical energy at
statistical stationarity, and the vortical energy increases with decreasing Rossby
number below Rou ≈ 1. The dependence on Rossby number appears to weaken
as Rou → 0 when almost all the injected energy is transferred upscale. The shear mode
kinetic energy decreases with decreasing Rou when Rou < 1. The wave energy, by
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Figure 2. The small- and large-scale energy dissipation rates ϵs and ϵl .

are obtained at all Rossby numbers, although the amount of energy at stationarity
increases with decreasing Ro. The strength of the upscale and downscale energy
transfer can be quantified by the large-scale and small-scale energy dissipation rates
ϵl and ϵs , which are given by

ϵl = 2r0

∑

1!kh!
√

2

(|ûk|2 + |v̂k|2 + |ŵk|2 + |b̂′
k|2/N2), (4.2a)

ϵs = 2ν
∑

k

(
k8

h + k8
z

)
(|ûk|2 + |v̂k|2 + |ŵk|2 + |b̂′

k|2/N2), (4.2b)

and are plotted in figure 2. The transition from a regime dominated by downscale
transfer (i.e. stratified turbulence) to one dominated by upscale transfer (i.e. QG
turbulence) begins around Rou ≈ 0.4, and the upscale transfer dominates when
Rou < 0.1. These findings agree with those of Lindborg (2005).

A closer look at other quantities, however, reveals that stationarity is in fact not
obtained even when rotation is weak. In figure 3, we plot time series of kinetic energy
in the shear modes from the undamped simulations (large-scale damping slightly
enhances the growth of these modes). The shear mode energy grows in our simulations
when Rou " 0.39. This growth appears to be inhibited at smaller Rossby numbers,
although it may simply be very slow (much longer simulations are required to say for
sure). These results suggest that the transfer of energy into the shear modes does not
occur, or is greatly inhibited, when the Rossby number is small enough to produce
a QG inverse cascade. This transition happens at Rou between 0.2 and 0.4, and has
N/f > 10. QG motion therefore dominates over the shear modes at large scales when
the Rossby number is small, even if resonant three-wave interactions are possible, as
is the case outside the range 1/2 ! N/f ! 2. This result can be compared with those
of Smith & Waleffe (2002), taking note of the different forcing and time scales.

Notes: 
• Rotation suppresses 

energy transfer to wave 
modes. 

• “spontaneous emission”

e�1/Ro
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(a) (b)

Figure 8. Horizontal slices (x, y) of QG vertical velocity wg given by (4.3) for (a) Rou = 0.18
and (b) 0.090 at t = 100.
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vortical energy for 0.39 ! Rou ! ∞ (a, c) and 0.024 ! Rou ! 0.18 (b, d).

5. Dependence on N/f

The simulations described above cover a wide range of Rossby numbers at a fixed
stratification of N =8. The characteristic vertical scale H may depend independently
on Ro and N/f , and a set of simulations at a fixed N is not able to distinguish

Comments: 
1. Spectra steepen at low Ro, but the effect is very subtle on a log-log plot. 
2. Resolution is too low for a proper inertial range. 



• Boussinesq simulations at 10243 
and 20483 resolution 

• Forced at k = 10,11 
• “DNS”: no hyperviscosity or 

large-scale drag

The other dimensionless parameters are the Reynolds,
Rossby, and Froude numbers and the buoyancy Reynolds:

Re¼U0LF

ν
; Ro¼ U0

LFf
; Fr¼ U0

LFN
; RB ¼ReFr2;

ð3Þ

with U0 and LF characteristic velocity and length scales.
The momentum forcing Fv is random, three dimensional,
and isotropic; it is applied in the shells kF ¼ 2π=LF ∈
ð10; 11Þ for all runs but one, for which kF ∈ ð7; 8Þ. The
equations are solved in a triply periodic cubic domain of 2π
dimension with n3p points; time evolution is done with a
second-order Runge-Kutta scheme, and we use the
Geophysical High-Order Suite for Turbulence (GHOST)
hybrid-parallelized code [18]. In the ocean, salinity and
temperature contribute to density variations; mixing is due
to a combination of shear instability, gravity-wave steep-
ening, and double diffusion leading to salt fingering [19],
but the convective instability itself may not be the main
feature when compared to baroclinic instabilities. Thus, as
a first step in our study, salinity is not included. Taking the
Fourier transform of Eq. (2), one defines the kinetic
isotropic energy flux:

ΠVðkÞ ¼
Z

k

kmin

TVðqÞdq; TVðqÞ ¼ −
X

Cq

û⋆
q · dðu ·∇uÞq

with Cq the shell q ≤ jqj < qþ 1; ΠP ¼ −dtEP is com-
puted in a similar way. The total flux is Π ¼ ΠV þ ΠP,
with

R
k
0 ΠðpÞdp ¼ −dtE.

A dual constant-flux energy cascade.—The development
of both large and small scales in RST flows can be observed
on the vertical vorticity field ½ωz ¼ ∇ × v& · êz shown in
Fig. 1(a) (with êz the unit vector in the vertical direction,
collinear with rotation and gravity), as well as on the
vertical velocity [11]. The snapshot in Fig. 1(a) is for a
flow on grid of 20483 points N=f ¼ 10.5, Re ≈ 2 × 104,
and Fr ≈ 0.047. The simultaneous presence of
small-scale and large-scale features can be diagnosed
on the temporal evolution of the integral scales
LX
int ¼

R
½EXðkÞ=k&dk=

R
EXðkÞdk, with X ¼ V or X ¼ P,

displayed in Fig. 1(b) and associated with the kinetic and
potential energy spectra EV;PðkÞ. In a three-dimensional
turbulent flow, LV

int grows slowly with time [6]. Here, the
scale associated with velocity fluctuations LV

int grows
quasilinearly, typical of vortex mergers, whereas LP

int has
a slower growth (see also Ref. [20]). We show in Fig. 2(a)
the kinetic isotropic energy spectrum at the final time of a
run with N=f ¼ 7 and t=τNL ¼ 29, where τNL ¼ LF=U0 is
the turnover time; it is compensated either by αϵ2=3V k−5=3 or
by αϵ2=3V k−2.5, with ϵV ¼ hu · Fvi and α being a proportion-
ality constant. Two ranges clearly appear, separated by kF.
The large-scale inertial index corresponds to that of the

