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The Idea:

The same arguments by which we convince ourselves that
the energy in two-dimensional turbulence moves to larger scales
also predict:

1. Mesoscale energy in the ocean moves toward the equator
and into barotropic mode.
2. At the equator, the energy is equipartitioned among vertical modes.
               This explains the "deep equatorial jets."



Villa Montesaro



View of Lake Como



Two-dimensional turbulence

∂
∂t
∇2ψ + J ψ ,∇2ψ( ) = 0

Conserves:

Energy = 1
2

dx∫∫ ∇ψ ⋅∇ψ = dk
0

∞

∫ E k( )

Enstrophy = 1
2

dx∫∫ ∇2ψ( )2
= dk

0

∞

∫ k2E k( )

Energy moves to smaller k.  Enstrophy moves to larger k.



Two-layer QG turbulence
∂qi
∂t

+ J ψ i ,qi( ) = 0

top layer   q1 = ∇2ψ 1 +
1
2
kR

2 ψ 2 −ψ 1( ) + βy

bottom layer   q2 = ∇2ψ 2 +
1
2
kR

2 ψ 1 −ψ 2( ) + βy, kR
2 ≡

2 f0
2

g 'H
Simplifying assumptions:
1. Equal mean layer depths H
2. Flat bottom, rigid lid
3. Channel geometry
Conserves:

Energy = 1
2

dx∫∫ ∇ψ 1 ⋅∇ψ 1 +∇ψ 2 ⋅∇ψ 2 +
1
2
kR

2 ψ 1 −ψ 2( )2⎛
⎝⎜

⎞
⎠⎟

Potential enstrophies = 1
2

dx∫∫ qi
2 assumed equal ( for simplicity)



Introduce vertical modes:

ψ 1 x, y,t( )
ψ 2 x, y,t( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=ψ x, y,t( ) 1

1
⎡

⎣
⎢

⎤

⎦
⎥ + τ x, y,t( ) 1

−1
⎡

⎣
⎢

⎤

⎦
⎥

then :

Energy:    dx∫∫ ∇ψ ⋅∇ψ +∇τ ⋅∇τ + kR
2 τ 2( ) = dk∫ U k( ) + T k( )( )

Potential Enstrophy:    dx∫∫ ∇2ψ( )2
+ ∇2τ − kR

2 τ( )2( ) = dk∫ k2U k( ) + k2 + kR
2( )T k( )( )

The conservation laws take the same form as in 2DT, but:
The barotropic modes have a wavenumber (squared) of k2

The baroclinic modes have an effective wavenumber (squared) of k2 + kR
2

This puts the baroclinic modes at a disadvantage:
At horizontal scales larger then the deformation radius, 
energy should concentrate in barotropic mode.



 

M  vertical modes (or layers):
ψ 0 x, y,t( )   (formerly ψ )  barotropic mode (no zero crossings)
ψ 1 x, y,t( )   (formerly τ )  first baroclinic mode (1 zero crossing)


ψ n x, y,t( )    nth baroclinic mode (n zero crossings)

 

Energy = dk∫ E0 k( ) + E1 k( ) + E2 k( ) +( )
Potential Enstrophy = dk∫ k2E0 k( ) + k2 + k1

2( )E1 k( ) + k2 + k2
2( )E2 k( ) +( )

kn ≡
nπ f0
NH

, H =  total depth, N =  Vaisala frequency (assumed uniform)

The higher baroclinic modes are even more brutally penalized then the first baroclinic mode.

At midlatitudes, all energy eventually becomes barotropic.



M  The most convincing argument for this involves equilibrium statistical mechanics:

For 2DT  (Kraichnan, 1967), E k( ) = k
α + γ k2

For 2LT,         U k( ) = k
α + γ k2 , T k( ) = k

α + γ k2 + kR
2( )

For M  vertical modes, En k( ) = k

α + γ k2 + n
2π 2 f0

2

N 2H 2

⎛
⎝⎜

⎞
⎠⎟

 

Suppose that we replace f → βy

Then En k, y( ) = k

α + γ k2 + n
2π 2β 2y2

N 2H 2

⎛
⎝⎜

⎞
⎠⎟

For n > 0, En k( )  increases toward the equator.

What happens at y = 0?
There is an equatorial peak in En k, y( ).

