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A puzzle of oceanic dynamics is the contrast between the observed geostrophic balance, involving
gravity, pressure gradient, and Coriolis forces, and the necessary turbulent transport: in the former case,
energy flows to large scales, leading to spectral condensation, whereas in the latter, it is transferred to small
scales, where dissipation prevails. The known bidirectional constant-flux energy cascade maintaining both
geostrophic balance and mixing tends towards flux equilibration as turbulence strengthens, contradicting
models and recent observations which find a dominant large-scale flux. Analyzing a large ensemble of
high-resolution direct numerical simulations of the Boussinesq equations in the presence of rotation and no
salinity, we show that the ratio of the dual energy flux to large and to small scales agrees with observations,
and we predict that it scales with the inverse of the Froude and Rossby numbers when stratification is
(realistically) stronger than rotation. Furthermore, we show that the kinetic and potential energies
separately undergo a bidirectional transfer to larger and smaller scales. Altogether, this allows for small-
scale mixing which drives the global oceanic circulation and will thus potentially lead to more accurate
modeling of climate dynamics.
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Solar heating, tides, and wind stresses are global-scale
energy inputs [1], while in the Southern Ocean, topo-
graphic gravity waves provide a small-scale source [2],
contributing roughly 50% of its energy [3]. The global
ocean acts in a coherent, though complex, fashion from the
planetary to the dissipation scale ≈1mm, with different
phenomena interacting like inertia-gravity waves and non-
linear structures such as eddies, zonal jets [4], or fronts [5].
It is known that inverse and direct cascades, respectively, to
large and small scales as observed in geophysical fluids [6]
and heliospheric plasmas [7,8] can coexist in the purely
rotating case [9], as well as in oceanic models [10]. It was
shown recently that a dual constant-flux cascade of energy
to both large scales and small scales occurs in rotating
stratified turbulence (RST) [11]. Moreover, the ratio
RΠ ¼ jϵL=ϵsj of the total energy fluxes to large and small
scales ϵL and ϵs tends to unity as turbulence becomes
dominant as is the case in geophysical and astrophysical
fluid dynamics [11]. However, recent studies using altim-
eter data analyzing sea-surface height in the Southern
Ocean, sea-surface height being a proxy for the horizontal
velocity field of near-surface currents, and numerical
modeling introducing a positive eddy viscosity to represent
the effect of the direct energy cascade, show that RΠ
remains typically between the values 3 and 7 [12,13].
What is the origin of this discrepancy? To answer this

question we develop a simple model and conduct an
unprecedented study of this problem by means of high-
resolution direct numerical simulations (DNS) of the

rotating stably stratified Boussinesq equations. Altogether,
26 runswere performed, 6 on grids of 20483 points and20 on
grids of 10243 points. Rotation plays an essential role in the
building-up of large scales, e.g., through vortex mergers.
However, for purely stratified flows, this phenomenon
disappears and sharp vertical gradients develop instead.
In RST, the disappearance of the inverse cascade, diagnosed
through the absence of energy growth in time, appears for
large N=f [14–16], which is thus a key parameter varying
widely, from ≈10 or less in the abyssal Southern Ocean at
midlatitude to ≈100 or more in the stratosphere; N is the
Brunt-Väisälä frequency of gravity waves and f ¼ 2Ω that
of inertial waves, Ω being the rotation rate.
Equations.—We integrate the Boussinesq equations for

an incompressible velocity field u, with ∇ · u ¼ 0:

∂u
∂t þ Nθẑþ fẑ × u − ν∇2u − Fv ¼ −∇p − u ·∇u; ð1Þ

∂θ
∂t − Nu · ẑ − κ∇2θ ¼ −u · ∇θ: ð2Þ

θ represents temperature (or density) fluctuations. With ∂zθ̄

the background imposed stratification, N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g∂zθ̄=θ0

p
;

p is the pressure normalized to a unit mass density, and
Pr ¼ ν=κ is the Prandtl number, with ν the kinematic
viscosity and κ the diffusivity. We take Pr ¼ 1, as suggested
by the framework of the renormalization group [17].
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The other dimensionless parameters are the Reynolds,
Rossby, and Froude numbers and the buoyancy Reynolds:

Re¼U0LF

ν
; Ro¼ U0

LFf
; Fr¼ U0

LFN
; RB ¼ReFr2;