inverse cascade of energy in two-dimensional flows [26],
and the Kolmogorov constant, read from the vertical axis of
Fig. 2(a), is C0 ≈ 10, close to the classic case of 2D
turbulence, for which C0 ≈ 7 is found [27].
The small-scale spectrum is steep, as seen in numerous

computations [28–30] and oceanic observations [13,31]. It
is argued in Ref. [31] that these variations are compatible
with the weak-turbulence theory for such flows. The inset
gives the temporal variation of the scaled dissipation and
kinetic energy for that run, with an energy growth typical of
inverse cascades.
Scaling model for the energy-flux ratio.—One observes

different spectra in the wave-turbulence regime, the cascade
rate to small scales being smaller the smaller the Froude
number. This can be seen through a simple dimensional
argument, when modeling the slowing-down of nonlinear
interactions in the presence of waves, by stating that the
transfer time of energy is longer than the turnover time τNL
as τtr ¼ τNL × Fra, a < 0; thus, ϵs ¼ ϵK × Fr−a, where
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FIG. 1 (color online). (a) Horizontal cut of vertical vorticity:
one observes large-scale filaments and small-scale gradients,
together with intense localized vortex streets as seen, e.g., for
x ¼ 1700 and y ¼ 300. (b) Time evolution of integral scales
based on velocity (circles) and temperature (triangles) for the
same run. After an initial transient phase, the former grows
significantly in time, while the latter has a slow growth.
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Rossby, and Froude numbers and the buoyancy Reynolds:
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ν
; Ro¼ U0

LFf
; Fr¼ U0

LFN
; RB ¼ReFr2;

ð3Þ

with U0 and LF characteristic velocity and length scales.
The momentum forcing Fv is random, three dimensional,
and isotropic; it is applied in the shells kF ¼ 2π=LF ∈
ð10; 11Þ for all runs but one, for which kF ∈ ð7; 8Þ. The
equations are solved in a triply periodic cubic domain of 2π
dimension with n3p points; time evolution is done with a
second-order Runge-Kutta scheme, and we use the
Geophysical High-Order Suite for Turbulence (GHOST)
hybrid-parallelized code [18]. In the ocean, salinity and
temperature contribute to density variations; mixing is due
to a combination of shear instability, gravity-wave steep-
ening, and double diffusion leading to salt fingering [19],
but the convective instability itself may not be the main
feature when compared to baroclinic instabilities. Thus, as
a first step in our study, salinity is not included. Taking the
Fourier transform of Eq. (2), one defines the kinetic
isotropic energy flux:

ΠVðkÞ ¼
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kmin

TVðqÞdq; TVðqÞ ¼ −
X
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û⋆
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with Cq the shell q ≤ jqj < qþ 1; ΠP ¼ −dtEP is com-
puted in a similar way. The total flux is Π ¼ ΠV þ ΠP,
with
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0 ΠðpÞdp ¼ −dtE.

A dual constant-flux energy cascade.—The development
of both large and small scales in RST flows can be observed
on the vertical vorticity field ½ωz ¼ ∇ × v& · êz shown in
Fig. 1(a) (with êz the unit vector in the vertical direction,
collinear with rotation and gravity), as well as on the
vertical velocity [11]. The snapshot in Fig. 1(a) is for a
flow on grid of 20483 points N=f ¼ 10.5, Re ≈ 2 × 104,
and Fr ≈ 0.047. The simultaneous presence of
small-scale and large-scale features can be diagnosed
on the temporal evolution of the integral scales
LX
int ¼
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½EXðkÞ=k&dk=
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EXðkÞdk, with X ¼ V or X ¼ P,

displayed in Fig. 1(b) and associated with the kinetic and
potential energy spectra EV;PðkÞ. In a three-dimensional
turbulent flow, LV

int grows slowly with time [6]. Here, the
scale associated with velocity fluctuations LV

int grows
quasilinearly, typical of vortex mergers, whereas LP

int has
a slower growth (see also Ref. [20]). We show in Fig. 2(a)
the kinetic isotropic energy spectrum at the final time of a
run with N=f ¼ 7 and t=τNL ¼ 29, where τNL ¼ LF=U0 is
the turnover time; it is compensated either by αϵ2=3V k−5=3 or
by αϵ2=3V k−2.5, with ϵV ¼ hu · Fvi and α being a proportion-
ality constant. Two ranges clearly appear, separated by kF.
The large-scale inertial index corresponds to that of the

inverse cascade of energy in two-dimensional flows [26],
and the Kolmogorov constant, read from the vertical axis of
Fig. 2(a), is C0 ≈ 10, close to the classic case of 2D
turbulence, for which C0 ≈ 7 is found [27].
The small-scale spectrum is steep, as seen in numerous

computations [28–30] and oceanic observations [13,31]. It
is argued in Ref. [31] that these variations are compatible
with the weak-turbulence theory for such flows. The inset
gives the temporal variation of the scaled dissipation and
kinetic energy for that run, with an energy growth typical of
inverse cascades.
Scaling model for the energy-flux ratio.—One observes

different spectra in the wave-turbulence regime, the cascade
rate to small scales being smaller the smaller the Froude
number. This can be seen through a simple dimensional
argument, when modeling the slowing-down of nonlinear
interactions in the presence of waves, by stating that the
transfer time of energy is longer than the turnover time τNL
as τtr ¼ τNL × Fra, a < 0; thus, ϵs ¼ ϵK × Fr−a, where
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FIG. 1 (color online). (a) Horizontal cut of vertical vorticity:
one observes large-scale filaments and small-scale gradients,
together with intense localized vortex streets as seen, e.g., for
x ¼ 1700 and y ¼ 300. (b) Time evolution of integral scales
based on velocity (circles) and temperature (triangles) for the
same run. After an initial transient phase, the former grows
significantly in time, while the latter has a slow growth.
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A puzzle of oceanic dynamics is the contrast between the observed geostrophic balance, involving
gravity, pressure gradient, and Coriolis forces, and the necessary turbulent transport: in the former case,
energy flows to large scales, leading to spectral condensation, whereas in the latter, it is transferred to small
scales, where dissipation prevails. The known bidirectional constant-flux energy cascade maintaining both
geostrophic balance and mixing tends towards flux equilibration as turbulence strengthens, contradicting
models and recent observations which find a dominant large-scale flux. Analyzing a large ensemble of
high-resolution direct numerical simulations of the Boussinesq equations in the presence of rotation and no
salinity, we show that the ratio of the dual energy flux to large and to small scales agrees with observations,
and we predict that it scales with the inverse of the Froude and Rossby numbers when stratification is
(realistically) stronger than rotation. Furthermore, we show that the kinetic and potential energies
separately undergo a bidirectional transfer to larger and smaller scales. Altogether, this allows for small-
scale mixing which drives the global oceanic circulation and will thus potentially lead to more accurate
modeling of climate dynamics.

