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7. THE DYNAMICS OF UNSTEADY CURRENTS

PETER B. RHINES

1. Summary

This is an account of the dynamics of quasi-geostrophic flows of a wavelike or
turbulent nature. An historical review, Section 2, is followed by a section on kine-
matics, Section 3, which illustrates the characteristically different appearance of the
fields of pressure, velocity, vorticity, and density, even though they are linearly
related. The spectral breadth is the important quantity distinguishing them. Their
different natural weighting with respect to length scale leads to simple experimental
tests of the (e, k) (i.e., frequency, wave number) relation from single moorings. These
make use of an empirical “turbulent”™ dispersion relation, @ oc Uk, where U is the
root-mean-square (rms) fluid velocity. The spectra and correlation functions useful
for nondivergent fields are reviewed.

Section 4 is a review of the lowest-order dynamics of a wedge-shaped analogue of a
p plane ocean, stressing the nearly geometrical nature of Sverdrup flow and long,
baroclinic waves. An impedance is defined to quantify the vertical stiffness of rotating
fluids, and these classical flows occur when forcing is so gentle that fluid columns can
resist vertical stretching and compression.

Section 5 is a review of topographic Rossby waves, which occur when the potential
vorticity balance is linear, for small wave steepness, ¢/, where ¢ is the Rossby number
and o the wave frequency divided by the Coriolis frequency. Attention centers on (1)
barotropic, (2) fast baroclinic, and (3) slow baroclinic waves: type 2 relies on the
slope of the bottom. All three are important to the nonlinear dynamics that follow.
The partition of initially prescribed flow among the types, and a steady flow, is
demonstrated.

Oceanic observations are given in support of the gross properties, particularly
westward propagation (types 1 and 3), intensification near the bottom (type 2),
and the inverse nature of the dispersion relation (type 1).

Section 6 gives a new treatment of nonlinear cascades that occur in a flat-bottom
ocean when &/w is not small. For oceanic energy levels it is shown that energy may
travel faster through wave number space than physical space, in the sense that
significant horizontal and vertical eddy-eddy interactions can occur before prop-
agation has moved the energy a single wavelength.

The cascades carry barotropic (depth-independent) energy toward large scale.
However, geophysical flows find many ways to counter the lateral expansion of
eddies, for example, Rossby-wave propagation may take hold, while developing
persistent anisotropy that favors zonal currents. (This is related to the induction of
mean circulation by eddies; see Section 8.)

Baroclinic energy (currents with vertical shear) moves toward the Rossby defor-
mation scale from either smaller or larger scales; there the eddies above and below the
thermocline lock together, producing a barotropic state with surprising efficiency.
A proof of the migration from baroclinic toward barotropic flow is given. Once this
transformation has occurred, the theory for a simple homogeneous fluid applies.

This chain of events means that, for example, a slowly propagating, long baroclinic
Rossby wave with modest currents fragments into deformation scale eddies (in a
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190 PETER B. RHINES [cHaP. 7
generalized baroclinic instability), jumps to the l?arotropic mode, ex'pands to larger
scale again, and propagates away much more quickly, as a barotropic Rossby wave,
whose currents are much swifter. A Gulf Stream meandering experiment is described,
which involves the same cascades. The meteorological analogue is discussed.

Section 7 adds to these “primary” cascades the effect, crucial to the oceans, of a
rough bottom and coastal boundaries. Both act (via simple formulas given here) as
sources of enstrophy which can grossly alter the energy cascades. In addition, they
suggest the relatively small-scale flows found in the deep water and near western
boundaries.

Sea-floor roughness (at scales greater than the deformation radius) is found to be
essential in preserving the vertical shear of currents found in the oceans; without this

" topography, the cascade toward depth-independent flow would operate within a

few months [with the caveat that disequilibrium (forcing or damping) of the field,
or severe spatial intermittency, such as found in Gulf Stream rings, can also preserve
baroclinity]. Computer experiments show this control of the vertical structure to
occur when &/0 < 0.5, where ¢ is the rms topographic height, say, in a 500-km region
of interest. Baroclinic instability of large-scale flows is altered by bottom topography,
which severely inhibits the “occlusion™ stage. Topography generally whitens the
wave number spectrum, whereas the nonlinear cascades, alone, tend to sharpen it.

Over topography the energy develops a patchy distribution, even after time
averaging. Such “fine structure™ in the intensity has recently been discovered at sea.
At the same time a steady component of flow develops spontaneously, about f/h
contours in the deep water (f is the Coriolis frequency and h is the depth). ;

i Linear wave theory with a rough bottom is reviewed, and a simple baroclinic

double Kelvin wave” derived, which is trapped both horizontally and vertically.
The wave theory lends insight to the behavior of the nonlinear, rough-bottom ocean,
for the linear waves 'themselves exhibit spatial intermittency, a cascade toward
§mall scalg. a predilection for vertical shear, and an inability to carry energy efficiently
in the horizontal.

In all, the oceanic case contrives to make horizontal energy flux in eddies triply
depen(.ient on the energy level. Only the more intense baroclinic flows succeed in
switchirig from baroclinic to barotropic modes, and expanding in the horizontal.
Both such changes act to increase the group velocity, and the concurrent release of
pote_ntial energy increases the kinetic energy being transported. Horizontal prop-
agation experiments are shown as illustration. Baroclinic energy, in the nonlinear,
rough-bottom case, moves principally westward from its source (less than 1 km/day
in other directions), qualitatively as in linear theory.

The fluid tends to adjust toward states near the transition between waves and
geostrophic turbulence. Ideas of linear propagation still have value; combined with
knowledge of the nonlinear changes in structure, they predict qualitatively the
movement of energy about these model oceans. Yet the transfer spectra verify that
quasi-equilibrium of an eddy field involves a continuing conflict among the cascades
due to advection and topography.

Section 8, a discussion of mean flows, begins with a formula (related to an early
model of Kolmogorov) for the difference between ensemble-averaged Eulerian and

Lagrangian mean flow, which is
o

‘,
up) = 5= Kij
('.\I'

where k;; = [ R;(t)dr, is the diffusivity integral of the Lagrangian correlation
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function. Particles on the average are attracted to regions of intense eddies (large x;));
oceanic evidence is given for important gradients in eddy intensity.

Holland and Lin’s (1975) simulation of eddy interaction with the mean ocean
flow is described. Then a simple vorticity-flux theory is given for mean-flow generation
by turbulent eddies (or waves), which accounts for f/h-contour-following currents
found in the laboratory and computer simulations. In the simplest case, isolated

forcing of a barotropic f§ plane fluid, a westward zonally ( ) averaged flow,
T=—-z 1
U= —~=1

<

develops in the far field, where 7 is the displacement, north and south, of particles from
their point of origin. This applies to either wavelike or turbulent inviscid flow, and
leads to a prediction of both the eastward jet and westward-flowing far field found
experimentally by Whitehead (1975). With weak bottom friction, coefficient D, a
nondiffusive (x,, = 0), wavelike field induces flow with speed ranging from the
above value to twice it, depending on the correlation time of the velocities. If, instead,
particles wander freely in latitude, then

_ PBra
D

The Lagrangian drift is compared with these Eulerian values.

Generalizations are given, and related to Green’s and Welander’s work. The time-
dependent theory here involves both positive and negative diffusivity of potential
vorticity. The curl of these stresses, (¢/0x;)(k;;0Q/0x;) where Q is a slowly varying
mean potential vorticity distribution, is a likely source of surface and abyssal circula-
tion, both in regions immediate to intense currents, and also in random eddy fields.
The argument combines with others to predict, especially, elongated bands of zonal,
or f/h-following currents in the oceans. The gradients of diffusivity, x;;, may in
many regions provide the dominant driving.

Section 9 is a further discussion of recent observations, of sources and of sinks.

This paper is arranged, first, with flows that would be driven by gentle and slowly
varying forces and then, successively, by quickly varying and vigorous forcing. The
set of parameters that determines the evolution of a field of quasigeostrophic eddies
is: L/L,, the ratio of the horizontal scale of the dominant eddies, and L,, the Rossby
deformation scale; fL?/U where U is the vertical-average rms velocity; &/J, the ratio
of Rossby number and topographic height variations found between scales L and
L,: and P/K, the ratio of available potential and kinetic energies in the eddy field.
In addition, the level of external forcing, the strength of mean currents and their
associated potential energy, the bottom drag, internal-wave interaction rate, and
degree of intermittency may occur, if they are not negligible. In some interesting
cases the turbulent dynamics alter the parameters toward L/L, ~ 1, then P/K — 0,

BLEER =0,

u=

2. Historical Introduction

The kinetic energy of the oceans takes four dominant forms: surface waves, inertial
(or near-inertial) and tidal oscillations, the climatological mean circulation, and
unsteady currents of period greater than one-half pendulum day. The latter, partic-
ularly the nearly geostrophic eddies of roughly 200 km diameter, are the concern
of this chapter. I have sought to make this a self-contained account, and yet to include
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recent results on the nonlinear dynamics of eddies. Doing so has severely limited its
breadth, and in particular many important investigations of Rossby wave propagation
have had to be omitted. Sections 2-5 are in part a review of classical ideas, whereas
Sections 6-9 are new or recently published material. A broader discussion of ocean
variability is given by Monin, Kamenkovich and Kort, 1974

A. Observational History

The beginnings of concentrated investigation of transient ocean currents came in
the 1950s with a series of cruises led by Fuglister to map the instantaneous form of the
Gulf Stream and the rings of current that are thrown off it, to the north and south.
Earlier, those who looked closely at other parts of the Stream (e.g., Bache, 1846;
Pillsbury, 1890) found unsteadiness and spatial complexity to be the rule. Turbulence
in concentrated streams (recorded in sketches by Leonardo da Vinci) at one extreme,
and seasonal reversals of the Somali Current, at the other, were familiar long ago.
But eddy motion was generally related in the observer’s mind to nearby intense
currents. The notion that the ocean interior is populated by chaotic, variable currents
is recent (excepting ancient speculations, like those of Plato, about bodies of water
oscillating deep within the earth, feeding the seas, and about the occasional, malign
Charybdis).

Perhaps self-protection causes the human mind to imagine unknown regions to be
simply structured, or structureless. Thus in the early nineteenth century, before even
the mid-oceanic depth had been determined, it was held that below the first few
hundred meters the ocean was stagnant and lifeless. The notion of inert abyssal
regions was reinforced by the incorrect observation of frequent 4°C temperatures
(measured with unprotected thermometers), combined with the incorrect notion that
seawater has its maximum density at this temperature.

The zoologist, in search of the beginning of this lifeless (azoic) zone, gradually
pushed downward the known limits of both life and dynamic activity. Finally, benthic
animals were dredged from the sea floor in increasing quantities. Broader scientific
interest in the abyssal ocean grew when Darwin suggested it might contain a living
record of early animal evolution, and technical interest came with the laying of tele-
graph cables.

Physical oceanography often bootlegged on geographical or biological cruises.
Complexity and variability of the deep-temperature field quickly became apparent.
Thomson and Carpenter on the Lightning (1868), for example, measured tempera-
tures to 1000 m near the Faeros Bank: “it had been shown that there are great
masses of water at different temperatures moving about, each in its particular course,

maintaining a remarkable system of ocean circulation, and yet keeping so distinct
from one another that an hour’s sail may be sufficient to pass from the extreme of
heat to the extreme of cold.” The use of density structure to infer horizontal current
came with gradual appreciation for the intensity of the Coriolis force. Routine
dynamic computations followed Bjerknes’ circulation theorem at the beginning of
this century.’

The dominant concern of the hydrographic work that followed was the climato-
logical mean circulation. Fuglister and Worthington’s (1951) explorations were the
first to capture the instantaneous picture of the transient meanders and eddies.
The enormity of the task is obvious, requiring vast numbers of ships or moored
instruments. Reproduced in Fig. 1 is a map of the mean temperature in the upper 200

! Two interesting histories of the general subject are those of Deacon (1972) and Schlee (1973).
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64

Fig. 1. A Gulf Stream ring at the moment of detachment (Fuglister and Worthington, 1951). Mean
temperature in the upper 200 m, in degrees Fahrenheit. Current directions from towed electrodes (GEK).

See also Figs. 28, 57.

m, from a part of the 1950 survey. A 500-km-long meander has begun to detach and
form an autonomous, cold, cyclonic ring. The effect of this nucleus of energy, both
potential and kinetic, on the adjoining ocean is clear, for example in the long sections
of Fuglister’s (1960) atlas. But typical isopycnal slopes decrease rapidly as one moves
away from the Gulf Stream, and we are left to wonder what activity there is in the open
ocean.

Stommel established in 1954 a monitor station a few miles southeast of Bermuda
(32°N, 65°W). It was a novel prospect to record a long hydrographic time series at a
point far from the regions of greatest activity. But the temperature series clearly
resolved long-period (~ 150-day) eddies in the thermocline height, well below the
level of direct seasonal penetration (Fig. 2). Schroeder and Stommel (1969) showed
the dynamic height variations to be coherent with the sea level at Bermuda (corrected
for atmospheric pressure) and thus eliminated the possibility that they were poorly
sampled internal waves. The only uncertainty is the degree to which Bermuda itself
affects these stations, conceivably casting off eddies into passing currents.

The Aries cruises in 1955 seemed to be the conclusive step. Swallow, Crease, and
Stommel organized them to measure directly the currents below the thermocline.
The search for a slowly moving, steady ocean interior ended as surely as did the
nineteenth-century belief in an azoic zone, when neutrally buoyant floats moved
away rapidly, altering direction every few weeks.

The Swallow floats showed currents exceeding 10 cm/sec (at the 2000 and 4000 m
levels, southwest of Bermuda) and crudely identified their length scale (~70 km
separation before velocity coherence is lost). The size of these deep eddies was com-
parable with those in Fuglister’s and Stommel’s shallow data, but the time scale and
intensity were far smaller. In the succeeding sections we hope to show convincing
dynamic reasons for the generic differences and similarities among these eddies.

Little was known before this decade about the geographic distribution of eddy
energy. It is easy to appreciate that wiggliness of isotherms in classical sections
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diminishes away from coasts and intense currents, but it is difficult to produce
satisfying maps of perturbation energy from them. Parker (1971) used the bathy-
thermograph archives to produce an interesting map of the distribution of shallow,
intense thermal features in the western North Atlantic. Again, the decrease in numbers
as one leaves the Gulf Stream is clear, but the spatial irregularity of the data base
makes further interpretation difficult.

Only now is the proliferation of moored current meters and thermistors yielding a
quantitative picture of the geography of eddies and mean flow. We have come to
realize that really very little is known about the broad pattern of these quantities;
even the dynamic topography of the time-mean circulation in a region so widely
traveled as the North Atlantic is unreliable, beyond verifying the western-boundary
activity, the “polar” front, and equatorial currents, and a hint of the nature of the
broad, shallow return flow.

B. Dynamic Background

It is the fault of eddies that the general circulation is hard to observe, but they are
more than just observational noise. Stommel (1957) discussed how precarious was
the dependence of linear, steady models on the Sverdrup interior flow. It may be
that such circulation models, together with their time-dependent counterpart, the
linear Rossby wave, are sufficiently inspired to hold true beyond their strict limits
of validity. But there is increasing evidence that deeper understanding will come from
nonlinear, interactive models of eddies and mean flow.

The atmospheric circulation gives a precedent. There, one would like to have
dismissed fronts, internal waves, cyclones, and monsoon and orographic circulation
to find a simple theory of the maintenance of the zonal winds. but Jeffreys (1926)
and Starr (e.g., 1968) showed some of these to be essential in redistributing mean
angular momentum. The physical source and nature of the “eddies” that produce the
relevant Reynolds’ stresses are complex and include both classical baroclinic insta-
bility and large-scale orographic and thermal contrasts.

The ocean contains many similar elements; the energy-containing eddies, though
less than 1/10 as big as those in the atmosphere, are roughly the same size if rescaled
by the density structure (the Rossby radius). Oceanic flow speeds are perhaps 1/25
as big, yet again appear the same, relative to the ratio of the beta effect and square of
the Rossby radius. But the absence of unobstructed paths for zonal flow (everywhere
but, possibly, in the Southern Ocean) is likely to make very different the driving or
retarding of the mean circulation by eddies.

The ocean basins, in addition, are perhaps 20-60 eddy diameters wide, whereas the
atmospheric domain is rather small, measured against the size of cyclones. This,
together with the confinement of the intense mean flow to a far smaller region in the
oceans, suggests that inhomogeneity is the greater, and that the nature of lateral
influences is more crucial there, than in the atmosphere.