ð3Þ

with U0 and LF characteristic velocity and length scales.
The momentum forcing Fv is random, three dimensional,
and isotropic; it is applied in the shells kF ¼ 2π=LF ∈
ð10; 11Þ for all runs but one, for which kF ∈ ð7; 8Þ. The
equations are solved in a triply periodic cubic domain of 2π
dimension with n3p points; time evolution is done with a
second-order Runge-Kutta scheme, and we use the
Geophysical High-Order Suite for Turbulence (GHOST)
hybrid-parallelized code [18]. In the ocean, salinity and
temperature contribute to density variations; mixing is due
to a combination of shear instability, gravity-wave steep-
ening, and double diffusion leading to salt fingering [19],
but the convective instability itself may not be the main
feature when compared to baroclinic instabilities. Thus, as
a first step in our study, salinity is not included. Taking the
Fourier transform of Eq. (2), one defines the kinetic
isotropic energy flux:

ΠVðkÞ ¼
Z

k

kmin

TVðqÞdq; TVðqÞ ¼ −
X
Cq

û⋆
q · dðu ·∇uÞq

with Cq the shell q ≤ jqj < qþ 1; ΠP ¼ −dtEP is com-
puted in a similar way. The total flux is Π ¼ ΠV þ ΠP,
with

R
k
0 ΠðpÞdp ¼ −dtE.

A dual constant-flux energy cascade.—The development
of both large and small scales in RST flows can be observed
on the vertical vorticity field ½ωz ¼ ∇ × v� · êz shown in
Fig. 1(a) (with êz the unit vector in the vertical direction,
collinear with rotation and gravity), as well as on the
vertical velocity [11]. The snapshot in Fig. 1(a) is for a
flow on grid of 20483 points N=f ¼ 10.5, Re ≈ 2 × 104,
and Fr ≈ 0.047. The simultaneous presence of
small-scale and large-scale features can be diagnosed
on the temporal evolution of the integral scales
LX
int ¼

R ½EXðkÞ=k�dk=
R
EXðkÞdk, with X ¼ V or X ¼ P,

displayed in Fig. 1(b) and associated with the kinetic and
potential energy spectra EV;PðkÞ. In a three-dimensional
turbulent flow, LV

int grows slowly with time [6]. Here, the
scale associated with velocity fluctuations LV

int grows
quasilinearly, typical of vortex mergers, whereas LP

int has
a slower growth (see also Ref. [20]). We show in Fig. 2(a)
the kinetic isotropic energy spectrum at the final time of a
run with N=f ¼ 7 and t=τNL ¼ 29, where τNL ¼ LF=U0 is
the turnover time; it is compensated either by αϵ2=3V k−5=3 or
by αϵ2=3V k−2.5, with ϵV ¼ hu · Fvi and α being a proportion-
ality constant. Two ranges clearly appear, separated by kF.
The large-scale inertial index corresponds to that of the

inverse cascade of energy in two-dimensional flows [26],
and the Kolmogorov constant, read from the vertical axis of
Fig. 2(a), is C0 ≈ 10, close to the classic case of 2D
turbulence, for which C0 ≈ 7 is found [27].
The small-scale spectrum is steep, as seen in numerous

computations [28–30] and oceanic observations [13,31]. It
is argued in Ref. [31] that these variations are compatible
with the weak-turbulence theory for such flows. The inset
gives the temporal variation of the scaled dissipation and
kinetic energy for that run, with an energy growth typical of
inverse cascades.
Scaling model for the energy-flux ratio.—One observes

different spectra in the wave-turbulence regime, the cascade
rate to small scales being smaller the smaller the Froude
number. This can be seen through a simple dimensional
argument, when modeling the slowing-down of nonlinear
interactions in the presence of waves, by stating that the
transfer time of energy is longer than the turnover time τNL
as τtr ¼ τNL × Fra, a < 0; thus, ϵs ¼ ϵK × Fr−a, where
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FIG. 1 (color online). (a) Horizontal cut of vertical vorticity:
one observes large-scale filaments and small-scale gradients,
together with intense localized vortex streets as seen, e.g., for
x ¼ 1700 and y ¼ 300. (b) Time evolution of integral scales
based on velocity (circles) and temperature (triangles) for the
same run. After an initial transient phase, the former grows
significantly in time, while the latter has a slow growth.
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ϵK ¼ EV=τNL ¼ U3
0=LF is the energy transfer rate for

homogeneous isotropic turbulence. Indeed, we know that
in wave turbulence, the small-scale flux is diminished,
compared to ϵK in proportion to the relative strength of the
waves, with a ¼ −1 at lowest order in the expansion,
corresponding to three-wave resonances. This argument is
compatible with the energy spectra for the purely rotating
case [32,33]. Similarly, one can argue that at fixed
stratification, the cascade rate to small scales is weaker
for stronger rotation.
However, the direct cascade of energy in RST is likely