The width of the peak is obtained by equating k2  and n
2π 2β 2y2

N 2H 2  with  k  1
y

That is, the equatorial peak in En k, y( )  has a width equal to the n-th deformation radius.



ψ n x, y,t( )  in a 6-layer QG equatorial channel

n = 0

t = 23 weekst = 3.3 weekst = 0

n = 1

n = 3

n = 5
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Luyten & Swallow (1976)



[6] In recent years nonlinear mechanisms have also been
proposed to explain the stacked jets. Muench and Kunze
[1999] and Muench and Kunze [2000] showed that energy
can be transferred from the internal wave field to the
equatorial stacked jets by momentum flux divergence in
vertical critical layers (given by the large-scale flow). This
process could thus sustain the stacked jets despite energy
loss due to dissipation within the jets and energy reflection
at meridional boundaries. Hua et al. [1997] suggest sym-
metric instability of the large-scale mean flow to generate
the stacked jets. Symmetric instability is a well known feature
in convective situations of the atmosphere [Emanuel, 1994]
and the ocean [Haine and Marshall, 1998]. Near the
equator, however, zonal flow in the stratified interior can
also become symmetrically unstable, when the horizontal
(or vertical) shear of the flow is sufficiently strong (and of
required sign) [Stevens, 1983]. Send et al. [2002] found
some observational support of this mechanism, although it
remained unclear if the shear of the mean flow (or its
seasonal cycle) in the interior of the ocean becomes strong
enough to achieve significantly large growth rates of the
instability [d’Orgeville et al., 2004]. Furthermore, simple
symmetric instability theory predicts that the fastest grow-
ing modes are those with infinite vertical wave number in
disagreement with observations.
[7] More recently, B. L. Hua et al. (Destabilization of

mixed rossby gravity waves and equatorial zonal jets for-
mation, submitted to Journal of Fluid Mechanics, 2008)
pointed out that since short Rossby and Yanai waves are
unstable against perturbations [Gill, 1974], they may interact

with long high baroclinic mode Kelvin waves, forming the
observed stacked jets. Hua et al. (submitted manuscript,
2008) describe how such an instability can lead to an energy
transfer from short (Yanai and Rossby waves) to large (high
baroclinic mode Kelvin waves, i.e., stacked jets) horizontal
scales, indicative of an inverse energy cascade, i.e., putting
the stacked jets into the context geostrophic turbulence.
[8] Here we revisit the equatorial stacked jets using both

observational results and numerical model simulations.
Using a large database of available direct current observa-
tions at 35!W, we are able to confidently describe the
characteristic horizontal, vertical and temporal scales of
the jets in the western equatorial Atlantic Ocean in the
following section. In section 3 we discuss realistic general
circulation model simulations with very high vertical reso-
lution, that are beginning to show high baroclinic mode
flow features that are comparable to the observed stacked
jets. Possible generation mechanisms of the stacked jets are
assessed using sensitivity experiments with the numerical
models and are discussed in section 4. Finally, a summary
and a discussion of our conclusions is presented in the last
section.

2. Observed Structure of the Stacked Jets

[9] The mean zonal circulation in the equatorial Atlantic
exhibits a rather complex zonal current structure, in partic-
ular at middepth. This is illustrated in Figure 1a where the
mean circulation at 35!W compiled from observations from
16 individual ship surveys carried out between 1990 and

Figure 1. (a) Mean zonal flow at 35!W determined from 16 repeat sections. Color contours change
every 5 cm s!1 while black contour lines indicate changes in velocities of 10 cm s!1. (b) Instantaneous
zonal velocity section as observed in May 2003 from which the zonal flow of the first nine vertical modes
has been removed. Stations spacing was 1/3! within 2! of the equator and 1/2! elsewhere. Color contour
interval is 2 cm/s, while black lines separate velocities increased by 5 cm/s. Data from depths below
3850 m are not displayed. (c) Instantaneous zonal velocity from which the first nine vertical modes has
been removed in a model simulation (experiment 1/12–94). Contour interval is identical to Figure 1b.
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Two-layer Turbulence
64 x 64 gridpoints, H1 / H2 = 1 / 7, U1 /U2 = 4 /1

Initially uncorrelated streamfunctions