There is, then, a competition between the response as local flow to local external
forcing by winds and heating, on the one hand, and the necessity that unusual
clumps of energy and density anomalies spread themselves about, on the other.
The classical mean circulation presumes that lateral influence is powerful, and the
constitutive relation of the fluid somehow allows forces excited, say, on the Labrador
Sea to be felt off Cape Hatteras. A picture of rubbery seas, propagating energy about,
is incomplete without actual circulation. As in striking an elastic wheel, which is frep
to spin about its hub, the signaling process distributes angular momentum until
internal friction dissipates all but the new rigid-body rotation. An important param-
eter of this analogue is the travel time for waves, relative to the time characteristic
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of the forcing. If the forcing is slowly varying, measured in these terms, the transien_ts
are insignificant and the body effectively rigid. But in the other extreme, a ﬂaccnfi
material will have gross undulations superimposed on the steady mode. It is this
latter case that appropriately describes the oceanic response to weather and
the seasons: the speed of travel for the energy-containing eddies is probably less than
5 km/day.

Unfortunately, however, these strongly excited transients (and those generatcfd by
internal instability) are so energetic, and the medium itself is so irregular, that linear
superposition fails. We must then consider carefully the nature of geostrophic and
topographic turbulence in altering the horizontal transports, and driving circulation

wherever they are found.

3. Kinematics of Eddy Fields

The difficulties posed by complex, variable fields of current, density, and pressure
are not merely analytical and instrumental. One’s judgment and memory of the
simplest qualities of an eddy field can fail, and two observers rarely seem to agree
upon, say, the dominant scale or period of a flow, however perfectly it has been
measured. The problems of description lead to vagueness in all later stages of analysis.
The object of this section, therefore, is to review some of the descriptors of eddies,
and some of their immediate application to observations.

A. Space

Consider an example, Fig. 3, of instantaneous maps of some artificially produced
eddies. Each of the three major boxes, Figs. 3a-3c, shows four fields corresponding to
a two-dimensional, nondivergent flow; counterclockwise from the lower right, these
are ¥ (stream function or pressure), dy//dx, —ady/dy (velocity components), and Vy/
(vorticity). The maxim, “integration smooths, differentiation roughens,” applies.
Observations using current meters would identify a smaller dominant length scale
tl:_axll]those from pressure gauges, and a vorticity meter would be the most confusing
of all.

The Fourier coefficients /x of the instantaneous stream function are defined by

Y(x) = Z Z ll;x"n” ('ﬁx = ‘f’tx)

where k = 2mn/L, 2nn/L; n, m = 1, o0, periodic over a large domain, width L. Let L
become large, and imagine an equivalent continuum of wave numbers obtained by
blurring the discrete k over a fixed, small interval (or see Batchelor, 1953, p. 30). Then
the power spectra of the various fields, with respect to vector and scalar wave number,
are, for geostrophic flows,

2n

P(k) = po folUx¥ik|  2(k)= | P(kk dO (pressure)
0

1 |k|*P(k) 1 k22(k)
Bk e e 2 R 22 ) ot
jioms Polf o2 k) =3 PR (kinetic energy)
1 |k|*P(k) . 1 k*2(k)
QAk) =5 ———5- Ok) = -——
2 podfe (k) 3 polf (enstrophy)
k - north

k=lkl, tan~! 0 =

k - east
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Fig. 3. Artificially generated fields of ¥ (or pressure), velocity components u, v, and vorticity {. The
azimuthal wave number dependence is fixed. (a) For scalar-wave number spectrum E = ke~ ?*; (b) for
E=10(k <5), E=(k/5) 3 (k> 5); (c) for E = const. The discrimination between associated fields

¥, u, v,  increase with spectral bandwidth.

where p, is density, f, is Coriolis frequency. Successive differentiation in space
corresponds to high-pass filtering of the spectrum. The degree to which this filtering
affects the picture depends of course on the breadth of the spectrum. A monochro-
matic field will be unaltered in character by differentiation. The three realizations
in Fig. 3 illustrate this. Each one has the same directional makeup in its spectrum, yet
with different dependence on k, Fig. 3d. As one proceeds from relatively narrow to
white spectra, differentiation has more and more of an effect. The dominant scale of
the vorticity for a white velocity spectrum is infinitely small (limited here only by the
64 x 64 grid). The distinction is experimentally useful because arrays of current
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used together, can give a measure of spectral breadth

meters and pressure gauges, :
nd of instrument alone. The “breadth,” which

beyond that estimated from either ki
may be defined by
k,* = flk— k,lch(k)dk/J’J dk

clearly controls the sensitivity of the picture to the measuring device. The centers of

mass of the spectra, k,, are 3.1, 4.8, and 16, respectively.
The correlation functions of such fields carry the same information, but in different

forms. If the velocity correlation tensor is
Rifr)=L"? ffu,{x)u,{x + r)dx

(the data being defined over a very large square of area L?), the spectral tensor, the
Fourier transform of R;;,

1
Oyk) = 4 ” R;{r)e ™" dr

l'{as as its trace 2E(k). For two-dimensional, isotropic, nondivergent flow the correla-
tion may be written as

r)y=— \r
Riﬂ’)=wri'}+g(”)§i} r=|r|
where g(r) = u,(X)u,(x + r,), for example, is the lateral covariance and f(r) =
uy(X)uy(x + ry) is the longitudinal covariance. The bar is a probability average or,
for homogeneous fields, a spatial average.
Now the i field has a correlation
C(r) = Y(x)(x + 1)

By differentiating we find
—C
uy(Xuy(x +ry) = flr) = T

and
Uy(Xuy(x + ry) = glr) = =C" = (rf)

Here the basic y field and velocity fields have correlation functions which themselves
are r'elated by differentiation. The lateral correlation g(r), being a differentiated
fun.ctlo'n pf the longitudinal correlation, f(r), generally has a smaller dominant scale.
This distinction is made clear by the anisotropy in the maps (Fig. 3) of the velocity
components. The spectrum with respect to scalar wave number is related to the

covariances by various expressions,

8(k) =k j j (f + gle~ ™ dx
= {nk I rf + g)Jo(kr) dr
0

= {nk3 J‘ rCJ o(kr) dr
0
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for isotropic fields. The inverses of these relations are

1) = % f k=18 (k) dk
0
2 (= I
glr) = - f J(k)[-lo(kf) - — J,(kr)] dk
rJo kr
Clr) =2 f “k~28(k)J ofkr) dk
0

= (o fo) 2 _[ " Pk (k) dk
0

A useful model energy spectrum,
1 k3
2[ro"% + K+
corresponds to a scalar correlation function
218 [N r ,
3 _— — ~ r“_ 12,=r f -
C(r) = C(0) ) (’o) K"(ro) e or r — oo

[and corresponding lateral and longitudinal velocity correlations, g(r) = —C”,
f(r)= —r~'C"]. For instance, a spectrum with a peak at r,”' and asymptotic
tail ~k~* has a scalar correlation

r\? r
C(r) = $C(0) o K, i (=2
0

The zero crossing of g(r) occurs at r = 1.34r,.

k) =

B. Scales

Above we have used the centroid, k,, of the wave number spectrum as a measure
of dominant scale. It seems wise to use the entire spectrum in such a way, to increase
confidence in the result. Measures like the position of the spectral maximum will
tend to be less stable. However, when comparisons of k are being made, one must
take care that the range of wave numbers being considered, particularly at the low

end, is the same.
The correlation function for scalar fields has associated with it the integral scale,

ry = f C(r) dr
0
and the “microscale,” r, = [C"(0)]~ '/%. In terms of isotropic spectra,
= ot [ 20k
0
and ry* = (pg fo) "2 [& k*2(k) dk; these are very different scales from k, ~'. For the
velocity correlations of classical turbulence theory, the corresponding microscale is

Lf"©)]1""2; £"(0) = ; & k*é(k) dk (proportional to the total dissipation) weights
heavily the smaller scales.
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Thus it is a rather different picture one gets from spectra on the one hand, by
remembering the centroid k,, breadth k,, and perhaps asymptotic tail N(&(k) ~ k i 3
than from correlations on the other hand, where the scale r,, r,, and perhaps the
position of the first zero crossing are kept track of. The use of spectra has the advantage
that, if linear waves are present, a dispersion equation may associate particular wave
vectors, k, of spatial Fourier components with frequencies, o, of temporal Fourier
components. If, instead, the flow is turbulent, there may still be a theory predicting the
shape and dynamical role of the spectral tail. Neither kind of theory is readily applied

to correlation functions.

C. Time

In individual time series similar remarks hold, except that the temporal correlation
functions are simple one-dimensional Fourier transforms of the spectra. For example,

if Cylt, ©) = Y(OW(t + 1), C, = ult)u(t + 7), then the spectrum of Y, is
Py(w) = J.C,(t, t)e” " dr

and the spectrum of the velocity is & (@) = [ C,(t, t)e” " dt. Centroid frequencies,
w,, breadth [(® — w,)*]"/?, spectral tails &~ ", integral time scales t, = (§ C dr,
and microscales t, = [C"(0)]'/? exist in analogy with their spatial counterparts.
Here t,? is just twice the mean-square acceleration ((u/dt)?) and t, is lim,, o &(w)
(this must not be confused with the mean, which is presumed to have been removed).

In temporal records there arise two natural reference frames: purely Eulerian
records measured at a point fixed in space, and Lagrangian records measured from
points moving with fluid parcels. For later reference we define the Lagrangian data
as u™(t; x,), depending on time and the initial particle position, X,, and Eulerian data
u*(t, x), depending on the fixed observation point x. The corresponding spectra are
E{w; Xo) = [ Rift, Xple ™ dr and £%(w; x) = [ RE(t; x)e™ ™" dr.

D. Dynamics

Some simple dynamic remarks are in order. First, if the complete space-time
correlations or wave number-frequency spectra [corresponding to u(x, ¢), say] can be
measured, then a simple dynamic system might reveal itself by the appearance of
spectral energy only along certain dispersion surfaces, @ = w(k). But usually this is
neither observationally possible nor theoretically expected. Grosser dynamic
comparisons can be made, however. For instance, the breadth or asymptotic tail
of a wave number spectrum tells us whether or not there is dissipation occurring at
small scales, that is, dissipation strong enough to damp actively and critically the
energy-containing eddies. Violently energetic, three-dimensional turbulence has
broad enough spectra (e.g., k~*/3) to do this critical damping, but many flows such as
geostrophic turbulence and plume convection have spectra too sharp (e.g., k%) to be
dominated in this way by friction.

One of many ways to distinguish waves from turbulence is by the strength of the
diffusivity of marked fluid particles. The diffusivity at long times, for a homogeneous,
stationary field, is

a0

Kjp = Wuty;; W= J.o R;j(7) dr
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(see Section 8), and one sees that a wave field in which particles do not stray far from
their origins will necessarily yield a correlation function with deep negative lobes
capable of making the integral scale, t;;, vanishingly small, while diffusive turbulence
will have a substantial ;.

Another wave/turbulence comparison can be made using the above discussion of
spectral breadth. Suppose, first, that turbulence is endowed with a crude dispersion
relation w ~ U |k|, where U is the root mean square (rms) particle speed. This is not
Taylor’s hypothesis, which is a more precise consequence of a strong mean current,
but merely suggests that turbulent eddies advect one another past a fixed sensor in
the advective time (|k|U)~". If this is so, then our remarks about the spatial filtering
action of pressure sensors relative to current meters (in a geostrophic flow) apply also
to temporal records: a pressure record at a single point should be of character-
istically longer period than a velocity record at the same point. Figure 4, a computer
experiment with two-dimensional turbulence, shows this to be true: the larger spatial
scale of ¥ or p, compared with velocity, maps onto a longer period, and the extent
of the difference gives a measure of spectral breadth. If, instead, the motion had obeyed
the dispersion relation of planetary waves, » o k™', the reverse would have occurred:
longer waves would have the higher frequency, and a pressure time series would have

PRESSURE

e il e

(a) Wi

PRESSURE A

| “A | : r/\/\ A
T 77

(b)
Fig. 4. (a) Pressure and velocity at a fixed point in a two-dimensional turbulence simulation (see Table I
for details of computer experiment). The velocities are more rapidly changing than the pressure; this verifies
that turbulence maps large wave-numbers on to large frequencies. (b) As in (a), but with a field of linear
Rossby waves (for which ¢ = — f cos 0/|k|, where 0 is the angle of k from the east). The inverse dispersion
relation causes velocities to change less rapidly than pressure.
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been more quickly varying than current (Fig. 4b). A crude test of the dispersion
relation is thus possible with a single pair of records from these dlﬂ'erent sensors.

Time series at fixed (or drifting) points seem to be easier to obtain than space series
(although one cannot claim that the Panulirus time series preceded the~dlscovery of
eddies in classical sections). Further use of the advective dispersion relation thus may
be of interest. For instance, Eulerian frequency spectra characteristically drop down
steeply at frequencies above those of the dominant eddies, roughly like 3. A deep
spectral valley separates the eddies from the inertial-tidal-internal wave band. Now
the energetic eddies must sweep smaller eddies past a fixed sensor, and thus a wave
number spectrum falling off something like k™, beyond its maximum, is expected,
as is a real dearth of energy at scales (wavelength/2) ~ 2-10 km (corresponding
typically to periods of 2-10 days, for U ~ 5 km/day). The implication of this spectral
valley (Rhines, 1973) is simply that no local cascade of energy is occurring from the
eddies to small scales. If such a transfer happens at all, it must be jumping the valley
via boundary turbulence, intermittent internal turbulence, or nonlocal cascade into
internal waves. The rate of energy dissipation in the eddies is crucial, and at this point
unknown.

What about temperature and salinity data, used in conjunction with current
records? The thermal wind equation, f(du/dz) = —g x Vp/p, admits two possibilities.
If eddies are geometrically similar, broader ones penetrating more deeply, the density
and velocity wave number spectra should have the same shape, and the baroclinic
velocity measurements are redundant with the density data (assuming geostrophy).
However, if the eddies have the same depth penetration regardless of breadth (say,
the baroclinic energy occupies only the first vertical mode), then the density field
acts like pressure, with spectrum k~*&(k) [£(k) being the spectrum of baroclinic
velocity]. In this case the apparent scale of the density eddies should exceed that of
the velocity field, by an amount proportional to the spectral breadth. Again, time
series of density and velocity at a point allow a crude estimate of the corresponding
dispersion relation.

D. Record Length

In the measurement of mid-ocean eddies with period, T, 50-300 days, scales ~40-
100 km, we are never likely to have enough data to make the stability of spectral
estimates really satisfactory. A measurement with record length, 7, of more than 10
periods would be ambitious, and the estimates settle down only as (t/T)'/2, even
assuming the spectrum to be rather narrow. It is thus doubly important to focus on
important dynamic regions and to be pragmatic, looking at those regions where
the environmental time constants are smaller, for instance, on the continental rise,
where waves of period 5-15 days are important. In all, it seems to be more useful to
invent crude dynamic tests that can withstand the paucity of data, rather than make
a monolithic drive to determine the full wave number—f{requency spectrum of the
eddies. By itself, such a result might even prove to be unenlightening, for many
theories produce the same spectrum.

4. Dynamics of the Gentlest Kind

It is well to describe the ideal response of a gently driven rotating fluid, before
examining the flows caused by stronger forcing, and in the presence of less simple
boundaries and more complex density stratification. Indeed it is the linear Sverdrup
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solution that is the heart of modern circulation theories, whether thermohaline or
wind-driven, and its strength or weakness must be noted.

Here we describe a model that attempts to show in more intuitive form the basic
solutions described by Stommel (1957). It reproduces a number of the known principal
features of spherical geometry, yet in a wedge-shaped container, Fig. 5. The primitive
Boussinesq equations for the velocity, u, and pressure, p, are

1 2 3 4 5 6

cu Vp

—+u-Vu+ fkx u= — < 4+ gp' + vAu

at 4 o (1)
op' ;

Veu=0 E+V-pu=0

where p = py(1 + p') is the potential density, f is the Coriolis frequency, 2Q, k is a
vertical unit vector, g is the gravity field, and v is the kinematic viscosity. For flows
describable by a single horizontal length scale L, vertical length scale H, time scale T,
and velocity scale U, the ratio of typical sizes of terms / and 3is (fT) ' =, a
scaled frequency; the ratio 2:3 is U/fL = ¢, the Rossby number; and 6:3
WH™? + L™?)/f = E, the Ekman number.