DOI: 10.1103/PhysRevLett.114.114504 PACS numbers: 47.55.Hd, 47.27.ek, 47.32.Ef

Solar heating, tides, and wind stresses are global-scale
energy inputs [1], while in the Southern Ocean, topo-
graphic gravity waves provide a small-scale source [2],
contributing roughly 50% of its energy [3]. The global
ocean acts in a coherent, though complex, fashion from the
planetary to the dissipation scale ≈1mm, with different
phenomena interacting like inertia-gravity waves and non-
linear structures such as eddies, zonal jets [4], or fronts [5].
It is known that inverse and direct cascades, respectively, to
large and small scales as observed in geophysical fluids [6]
and heliospheric plasmas [7,8] can coexist in the purely
rotating case [9], as well as in oceanic models [10]. It was
shown recently that a dual constant-flux cascade of energy
to both large scales and small scales occurs in rotating
stratified turbulence (RST) [11]. Moreover, the ratio
RΠ ¼ jϵL=ϵsj of the total energy fluxes to large and small
scales ϵL and ϵs tends to unity as turbulence becomes
dominant as is the case in geophysical and astrophysical
fluid dynamics [11]. However, recent studies using altim-
eter data analyzing sea-surface height in the Southern
Ocean, sea-surface height being a proxy for the horizontal
velocity field of near-surface currents, and numerical
modeling introducing a positive eddy viscosity to represent
the effect of the direct energy cascade, show that RΠ
remains typically between the values 3 and 7 [12,13].
What is the origin of this discrepancy? To answer this

question we develop a simple model and conduct an
unprecedented study of this problem by means of high-
resolution direct numerical simulations (DNS) of the

rotating stably stratified Boussinesq equations. Altogether,
26 runswere performed, 6 on grids of 20483 points and20 on
grids of 10243 points. Rotation plays an essential role in the
building-up of large scales, e.g., through vortex mergers.
However, for purely stratified flows, this phenomenon
disappears and sharp vertical gradients develop instead.
In RST, the disappearance of the inverse cascade, diagnosed
through the absence of energy growth in time, appears for
large N=f [14–16], which is thus a key parameter varying
widely, from ≈10 or less in the abyssal Southern Ocean at
midlatitude to ≈100 or more in the stratosphere; N is the
Brunt-Väisälä frequency of gravity waves and f ¼ 2Ω that
of inertial waves, Ω being the rotation rate.
Equations.—We integrate the Boussinesq equations for

an incompressible velocity field u, with ∇ · u ¼ 0:

∂u
∂t þ Nθẑþ fẑ × u − ν∇2u − Fv ¼ −∇p − u ·∇u; ð1Þ

∂θ
∂t − Nu · ẑ − κ∇2θ ¼ −u · ∇θ: ð2Þ

θ represents temperature (or density) fluctuations. With ∂zθ̄
the background imposed stratification, N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g∂zθ̄=θ0

p
;

p is the pressure normalized to a unit mass density, and
Pr ¼ ν=κ is the Prandtl number, with ν the kinematic
viscosity and κ the diffusivity. We take Pr ¼ 1, as suggested
by the framework of the renormalization group [17].
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ϵK ¼ EV=τNL ¼ U3
0=LF is the energy transfer rate for

homogeneous isotropic turbulence. Indeed, we know that
in wave turbulence, the small-scale flux is diminished,
compared to ϵK in proportion to the relative strength of the
waves, with a ¼ −1 at lowest order in the expansion,
corresponding to three-wave resonances. This argument is
compatible with the energy spectra for the purely rotating
case [32,33]. Similarly, one can argue that at fixed
stratification, the cascade rate to small scales is weaker
for stronger rotation.
However, the direct cascade of energy in RST is likely

dominated by stratification, following, e.g., the argument in
Ref. [34] that strong gradients develop in the vertical so that
the Froude number based on a vertical length scale is of
order one. On the other hand, one expects that the larger the
rotation, the more efficient the inverse cascade is, compared

to the direct cascade rate, irrespective of the strength of the
latter, so that at fixed stratification, RΠ ∼ RobjFr , b < 0 (see
also Ref. [9]). Indeed, in the presence of rotation, however
weak (but still with Ro < Roc, Roc ≃ 1 being a critical
Rossby number for the onset of an inverse cascade), there is
a channel for the energy to go to larger scales, in a
proportion that is greater for stronger rotation. Thus,
altogether and assuming for simplicity a ¼ b,

RΠ ¼ jϵL=ϵsj ∼ ½Fr × Ro#−1: ð4Þ

This phenomenological argument is corroborated by the
results of our study, summarized in Fig. 3 in the form of
three scatter plots. Each data point represents a run with
different parameters in the ranges 2 ≤ N=f ≤ 10.5,
0.02≤Fr≤ 0.14, 0.09 ≤ Ro ≤ 0.76, 6400 ≤ Re ≤ 39 000,
and 4 ≤ RB ≤ 313.
The simplest observation stemming from this extensive

high-resolution study is that the flux ratio varies substan-
tially. Also, for fixed Froude and Reynolds numbers, and
thus fixedRB, this ratio varies by 1 order of magnitude [see
the legend in Fig. 2(b)], indicating that RB is not the
determining parameter, provided it is large enough, but that
rotation plays an essential role in the energy distribution,
even if weak compared to stratification.
Five main trends are detected from these plots. (i) The

energy flux to large scales, relative to that to small scales,
becomes weaker (although it does not disappear entirely)
for larger N=f. (ii) However, for RB of order 17 or below
(data points with empty symbols), the ratio of fluxes
follows an unrelated trend, indicative of a different regime
[Fig. 3(a)]; the existence of RB-dependent regimes has
been advocated by several authors (see, e.g., Ref. [35]);
indeed, for RB < 1, the Ozmidov length scale at which
isotropy recovers is smaller than the dissipation scale, and
strong turbulence cannot develop. (iii) Setting aside the
high values of RB for N=f ¼ 2 (up to ∼300), and the
values lower than ≈17, the rest of the study is done for
26 ≤ RB ≤ 57, and in that range, RΠ displays a variation of
2 orders of magnitude determined by the intrinsic dynamics
of the flow, and notRB itself. (iv) A transition in the rate of
variation of RΠ with Froude number occurs around
½N=f#C ¼ 7 [Fig. 3(b)]. And (v) in roughly one third of
the runs, there is a dual energy transfer separately for the
kinetic and the potential modes, with negative fluxes at
large scales and positive at small scales. This is shown in
Fig. 3(c) (inset) where the flux ratio is also plotted
individually for EV and EP, the former dominating the
latter.
In Fig. 3(b) the data are plotted against Fr × Ro, as