dominated by stratification, following, e.g., the argument in
Ref. [34] that strong gradients develop in the vertical so that
the Froude number based on a vertical length scale is of
order one. On the other hand, one expects that the larger the
rotation, the more efficient the inverse cascade is, compared

to the direct cascade rate, irrespective of the strength of the
latter, so that at fixed stratification, RΠ ∼ RobjFr , b < 0 (see
also Ref. [9]). Indeed, in the presence of rotation, however
weak (but still with Ro < Roc, Roc ≃ 1 being a critical
Rossby number for the onset of an inverse cascade), there is
a channel for the energy to go to larger scales, in a
proportion that is greater for stronger rotation. Thus,
altogether and assuming for simplicity a ¼ b,

RΠ ¼ jϵL=ϵsj ∼ ½Fr × Ro�−1: ð4Þ

This phenomenological argument is corroborated by the
results of our study, summarized in Fig. 3 in the form of
three scatter plots. Each data point represents a run with
different parameters in the ranges 2 ≤ N=f ≤ 10.5,
0.02≤Fr≤ 0.14, 0.09 ≤ Ro ≤ 0.76, 6400 ≤ Re ≤ 39 000,
and 4 ≤ RB ≤ 313.
The simplest observation stemming from this extensive

high-resolution study is that the flux ratio varies substan-
tially. Also, for fixed Froude and Reynolds numbers, and
thus fixedRB, this ratio varies by 1 order of magnitude [see
the legend in Fig. 2(b)], indicating that RB is not the
determining parameter, provided it is large enough, but that
rotation plays an essential role in the energy distribution,
even if weak compared to stratification.
Five main trends are detected from these plots. (i) The

energy flux to large scales, relative to that to small scales,
becomes weaker (although it does not disappear entirely)
for larger N=f. (ii) However, for RB of order 17 or below
(data points with empty symbols), the ratio of fluxes
follows an unrelated trend, indicative of a different regime
[Fig. 3(a)]; the existence of RB-dependent regimes has
been advocated by several authors (see, e.g., Ref. [35]);
indeed, for RB < 1, the Ozmidov length scale at which
isotropy recovers is smaller than the dissipation scale, and
strong turbulence cannot develop. (iii) Setting aside the
high values of RB for N=f ¼ 2 (up to ∼300), and the
values lower than ≈17, the rest of the study is done for
26 ≤ RB ≤ 57, and in that range, RΠ displays a variation of
2 orders of magnitude determined by the intrinsic dynamics
of the flow, and notRB itself. (iv) A transition in the rate of
variation of RΠ with Froude number occurs around
½N=f�C ¼ 7 [Fig. 3(b)]. And (v) in roughly one third of
the runs, there is a dual energy transfer separately for the
kinetic and the potential modes, with negative fluxes at
large scales and positive at small scales. This is shown in
Fig. 3(c) (inset) where the flux ratio is also plotted
individually for EV and EP, the former dominating the
latter.
In Fig. 3(b) the data are plotted against Fr × Ro, as

suggested by the preceding phenomenological analysis
[Eq. (4)]. One sees that the points are rather well aligned,
with a slope close to −1 for moderate values of N=f. For
larger N=f, this slope is close to −2, indicative of two
regimes in N=f (see the inset). The origin of this transition
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FIG. 2 (color online). (a) Compensated kinetic energy spectra
with (in the inset) the time evolution of kinetic energy (solid line)
and of its (normalized) dissipation (dashed line); 30τNL ≈
600þN−1 for Fr ≈ 0.047, N=f ¼ 7, and Re ≈ 2 × 104. The large
scales follow a ∼k−5=3 spectrum, whereas at small scales,
EVðkÞ ∼ k−2.5; the spectra cross at kF ≈ 10.5. (b) Total energy
flux, normalized by ϵV ¼ hu · Fvi, for 2 ≤ N=f ≤ 10.5 and runs
with similar Froude and Reynolds numbers (0.045 ≤ Fr ≤ 0.047,
Re ≈ 2 × 104).
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is not clear. There is a known change of regime in N=f,
attributed to the lack of resonant interactions in the range
1=2 ≤ N=f ≤ 2 [36]. One could argue that higher-order
wave terms in a weak-turbulence expansion would involve
interactions with more than three waves, thereby inducing a
shift in the transitional values of N=f, as well as resonance
broadening, and that might induce a shift in the behavior for
largerN=f. Another possibility is associated with finite size
effects, i.e., to the limited ratio between the forcing scale
and the overall size of the flow, or the Rossby deformation
radius.
The abyssal Southern Ocean.—This study is done in the