Basic geostrophy occurs when each of w, &, and E is small, whence

fkxu=— %—” + O(w) + O(g) + O(E) )
0

If we now neglect the density stratification, 5, the Taylor-Proudman approximation
follows:

fk-V)u=0 3)

to the same order; such flows involve no vertical shear of the velocities, and ideal
vertical dye lines remain vertical. The Coriolis force acts only normal to k, and hence
equation 3 relies in addition on the hydrostatic balance in the vertical.
Considerable intuition for these approximations may be found in linear internal
wave theory, just as sound waves give us insight into “incompressible” fluids. Plane-
wave solutions of equation 1 with E — 0 pass smoothly to the limit w — 0 where they
take on the character of Taylor-Proudman flows, even while the energetics of wave
theory still applies. The frequency over fis just @ = cos 0, where 0 is the angle of the
wave number vector, k, from the vertical. The group velocity lies along the wave
crests, normal to k, with magnitude f |k| ™' sin 6. Energy propagates, therefore, ever
closer to the vertical as @ — 0, painting out Taylor columns induced, say, by a

Q

i
£

y
Fig. 5. Wedge-shaped container filled with homogeneous
fluid uniformly rotating. y is analogous to north on a

— p plane.
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disturbance below. Rigidity develops in fluid columns owing to the rapidity of this
energy propagation, the group velocity approaching f L [and the time for signals to
penetrate vertically through a distance H approaching f ~'(H/L)] even as the _fre-
quency vanishes. In order that the fluid not be strained vertically, free motions in a
container like that in Fig. 5 must be directed along the depth contours, h = constant.

A. Hough, Goldsbrough, Sverdrup Flow

The lowest-order constraints due to strong rotation alone provide the solution to
simple interior flows in the wedge-shaped model of the f plane. Imagine the response
of the fluid to gentle downward motion, w,, imposed at the upper surface (whether
by Ekman convergence, fluid sources, or simply mechanical motion of the lid itself).
Since equation 3 implies Vj; - u = 0, the only recourse for the fluid is to move toward
greater depth, avoiding any vertical compression (the vertical velocity equaling w,
throughout the column). The “southward™ velocity, —u, is given by

p="0 @)
o
where a/2 is the semi-angle of the wedge. In the case of an imposed stress, t, quasi-
steady Ekman layers along the rigid boundaries produce interior vertical velocity,
wo = k-V x t/p, f, and then renaming « as fH/f, where H is the mean depth,
equation 4 becomes

¥t

5
e 5)

P

The horizontal flow is approximately nondivergent, V- u = 0; hence u = | v, dx,
the limits of integration as yet unspecified.

If the wedge geometry is complicated by adding rough-bottom topography, free
geostrophic flows must still follow h(x, y) contours, and equation 5 generalizes to

4 £ et YoX Tl
. V<h>.‘ poH ©

Either equation 5 or 6 puts severe constraints on the forcing pattern and basic
geometry if violations of this level of geostrophy are to be avoided.

B. Stratification

The principal effects of stratification can be included without loss of simplicity
using two homogeneous layers of slightly different density, Ap, and mean depths at
y =0 of H, and H,, respectively, in the same geometry (Fig. 6a). Depth gradients
occur in both layers, in the rest state. (Provided f2L?/gH < 1, the interface at z =
n(x, t) is practically flat in the absence of flow.) Equation 2 applies above and below
the interface, yet a jump in velocity across it is allowed by Margules’ relation, g’k x
Vn = —f[u, —u,] (¢’ is the reduced gravity, gAp/p,), which follows from the
expression (equation 2) for upper-layer velocity, u,, and lower-layer velocity, u,,
with the hydrostatic relation p, — p, = g'n for the perturbation pressure fields,
respectively.
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(b)

Fig. 6. Two-layer analogues of the f§ plane. (a) Equal mean depths
of the fluid; (b) with a thin upper layer, the bottom sloping more
steeply than the lid, for a uniform potential vorticity gradient;
(c) on a rotating sphere, with columns remaining parallel to Q
(yet the effect of continuous stratification in the oceans makes this
less than a perfect idealization).

(¢)

Now the same driving by a vertical velocity at the top causes, by the constraint of
stiffness in each layer, a north-south transport

Ho, + vz)=% forH, = H,

This is the analogue of the stratified Sverdrup relation. For the flow to be steady,
on/dt = 0, v, must vanish, leaving the transport entirely confined above the thermo-
cline, which tilts, preventing the upper-layer pressure gradients from reaching the
depths.

However, the time required to set up such a flow is great, so that either unsteadiness
of the winds or diffusive effects may modify the vertical structure. The latter lead to
thermocline theories, which do not concern us here.

C. Time Dependence

A more realistic resolution of the vertical structure with stratification, and a de-
scription of the setup time for steady flow, come from the approach to steady circula-
tions found when the frequency of an oscillatory wind-stress pattern is led to vanish.
Then linear wave theory gives a complete solution.

Consider the free motions possible (w, = 0) beyond that of flow along geostrophic
contours. Time and space variations are allowed, but they must be gradual. In the
equal-depth geometry of Figure 6a north-south motion is possible without stretching
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fluid columns, only if v, = —v, and if the interface moves vertically in response.
Combining with the equation for geostropic thermocline tilts,

F) %%
Aoy a=t
and continuity,

7

""" = v,a

ot

we find
on  og'on
a—l+2fax.0.

Where the thermocline is locally depressed, the upper flow is northward on the
western side and southward to the east. This flow into and out of the wedge forces the
thermocline downward in the west, upward in the east. It follows that an arbitrary
pattern of interface displacements, varying in both x and y, moves “westward”
without dispersion, at speed ag’/2f = fc,?/f* where ¢, is the speed of long internal
waves without rotation, or equivalently, BL,?, where L, is Rossby’s internal de-
formation radius, ¢o/f, and in doing so obeys the most trivial, nearly kinematic rules
of Taylor-Proudman flow. This internal Rossby wave of Veronis and Stommel
(1956) describes the baroclinic adjustment to unsteady winds. Its phase speed, <4
km/day at mid-latitudes, shows that many years must pass before signals can cross
the ocean and complete the spin-up of a baroclinic circulation from rest.

It is now a simple matter to imagine the response to a wind stress of large scale,
say, a steady pattern turned on at time zero. Let the imposed vertical velocity be

\%
ol 3= b _ f0f0) 20

=1 t<0

Including unequal layer depths H, and H, (Fig. 6b), the equivalent —f8 slopes are
now aH, and aH,, where f = fVh/h = fa. Then,

aH|v| = “’o - a_"

and we find

where
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Fig. 7. Currents induced by steady localized wind stress turned on at t = 0 (yet slowly enough that
barotropic signals are negligible). The transient, circular baroclinic wave moves off to the west, leaving
a steady Sverdrup gyre. This occurs without stretching or compression of fluid columns.

The solution is
n=—yh) J‘ }[fl(xl + cot) — fi(x')] dx

If, for example, the stress curl has a dipole nature, say, wo = —x exp[ —(x? + y?)],
the interface is

n = 3y exp(—y?) [exp[—(x + ¢o1)*] — exp(—x?)]

which is a steady, downward depression in the thermocline just beneath the stress,
and its mirror image, propagating westward along y = O (Fig. 7). The currents are
initially barotropic, with an anticyclonic vortex at the origin. But as time progresses,
this stationary circulation intensifies above the thermocline, and vanishes below it
as the transient vortex moves off to the west. The currents in the transient vortex
themselves are concentrated in the thin upper layer, v,/v, = H,/H,. Lighthill (1969)
has described in detail such events, particularly as applied to equatorial wave modes
excited by the arrival of monsoon winds. Our major point here is that they fall within
the range of interesting effects whose dynamics are so gentle that there is no vortex
stretching; this is possible even near the equator, when the typical “impedance”
of a rotating fluid with respect to vertical stretching, shown below to be f2L*T/H,
becomes large.

It might seem that motions with such slow propagation would find difficulty in
remaining linear, but the expected principal violation, the advection of density
u - Vi, vanishes identically. We may thus expect westward propagation of thermo-
cline eddies of rather large amplitude.

If broad topography is added to the bottom, beyond that which is here imitating j3,
the free-wave equation becomes

SR <1 o koY

ox ¢ \BH,+9of PH )t
where 6 is the true north-south bottom slope, here taken to be uniform. A strong
slope thus increases the baroclinic wave speed to

1_’( BH (BH, + &) )
g \BH, + Hy) + of
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which approaches 1 + (H,/H,) times the speed without topography. The change
arises, as above, when the steep slopes make very little deep, horizontal motion
necessary to yield a given vertical velocity, with the result that this slowly varying
circulation is virtually confined to the upper layer, as éf/fH, — 2. Rhines (1970) has
suggested, and these heuristic models support, that over generally rough topography
(with slopes greater than 10*) we should similarly expect the baroclinic waves to
propagate faster, with the lower layer more nearly at rest. Rooth (private communica-
tiqn) .remarks that strong bottom friction, E'* » BL,*/f L, does just the same thing,
bringing the deep water to rest and speeding the propagation up, while in the limit
causing vanishingly small dissipation.

D. Spherical Geometry

These same arguments provide a local description of mid-latitude flows in a two-
layer spherical ocean, (Fig. 6¢c) with rigidity imparted to the fluid parallel to the
rotation axis. The wedge geometry is provided, in effect, by the northward gradient
of the axgal projection of the layer depths, equivalent to gradients of f/h; where
7 =20 snn(!atntusie). The inclusion of continuous stratification, the final link to the
real oceans, is a q;ﬂigult step. The integrity of fluid columns parallel to £ is then lost
and scale apalysns gives support to the “traditional approximation,” the neglect of
locally horizontal components of the earth’s rotation, which makes our wedge
geometry an analogue rather than a replica of the complete spherical ocean.

] Finally we mention that other, more distant analogues may be of value to the intui-
tion. For example, the nonrotating Boussinesq thermal convection of a fluid with
strong basic temperature stratification, T|(z), obeys

‘:I—Z: w = 0(x, z)
ou oOw
e

for a gentle internal heat source distribution, Q(x, z). This is a Hadley circulation in
(x, z) fundamental to atmospheric modeling, and is formally the same as Sverdrup
flow in (x, y) with p = dT/dz, V x 1|./po fo = Q. Fluid that is heated rises slightly
to a new equilibrium level, without significantly altering the mean state. Simple
gyres in (x, z) are possible in confined geometry, if only | Qdx = 0 at each level.
Otherwise conductive boundary layers form at the side walls to close the vertical
circulation.

By establishing that Sverdrup flow and long internal Rossby waves involve nearly
inextensible translation of fluid columns in the wedge analogue, we can gauge the
transition to more vigorous currents. To do so, we quantify the stiffness by solving
for the flow induced by simple forcing with # = 0;imposed vertical velocity must then
produce relative vertical vorticity, {, according to d(/ét = —f(éw/dz). Suppose
Wo = W sin (x/L) sin (t/T); the resulting pressure field is

FEATRLA 8 % t
—————sin —cos .

P__I._
p H E 1
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The oscillatory currents have an impedance with respect to vertical stretching,

2

Wwo

[T
H

here a reactance. The increased vertical stiffness at large scale or large rotation rate is
evident.

The average kinetic energy produced here by pressure work, Pw,, below the lid is
f?wo*T?L?*/16H, which may be compared to the kinetic energy in a pure Sverdrup
flow (v = wy/2) driven by the same distribution of vertical velocity (but with sloping
geometry), which averages to Hw,?/82%. Now if the forcing becomes so rapidly
changing as to make the ratio of these energies, (af TL/2H)? [=(BLT/2)*], less than
unity, the least work is expended if the fluid begins to yield to vertical stretching and
compression, with less motion to the north and south. The less energetic choice is
made. and Sverdrup flow gives way to Rossby waves, involving essential relative
vorticity, when LT falls below unity. If the forcing is more intense than this, so that
nonlinearity is significant, nonnegligible vorticity appears when «fL?/HU < 1
(ie, BL?*/U < 1), and two-dimensional turbulence appears, instead of linear waves.
to replace the classical circulation. These same conclusions follow from a more
conventional scale analysis of the potential vorticity equation, which is developed in
the next section.

5. Linear Potential-Vorticity Waves

The earliest explorations of long-period waves (“linearized eddies™) on a rotating
sphere followed the train of thought found in classical elastic oscillations of solids and
membranes, and in the short-period tides, that is, dominance of grave modes of large
scale. This seemed appropriate because the assumed forcing effect, the winds and
sun, act on a large scale, and also because the natural frequencies and propagation
speeds turned out to be the largest for the grave modes (with all “higher” modes
contained at lower frequency). With the intellectual focus moving more or less con-
tinuously downward through the frequency spectrum, the grave modes were the first
oscillations to be found at periods greater than one-half pendulum day. LaPlace’s
tidal equation, which reduces to the spherical form of the potential vorticity equation
at small o, thus was divided by Hough (1898) into first- and second-class waves
according to whether o was greater or less than unity. Longuet-Higgins (1964 et seq.)
has produced the most thorough discussion of the second-class planetary waves on a
sphere, as did Ball (1963 et seq.) for smoothly shaped rotating basins.

It was imagined that, in combination with classical circulation theory, the planetary
waves would provide the complete solution to the currents forced by the real, unsteady
winds and heating. In fact, the possibility of nonlinear interaction in a weak sense was
recognized, and some calculations of weak rectified flows (wave—current interaction)
and wave-wave resonant interactions were produced (e.g., Pedlosky, 1965; Veronis,
1970; Kenyon, 1964; Longuet-Higgins and Gill, 1966).

Now these grave-mode planetary waves may be relevant to oceanwide seiches of
periods less than a month once the modifications owing to variable ocean depth are
included (Rhines, 1969; Platzmann, 1974). However, despite recent measurements
supporting their existence, they are most unenergetic, accounting for currents not
exceeding 1 cm/sec or so. The evidence is now overwhelming that the scale of the
dominant energy-containing eddies is 100 km or less, corresponding more closely
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with the Rossby internal radius of deformation, L,, than with the geometry of either
the basin or the external forcing effects.” . i
Linear waves are worthy of study, even though the linear approximation 1s doubly

bad at the mesoscale (the currents being far stronger there, and the phase speeds' far
slower than with the basinwide planetary modes). However, it turns out that vestiges
of the linear theory apply well into the nonlinear range, even when energy transforma-
tions are becoming violent. In addition, powerful intuition about the spin-up of
steady circulations (and the resolution of degeneracies in them) is provided by the
group velocity of low-frequency waves, and this intuition provides rough upper
bounds to the rate at which influence can propagate laterally, above and beyond any
fluid advection velocity. Veronis and Stommel (1956) and Lighthill (1967, 1969) have
emphasized this use of wave theory, and produced a rich picture of the regions of
influence and rates of communication of currents forced on a f§ plane.

A. Derivation of Equations

By centering attention on the O(100 km) scales, we can be less uneasy about the
mid-latitude f plane approximation, which is essentially an expansion of the problem
in terms of L/R,, R, being the earth’s radius multiplied by tan(latitude). The traditional
approximation is also taken. This neglects the upward Coriolis force 2Q cos Au
(due to overwhelming static stability) and the eastward Coriolis force 2Q cos Aw
(due to the smallness of vertical velocity, w, in low-frequency motion of small aspect
ratio, H/L); see Miles (1974) and Needler and LeBlond (1973). The momentum and
mass conservation equations for free adiabatic motions are

du
a_.+.(.,.v)|.+fxu.—.__V_p—g+vAu (7
t p

ap

Here (x, y, z), (i, §, k) are Cartesian coordinates and unit vectors eastward, northward,
and locally upward, ¢ is time, u is the velocity, f = 2Q sin 4 where 4 is latitude, g is
the gravity vector, plus centrifugal acceleration, p is the pressure, and v is the kine-
matic viscosity. The Boussinesq approximation applies when the compressibility
is slight enough that the density scale height far exceeds the fluid depth, and when
temperature- and salinity-induced density variations are also small. For the oceans
the pressure effect on density is not really negligible (fractional range of in situ
density is ~3 %) and deep-ocean vertical density gradients far exceed the gradients of
potential density, dp,/0z = (0p/0z) — (pg/c?) (the dynamically relevant quantity),
where c is the speed of sound. However, we henceforth ignore such effects, which
mainly affect the calculation of static stability from vertical soundings.