suggested by the preceding phenomenological analysis
[Eq. (4)]. One sees that the points are rather well aligned,
with a slope close to −1 for moderate values of N=f. For
larger N=f, this slope is close to −2, indicative of two
regimes in N=f (see the inset). The origin of this transition
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N/f = 2  RΠ = 22.4

N/f = 4  RΠ = 4.4

N/f = 7  RΠ = 3.5

N/f = 10.5  RΠ = 1.7

FIG. 2 (color online). (a) Compensated kinetic energy spectra
with (in the inset) the time evolution of kinetic energy (solid line)
and of its (normalized) dissipation (dashed line); 30τNL ≈
600þN−1 for Fr ≈ 0.047, N=f ¼ 7, and Re ≈ 2 × 104. The large
scales follow a ∼k−5=3 spectrum, whereas at small scales,
EVðkÞ ∼ k−2.5; the spectra cross at kF ≈ 10.5. (b) Total energy
flux, normalized by ϵV ¼ hu · Fvi, for 2 ≤ N=f ≤ 10.5 and runs
with similar Froude and Reynolds numbers (0.045 ≤ Fr ≤ 0.047,
Re ≈ 2 × 104).
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Dual cascades

ϵK ¼ EV=τNL ¼ U3
0=LF is the energy transfer rate for

homogeneous isotropic turbulence. Indeed, we know that
in wave turbulence, the small-scale flux is diminished,
compared to ϵK in proportion to the relative strength of the
waves, with a ¼ −1 at lowest order in the expansion,
corresponding to three-wave resonances. This argument is
compatible with the energy spectra for the purely rotating
case [32,33]. Similarly, one can argue that at fixed
stratification, the cascade rate to small scales is weaker
for stronger rotation.
However, the direct cascade of energy in RST is likely

dominated by stratification, following, e.g., the argument in
Ref. [34] that strong gradients develop in the vertical so that
the Froude number based on a vertical length scale is of
order one. On the other hand, one expects that the larger the
rotation, the more efficient the inverse cascade is, compared

to the direct cascade rate, irrespective of the strength of the
latter, so that at fixed stratification, RΠ ∼ RobjFr , b < 0 (see
also Ref. [9]). Indeed, in the presence of rotation, however
weak (but still with Ro < Roc, Roc ≃ 1 being a critical
Rossby number for the onset of an inverse cascade), there is
a channel for the energy to go to larger scales, in a
proportion that is greater for stronger rotation. Thus,
altogether and assuming for simplicity a ¼ b,

RΠ ¼ jϵL=ϵsj ∼ ½Fr × Ro#−1: ð4Þ

This phenomenological argument is corroborated by the
results of our study, summarized in Fig. 3 in the form of
three scatter plots. Each data point represents a run with
different parameters in the ranges 2 ≤ N=f ≤ 10.5,
0.02≤Fr≤ 0.14, 0.09 ≤ Ro ≤ 0.76, 6400 ≤ Re ≤ 39 000,
and 4 ≤ RB ≤ 313.
The simplest observation stemming from this extensive

high-resolution study is that the flux ratio varies substan-
tially. Also, for fixed Froude and Reynolds numbers, and
thus fixedRB, this ratio varies by 1 order of magnitude [see
the legend in Fig. 2(b)], indicating that RB is not the
determining parameter, provided it is large enough, but that
rotation plays an essential role in the energy distribution,
even if weak compared to stratification.
Five main trends are detected from these plots. (i) The

energy flux to large scales, relative to that to small scales,
becomes weaker (although it does not disappear entirely)
for larger N=f. (ii) However, for RB of order 17 or below
(data points with empty symbols), the ratio of fluxes
follows an unrelated trend, indicative of a different regime
[Fig. 3(a)]; the existence of RB-dependent regimes has
been advocated by several authors (see, e.g., Ref. [35]);
indeed, for RB < 1, the Ozmidov length scale at which
isotropy recovers is smaller than the dissipation scale, and
strong turbulence cannot develop. (iii) Setting aside the
high values of RB for N=f ¼ 2 (up to ∼300), and the
values lower than ≈17, the rest of the study is done for
26 ≤ RB ≤ 57, and in that range, RΠ displays a variation of
2 orders of magnitude determined by the intrinsic dynamics
of the flow, and notRB itself. (iv) A transition in the rate of
variation of RΠ with Froude number occurs around
½N=f#C ¼ 7 [Fig. 3(b)]. And (v) in roughly one third of
the runs, there is a dual energy transfer separately for the
kinetic and the potential modes, with negative fluxes at
large scales and positive at small scales. This is shown in
Fig. 3(c) (inset) where the flux ratio is also plotted
individually for EV and EP, the former dominating the
latter.
In Fig. 3(b) the data are plotted against Fr × Ro, as

suggested by the preceding phenomenological analysis
[Eq. (4)]. One sees that the points are rather well aligned,
with a slope close to −1 for moderate values of N=f. For
larger N=f, this slope is close to −2, indicative of two
regimes in N=f (see the inset). The origin of this transition
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N/f = 2  RΠ = 22.4