general context of the interactions between different types
of waves and turbulent eddies and their influence on the
overall distribution of energy in RST. When recasting it in
the specific context of the abyssal Southern Ocean at
midlatitudes, typical parameters are as follows. Lee-wave
generation due to bathymetry is known to occur at scales
between 200 and 2000 m, with a peak at 800 m [2],
so we take LF ¼ 450 m and an overall domain size of
4500 m. The amplitude of the forcing is such that the
mean geostrophic wind is U0 ¼ 0.02 m=s (see, e.g.,
Ref. [3]). Finally, we choose ν ¼ 4.5 × 10−4 m2 s−1, giving
Re ¼ 2 × 104; this value is imposed by the grid resolution
of the DNS and is still low compared to geophysical values.
This leads to a (Kolmogorov) energy dissipation rate of
ϵK ¼ U3

0=LF ≃ 1.8 × 10−8 m2 s−3 per unit mass, compa-
rable to, although larger than, measured values. The
Coriolis parameter is chosen as f ¼ 1.2 × 10−4 s−1, and
N ¼ 1.26 × 10−3 s−1 as determined by direct measure-
ments, for example, in the Drake passage [3], leading to
N=f ≈ 10.5. Thus, the Froude number is Fr ≈ 0.035,
RB ≃ 25, and the Rossby number is 0.37, large but still
leading to the occurrence of an inverse cascade [14]. The
value of the flux ratio extrapolated for Fr ¼ 0.035 and
Ro ¼ 0.37 using Fig. 3(b) is ≈4.1 (green star), within the
bounds of measured values in the ocean (from 3 to 7, as
reported in Refs. [12,13]) indicated by the green bar in
Fig. 3(b). For these parameters, Fr × Ro ¼ 0.013 and the
effective energy dissipation is ϵW∼ϵK×Fr≈6.3×10−10W.
Two effects are likely to be balancing each other in
achieving such a reasonable agreement of our simulations
with the observations. On the one hand, higherRB as found
in geophysical flows will likely lead to an equipartition of
fluxes [11]. But on the other hand, the fact that the ocean
and the atmosphere have a small aspect ratio may weaken
the direct cascade as found in Ref. [37]. Thus, above a
threshold in RB (here found ≈17), one enters a generic
turbulent regime modulated by waves and depending on a
balance between rotation and stratification. This suggests
that indeed small-scale dissipation can be parametrized
using the estimation of ϵW stemming from weak-turbulence
phenomenology and/or using measurements of RΠ.
Conclusion.—The balance between inverse and direct

energy fluxes in rotating stratified flows is found in this

(a)

(b)

(c)

FIG. 3 (color online). Scatter plots of RΠ as a function of (a) Fr
and (b),(c) Fr × Ro in lin-log and log-log coordinates, respectively.
(a) Points are labeled by their finalRB; the six runswith 20483 grids
have 16500 ≤ Re ≤ 39 000 (black symbols) while the others use a
10243 grid and 6400 ≤ Re ≤ 10 000 (blue symbols). (b) The six
runswith lowRB shown in (a)with empty symbols are eliminated in
(b) and (c); the same symbols are used, but colors now indicate three
ranges for N=f. The vertical green bar gives a plausible interval of
RΠ values for the ocean [12,13]. The inset gives the slope of the
variation ofRΠ with Fr × Ro for variousN=f. Error bars onRΠ are
based on the standard deviations associated with the averages of the
fluxes over about a decade of scales. (c) Scatter plot of the ratio of
kinetic energy fluxes (green symbols) or potential energy fluxes
(black symbols) RΠV;P

for flows with a bidirectional energy transfer
with negative flux for k < kF and positive for k > kF. The inset
shows energy fluxes for velocity (solid line) and temperature
(dashed line), for the same flow as in Fig. 2(a) (N=f ¼ 7).
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Letter to be close to oceanic values when using realistic
parameters in DNS. One can estimate that globally the
small-scale dissipation is between 20% and 25% of the
available energy, thus alleviating the long-standing issue in
ocean and climate dynamics concerning the amount of
energy dissipation. Performing modeling of such flows
may misrepresent small-scale statistics, as shown, for
example, in Ref. [38], but recent numerical experiments
at moderate resolution using such a technique [39] do find
an inverse cascade of energy for Boussinesq flows. The
findings presented herein thus might help devise more
realistic turbulence closures for the atmosphere and ocean.
This will lead to a better assessment of mixing in the ocean
and thus to a better estimation of the global circulation
affecting climate dynamics [40].
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