% This chapter exclusively treats mid-latitude regions. Within a band of a few degrees north and south
of the equator the waves are, on the whole, more rapidly propagating, particularly in the baroclinic modes
due essentially to the reduced impedance of the fluid with respect to vertical stretching. The ocean may
turn out to be rather like the atmosphere, in being largely nonlinear at middle latitudes, yet full of energetic
linear waves near the equator. The zone of distinct equatorial dynamics is (gH)"/?/p ~ +2.5° for the oceans
(H = equivalent depth ~0.75 m), whereas for the atmosphere it is much greater, ~ +33° (H ~ 10 km).
(Higher vertical modes, trapped within 10° of the virtual equator, are also of meteorological interest.)
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Take the following nondimensionalization:

[xyl=L [2J=H, [1=(fw)"', [Mov]l=U [w]l= %
©=7  01=sUlp [1=20L -7

where (L - 1, &y « §, {) is the vorticity, V x u. The departures from mean hydrostatic
values p and p of the pressure and density are p’ and p', respectively: p = p + p/,
p=p+p.Let [ = fo[l + (L/R)y], where R = earth radius x tan (mean latitude).
The vorticity equation, the curl of equation 7, is then

S H L L
wl, + eugy - V{ + 67wl = (8C+ yE+ l)w,+e(§,,-V)w+ R

N
p* gH

(Pip; — Py (8)
for the vertical component and

Ry, + ey VEy + 2 %WCH.: — &8y Vuy — (1 + yL/R + &luy .

_ PPo &po fo’L? ,) % Vo' PoHi < X 9
p2(1+ T p. |k Yo'+ 2 (A )
H; ' = —(1/p)p, = N?*/g, the density scale height, for the horizontal. With oceanic
scaling the right side of equation 8, the creation of vertical vorticity by twisting,
Vp' x Vp', is of relative order 10~ %, and will be ignored. The term (H/H )k x Vp'
in equation 9 is negligible (~ 10~ 2 at most) relative to k x Vp.

The vertical momentum and continuity equations are

LZ
ow, + &u - Vw = }—ﬁ(—p; i) (10)
wp, + eu-Vp) = 6B*w L (11)
Po
V.u=0 (12)

where B = NH/f, L. 272

Now expand in ¢ with @ = O(e) formally, and H/H, < O(), f,’L*/gH < O(e).
L/R = 0(e),(p — po)/po < OE) (, v, w, pl,..) = ® + &u' + - 0% + &0’ +---,..)
0(£%):

w,=0 (13a)

u° = p,%0,° = —p,° (13b)
U0+, =0 (130)

p:° = —p° (13d)

Bw® =0 (13¢)
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This says that the scaling was mistaken in one respect: w ~ &H/L)U rather than
UH/E. The typical inclination of the velocity vector from horizontal is far smaller than
the aspect ratio, H/L, would alone suggest. At this order, then, there exists a stream
function for the horizontal velocities, u° = k x Vi, which is simply proportional

to the pressure field:
—kxu=-Vp°

The next order balance is of interest, not so much in giving small corrections, but in
revealing the slow evolution of the dominant fields.

0(6):w;='9(§?+u,,-VC°+£v° ' (14a)
£ R
r ’ w
wy. +kx Vp' = 3 Eh.o + (- V)G — Ga® - Vg’ (14b)
wy + vl =0 (14¢)
p: = —gp (14d)
iy B O
T OB*w (14¢)
where
Sl +uy’-V
Dt ear ™

Th; :gl"; side of the vertical vorticity equation 14a is eliminated with equations 14e
an -

ne o 330 /5 )
T g A = g T
D'(Q +(B~*p; ):)+£Rb =0

In terms of the stream function,

D° ) (0] H o T

with (D°/Di).° = (6B*/e)VY° x Vh-k on z= —H, (D°/Di}y.° =0 on z=

Here the fluid is confined between rigid flat top, z’= 0, and ;igid boltom~ :=
f— lH(l & oh(x)), 6 < £ This is the_ conse(valion of geostrophic potential voriicity.
ollowing nearly horizontal particle trajectories. In other situations more exact

conservation laws exist; for instance, the barotropic potential vorticity law

D (WY -h"'Vy + f H\?
Dr( h ) v O[ez(z) ] (16)
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obeyed by uniform density fluid in a rapidly rotating container of depth h.> Here the
vertical stretching term imposed by horizontal flow across an uneven bottom,
f(D/Dt)h~*, replaces the stretching of fluid between two, infinitesimally separated,
isopycnal surfaces, (D°/Dt)(B~*.)., in equation 15. Ertel’s (1942) relation,

D((qu+f)-Vp)
=4 0
Dt p

is the most exact of all, giving a potential vorticity that is conserved even in strongly
ageostrophic, nondiffusive flows. For a more thorough account, see Phillips (1963).

B. Linear Waves

The range of phenomena governed by equation 15 is vast. Taking the limit ¢/ — 0,
we recover the purely linear wave regime. It cannot be overstressed that nonlinearities
are rarely negligible in this sense, even though the momentum equation is quite
accurately geostrophic [O(¢)]. But linear theory is important just as, in the study of
surface gravity waves in a full gale, the linear propagation theory would still hold in a
gross sense for the dominant waves (and accurately for much longer waves). The
smaliness of the terms in equation 15 requires that we not forget for long diffusive
effects and interaction with small-scale processes like internal waves.

Three distinct kinds of wave can be identified in the linear solutions of equation 15.
To illustrate, take the boundary conditions to be free in the horizontal, rigid at the |
sea surface, z = 0, and at the sea floor, which slopes uniformly in the north-south
direction:

Y.=0 onz=0 (17)
wB Y, =8y, onz=—1 (18)

where the zero superscript has been dropped and the bottom slope, of magnitude
0L/H, is small & ~ w. The interior equation is

/i
(VHZW it (B—zlll:)z)l = (ﬁ)wx =0 (19)

* In a case of particular interest, waves in homogeneous fluid on a thin spherical shell, care is required
in applying equation 16. Though it is appropriate to discuss more gentle motions (as in Fig. 6¢) in which
fluid columns retain their integrity parallel to the rotation axis, such a model gives grossly incorrect results
when used to develop a wave theory. This is because, on a sphere, the error in applying the Taylor-
Proudman approximation is of order wH/L [wlfercas on a flat f plane the error is O(wH/L)? only]. If,
instead, the entire vector vorticity equation is expanded in w, rather than assuming away parts of it,
the correct wave speeds result, and fluid columns retain their alignment with the /ocal vertical. The
solution agrees in the short-wave limit with the usual f plane formula. The mistake of assuming the
Taylor-Proudman approximation to be exact seems to be common. Another illustration is the later
interpretation of the wave pattern produced in experiments of Fultz and Frenzen (1955). When an obstacle
was dragged westward about a latitude circle in the spherical shell, a distinct train of waves was produced
that obeyed the planetary wave dispersion relation. When the obstacle was caused to move in the opposite
(eastward) direction, no planetary waves should have been possible, yet there appeared a peculiar, periodic
wave train with cusp-like particle paths. Though elaborate planetary solutions of equation 16 have been
produced to explain the pattern, it is very likely that they were simply standing inertial oscillations (which
have cycloidal particle paths). Once again, the possibility of f plane, Taylor-Proudman dynamics applying
has spirited away the simpler f plane, nonhydrostauc flows from our minds. (The experiments are shown
by Greenspan, 1968, p. 266.)
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The problem is separable into vertical and horizontal parts. For uniform density
stratification, plane-wave solutions are

Y = glkxti—on cosh pz
cos mz

already satisfying equation 17. Substituting into equations 18 and 19, we have

P —kL/Rw
"k + P+ B *m?

and

mtan m = ég [(k* + I*)B? + m?*] (20)

or
utanh u = — 67? [(k* + I*)B* — u?]

The solutions divide into those with vanishing vertical shear, those with oscillatory
structure, and those which are evanescent in the vertical.

Type 1. Fast Barotropic
For k? + I*> < B™? a solution with m*> = O[(6R/L)(k* + [*)B*] < 1 is (returning
to dimensional variables)

_ —kB — fox/H) _ (B — fou/H)cos 0
k* + I k|
df oH
~d0atiudey ° =% a=Vh=T
These familiar topographic Rossby waves involve only slight [0(d)] density perturba-
tions, and are the same shearfree modes found on an unstratified f§ plane. Both the
frequency and propagation speeds rise with wavelength, indefinitely in this model.

Type 2. Fast Baroclinic

The above solution ceases to exist at scales as small as the Rossby radius, NH/ f.
There arises to replace it a wave confined within a layer of thickness f L/N above the
sloping bottom. Its purest form has k* + 1> » B~ 2 and = 0. Then, in dimensional
form, the dispersion relation is

(21)

p

o = —Nasin ¢ (22)

where ¢ is the angle of the wave vector (k, [) from Oy. The wave field, also in di-
mensional form, is

zN
'I/ = ei(kx+ly—al) cosh (__)
foL

This is a harmonic solution of Ay = 0, the rather passive form which equation 19
takes in the absence of . The spatial scaling B ~ 1 is ubiquitous to rotating, strati-
fied fluids. The dispersion relation is that of a simple buoyancy oscillation. In common
with other trapped solutions like Kelvin waves, it is independent of the very property,
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/. that causes its trapping. But this mode has a kind of dual nature. If we replace h in
equation 21 by the penetration height, /L/N (with = 0), the dispersion relations
21 and 22 become the same. We may thus consider this to be a topographic Rossby
wave, where density stratification provides a lid for vortex stretching.

Type 3. Slow Baroclinic

At all scales, modes exist that are oscillatory in the vertical, in the presence of f.
For small slopes (relative to H/R, ~ 107 ?) these obey equation 20 tanm ~ 0 —
m = nn, while for larger slopes, m — (n + 4)n. The most quickly varying such wave
(for 6 = 0), m = =, has a period of about 1 yr and horizontal scale L, ~ 40 km. At
larger scales, |k|’B < 1, the dispersion relation becomes

kL/Rw OR
@——W (T—'O,m~n)
_MLRo (R =
C B L et

This is the nondispersive, purely westward propagating mode derived in a simpler
fashion in Section 4. The increase in frequency and propagation speed over a sloping
bottom by a factor of four becomes somewhat less dramatic when realistic, nonuni-
form density stratification of the ocean is included.

The dispersion relation (Fig. 8) shows each of the three limiting types. Sketched on
the figure is the corresponding vertical structure of the current. With realistic stratifica-
tion, which is strongest in the upper ocean, the energy of type 3 waves is increasingly
confined there. A fraction, roughly (L/L,)?, of the energy is potential. This normally
exceeds unity in cases of interest, so it is appropriate to call these baroclinic motions
“thermocline eddies.”

The fast baroclinic waves (type 2) are, conversely, confined near the sloping bottom.
Their inclusion here is of course schematic for those regions of ocean with complex
topography. But it makes clear what was omitted from earlier wave models, that
vertical shear (and density perturbations) with periods far shorter than 1 yr can exist
under linear quasi-geostrophic dynamics.

How great must the bottom slope be for type 2 waves to occur? It turns out (Rhines,
1970, 1971a) that one may imagine there to be a competition for the highest frequency,
among the basic planetary, topography, and bouyancy waves. The f effect alone
provides a frequency ~fL/R. Simple vortex stretching by the topography without
stratification causes a frequency ~f |Vh|L/H. Motion forced up a slope, disturbing
the density field, suggests the frequency ~ N |Vh|. Predominance of bottom-trapped
waves thus occurs if

gy >1+ <

fL R|Vh|
on the basis of scale analysis. If, therefore, the slope exceeds that equivalent to
B (~1073), the type 2 wave may be expected at scales of order the Rossby internal
radius, L, ~ NH/f, and smaller. At slopes so large that @ 2 1 ageostrophic theory is
required, yet the same, trapped buoyancy oscillation occurs.

The fast barotropic wave, type 1, is of course a f§ plane representation of the
planetary wave on a sphere. In a forced problem, with wind blowing across the ocean
surface, say, this mode is encountered alone at large frequency. The response, un-
diminished through the water column, is of crucial importance, and is one of the
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Fig. 8. Dispersion relation for linear topographic-Rossby waves (f plane, uniform upslope to the north),
for several values of slope. Rossby waves, é = 0, are plotted with dashes. The sketches show the vertical
structure. The three classes of structure are referred to as 1, 2, and 3 in the text. R = 6000 km (43" latitude),
wave number normalized by NH/f = 120 km.

striking predictions of linear theory, for “weatherlike” time scales over horizontal
scales greater than L,. Veronis and Stommel (1956) established the result for an
ocean of constant depth, and it holds here with a sloping bottom, unless L < L,.
Perspective views of the dispersion surface are shown in Figs. 9 and 10, and 0 > 0
(upslope to the north). The double arrows give the direction and relative size of the
horizontal group velocity, @f L(dd/dk). The transition from classical type 1 waves to
bottom-trapped type 2 waves carries one from a situation in which the group velocity
can point in any direction (yet the phase velocity always has a westward component)
to one in which both group and phase velocities must have a westward component.
For arbitrary orientation of the depth gradient, type 2 waves tend to move energy
and phase to the left facing shallow water, while type 1 is a topographic Rossby
wave, relative to a “pseudo-westward”™ direction along f/h contours, and type 3
tends still to favor actual westward propagation. The larger group velocities occur
near the origin of Fig. 9, and these have a westward component. Conversely, those
components, generated by a point excitation, say, which do radiate eastward have
large amplitude, if anything like equal energy flux occurs with respect to direction.
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~ 211/36 days

| 2N/245doys

Fig. 9. Perspective view of dispersion surface, a(k, /) (constant depth). Equal-¢ curves are shown. Double
arrows indicate direction and (schematically) magnitude of group velocity. Upper portion is the barotropic
mode, lower portion the baroclinic. Note different frequency scales. N/f is uniform, = 30.

Another immediate consequence of the linear theory is that thermocline eddies
(type 3), already very slowly propagating, will be doubly inefficient at carrying energy
north or south from a source. The greatest north-south component of group velocity
is 0.23fc,?/ fo* (for 8 = 0), whereas the westward velocity approaches fc,?/f,? in the
entire set of long waves. For oceanic conditions these velocities are roughly 0.9
cm/sec and 3 cm/sec, respectively

Lighthill (1967, 1969) has emphasized the application of wave theory in the limit
of vanishing frequency to the development of forced, steady flows. For instance, the
Taylor column in a simple rotating fluid may be visualized as a region of influence of
inertial waves of small frequency. In that limit the group velocity remains large
(~ fo L, where L is the horizontal scale of the “source”) and acts to resolve a degener-
ate flow without the immediate need of invoking viscosity. Here the degenerate, free
flows are those along geostrophic contours (for barotropic flow) or zonally (for large-
scale baroclinic flow), or along depth contours (for small-scale deep baroclinic flow).
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Fig. 10. Perspective view of a(k, /), with a bottom slope of 1.7 x 102 (up to the north). (JR/L = 2).
Both types have increased frequency and propagation rate, relative to 4 = 0. The constant-frequency
loci show an absence of eastward group velocities with short, bottom-intensified waves.

Types 1, 3, and 2 show that the signal from a slowly oscillating forcing function
propagates westward or pseudo-westward at rates (f + afo)L%, L% and N|VH|/L,
respectively, and in doing so carries with it the developing flow. This justifies the
classical procedure of calculating Sverdrup flow by zeroing the disturbance to the east
of the wind stress (Lighthill, 1967).

C. Initial-Value Problems

The wave pattern (Fig. 11) arising from the dispersion of an initial Gaussian vortex
shows some of these tendencies. There is no bottom slope, and the currents are
infinitesimal and entirely barotropic. This computer realization shows the character-
istic penetration of east-west crested waves due westward from the origin, while
slower, shorter, stronger north-south crested waves appear east of the origin. The
general picture agrees with far-field ray theory, and with the Green’s function for a
steadily oscillating delta-function source,*

V3, + B, = 8(x) exp (—iwgt)

* This canonical problem is slightly misleading, in that the right side is not the result of purely local
forces; the stress, t, itself obeys § t -d 1 = 1 about any circuit enclosing the origin. The difference in wave
pattern between this and local forcing is probably small, but the difference in amplitude structure may
not be.
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Fig. 11. Linear, barotropic Rossby waves dispersing from an initially Gaussian current pattern; for
more than infinitesimal currents, the efficiency of the radiation is severely altered. In this and later com-
puter simulations the contours are solid for negative y, dashed for positive ¥ (choosing i to be proportional
to pressure). The boundary conditions are periodic, and the numerical scheme is the spectral code (cutoff
wave number 32, corresponding to 647 spatial map) developed by Dr. Orszag.

which is known to be

B

20,

Y= exp(-—ik,x)H{,z’(ksr) k; =

This particular Hankel function is chosen so that the group velocity points outward
at large radius [while the phase of H{'(k,r) spirals inward]. The wave crests, in the
stationary phase approximation, obey

o const
- cos’(30)

(r, 0) being polar coordinates relative to the origin. Longuet-Higgins and Gill (1966)
have given the response to a space-time delta function of stress-curl, which also
resembles these patterns.