N/f = 4  RΠ = 4.4

N/f = 7  RΠ = 3.5

N/f = 10.5  RΠ = 1.7

FIG. 2 (color online). (a) Compensated kinetic energy spectra
with (in the inset) the time evolution of kinetic energy (solid line)
and of its (normalized) dissipation (dashed line); 30τNL ≈
600þN−1 for Fr ≈ 0.047, N=f ¼ 7, and Re ≈ 2 × 104. The large
scales follow a ∼k−5=3 spectrum, whereas at small scales,
EVðkÞ ∼ k−2.5; the spectra cross at kF ≈ 10.5. (b) Total energy
flux, normalized by ϵV ¼ hu · Fvi, for 2 ≤ N=f ≤ 10.5 and runs
with similar Froude and Reynolds numbers (0.045 ≤ Fr ≤ 0.047,
Re ≈ 2 × 104).
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A speculative scaling
is not clear. There is a known change of regime in N=f,
attributed to the lack of resonant interactions in the range
1=2 ≤ N=f ≤ 2 [36]. One could argue that higher-order
wave terms in a weak-turbulence expansion would involve
interactions with more than three waves, thereby inducing a
shift in the transitional values of N=f, as well as resonance
broadening, and that might induce a shift in the behavior for
largerN=f. Another possibility is associated with finite size
effects, i.e., to the limited ratio between the forcing scale
and the overall size of the flow, or the Rossby deformation
radius.
The abyssal Southern Ocean.—This study is done in the

general context of the interactions between different types
of waves and turbulent eddies and their influence on the
overall distribution of energy in RST. When recasting it in
the specific context of the abyssal Southern Ocean at
midlatitudes, typical parameters are as follows. Lee-wave
generation due to bathymetry is known to occur at scales
between 200 and 2000 m, with a peak at 800 m [2],
so we take LF ¼ 450 m and an overall domain size of
4500 m. The amplitude of the forcing is such that the
mean geostrophic wind is U0 ¼ 0.02 m=s (see, e.g.,
Ref. [3]). Finally, we choose ν ¼ 4.5 × 10−4 m2 s−1, giving
Re ¼ 2 × 104; this value is imposed by the grid resolution
of the DNS and is still low compared to geophysical values.
This leads to a (Kolmogorov) energy dissipation rate of
ϵK ¼ U3

0=LF ≃ 1.8 × 10−8 m2 s−3 per unit mass, compa-
rable to, although larger than, measured values. The
Coriolis parameter is chosen as f ¼ 1.2 × 10−4 s−1, and
N ¼ 1.26 × 10−3 s−1 as determined by direct measure-
ments, for example, in the Drake passage [3], leading to
N=f ≈ 10.5. Thus, the Froude number is Fr ≈ 0.035,
RB ≃ 25, and the Rossby number is 0.37, large but still
leading to the occurrence of an inverse cascade [14]. The
value of the flux ratio extrapolated for Fr ¼ 0.035 and
Ro ¼ 0.37 using Fig. 3(b) is ≈4.1 (green star), within the
bounds of measured values in the ocean (from 3 to 7, as
reported in Refs. [12,13]) indicated by the green bar in
Fig. 3(b). For these parameters, Fr × Ro ¼ 0.013 and the
effective energy dissipation is ϵW∼ϵK×Fr≈6.3×10−10W.
Two effects are likely to be balancing each other in
achieving such a reasonable agreement of our simulations
with the observations. On the one hand, higherRB as found
in geophysical flows will likely lead to an equipartition of
fluxes [11]. But on the other hand, the fact that the ocean
and the atmosphere have a small aspect ratio may weaken
the direct cascade as found in Ref. [37]. Thus, above a
threshold in RB (here found ≈17), one enters a generic
turbulent regime modulated by waves and depending on a
balance between rotation and stratification. This suggests
that indeed small-scale dissipation can be parametrized
using the estimation of ϵW stemming from weak-turbulence
phenomenology and/or using measurements of RΠ.
Conclusion.—The balance between inverse and direct

energy fluxes in rotating stratified flows is found in this

(a)

(b)

(c)

FIG. 3 (color online). Scatter plots of RΠ as a function of (a) Fr
and (b),(c) Fr × Ro in lin-log and log-log coordinates, respectively.
(a) Points are labeled by their finalRB; the six runswith 20483 grids
have 16500 ≤ Re ≤ 39 000 (black symbols) while the others use a
10243 grid and 6400 ≤ Re ≤ 10 000 (blue symbols). (b) The six
runswith lowRB shown in (a)with empty symbols are eliminated in
(b) and (c); the same symbols are used, but colors now indicate three
ranges for N=f. The vertical green bar gives a plausible interval of
RΠ values for the ocean [12,13]. The inset gives the slope of the
variation ofRΠ with Fr × Ro for variousN=f. Error bars onRΠ are
based on the standard deviations associated with the averages of the
fluxes over about a decade of scales. (c) Scatter plot of the ratio of
kinetic energy fluxes (green symbols) or potential energy fluxes
(black symbols) RΠV;P

for flows with a bidirectional energy transfer
with negative flux for k < kF and positive for k > kF. The inset
shows energy fluxes for velocity (solid line) and temperature
(dashed line), for the same flow as in Fig. 2(a) (N=f ¼ 7).
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Rotating, stratified turbulence
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Questions

• Waves are energetic and directly 
forced.

• Boundary processes can produce 
small-scales.

• Non-uniform stratification, rotation?

“Intrinsic cascade” versus direct transfer to small-scales

Does direct forcing of waves change 
geostrophic turbulent dynamics?

Relationship between inhomogeneous and homogeneous 
dynamics?



Summary and questions
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Rotating, stratified turbulence

“3D”1

1

2D

“stratified turbulence”

“geostrophic turbulence”
Strong rotation, stronger stratification.

faster  
rotation

stronger 
stratification

weak rotation 
but strong stratification

Ro =

U

fL

Fr =
U

NL



The dual cascade

ϵK ¼ EV=τNL ¼ U3
0=LF is the energy transfer rate for

homogeneous isotropic turbulence. Indeed, we know that
in wave turbulence, the small-scale flux is diminished,
compared to ϵK in proportion to the relative strength of the
waves, with a ¼ −1 at lowest order in the expansion,
corresponding to three-wave resonances. This argument is
compatible with the energy spectra for the purely rotating
case [32,33]. Similarly, one can argue that at fixed
stratification, the cascade rate to small scales is weaker
for stronger rotation.
However, the direct cascade of energy in RST is likely

dominated by stratification, following, e.g., the argument in
Ref. [34] that strong gradients develop in the vertical so that
the Froude number based on a vertical length scale is of
order one. On the other hand, one expects that the larger the
rotation, the more efficient the inverse cascade is, compared

to the direct cascade rate, irrespective of the strength of the
latter, so that at fixed stratification, RΠ ∼ RobjFr , b < 0 (see
also Ref. [9]). Indeed, in the presence of rotation, however
weak (but still with Ro < Roc, Roc ≃ 1 being a critical
Rossby number for the onset of an inverse cascade), there is
a channel for the energy to go to larger scales, in a
proportion that is greater for stronger rotation. Thus,
altogether and assuming for simplicity a ¼ b,