Considering now the stratified case, the wave modes derived here, together with
free geostrophic flow, completely describe linearized motions which develop from
given currents and density. This is true provided that the initial data is itself sufficiently
close to a state of geostrophy. The appearance of the frequency in the lower boundary
condition renders the set of equations 20 nonorthogonal, but this may be circum-
vented as in the problem of a vibrating string with a nonrigid support (Morse and
Feshbach, 1953, p. 1343).

To illustrate the role of the bottom-trapped type 2 we consider (with f = 0) an
initial current of arbitrary vertical structure, but limited to a single horizontal

Fourier component,
Y(x, 0) = e™*MF(z)
The solution to equations 15, 17, and 18, derived by Suarez (1971), is

cosh uz
cosh u

v = e[(kx+ly)[(e"“" -1) F(—1) + F(Z)]
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where a/f, = —kB*/u tanh . It is the simple sum of a wave (type 1 or 2) whosp
velocity at the bottom is equal to that of the initial data, and a steady geostrpphnc
flow which vanishes there and elsewhere accounts for the remainder of the lnlt.lal
data. By summing such solutions about the azimuth, one may construct eddylike

patterns; for instance, with
" U(x,0) = Jokor) r*=x*+)

the solution is

W(x, 1) = Jolkor?) C:Sh % o (1 = o #Z)"o(kor)

osh u cosh u
—B?

1 — ((x — ct)? + Y2 L
r'=(x—ct)" +y9) O i

This represents a steady circular flow at the origin, which decreases toward the
bottom, as a bottom-trapped circular pattern creeps out from beneath it, along the
depth contours to the “left.” The difficulty with such solutions is that they are not
truly local, and rely on inward radiation from infinity to defeat the natural dispersive
nature of the waves.

The role of a weak f effect would be to cause the “steady” component to propagate
itself, as a type 3 wave. Howard and Siegmann (1969) have discussed in general terms
the possible steady geostrophic flows in such cases.

D. Observations

The observations made in the introduction fixed the gross time and length scales
of the energy-containing eddies, both deep and shallow. We are rapidly obtaining
refined measurements to improve upon this picture, which bring observations and
theory somewhat closer together.

Type 1. Fast Barotropic

The Mid-Ocean Dynamics Experiment (MODE-I) covered a (200 km)? region
centered on 28°N, 69°40'W, in the Sargasso Sea, Spring 1973. Rossby and Webb’s
neutrally buoyant SOFAR floats drifted with the currents at 1500 m. Character-
istics of the floats were unusual accuracy (roughly 1 km absolute, <4 km relative
position fixing) and longevity (the observations in this area began in September 1972
and continue at the time of this writing, May 1975).

There were often more than 10 floats present in the area, and they allowed rather
accurate, objective stream function maps to be produced (in real time by Bretherton,
and subsequently by Freeland and Gould). Figure 12a from Freeland, Rhines, and
Rossby (1975), is an x-t plot of the stream function at 28°N; Fig. 12b is a y-t plot
taken along 70°W. There appears a persistent tendency for phase lines to move
westward with time, but no striking north-south propagation. Thus the nearly
ubiquitous property of westward phase propagation, found in the linear theory of
Rossby waves, actually appears in currents below the main thermocline.

The phase speed ranges from 2 to 12 cm/sec in the figure, averaging about 5 cm/sec.
This slightly exceeds the rms current speed, which is 4 cm/sec in the region, and far
exceeds the mean flow. The horizontal length scale is also visible; the transverse
spatial correlation function first crosses zero at 50 km. For linear theory, flat-bottom
waves (equation 21) have a westward phase speed equal to B/|k|*. The estimate
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Fig. 12.  (a) Time-longitude plot of stream function inferred from objective maps of 1500-m currents along 28°N (centered at 69°40'W),
by Freeland, Rhines, and Rossby (1975). There is evidence of westward motion of phase, as occurs in both linear and nonlinear f§ plane
theory (compare Fig. 20b). The large-scale f/h contours in the region lie roughly east and west. The data came from neutrally buoyant
SOFAR floats (Figs. 64-66). The currents at this depth are not dominated by thermocline eddies, but are more representative of the
deep ocean. (b) As in (a), but time-latitude plot along 69 40'W.
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(a) Currents at Site D (39°10'N, 70°W), at levels 205 m, 1019 m, 2030 m, and 2550 m. The ocean

depth is 2650 m. A thermocline eddy dominates the upper flow, followed by an interesting, rapid oscilla-
tion. (b) High-pass filtered version of (a). The deep westward mean flow and upper-level thermocline eddy
are thus removed. The deeper layers are dominated by fast oscillations with episodes of clear bottom
intensification and polarization (70 < 0).
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5 cm/sec implies a rational scale, | k|~ !, of 50 km. More is said about these exceptional
measurements below.

Type 2. Fast Baroclinic

Cursory examination of current meter records frequently shows the existence of
vertical shear at high frequencies, relative to the predicted, O(1 yr), cutoff for baro-
clinic Rossby waves (yet less than f;). This is particularly true as one approaches the
ocean floor. Figure 13 shows current meter records from site D (39°10'N, 70°W) taken
by Luyten, Schmitz, and Thompson of the Woods Hole Oceanographic Institution.
The location is some 100 km north of the mean Gulf Stream axis and 50 km south of the
continental shelf. There is a persistent northward shoaling with slope 8 x 1073,
First, observe the agreement in general terms of the character of the vertical structure
with the linear picture. The shallow level is dominated by a strong current which
varies with a 3-month period. The deeper currents are weaker, yet more quickly
varying.

High-pass frequency filtering (by Dr. Luyten) gives a rather definite character
to the deep oscillations. Below 1000 m, they tend to increase in energy with depth, and
develop a strong polarization, with u and v negatively correlated. All these features
are expected of linear waves of type 2; in particular, the natural period >2n/N |Vh|
~ 6 days here, and the independence of the period from the wavelength allows the
testing of the dispersion relation by a single vertical string of current meters (Rhines,
1970, 1971a). In addition the vertical scale observed is directly proportional to the
horizontal scale, which may thus be inferred. Thompson and Luyten (1976) and
Rhines (1971b) have made just such comparisons, using spectral analysis. Figure 14
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Fig. 14. Ratio of kinetic energy spectra between 1000 m and 2500 m at Site D versus frequency, from
Thompson and Luyten (1976). The records occupied 10 months in 1972. Both u anq v spectra are shown.
Most of the energy in the v spectrum lies between 8 and 20 days. Energy in a significant band is bottom-
intensified. The wavelength inferred from linear theory ranges from 90 to 160 km.
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Fig. 15. Temperature (°C) maps showing a warm anticyclonic ring cast northward by the Gulf Stream
(Saunders, 1971). The current vector originates at Site D. The surface flow entrains cold water from the
shallow continental shelf while the deep field remains relatively simple. Such an event probably caused the
200-m flow in Fig. 13a. Although the ring moved westward, it would be an oversimplification to charac-
terize it as a baroclinic Rossby wave.
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shows how, in an intermediate band of frequencies, the spectral energy increases
downward, as predicted.

What is particularly exciting is not only that the “waves” exist with apparently
correct local behavior, but that their #o polarization implies group velocity with a
component to the north. Thompson (1971) recognized that the nearby Gulf Stream
was a likely source, and that this polarization would be expected with type 1 Rossby
waves. Fortunately, the same behavior arises with type 2 waves; there is probably
enough breadth to the distribution of scales that a range encompassing types | and 2
waves occurs.

Type 3. Slow Baroclinic

These current data are a good example of the many levels of understanding that
apply to ocean observations. Some features of the deep flow agree with type 1 Rossby
wave theory, yet the addition of type 2 waves fills out the picture. The strong current
at the upper level might be interpreted as a type 3 baroclinic Rossby wave, yet in fact
it has the signature of cutoff Gulf Stream eddies. An event very like this one was
documented by Saunders (1971), Fig. 15 (see also Fig. 57). That particular eddy in
fact moved westward, at roughly the speed of the climatological mean flow, and
rejoined the Stream. With this mixture of advection and propagation present, it
would be unwise to say that type 3 waves had been seen, so for better evidence we
turn to the open ocean, far from intense currents. The POLYGON group (Brek-
hovskikh, Federov, Fomin, Koshlyakov, and Yampolsky, 1971), Bernstein and White
(1975), and the MODE group have each witnessed the slow westward movement of
thermocline eddies. The MODE observations are summed up in Fig. 16, and x-t

DAY 101 4

8
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2.0 KM/DAY

Fig. 16. Time-longitude diagram of dynamic height (501-1500 dbar) along 28°N, from the Mid-Ocean
Dynamics Experiment. There is increasing evidence of such westward phase propagation in thermocline
eddies, at a rate comparable with the linear speed (see also Fig. 41); note that this is significantly slower than
the observed phase motion in 1500-m currents (Fig. 12a).
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diagram, again along 28°N, of the dynamic height anomaly across the main thermo-
cline. This measure of the density field shows a clear westward movement at a rate
2 cm/sec. It is less likely than Gulf Stream eddies to have involved net westward
movement of the water, although this is not yet certain. In fact, it is the very slowness
of the propagation of thermocline eddies that makes it hard to resolve the mean flow
(for one must average over many eddy periods).

Type 1. Fast Barotropic (Ultralong)

It is shown in Section 6 that the use of linear theory is marginal, at best, in studying
the above observations. But a “benthic” group in MODE-I provided observations
of sea-floor pressure that are much more likely to relate to linear waves. It was
discovered that the pressure records were surprisingly coherent (> 0.95) over 200-km
separations in the MODE region (Fig. 17; Brown, Munk, Snodgrass, Mofjeld, and
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Fig 17. Time series of bottom pressure in MODE (Brown et al., 1975). The gauges centered on 28°N,
69°40'W are remarkably coherent, despite separations O(180 km). Furthermore, the pressure-corrected
sea level at Bermuda (~ 650 km distant) (labeled * Bermuda Subsurface ") is as well. This is strong evidence
for fast, type | planetary waves.

Zetler, 1975). Such separations are well beyond the coherence distance for the energy-
containing eddies. Then, looking at the record of the Bermuda tide gauge 700 km
away, they found that it too was remarkably coherent ( 2 0.8, once the inverted barom-
eter effect of atmospheric pressure had been subtracted). This established that the
pressure just below the sea surface is coherent both vertically with the sea floor, and
also horizontal, over 700 km.



THE DYNAMICS OF UNSTEADY CURRENTS 227

It may be the first observation of “ultralong” planetary waves, of the kind an-
ticipated many decades ago.’ To see whether the observed large scale is indeed
consistent with wave theory, we converted the observed P(c) frequency spectrum to a
wave number spectrum, assuming a model dominated by a single orientation (say,
k = I). Let
P(o) do

dk

where o = —f/2k, do/dk = —B/2k*. Although the frequency spectrum is “red,”
increasing toward small frequency, the estimated wave number spectrum is flatter,
with a central peak at k ~ 27/7000 km. The large scale is sufficient to explain the
highly coherent records, with phase lag of less than a day. This is particularly so
because it gives only a rough upper bound to the phase lag. The sense of the lag,
though marginally determined, seems to have Bermuda leading, suggesting westward
propagation. The atmospheric pressure patterns, conversely, move eastward across
the region. The inferred energy spectrum [ oc k2P(k)] is very “blue” and suggests that,
indeed, the kinetic energy in the deep-ocean peaks near the 50-100 km (rational)
scale.

This example verifies the almost inescapable result, discussed in Section 3, that
pressure gauges see longer scales than current meters, but we could not have an-
ticipated how great the difference would be. The observed association of higher
frequencies dominantly with large scales gives support to the planetary “inverse”
dispersion relation, @ o k™!, for ultralong waves as against the turbulent relation
@ o Uk, described in Section 3. The periods and scales of these waves are closer to the
scales of moving weather systems, which may favor the setting up of plapetary
seiches by both the atmospheric pressure and winds. The result should motivate a
systematic search of island-based sea-surface records, and give impetus to the refine-
ment of the sea-floor pressure recorders.

P(k) =

Energy Flux . :
Are the large-scale motions energetically important? True, their energy density

is slight relative to the small-scale eddies, but their energy f!ux is in fact much lzzlrger.
Given that the group velocity for planetary waves has magnitude o/k = — f/|k|?, one

can define an energy flux spectrum,

F(k) = pk=26(k) = A 5 P(k)  (k = |k| here),
pof

giving the density with respect to scalar wave number of the kinetic'energy flux,

without regard to direction. # (k) is thus simply proportional to P(k) and is dominated

by the ultralong waves.

Scale Transformations -
This remark exaggerates the importance of the longer waves, unless mechanisms

exist for the conversion from large to small scale. Bottom roughness pfovides one
such mechanism, but a simpler, classical feature works in a flat bottom, linear ocean.

® Thus the Bermuda tide gauge has helped in establishing both type 1 waves, aqd at longer periods
type 3 waves, in collaboration with the Panulirus stations. In either case there is sxgm_ﬁcanl concern over
such use of island stations, for local island dynamics could conceivably havg dominated the sea-levgl
records. Happily, this result shows that the higher-frequency components are indeed of Igrge scale. Tt;ns
was predicted by Rhines (1969) for the linear theory, but he gave no reasons why nonlinear, unsteady
*“island wakes ™ might not add significant noise.
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UorV

Z/H

Fig. 18. Typical vertical structure of the linear waves, types
1, 2, and 3 for exponential stratification N o exp (2z/H).

This is the striking fact (Pedlosky, 1965; Phillips, 1966) that the reflection laws for
Rossby waves cause fast, long, weak, westward-propagating waves to reflect at a
western boundary into slow, short, strong, eastward-propagating waves. It can be
verified, in Fig. 9, by finding two waves of the same frequency and north-south wave
number. The ratio of |k| of the reflected wave to that of the incident wave exceeds
unity and the ratio of energy densities is the square of this ratio. Any reasonable model
of the dissipation then leaves the western region filled with energetic eddies fed by a
nearly invisible, ocean wide source. This occurred clearly in the laboratory (Phillips
and Ibbetson, 1967). We return to the topic in Section 7.

Synthesis

Using linear building blocks we can produce current and density fields that contain
a number of observed features. McWilliams and Flierl (1975) gave done so, to pro-
duce an optimal linear description of the fields in MODE-I. It should already be
clear that the decrease in characteristic time scale with depth and the great decrease
in kinetic energy with depth, followed by a gradual increase, are consistent with
a superposition of wave types 1, 2, and 3, such that type 3 dominates the flow above
the thermocline, type 1 the flow at mid-depth, and type 2 the flow in the lowest
kilometer. Figure I8 shows this schematically, using an exponential stratifica-
tion and a bottom slope of 8 x 1073, The thermocline eddies are disposed this
way by the concentration of the density gradients in the upper ocean. Away from
the western regions of the oceans, particularly, where the 18° water provides a
deep thermocline, the type 3 waves would be strongly confined near to the ocean
surface, where they could intermingle with the directly driven wind-mixed layer.

The picture may be refined by allowing the modes to interact weakly, and by
including a large-scale mean current. But this might deflect us from the central issue:
the thermocline eddies, even in a quiet part of the ocean like the MODE area, are
sufficiently strong to blow the tops off barotropic waves, trying to propagate through
them. This is the subject of the next section.

6. Nonlinear Waves and Turbulence: Primary Cascades

A classical ocean filled with linear waves would present us with a problem in
spectral discrimination and synthesis. All that would remain would be the identifica-
tion of sources and sinks. The basic gradient of mean potential vorticity dominates
in that case, and provides a smooth restoring force. Based on typical mid-ocean
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conditions, however, none of the three principal wave types has a steepness that is
small. Take an upper ocean velocity of 10 km/day and deep-ocean velocity of 4
km/day: the particle excursion during a wave period + 2, or ratio of particle speed to
theoretical phase speed, & = ¢/w, is,

2Uk?
8= 5 =2 (deep-ocean U, k = k, = 1/45 km)
=35 (shallow U, k = k,)
2=M=0.8 (N=26x10"30=5x 1073 k = 1/15 km)
Nao
2
53 = 3U;p = 7

for the barotropic, fast baroclinic, and slow baroclinic types, respectively. The
numerical factors allow the criteria to apply to the average wave speed, rather than an
extreme value. Although special solutions can be found whose nonlinear advection
is far smaller than these numbers suggested, the interactions between different
Fourier components must, on the average, be strong, particularly in regions of more
vigorous currents than these. Such a situation is remarkable, when it is remembered
that for deep-ocean velocities any less than these, the current-meter rotors would be
stalled a significant fraction of the time. However, all the forces acting to accelerate
the fluid are weak and a state of horizontal turbulence is readily reached. A per-
suasive picture of the wave steepness (Fig. 64) is the ensemble of tracks of the SOFAR
float experiment in MODE, Rossby, Voorhis, and Webb (1975). Even at 1500 m, the
slowest level in the ocean, the tracks show particles not to be confined near latitude
lines, but chaotically traveling distances far greater than the dominant length scale,
say 50 km, of the flow.

A. The Diagram

Figure 19 shows schematically the nonlinear cascades that occur in a flat-bottom
ocean. We have plotted turbulent states on this dispersion diagram by endowing
turbulent fluid of dominant wave number k and rms particle speed U with a frequency
kU. There is some reality in this, (Section 3), as a crude representation of the
concentrated frequency-wave number spectrum. The vertical axis is a crude two-
point representation of the vertical wave number. Thus baroclinic modes appear
on the upper plane, barotropic modes on the lower plane. For linear waves,
U < wlk)/k, the exact dispersion relation w(k) applies instead. This delineates the
wave regime to the left of the solid curves. As suggested by the shortness of trajectory
a, interactions in the linear region are slow. A cursory look at the other trajectories
shows a general movement toward the deformation radius on the baroclinic plane,
downward to the barotropic plane, and then to the left. Taken literally it would say
that in a freely evolving ocean vertical shear would disappear, and the horizontal size
of eddies would at first approach the deformation radius, and then increase. We first
describe the individual elements of this statement, and then in the succeeding section
modify it to account for the real, rough-bottom ocean.
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Fig. 19. Schematic representation of freely evolving, nonlinear eddy fields in a flat-bottom ocean.
Turbulent states are plotted on this @, k diagram by ascribing to them a frequency kU, where k is the
centroid of the energy spectrum, and U the rms particle speed. The position of these states relative to the
linear dispersion relations (below solid curves) is crucial. Energy-preserving changes of scale occur,
within baroclinic eddies, toward the deformation radius from either side. This same scale is an aperture
through which energy passes, downward from baroclinic to barotropic states, followed by cascade to small
wave number. Wherever energy meets a dispersion region it tends to stagnate.

B. Barotropic Cascade, Path b

The behavior on the lower plane is just the same as if the ocean were unstratified;
under the Boussinesq approximation, arbitrary barotropic motion itself satisfies
the equations. This case is described in detail by Rhines (1973, 1975). The essential
result (Batchelor, 1953) follows from the integral constraints on total energy and
squared relative vorticity, or enstrophy, in purely two-dimensional flow:

a o0
—J. & dk = —2vjk%$dk—2RJé’dk<0
i3] o
(23)

EJ k& dk = —2v J‘k‘&dk — 2R '[kzé’dk
af 0

There is no forcing and an Ekman drag, Ru, acts at the base of the fluid. As in Section 3,
the domain is taken to be periodic, of very large size, and Fourier coefficients are
blurred into a continuous function. If initial values y,(x) are specified and then allowed
to evolve freely, both right sides are negative. For a finite initial scale of motion they
both vanish with R, v (for all finite time), leaving (6/1) | & dk = 0, (8/d1) [ k*& dk = 0.
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The argument proceeds by assuming that an initially narrow spectrum spreads in
time, about its mean wave number,

ﬁf(k—k )& dk
ot . S

where k, = [ k& dk/( & dk. It follows immediately that
i
ot

This “red™ cascade toward small wave numbers may be appreciated by imagining
possible redistributions of a “mass™ &(k) along the k axis, such as to conserve the
moment of inertia of & about k = 0. If a unit amount of & is taken from a narrow
peak at k = ko to twice kq, then the equivalent of four units of &¢ must move to 1k,
to compensate. Given an initially narrow concentration, no more than one fourth
of the total energy can move to 2k, for the entire remainder must then move to
k = 0 to preserve the second moment.

The transfer of energy out of small eddies into larger ones, when 3D vortex
stretching is suppressed, is a feature having links with many kinds of fluid flows. The
transfer from cyclones to the zonal-average winds in the atmosphere may be con-
sidered a special case, and in terms of westerly momentum, appears as a negative eddy
viscosity (Starr, 1968). The corresponding spectral transfer function Tj(k) shows the
nonlinear contribution to &(k)/ét at each wave number; more complex flows with
stratification and topography continue to have a “red” T,(k) (Figs. 31, 38), but the
velocity components normal to isopleths of density and topography yield competing
transfer spectra, that may reverse this trend.

The absence of vortex-stretching in two dimensions (2D) prevents high-Reynolds
number turbulence from dissipating energy at all efficiently. Whereas the e-folding
time for energy decay in 3D is approximately L/U regardless of how fine the dis-
sipation scale, here a viscous time of order (v/L?> + R)™ ! is required. The presence
of strong eddy motions cannot, therefore, be taken as an indication that dissipation
is occurring, in the gross sense encountered, for instance, in a laboratory jet.

Enstrophy, k&, on the other hand, must in the mean be carried to small scale to
balance the expansion in size of the dominant eddies. The notion that an inertial
subrange will form at large wave number, to carry enstrophy, dominates the literature
(e.g., Kraichnan, 1967). However, the similarity of this process to the energy-carrying
Kolmogorov inertial range of 3D turbulence breaks down when rates are considered:
3D energy can apparently reach infinitesimal scale during a single revolution of an
eddy (~ L/U). Yet the time required for 2D enstrophy to do so is logarithmically
infinite, as the Reynolds number increases without bound. This is because the time
for enstrophy to double its characteristic wave number is of order ([§ k¢ dk)~'/2,
which is strictly bounded in two dimensions. A high-Reynolds number, 2D fluid is thus
inviscid for all finite time, given energy initially at finite scale. The fact that the effective
Reynolds number is large is plausible once one views the wealth of fine structure in,
say, sea-surface temperature photographs. In spite of blurring of temperature gra-
dients by exchange with the atmosphere, strong contrasts persist down to a scale of
1 km and less. Clearly there is a wide gap between the energy-containing scale, say,
k, ~ ', and the scale of significant thermal dissipation. Less is known about the velocity
fine structure, but current records on fixed moorings, low-passed to remove internal
waves, do show frequent rapid accelerations as if a corresponding jaggedness in the

velocity distribution were present.

<0 (24)



232 PETER B. RHINES [cHAP. 7

The removal of viscosity from the dominant dynamics at large Reynolds number
suggested to Batchelor (1969) a similarity solution for the time evolution of the energy-
containing eddies. If details of the initial conditions are eventually forgotten in the
evolution the only external parameter is the rms particle speed, U. This suggests

a shape-preserving solution,
&(k, t) = 3Utg(Uke) (25)

where g is a normalized, unknown shape function (j'(’; g(&)d¢ = 1). Solution 25
exhibits both rightward enstrophy flux and leftward energy flux. The dominant scale,
ky ™', of this eddy field expands according to
ST p)
57 TU (26)
where

4 s f Egdé, a constant
0

B#0

(a)

Fig. 20. (a) Streamlines in barotropic evolution experiments with and without the § effect. Beside keeping
the scale small, f§ tends to produce a striated pattern of shifting, principally zonal, flows. (a) Contour

interval 0.11 at ¢t = 0,0.16 at r = §,
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(b)

Fig. 20. (b) contour interval 0.11 att = 0,0.06 at r = 5. (See Table I for parameters.) (b) Time-longitude
diagrams for i, from the barotropic runs in (a). The cascade to large scales occurs in either case: with beta,
it leads to increasingly fast propagation, until being halted at k ~ .
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(¢)

Fig. 20. (c) Vorticity field in a high resolution barotropic turbulence experiment. With a strong f effect
this vorticity would be radiated rather than sheared out.

Experimental values for T are given by Rhines (1975); T = 3.0 x 102 for initially
narrow spectra. Thus we are closer to having useful results about the evolution of the
energy-containing eddies in two than in three dimensions, and numerical computation
is far more economical in two dimensions, so we have the added benefit of many
simulations.

If these results are applied directly to the ocean, say, the 200-km-wide thermocline
eddy viewed in MODE-I, equation 26 gives about 100 days for the time required
to double its size (taking U ~ 10 cm/sec). But this certainly did not occur, for reasons
that will soon become clear.

A numerical simulation of pure, barotropic 2D turbulence is shown in Fig. 20a. The
computation uses a 64> degree-of-freedom spectral scheme (see Rhines, 1975). The
dominant scale increased rapidly, and its evolution may also be seen in the x—t plot of
stream function (along a single latitude line), Fig. 20b. The corresponding wave
number spectrum is sharp, with an inertial range steeper than k™. This narrowness
of the spectrum lends confidence to the use of single scales L, 7, and U in describing
the field, which is the basis of Fig. 19. The experimental parameters for this and
succeeding runs are given in Table I.

C. Obstacles to the Red Cascade

Evidence from mid-ocean observations is that the eddies are closely packed and
not very intermittent. But the mechanism of thin-jet instability makes the field
more erratic nearby the Gulf Stream or other intense currents. The eddies followed
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2000 KM
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Fig. 21. The effect of isolating a patch of eddies with surrounding, still fluid (time-longitude plot). Inter-
action ceases when there are too few eddies to act as turbulence (roughly four).

by Fuglister were distinct and isolated, both in their foreign water-mass character-
istics, and in their unusual energy content.

Figure 21 shows how isolation can affect the simple 2D cascade. A initial cluster of
eddies, surrounded by quiet fluid, cascades to longer scale, until the energetic patch
contains too few eddies to act as turbulence. At this point in the experiment further
evolution ceased, as is clear in the x-t diagram. A number of integral properties of
such an isolated distribution must be conserved: the total vorticity, the center of
vorticity [ x{ dx?/[[ { dx?, and the dispersion [ |x|*{ dx*/[[ { dx* about the center
(Batchelor 1967, p. 528). These guarantee that the “size™ of a cluster of turbulence
remain about the same as it evolves, if the net vorticity is significantly nonzero. In
the present experiment, however, the net vorticity vanishes identically, and there is no
guarantee that the energetic region will remain confined. In some other realizations,
in fact, vortex dipoles (which are self-propelled) managed to escape the cluster.
Regardless of the ultimate detail, the initially isolated cluster must eventually cease
to act as turbulence.

A second, and more subtle, obstacle to the 2D cascade is the restoring force provided
by the f effect, or its topographic equivalent (owing to gradients of ambient potential
vorticity). The energy and enstrophy integrals, equation 23, are unaltered (in an
unbounded domain) by f, indicating that the direction of the cascade should be the
same as before. Scale analysis of the equation,

D 2 =
5 V2V + B =0

however, suggests that eventually the red cascade (path b in Fig. 19) will carry the
flow into the regime of linear waves, no matter how intense or how small the initial
eddies. The relative strength of nonlinearity &, = 2Uk,?/p, decreases like 2/pUt*T?,
according to equation 26. When it passes through unity, radiation of vorticity begins
to supplant advection, and interactions between different wave numbers demand
frequency resonance obeying the dispersion relation of type 1 waves if they are to
develop fully. This requirement of physical coincidence plus spectral resonance



TaBLE |
Experimental Parameters®

Figure t Ky K, P k, Hy/H, dr v
20a 0 0.80 - — — A 0004 0004
40 0.17 - — = 5 5 X
20b 0 0.80 — — — - 0004  0.004
40 0.10 - - o e - 5
21 0 0.036 — — = 0004  0.0025
2.5 0.0082 — - — — -
22 0 0.23 0.23 0.12 57 1 0016  0.003
48 0.10 0.1 0.023 e e :
22b 0 040 0 0.16 5 1 0.008  0.002
48 0.22 0.054 0.056 — = ==
23,24 0 0.62 0 5.6 8.0 3.57 0004  0.004
6.2 0.64 1.5 1.97 = — — -
25 0 1.0 0.33 204 8.0 3.57 0006  0.004
30 50 8.4 33 — = — -
27-29 0 0.24 0 2.11 50 3.17 0.008  0.006
32 0.26 0.064 1.95 - — —~ -
8.5 0.46 0.52 0.74 = - 2 —
31 0 12 0.70 1.8 8.0 3.57 0.008 0
5.1 0.57 1.64 0.24 - il e —
34 0 1.1 0 1.9 8.0 357 0.008  0.004
30 0.53 0.40 0.81 — - - -
8.8 0.13 0.11 0.29 — — — -
35,41 0 12 0.30 24 8.0 3.57 0.008 0
7.0 0.33 1.0 0.48 - - — —
39,40 0 0.25 0 3.1 8.0 3.57 0.008  0.004
26 0.48 0.80 o) = — — —
5.1 0.38 0.61 0.95 — - — —
39 0 0.25 0 3.1 8.0 3.57 0.008  0.004
26 0.43 0.64 24 L = — —
5.1 0.50 0.87 0.88 - = s -
39 0 0.25 0 3.1 8.0 3.57 0.008  0.004
26 0.20 0.05 3.1 — — — -
5.1 0.33 041 2.5 i - = —
39 0 26 x 10°11 0 3.1 x 1071 8.0 3.57 0.008  0.004
5.1 3751074 . 120:x.1071 50 1071 — - . —
42 0 0.48 0 0.16 6.0 1.0 0.008  0.003
35 0.16 0.016 0.096 =) — = -
43bh, e 0 0.49 0 0.79 8.0 357 0008  0.004
8.8 0.046 0.035 0.16 A~ it o —
43¢ 0 0.50 1.5 20 8.0 3.57 0.008 0
70 0.21 0.85 0.30 = = = —
434 0 0.60 0.15 1.21 8.0 3.57 0.008 0
70 0.19 0.44 0.30 = e, L —
45 0 11 x 1074 0 30 x 1074 80 3.57 0008  0.006

70 28 x 107% 6.0 x 10°¢ 1.6 x 107* = — -~

“In “computer™ units such that the box width is 2z. In the later simulations this corresponds to 2000 km,
with the time unit 1 month, and velocity unit 10 cm/sec (then f = 17.8 and f = 200). Energies (K, K. P)
are in velocity units; multiply by H, to get energy. k,, is the inverse Rossby deformation radius, (F, + F,)' A
v, R, and Q are lateral, bottom, and k* friction coefficients; é is the rms topographic height/H ,; k" and k{*’ are