RΠ ¼ jϵL=ϵsj ∼ ½Fr × Ro#−1: ð4Þ

This phenomenological argument is corroborated by the
results of our study, summarized in Fig. 3 in the form of
three scatter plots. Each data point represents a run with
different parameters in the ranges 2 ≤ N=f ≤ 10.5,
0.02≤Fr≤ 0.14, 0.09 ≤ Ro ≤ 0.76, 6400 ≤ Re ≤ 39 000,
and 4 ≤ RB ≤ 313.
The simplest observation stemming from this extensive

high-resolution study is that the flux ratio varies substan-
tially. Also, for fixed Froude and Reynolds numbers, and
thus fixedRB, this ratio varies by 1 order of magnitude [see
the legend in Fig. 2(b)], indicating that RB is not the
determining parameter, provided it is large enough, but that
rotation plays an essential role in the energy distribution,
even if weak compared to stratification.
Five main trends are detected from these plots. (i) The

energy flux to large scales, relative to that to small scales,
becomes weaker (although it does not disappear entirely)
for larger N=f. (ii) However, for RB of order 17 or below
(data points with empty symbols), the ratio of fluxes
follows an unrelated trend, indicative of a different regime
[Fig. 3(a)]; the existence of RB-dependent regimes has
been advocated by several authors (see, e.g., Ref. [35]);
indeed, for RB < 1, the Ozmidov length scale at which
isotropy recovers is smaller than the dissipation scale, and
strong turbulence cannot develop. (iii) Setting aside the
high values of RB for N=f ¼ 2 (up to ∼300), and the
values lower than ≈17, the rest of the study is done for
26 ≤ RB ≤ 57, and in that range, RΠ displays a variation of
2 orders of magnitude determined by the intrinsic dynamics
of the flow, and notRB itself. (iv) A transition in the rate of
variation of RΠ with Froude number occurs around
½N=f#C ¼ 7 [Fig. 3(b)]. And (v) in roughly one third of
the runs, there is a dual energy transfer separately for the
kinetic and the potential modes, with negative fluxes at
large scales and positive at small scales. This is shown in
Fig. 3(c) (inset) where the flux ratio is also plotted
individually for EV and EP, the former dominating the
latter.
In Fig. 3(b) the data are plotted against Fr × Ro, as

suggested by the preceding phenomenological analysis
[Eq. (4)]. One sees that the points are rather well aligned,
with a slope close to −1 for moderate values of N=f. For
larger N=f, this slope is close to −2, indicative of two
regimes in N=f (see the inset). The origin of this transition
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N/f = 2  RΠ = 22.4

N/f = 4  RΠ = 4.4

N/f = 7  RΠ = 3.5

N/f = 10.5  RΠ = 1.7

FIG. 2 (color online). (a) Compensated kinetic energy spectra
with (in the inset) the time evolution of kinetic energy (solid line)
and of its (normalized) dissipation (dashed line); 30τNL ≈
600þN−1 for Fr ≈ 0.047, N=f ¼ 7, and Re ≈ 2 × 104. The large
scales follow a ∼k−5=3 spectrum, whereas at small scales,
EVðkÞ ∼ k−2.5; the spectra cross at kF ≈ 10.5. (b) Total energy
flux, normalized by ϵV ¼ hu · Fvi, for 2 ≤ N=f ≤ 10.5 and runs
with similar Froude and Reynolds numbers (0.045 ≤ Fr ≤ 0.047,
Re ≈ 2 × 104).
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The other dimensionless parameters are the Reynolds,
Rossby, and Froude numbers and the buoyancy Reynolds:

Re¼U0LF

ν
; Ro¼ U0

LFf
; Fr¼ U0

LFN
; RB ¼ReFr2;

ð3Þ

with U0 and LF characteristic velocity and length scales.
The momentum forcing Fv is random, three dimensional,
and isotropic; it is applied in the shells kF ¼ 2π=LF ∈
ð10; 11Þ for all runs but one, for which kF ∈ ð7; 8Þ. The
equations are solved in a triply periodic cubic domain of 2π
dimension with n3p points; time evolution is done with a
second-order Runge-Kutta scheme, and we use the
Geophysical High-Order Suite for Turbulence (GHOST)
hybrid-parallelized code [18]. In the ocean, salinity and
temperature contribute to density variations; mixing is due
to a combination of shear instability, gravity-wave steep-
ening, and double diffusion leading to salt fingering [19],
but the convective instability itself may not be the main
feature when compared to baroclinic instabilities. Thus, as
a first step in our study, salinity is not included. Taking the
Fourier transform of Eq. (2), one defines the kinetic
isotropic energy flux:

ΠVðkÞ ¼
Z

k

kmin

TVðqÞdq; TVðqÞ ¼ −
X

Cq

û⋆
q · dðu ·∇uÞq

with Cq the shell q ≤ jqj < qþ 1; ΠP ¼ −dtEP is com-
puted in a similar way. The total flux is Π ¼ ΠV þ ΠP,
with

R
k
0 ΠðpÞdp ¼ −dtE.

A dual constant-flux energy cascade.—The development
of both large and small scales in RST flows can be observed
on the vertical vorticity field ½ωz ¼ ∇ × v& · êz shown in
Fig. 1(a) (with êz the unit vector in the vertical direction,
collinear with rotation and gravity), as well as on the
vertical velocity [11]. The snapshot in Fig. 1(a) is for a
flow on grid of 20483 points N=f ¼ 10.5, Re ≈ 2 × 104,
and Fr ≈ 0.047. The simultaneous presence of
small-scale and large-scale features can be diagnosed
on the temporal evolution of the integral scales
LX
int ¼