236



R (0] ) p 5 R < 0. U, U, Experiment
0 0 0 0 10.4 — 1.3 — 2DTS5
~ - — - 35 - 0.58 -
0 0 0 520 104 - 1.3 — BTS
— — - - 5.7 — 045 —_
0 0 0 0 14.0 — 0.27 - Entrain-1
= - — — — - 0.13
0 0 0 0 8.5 8.5 0.68 0.68 2LT-2
= —_ — — 4.6 %7 045 047
0 0 0 0 6.5 6.4 0.89 0 2LT-1
0 0 0 200 247 - 1.1 0 BE
= - — — 46 39 1.1 1.7
0 0 20.0 2.2 29 14 043 BCRW
— — - 6.3 46 32 22
0 0 0 0 — — 0.69 0 GS3-2
P — — — 26 38 0.71 0.20
= — — - 30 24 0.96 0.57
0.04 10-3 0 17.8 6.5 6.3 15 0.65 MODE 4B
= — - — 4.7 42 [ | 0.96
0.04 0 0.053 17.8 5.5 - 1.5 0 MODE 3B
= — — — 6.3 1 1.0 0.47
= — — — 58 70 0.51 0.24
0.04 10-% 0.053 17.8 5.6 5.6 1.5 041 MODE 4A
— - — - 6.4 6.2 0.81 0.76
0 0 0.053 20.0 20 — 0.71 0 MODE 2,
— — — 49 55 0.98 0.67
- — — -~ 5.5 6.2 0.87 0.58
0 0 0.027 20.0 20 - 0.71 0 MODE 2,
— — — - 4.6 45 0.92 0.60
— - — — 54 5.0 1.0 0.70
0 0 0 20.0 20 - 0.71 0 MODE 2,
— - — — 2.1 2.6 0.64 0.17
- — - — 49 5.1 0.81 0.48
0 0 0.053 20.0 20 - 795108 0 MODE 2,
— —_ - — 3.5 60 63 %1078 53 % 1079
0 0 0.11 0 15 - 0.98 0 2LT-5
— — - — 6.2 8.2 0.56 0.18
0.04 0 0.053 17.8 5.7 5.l 0.99 0 HORIZ-1
— —_ — — 5.6 6.9 0.30 0.14
0.04 2% 102 0.053 17.8 5.8 57 1.0 092 HORIZ-2
— £ — — 58 59 0.64 0.69
0.04 1 x 1073 0.053 17.8 S0 5.7 (| 0.29 HORIZ-2
— = = - 6.2 6.7 0.62 0.50
0 0 0.053 17.8 5.5 - 0.015 0 MODE 3A
= = — — 5.1 73 0.0074 0.0018

the first moments of the upper and lower kinetic energy spectra, respectively. U, and U, are rms velocities.
Note that in the experiments with regions of empty ocean these will be less than the typical velocities.
The early runs, using lateral friction, were heavily damped by friction, but these have all been repeated with

the more effective (less devastating) k* friction.
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reduced the cascade rate T by a factor of five in the numerical simulations. The result
was a slowly evolving Rossby wave field of scale given by

i
2U
and steepness & slightly below unity. The action of turbulence as a source of wave
motion (with no loss of energy to dissipation) is one of the ironies of geostrophic flow.
The numerical experiment is shown in Fig. 20. For comparison, the ¢ field at an
intermediate time, 5.1 months, taking U ~ 5 cm/sec and a domain 2000 km wide, with
and without f, is shown. Within the time of a single eddy revolution the differences
become apparent. The growth of energy in the smallest wave numbers is inhibited by
B, as is the leftward migration of the spectral maximum. The x-t plots in Fig. 20b show
how the initial clustering occurs as before, but both the slower advection time of the
bigger eddies [~(k;U)™'] and the ever greater frequency of Rossby waves of scale
ky~' continue to make the transition to wave motion a quick one. The westward
phase propagation, at a rate comparable with U, takes over, and further changes of
scale occur only gradually. For this reason, the constant energy trajectory b in Fig. 19
is shown to terminate at the threshold of the wavelike region. The vorticity field,
(Fig. 20c) in pure 2D turbulence shows contours elongated by the shear, in exactly
the pattern of a passive dye trace. In more complex experiments below, this shearing
action shows reliably when horizontal advection dominates the dynamics.

k’z =

D. Anisotropy

An interesting feature of 2D turbulence with f is the development of anisotropy
in which eddies are elongated along latitude lines. This preference for flow along
geostrophic contours is a common thread running through the remainder of this
chapter, including the consideration of mean-flow generation by eddies. It may be
anticipated by realizing that a general feature of weak-wave interactions seems to be
that they cascade predomirantly toward small frequency, proofs of the initial tendency
having been given by Hasselmann (1967) for single triads. Combined with the 2D
cascade to small wave number, this rules out continuing isotropy, for the type 1
dispersion relation associates small frequencies with large wave number, if we fix
the mix of propagation directions. The end state of this cascade was speculated
(Rhines, 1975) to be a nearly steady pattern of zonal current, alternating with scale
ks~ !. There is some controversey about whether the tendency proceeds this far, but
at the intermediate times of interest for the ocean, it is clearly effective. When energetic
eddies do not show this tendency (for instance, those observed along 70°W in the
deep water are anisotropic in the opposite sense) other constraints (e.g., the proximity
of a continental margin) must be suspected.

For typical deep-ocean velocities (5 cm/sec) the scale of these waves of unit steepness
is ~70 km (wavelength 440 km), which is comparable with estimates from the observed
correlation functions. Although there is much more to the story, it appears that the
planetary restoring force contributes to the smallness of mesoscale eddies.

E. Baroclinic Cascades; Path ¢

The remaining initial-value problems involve baroclinity. For comparison with
experiments we approximate the full potential vorticity equation 15 by a two-layer
model, similar to that used by Phillips in early atmospheric models and theory. The
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equations for the upper and lower layer in dimensional variables, are
D
F; [VZ'//I + Fy(o —¥)] + By, = VV"pl T QV6¢|
(27)
W4, + RV, + QVOY,;

l;_j [V3, + Fa(Yy — ¥2)] + By,

D,/Dt = é/ot + J(Y;, ) Fi= f/g'H,, g = gAp/p. Here the interface height is
fol¥2 — ¥1)/g". (In an n-layer model, the interior layers have thickness oc ., — 2y,
+ ¥, . from the hydrostatic relation. This approaches .., equation 15, in the limit.)
Hydrostatic, quasi-geostrophic motion is assumed. A distinct change in dynamics
occurs between scales on either side of the Rossby deformation radius, (F, + F,)~'/?
= k,”'. When k,L 2 1 the layers are strongly coupled by interfacial motion and the
attendant vortex stretching [the term.F; Dy, — \,)/Dt]. At scales far smaller than
k,”', on the other hand, the coupling terms are negligible, and the interface is
effectively rigid. In later runs a high-order friction (QV°¢) is used.

Thus the initial behavior of a field of eddies of scale k,L < 1 is just that of two
decoupled layers of 2D turbulence. The cascade labeled c in Fig. 19 has this character,
following a constant-energy trajectory until it meets the edge of the wave regime,
where it stagnates. The waves themselves, in this extreme (/3/2Uk,,2 > 1), have the
same nature, beingeeffectively two decoupled layers of barotropic Rossby waves:
that they may be expressed as baroclinic modes of odd vertical symmetry obscures

this independence.

F. Pathd

Imagine now, the more interesting case, Fig. 19, path d, in which the energy level
is greater, so that the initially small eddies reach the wave number k, before feeling
the f effect. As they expand toward the deformation scale the pressure perturbations
build up (for the eddies are geostrophic and U remains fixed) and the layers begin to
communicate. Where there is a strong cyclonic vortex in the upper layer, the interface
is elevated by the low pressure, and vorticity of the same sign is induced in the fluid
below. This tendency was noted long ago by Prandtl (see Prandtl, 1952, p. 386) and by
meteorologists studying the development and occlusion of mature cyclones in the
atmosphere (e.g., Wiin—-Nielsen, 1962).

But what is striking about the experiments (Fig. 22), is the totality of the process.
Very quickly, eddies of like sign, above and below the thermocline lock together to
produce a barotropic field: if there are none present initially, in one layer, they will
soon be produced by this process. In doing so the cascade goes far beyond the “equi-
valent barotropic™ state familiar in the atmosphere. The 2D results again become
relevant, for once the solutions have dropped to the barotropic plane in Fig. 19, they
are indistinguishable from experiment b.

The necessity of these events can be established for path d by noting that no state
other than near-barotropy is consistent with these initial values of potential vorticity,
for energy that reaches small wave number. For example in the experiment with
eddies of small scale (k, > k,)initially confined above the thermocline, the lower layer

potential vorticity is nearly zero:

i _ ok,
"’%‘H—;"(k)
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Fig. 22. (a) Sequence of two-layer streamline fields in a free spin-down experiment. The initial field has equal energy in either layer (at “box"™ wave number x = 7-9,

near k, = 7) but with random phase relation. The box width is 2000 km, and /8 = 0. After locking together in the vertical, the eddies behave as 2D turbulence. CI means
contour interval. (b) As in (a),

but with the lower layer initially at rest. Energy is now communicated downward as a part of the cascade toward barotropy and large
horizontal scale.
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where 7 is the thermocline height. The Fourier transform of this expression yields

_k2$2=1f1_15('pz—¢7|)+0(:~:>k,,2: T

P H,+ H,
k? . k
(Ef* ‘)‘”2 B *"(k‘;')

Later, therefore, energy that is delivered to the Fourier components of small wave
number k < k,, has §, — ¥,, while at large k, J, < §,. The ratio of potential to
kinetic energy, though often biased towards large values at small k, behaves like
(k/k,)?, which itself becomes small.

In fact, under conditions far more general than (ky/k,) > 1. the same events are
found to occur. Evidence for this is the analogous expression for initial eddies of
any size:

or

k? - “ R
(7('? G l)'ﬁz =y, +¥,°
P

where i, °|k| is the Fourier transform of the initial y, pattern distorted as a passive
tracer by the subsequent deep flow. Now the nature of the horizontal enstrophy
cascade is to elongate a passive tracer into thin sheets (Fig. 20c) typically with spectrum
o¢ k4 weighting heavily the large k. If ko ~ k,, this argues against any significant
cascade of w,f to smaller k. In addition, the conservation of energy during the cascade
implies that Y/, and ,, proportional to the pressures, will increase vastly with time.
We are therefore left with the same result: barotropy is a necessary consequence of a
“red” horizontal cascade and is intrinsically related to the transfer of enstrophy to
large wave number.® For initially large-scale eddies (path e below), the cascade of
potential enstrophy to large k/k,, is still more crucial to the development of barotropy.
Cases appear in which the cascade is suppressed, and total barotropy is not achieved.
These results complement the geostrophic turbulence theory of Charney (1971),
which applies to eddies far from the top and bottom boundaries, of large vertical
wave number (the above considerations are readily extended to this, continuously
stratified situation); then the full, continuously stratified equations tend to exhibit a
cascade to large scales, both horizontal and vertical. This is seen by writing the con-
servation of total energy and potential enstrophy, from equation 15 (with g = 0):

d 2
i J'J‘ |VY|* dxdydz =0

% “:[lA:ﬁP dxdydz =0

for an inviscid system, where z has been rescaled by fL/N. The additional terms
|¥.|* and |y..|* represent, respectively, potential energy and the contribution to
potential enstropy from the variations in isopycnal layer thickness. In the absence
of boundaries, y has a three-dimensional Fourier expansion, and the analogues of
equation 23 give, as before, d | k, |/dt < 0ifthe dispersion of the wave number spectrum

(28)

i ® The barotropic s!ate, however, may not be total if the eddies are very intermittent (as with a few
distant Gulf Stream rings), if there is disequilibrium (strong forcing or bottom friction), or if there is a
very shallow thermocline or strong bottom topographic roughness (see Section 7).
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about its mean is to increase. This is a self-similar cascade, with ellipsoidal eddies
expanding in size, yet keeping the same eccentricity. The red cascade again suggests
the similarity solution 25 for the evolving wave number spectrum. The theory
provides basic reasons for the predominance in the ocean and atmosphere of rather
grave vertical modes.

We have shown that when top and bottom boundaries are encountered, the interior
fluid will still try to expand its vertical scale, and thus develop into depth-independent
flow. The continuing equipartition of energy between the potential and two kinetic
components, in Charney’s cascade, must then be lost, for the cascade d efficiently
converts potential energy to kinetic. Once d reaches the barotropic plane, the system
again enters into the wave-turbulence conflict described for b. The predicted spectra
are very different from Charney’s k=2 (for both velocity and temperature); here the
uncorrelated nature of the layers at k > k, suggests K(k) oc k=* and P(k) oc k—3
roughly, whereas in k < k, the barotropy suggests a red K(k), yet blue or white P(k).

G. Pathe

The final possibility, path e, for these initial value experiments is a field of baroclinic
eddies far larger in scale than the deformation radius. At small amplitude these states
would simply propagate as type 3 baroclinic Rossby waves, due westward at
speed fk,” 2. In fact the waves are unstable and quickly break down into eddies of
scale ~k,~ 1.

This ispthe first violation of the “red” cascade so far encountered. The constraints
23 are now relaxed by production of relative enstrophy. The analogues of equation 23
follow from conservation of total energy

HH(AY,)* + Hy(V)* + HiF (Y, — ¥,)*]

[whose spectra are K, (upper kinetic), K, (lower kinetic), and P (potential)], and
potential enstrophies

H,[V*, + F(Y> — ¥,)1% H,[V*Y, + Fz(!/’x‘— V)1

With = 0 for simplicity, and F, = F, = F, we have, analogous to equation 23

%I(K,+K,+P)dk=0 (29)

a‘it f (KK, + K;) + 2F + K)P]dk = 0 (30)

d;‘t J' &? + 2F)(K, — Kp)dk = 0 (31)

When F — 0, P — 0 we recover equations 23. Otherwise, equations 29 and 30 yield
% J‘ Edk =0

gflas o f(k2 + 2F)gdk (32)

E=K,+K,+P
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Comparing with equations 23, we find that the second moment of E(k) can increase if
potential energy is released, P/dt < 0, in the weighted sense of the integral. A wave
number region of significantly growing eddies with ¢P/dt > 0 cannot occur far above
k = k,, for it would tend to change the right side back to negative. This amounts to an
integral statement, valid for turbulence, of the favoring of wave numbers k? < 2F for
the growing eddies. The energy and enstrophy invariants thus permit a “blue ” cascade,
in which the dominant wave number, say, | kE dk/| E dk, increases spontaneously.
Path e follows, as do a to d, if particles tend to separate with time.

Equations 29 and 30 are the two-layer analogues of the invariants 28 for the con-
tinuously stratified model. They can be rewritten as

- 2
% J.Z (kz + m,z)Jliz dx =0
i=1

a1 7
a_[ J. z (kZ o m,-z)zlﬁlz dX = 0
i=1

where m, = 0, m; = (2F)"/? appear as the vertical wave numbers and ,, J, are the
Fourier transforms of the barotropic and baroclinic modes, ¥/, + ¥, and ¥, — ¥»,
respectively. This version emphasizes that to violate the red cascade in the horizontal
sense with baroclinic instability, the motion must evolve toward larger vertical
scales to compensate for the growth of smaller horizontal scales. For d |k, |/dt < 0
still, based on the total wave number (k, m;). Bass (1974) has discussed the n-layer case.

Though baroclinic instability is well-known in the study of nearly zonal mean flows,
its appearance as a turbulent cascade from big eddies to small, is less familiar. Yet it
is the primary nonlinear effect in large baroclinic eddies. The cascade rate can crudely
be inferred from the linearized stability theory, which yields growth rates ~ Uk,, U
being the large-scale baroclinic velocity. If we scale the small eddy velocities with U
as well (implying a well-developed cascade), the energy flux to them is roughly U°k,.

An experiment following path e (Fig. 23) involves a set of big eddies (of widths
~200-1000 km), initially above the thermocline. The successive streamline contours
show meanders developing locally, where the flow is particularly intense. This first
occurs in the region of southwestward flow (Fig. 23b). The shallowness of the upper
layer makes westward currents, U, more unstable than eastward currents, Upg. if
|Uw|/|Ug| > H,/H, (see Section 8). The situation changes in time owing to westward
propagation. Later the band of east-northeastward current near the north end of the
box breaks down in a well-defined instability, developing four wavelengths along the
current (Fig. 23¢).

At the end stages, the meanders collapse and produce an intensified band of zonal
flow (Fig. 23¢). By this time a considerable amount of barotropic, nearly zonal flow
has developed. Arguments for the production of anisotropy and zonal-averaged
east-west flow, which varies only slowly in time, were given in the purely barotropic
case above. Here the generalized baroclinic instability augments these effects, pro-
ducing even more striking “mean” flow. This occurs, first, owing to the greater
instability of meridional flows, which break down into preferentially zonal eddies
(the perturbation currents are then unopposed by f), and second, owing to the finite
amplitude eddy-eddy induction of zonal flow, to be discussed in Section 8. The
strength and persistence of the zonal velocities may be seen in a time-latitude plot
of stream function (Fig. 24). The upper-level flow in the north central region intensifies
and endures throughout the 9-month experiment. Ocean observations (Section 9)
hint at such a banded current structure.
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Fig. 23. Evolution of large-scale eddies, initially confined to the upper layer, a mixture of (box) wave numbers 1 and 3. The field has local episodes of baroclinic
instability that in turn reduce the scale, develop deep flow, and increase the scale again. The final, banded zonal pattern of flow is evident.
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Fig. 24. Time-latitude plot of upper-layer y (actually — ) (or pressure), at mid-longitude. The persistence
and growth in strength of the zonal flow are evident. (At the end viscosity finally damps the current.)