R
½EXðkÞ=k&dk=

R
EXðkÞdk, with X ¼ V or X ¼ P,

displayed in Fig. 1(b) and associated with the kinetic and
potential energy spectra EV;PðkÞ. In a three-dimensional
turbulent flow, LV

int grows slowly with time [6]. Here, the
scale associated with velocity fluctuations LV

int grows
quasilinearly, typical of vortex mergers, whereas LP

int has
a slower growth (see also Ref. [20]). We show in Fig. 2(a)
the kinetic isotropic energy spectrum at the final time of a
run with N=f ¼ 7 and t=τNL ¼ 29, where τNL ¼ LF=U0 is
the turnover time; it is compensated either by αϵ2=3V k−5=3 or
by αϵ2=3V k−2.5, with ϵV ¼ hu · Fvi and α being a proportion-
ality constant. Two ranges clearly appear, separated by kF.
The large-scale inertial index corresponds to that of the

inverse cascade of energy in two-dimensional flows [26],
and the Kolmogorov constant, read from the vertical axis of
Fig. 2(a), is C0 ≈ 10, close to the classic case of 2D
turbulence, for which C0 ≈ 7 is found [27].
The small-scale spectrum is steep, as seen in numerous

computations [28–30] and oceanic observations [13,31]. It
is argued in Ref. [31] that these variations are compatible
with the weak-turbulence theory for such flows. The inset
gives the temporal variation of the scaled dissipation and
kinetic energy for that run, with an energy growth typical of
inverse cascades.
Scaling model for the energy-flux ratio.—One observes

different spectra in the wave-turbulence regime, the cascade
rate to small scales being smaller the smaller the Froude
number. This can be seen through a simple dimensional
argument, when modeling the slowing-down of nonlinear
interactions in the presence of waves, by stating that the
transfer time of energy is longer than the turnover time τNL
as τtr ¼ τNL × Fra, a < 0; thus, ϵs ¼ ϵK × Fr−a, where
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FIG. 1 (color online). (a) Horizontal cut of vertical vorticity:
one observes large-scale filaments and small-scale gradients,
together with intense localized vortex streets as seen, e.g., for
x ¼ 1700 and y ¼ 300. (b) Time evolution of integral scales
based on velocity (circles) and temperature (triangles) for the
same run. After an initial transient phase, the former grows
significantly in time, while the latter has a slow growth.
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“Dual cascades”

ϵK ¼ EV=τNL ¼ U3
0=LF is the energy transfer rate for

homogeneous isotropic turbulence. Indeed, we know that
in wave turbulence, the small-scale flux is diminished,
compared to ϵK in proportion to the relative strength of the
waves, with a ¼ −1 at lowest order in the expansion,
corresponding to three-wave resonances. This argument is
compatible with the energy spectra for the purely rotating
case [32,33]. Similarly, one can argue that at fixed
stratification, the cascade rate to small scales is weaker
for stronger rotation.
However, the direct cascade of energy in RST is likely

dominated by stratification, following, e.g., the argument in
Ref. [34] that strong gradients develop in the vertical so that
the Froude number based on a vertical length scale is of
order one. On the other hand, one expects that the larger the
rotation, the more efficient the inverse cascade is, compared

to the direct cascade rate, irrespective of the strength of the
latter, so that at fixed stratification, RΠ ∼ RobjFr , b < 0 (see
also Ref. [9]). Indeed, in the presence of rotation, however
weak (but still with Ro < Roc, Roc ≃ 1 being a critical
Rossby number for the onset of an inverse cascade), there is
a channel for the energy to go to larger scales, in a
proportion that is greater for stronger rotation. Thus,
altogether and assuming for simplicity a ¼ b,

RΠ ¼ jϵL=ϵsj ∼ ½Fr × Ro#−1: ð4Þ

This phenomenological argument is corroborated by the
results of our study, summarized in Fig. 3 in the form of
three scatter plots. Each data point represents a run with
different parameters in the ranges 2 ≤ N=f ≤ 10.5,
0.02≤Fr≤ 0.14, 0.09 ≤ Ro ≤ 0.76, 6400 ≤ Re ≤ 39 000,
and 4 ≤ RB ≤ 313.
The simplest observation stemming from this extensive

high-resolution study is that the flux ratio varies substan-
tially. Also, for fixed Froude and Reynolds numbers, and
thus fixedRB, this ratio varies by 1 order of magnitude [see
the legend in Fig. 2(b)], indicating that RB is not the
determining parameter, provided it is large enough, but that
rotation plays an essential role in the energy distribution,
even if weak compared to stratification.
Five main trends are detected from these plots. (i) The

energy flux to large scales, relative to that to small scales,
becomes weaker (although it does not disappear entirely)
for larger N=f. (ii) However, for RB of order 17 or below
(data points with empty symbols), the ratio of fluxes
follows an unrelated trend, indicative of a different regime
[Fig. 3(a)]; the existence of RB-dependent regimes has
been advocated by several authors (see, e.g., Ref. [35]);
indeed, for RB < 1, the Ozmidov length scale at which
isotropy recovers is smaller than the dissipation scale, and
strong turbulence cannot develop. (iii) Setting aside the
high values of RB for N=f ¼ 2 (up to ∼300), and the
values lower than ≈17, the rest of the study is done for
26 ≤ RB ≤ 57, and in that range, RΠ displays a variation of
2 orders of magnitude determined by the intrinsic dynamics
of the flow, and notRB itself. (iv) A transition in the rate of
variation of RΠ with Froude number occurs around
½N=f#C ¼ 7 [Fig. 3(b)]. And (v) in roughly one third of
the runs, there is a dual energy transfer separately for the
kinetic and the potential modes, with negative fluxes at
large scales and positive at small scales. This is shown in
Fig. 3(c) (inset) where the flux ratio is also plotted
individually for EV and EP, the former dominating the
latter.
In Fig. 3(b) the data are plotted against Fr × Ro, as

suggested by the preceding phenomenological analysis
[Eq. (4)]. One sees that the points are rather well aligned,
with a slope close to −1 for moderate values of N=f. For
larger N=f, this slope is close to −2, indicative of two
regimes in N=f (see the inset). The origin of this transition
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N/f = 2  RΠ = 22.4
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FIG. 2 (color online). (a) Compensated kinetic energy spectra
with (in the inset) the time evolution of kinetic energy (solid line)
and of its (normalized) dissipation (dashed line); 30τNL ≈
600þN−1 for Fr ≈ 0.047, N=f ¼ 7, and Re ≈ 2 × 104. The large
scales follow a ∼k−5=3 spectrum, whereas at small scales,
EVðkÞ ∼ k−2.5; the spectra cross at kF ≈ 10.5. (b) Total energy
flux, normalized by ϵV ¼ hu · Fvi, for 2 ≤ N=f ≤ 10.5 and runs
with similar Froude and Reynolds numbers (0.045 ≤ Fr ≤ 0.047,
Re ≈ 2 × 104).
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Figure 3. Time series of shear mode kinetic energy for different Rossby numbers without
large-scale damping. When damping is employed, the growth is slightly enhanced.
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Figure 4. The time-averaged vortical, wave and shear mode kinetic energy as defined in § 2
for the simulations with large-scale damping.

The time-averaged vortical, wave and shear mode energies are plotted against Rou

in figure 4. Vortical energy dominates in all cases, but when Rou > 1 there is also
significant wave and shear energy (this problem was considered in detail in Waite &
Bartello 2004). The presence of rotation enhances the amount of vortical energy at
statistical stationarity, and the vortical energy increases with decreasing Rossby
number below Rou ≈ 1. The dependence on Rossby number appears to weaken
as Rou → 0 when almost all the injected energy is transferred upscale. The shear mode
kinetic energy decreases with decreasing Rou when Rou < 1. The wave energy, by
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Figure 1. Time series of vortical energy for different Rou, (a) without and (b) with
large-scale damping. At each time, the energy increases with decreasing Rou.

4. Results: fixed N

Time series of vortical energy (with and without large-scale damping) are shown in
figure 1. The total energy of the flow has vortical, wave and shear mode contributions,
which are given by

E(0) =
1

2

∑

kh ̸=0

∣∣B (0)
k

∣∣2, (4.1a)

E(±) =
1

2

∑

kh ̸=0

∣∣B (+)
k

∣∣2 +
∣∣B (−)

k

∣∣2, (4.1b)

E(S) =
1

2

∑

kh=0

|ûk|2 + |v̂k|2 + |b̂′
k|2/N2. (4.1c)

Below we will consider only the kinetic energy in E(S); this is the quantity that
was found to grow by Smith & Waleffe (2002) and that corresponds to the energy of
inertial oscillations when f ̸=0. Vortical energy is injected directly by the forcing, while
wave and shear energy are generated via nonlinear interactions. Even without large-
scale damping, statistical stationarity is obtained when Rou ! 0.39. At smaller Rossby
numbers, though, vortical energy grows systematically along the entire integration
when no large-scale damping is employed. With damping, stationary time series

“shear”



“Dual cascades”

is not clear. There is a known change of regime in N=f,
attributed to the lack of resonant interactions in the range
1=2 ≤ N=f ≤ 2 [36]. One could argue that higher-order
wave terms in a weak-turbulence expansion would involve
interactions with more than three waves, thereby inducing a
shift in the transitional values of N=f, as well as resonance
broadening, and that might induce a shift in the behavior for
largerN=f. Another possibility is associated with finite size
effects, i.e., to the limited ratio between the forcing scale
and the overall size of the flow, or the Rossby deformation
radius.
The abyssal Southern Ocean.—This study is done in the

general context of the interactions between different types
of waves and turbulent eddies and their influence on the
overall distribution of energy in RST. When recasting it in
the specific context of the abyssal Southern Ocean at
midlatitudes, typical parameters are as follows. Lee-wave
generation due to bathymetry is known to occur at scales
between 200 and 2000 m, with a peak at 800 m [2],
so we take LF ¼ 450 m and an overall domain size of
4500 m. The amplitude of the forcing is such that the
mean geostrophic wind is U0 ¼ 0.02 m=s (see, e.g.,
Ref. [3]). Finally, we choose ν ¼ 4.5 × 10−4 m2 s−1, giving
Re ¼ 2 × 104; this value is imposed by the grid resolution
of the DNS and is still low compared to geophysical values.
This leads to a (Kolmogorov) energy dissipation rate of
ϵK ¼ U3

0=LF ≃ 1.8 × 10−8 m2 s−3 per unit mass, compa-
rable to, although larger than, measured values. The
Coriolis parameter is chosen as f ¼ 1.2 × 10−4 s−1, and
N ¼ 1.26 × 10−3 s−1 as determined by direct measure-
ments, for example, in the Drake passage [3], leading to
N=f ≈ 10.5. Thus, the Froude number is Fr ≈ 0.035,
RB ≃ 25, and the Rossby number is 0.37, large but still
leading to the occurrence of an inverse cascade [14]. The
value of the flux ratio extrapolated for Fr ¼ 0.035 and
Ro ¼ 0.37 using Fig. 3(b) is ≈4.1 (green star), within the
bounds of measured values in the ocean (from 3 to 7, as
reported in Refs. [12,13]) indicated by the green bar in
Fig. 3(b). For these parameters, Fr × Ro ¼ 0.013 and the
effective energy dissipation is ϵW∼ϵK×Fr≈6.3×10−10W.
Two effects are likely to be balancing each other in
achieving such a reasonable agreement of our simulations
with the observations. On the one hand, higherRB as found
in geophysical flows will likely lead to an equipartition of
fluxes [11]. But on the other hand, the fact that the ocean
and the atmosphere have a small aspect ratio may weaken
the direct cascade as found in Ref. [37]. Thus, above a
threshold in RB (here found ≈17), one enters a generic
turbulent regime modulated by waves and depending on a
balance between rotation and stratification. This suggests
that indeed small-scale dissipation can be parametrized
using the estimation of ϵW stemming from weak-turbulence
phenomenology and/or using measurements of RΠ.
Conclusion.—The balance between inverse and direct

energy fluxes in rotating stratified flows is found in this

(a)

(b)

(c)

FIG. 3 (color online). Scatter plots of RΠ as a function of (a) Fr
and (b),(c) Fr × Ro in lin-log and log-log coordinates, respectively.
(a) Points are labeled by their finalRB; the six runswith 20483 grids
have 16500 ≤ Re ≤ 39 000 (black symbols) while the others use a
10243 grid and 6400 ≤ Re ≤ 10 000 (blue symbols). (b) The six
runswith lowRB shown in (a)with empty symbols are eliminated in
(b) and (c); the same symbols are used, but colors now indicate three
ranges for N=f. The vertical green bar gives a plausible interval of
RΠ values for the ocean [12,13]. The inset gives the slope of the
variation ofRΠ with Fr × Ro for variousN=f. Error bars onRΠ are
based on the standard deviations associated with the averages of the
fluxes over about a decade of scales. (c) Scatter plot of the ratio of
kinetic energy fluxes (green symbols) or potential energy fluxes
(black symbols) RΠV;P

for flows with a bidirectional energy transfer
with negative flux for k < kF and positive for k > kF. The inset
shows energy fluxes for velocity (solid line) and temperature
(dashed line), for the same flow as in Fig. 2(a) (N=f ¼ 7).
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