The end state of this unforced flow has in it some uncertainty: though the barotropy
that developed in experiments with smaller eddies, with a lesser store of potential
energy, was often total, here we cannot be sure that all the large-scale potential energy
will be tapped (the ratio of potential to kinetic energy started at 9.0, and dropped to
0.83 after 8.7 months). If a zonal configuration develops soon enough, vertical shear
AU can remain, and is stable, if ﬂL,z/AU > about 1 (the classical result). The zonal
configuration of the currents, in other words, can defeat the potential enstrophy
cascade which is a prerequisite for barotropy. Indeed, this seems to be happening in
Fig. 23d. But the nature of an equilibrium or near equilibrium end-state in these, or in
steady forced experiments, is uncertain and must depend critically on the method of
damping and driving the flow. The rms velocities certainly grow during the instability,
but in a range of such experiments, they rarely exceeded the speeds of the initial flow
by a factor of three. Even this required rather special, vulnerable flows, such as in
the succeeding two examples. The rate of cascade toward k, must be studied in detail,
and compared with the other transfer spectra, and dissipation, to see how much of the
energy completes the journey along path e.

These events amount to a statement that the classical baroclinic Rossby wave,
so often used to describe oceanic adjustment processes, is unstable. To isolate the
simplest case, I looked at a single Fourier mode (wavelength 1000 km) combined with
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Fig. 25. Instability of a single baroclinic Rossby wave with a weak noise field. This is path e of Fig. 19. The initial behavior is a quasi-linear eddy-mean field interaction,
yet mutual eddy interactions quickly take command.
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a weak field of random noise. It is a somewhat bizarre experiment, for it so clearly
passes through all the stages of path e, and hence demonstrates all the primary
cascades!

The streamlines (Fig. 25a, b) show sharply tuned growth of energy at a scale of
(1.3-1.6)L,. After reaching large steepness (with upper layer velocities ~ 30 c¢m/sec)
the eddies interact laterally while locking together in the vertical (Fig. 25¢). This
yields a final surge of kinetic energy, the upper layer exceeding 35 cm/sec (as against
14 cm/sec initially), when the last of the potential energy drains away. Thenceforth the
dynamics are just those described earlier, for purely barotropic flow: the red cascade
continues until transforming into barotropic mode 1 waves, after which anisotropy
builds up, favoring nearby zonal flow of scale ~k, ™! (Fig. 25d). The entire affair
occupied 6 months, during which the ratio of potential to kinetic energies dropped
from 15.7 to 0.03, the wave field switched modes from baroclinic to barotropic, and
the initial meridional flow gave way to nearly zonal flow. A good summary is the time-
longitude plots of pressure and temperature (Fig. 26), in which the westward propaga-
tion speed rises abruptly from 2.6 to 50 cm/sec. This has implications for the lateral
propagation of energy which survive in the more oceanically relevant experiments
(Section 7). The flow patterns that develop spontaneously in these experiments may
seem unreal to a reader with a well-developed picture of the ocean in his mind; they
are certainly incomplete, yet represent oceans not terribly distant in nature from ours.

The instability is tractable analytically, and Kim’s (1975) treatment is a relevant
model for the ocean. It has been common in the past to apply baroclinic instability
theory based on “meteorological™ flows which are steady, zonal, and often of in-
finite horizontal extent. In its most general form the Rossby-wave model develops
both baroclinic and barotropic instabilities and transfer toward k, from both sides.
It shows f to inhibit all but zonal perturbations and to depress the “red” cascade
when k < k;. If extended to finite amplitude, it will model much of Fig. 19 rather well.

H. Meanders in a Two-Layer Gulf Stream

These broad, homogeneous fields of eddies have an air of remoteness about them
that, I believe, can be dispelled by describing a highly structured flow, in which these
same interactions are found to occur. Consider a thin, zonal jet flowing eastward at the
surface, through the periodic box. Its thinness (half-width ~L,) makes it more a
model of the Gulf Stream than of the atmospheric westerlies (at least in their classical
conf:eption). The initial field (Fig. 27) contains a weak, broad-band noise. There is also
a slight counterflow such that no y-averaged transport passes through the section.
The exact form chosen is , = tanh (y/a) — y/L + noise, where a = 78 km, and L is
the half-width of the box. This is now a smaller domain, 2. = 1250 km, with the ther-
mocline at 960 m, and the total depth 4000 m. The deformation scale is 40 km, f = 0,
and U, ~ 50 cm/sec, averaged across the stream (by rescaling the time, this is equiva-
lent to a very fast flow in the presence of f, BL,*/U < 1).

‘In less than 20 days, the random noise organizes into a meandering instability
with a regular set of elliptical eddies below the thermocline. The deep motion and its
phase shift (leading the perturbations overhead) are known to be essential to baro-
clinic instability. At the early stages, the deep currents are predominantly north-south,
and the whole pattern moves downstream as it intensifies.

After the meander steepness exceeds unity, the independently growing eddies
begin to interact with one another; here the turbulence theory becomes relevant. A
symptom of the eddy-eddy interactions beginning to compete with eddy-mean flow
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Fig. 26. A time-longitude representation of stream function and interface height (“temperature”)
shows the rapid breakdown of the field, which jumps from baroclinic to barotropic modes, increasing its
propagation speed by a factor of 20. The temperature structure vanishes.
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Fig. 27. Meandering instability of a thin zonal jet, initially flowing in the upper layer, passes through the stage of path e, Fig. 19. After linear growth, which involves
immediately the deep water (producing predominantly north-south flow there), the eddy field interacts, expanding horizontally and “occluding™ in the vertical. The
box width is 1250 km, f = 0.
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interactions is the stretching of vorticity contours by the horizontal shear (as in 2D
turbulence) (Fig. 20c). At t = 42 days the deep eddies of like sign begin to coalesce.
This pairing requires a north-south displacement which automatically creates a
zonal-mean abyssal flow, in the same sense as the upper level stream; the transport
increases with time.

Lateral turbulence also causes the horizontal scale to expand; the initial wave-
length, 330 km, increases as the meanders begin to break up (t = 42 days). At this
stage there is a weak lateral convergence of eastward upper-level momentum into
the mean stream. Soon thereafter, the stream almost vanishes from the ¥ fields,
seeming to appear and disappear at various longitudes, as the cascade toward

t=2.3

Fig. 28. None of the velocity events in Fig. 27 are visible in the **hydrographers’” Gulf Stream. There
the jet remains identifiable for longer. An elongated meander detached to form a closed ring. Some of the
flavor of Fig. 1 is thus reproduced in a hydrostatic two-layer model.
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Fig. 29. The vorticity fields for the meandering experiment show simply shaped eddies emerging from the noise field, but at the stage of horizontal inter-
action, elongating in the manner of Fig. 20c.
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barotropy takes hold, beginning to lock together the upper- and lower-level eddies
(t = 68 days). The “hydrographer’s™ Gulf Stream, however, is, still present in the
density field (Fig. 28) long after it is disguised in the velocity fields by the growing
barotropic turbulence. The sequence in fact catches the growth of a very deep “sock,”
and the birth of a detached ring, reminiscent of Fig. 1. The end result, a field of very
large eddies with a strong, deep flow, may suggest the nature of the North Atlantic
east of the Grand Banks. The temporal instability may best be related to spatially
growing meanders in the ocean.

The example of jet instability contains numerous dynamic similarities with homo-
geneous turbulence (path e of Fig. 19). It also reminds one of the accounts of oceano-
graphers like Fuglister and Luyten who, on their return from a Gulf Stream tracking
expedition’ paint a beautiful picture, but one also of frightening complexity. Also, the
figures demonstrate how much of the flow field is lost if one has access only to the
hydrographic field. Barotropic and baroclinic modes are both essential to the dynamic
picture. One regrets that the barotropic field was for so long obscured as a “level of no
motion.” The vorticity field (Fig. 29) is a sensitive indication of lateral eddy-eddy
interactions. After initially linear growth, the shearing begins to work as in 2D
turbulence.

Other experiments, with the important additions of f and topography, appear in the
literature. The simulations by Orlanski and Cox (1973), appropriate to the Gulf
Stream in shallow water south of Cape Hatteras, are also of interest.

1. Energy-Transfer Spectra

The events in Fig. 19 may be viewed in more rigorous fashion in wave number space
by computing the Fourier transforms of the various advective terms in the potential
vorticity equation. Thus we decompose the contributions to the change in energy at

the scalar wave number, k:

K + P)

= Tylk) + T,(k) + Tylk) — D(k)

where
T, = H; Re [Y1J, (g, V3Yy)] + HyRe ['/‘;gf('pz,vz'//z)]a
Tp(k) = Re [FH,(FF — ¥, ¥2)),
is the result of density advection, Ty(k) = Re [ fo % (5, hy)] involves the bottom

topography, and D(k) = (R + vk? + Qk*)K(k) involves latera}, bottom and “k_‘”
friction. Here (*) = Fourier transform. This relation is shown in Fig. 30 along with

T
\ R Fig. 30. Kinetic plus potential energy (K + P) at a single scglar
2 i pped wave number, k, changes due to advection of vorticity (T,), ?dyeclfon
of density (7p), flow across bottom topography (T,!), anf! dissipation
/ (D). The internal conversion Cpx from P to K is unique if one defines

D(K) Tp to be the only “direct” source of P.
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the conversion between kinetic and potential energy at a single wave number,

dP
Crx(k) =T - E

[Note [§ T(k) dk = 0.] A similar format is used in meteorology (e.g., Smagorinsky,
1963) for analysis of general circulation dynamics. Here we recognize the signature
of 2D turbulence (Fig. 31) as being a drain of energy by T,(k) from the wave numbers
at which it is concentrated, predominantly toward small k. The production of
“barotropy” from moderate-scale eddies appears as a positive Cpg, conversion from
potential to kinetic energy in the vicinity of the deformation radius together with the
cascade of potential energy toward that wave number by T,(k). (The baroclinic
instability of initially large-scale eddies is an approach to k, from a larger reservoir

Fig. 31. Transfer spectra for a flat-bottom experiment similar to Fig. 22b, initial energy at box wave
numbers k = 4-6,(U, = 14, deep layer at rest). At first T, carries energy away from the spectral maximum,
to the right. Near x, (=8) it is converted to kinetic energy, whereupon T, carries it back to the left. Baro-
tropy is well-developed by t = 5.1 (total potential energy, E and P, are shown); then T, is dominant every-
where. The large-wave number “tail,” k = 10-14, is magnified. The dynamics there is initially as above,
with T}, cascading to the right, T} to the left. Dissipation dominates only greater wave numbers than these,
k > 15. See also Steinberg (1973). O =T ,* = Cpg, A =Tp,) = —D.
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of energy at small k.) Near k = k,, Cpg produces kinetic energy which finally cascades
back toward small k via T, a more exact description of path e.

The region beyond the spectral maximum (magnified) is of interest. The balance
there is a (nearly) statistically steady microcosm of path e, with energy carried to the
right by T, converted by Cpg, and then carried back to the left by Ty, lateral vorticity
advection. The dissipation is small in K < 15. As Steinberg suggested from his more
viscous runs, the dynamics is far different from a 2D spectral tail.

There is a strong analogy with the meteorologists’ concept of cyclone growth,
followed by occlusion (vertical uplifting of frontal density surfaces) which causes the
upper-level flow to fall into an equivalent barotropic state (similar perturbation
streamlines, yet less energy aloft). The transfer of kinetic energy, at the late stages,
back to the zonal-average winds, is the analogue of the final red cascade by T;,, and
its attendant anisotropy. The sequential nature of these events is related to the ob-
served “index cycle.” Steadily forced computer simulations by Steinberg (1973) and
Barros and Wiin-Nielsen (1974) form an interesting complement to our spin-down
experiments, and some of the energy cycles are very similar. The emphasis in these
papers is the nature of the viscous-inertial subrange, which carries potential enstrophy
toward dissipation at large wave number.

The character of the transfer spectra is rather insensitive to the physical con-
figuration for given wave number spectrum; this agrees with the appearance of the
same cascades in both homogeneous turbulence and an unstable Gulf Stream. An
interesting line of theoretical research involves the prediction of transfer spectra from
instability analysis, or with turbulent closure models.

The vertical eddy-eddy interactions found here are striking, but they must now be
examined in a model with better vertical resolution. A reassuring sign is the recent
work of Bass (1974), who has simulated baroclinic instability with channel geometry.
His resolution varies from 2 to 16 levels, yet in all cases the development of baro-
tropy may be seen at interior levels. The fluid nearest the rigid top and bottom con-
tains chaotic, energetic “pseudo ”-fronts. Bass’s experiment, though framed in a
meteorological setting, shows some of the richness of vertical structure that we may
anticipate in the ocean. Bretherton and Owens (private communication) have also
been making multilevel simulations for oceanic turbulence, which will be interesting
to compare with the present work.

7. Basins and Bottom Topography

The picture developed to this point of the free geostrophic-turbulance cascade
would be simple enough to suggest ocean experiments, and to fit directly into a
theory that contained forcing, mean flows, and dissipation; however, there are effects
of ocean-basin geometry that work against the homogeneity and “narrow-band”
evolution of those models. As an example, the vertical structure in the primary
experiments developed toward a barotropic state far more rapidly than is consistent
with the ocean. We demonstrate here that topography and side walls act to counter
several of the nonlinear cascades, and to alter the nature of horizontal propagation.

A. Coastal Boundaries

First we describe, from the aspect of turbulence theory, the role of idealized slippery
coasts. For a single-fluid layer on a f plane the energy invariant remains, yet the
relative enstrophy is no longer conserved (although potential enstrophy, [Vy + f]?,
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is). Instead (Rhines, 1975), integration over the basin yields

atfédk J‘IVMZ dxdy=0 (33)

%J-kzé'dk——— J'|v2¢|2 dx dy = — —B§ | Vi |? sin 0, ds (34)

where 0, is the angle from east of a positive unit vector tangent to the boundary,
%, upon which § = 0. The source term allows the second moment of E(k) to increase
wherever shoreline lies to the west of moving fluid, and conversely. The “red”
cascade, besides being blocked by Rossby wave propagation, can thus be reversed
near a western boundary, where eddies or circulation of large scale are transformed
to small scale. It amounts to a generalization to unsteady, nonlinear flow of classical
arguments for western intensification; with linear Rossby waves, western-wall
reflection converts long waves to short, increasing the enstrophy. Combined with the
knowledge that small-scale [large-enstrophy/energy] motions propagate slowly, this
favors the concentration of both energy and enstrophy in the west, and their removal
from the eastern ocean.

In the linear frictional “Gulf Stream” the enstrophy produced according to
equation 34 maintains its narrowness while, in a steady state, being dissipated by
bottom friction (yet such a current at the eastern side would lose its enstrophy to the
coast). The generation of enstrophy by wind stress is negligible in this case. Finally.
in the nonlinear, frictionless, free gyres of Fofonoff (1954) a steady solution is made
possible by east-west symmetry, enstrophy inflow and outflow just canceling one
another.

With two-layer stratification (equations 29-31) the result becomes

0 A e
EI(X,Z + X,Y)dxdy = —ﬂ§ (K + P)sin 0, ds
‘.
where

Xi=V2Wi+F(¢j—¢i)s j=3~—i
and

R =St winr + 22wy, P—lfilw. val?

Energy of either form at the coast alters the net “nonplanetary” enstrophy. The
cascade arguments, equations 29 and 30, become

0
6_t_’-£dk=0

ﬁfiﬂzdl\- =;§f(k2+ 2F)P dk — B § E sin 0, ds
at ct €

Ex)= R(x)+ P(x), E(k)= K,(k)+ K,(k)+ P(k)

The combined effect is clear: both potential-energy release within the body of the
fluid and energy at its western periphery can increase the second moment of E, and
move the center of mass of E(k) to larger wave number.
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B. Rough Bottoms

The final and most difficult topic in the dynamics of eddies is the effect of an ir-
regular sea floor. This works through vertical vortex stretching produced by currents
flowing across slopes. The sensitivity to this effect is clear in the intrinsic smallness of
the vertical velocity (~UeH/L or UwH/L) under geostrophic scaling, and by the
picture of vertical stiffness developed in Section 3. The effect is easiest to see in a
hydrostatic, quasi-geostrophic layered model, where equation 16 becomes the con-
servation law for potential vorticity,

b (h‘V(h.-‘ 'Vy) + f) _ 0(8 ﬂ)’

Dt h; L

for the ith layer. The two-layer model (equation 27) becomes, in the dimensional
variables,

DLV + Fia = )] + B = W

g% <V2'P2 + Fy(y, — ¥2) — 6f;_)152> + P . = VW, — RV,

where
F=£ 5=£+"(¢n ), hl(x)=H2+‘SEZ
o HE D0

The scaling has typical topographic heights (~ H ) of order & or o, whichever is
larger, and this leads to the retention of depth variations only in the vort.ex stretching
terms (neglecting for example, (D/Dt)(Ah, ™' - Vifr,). A§ before,  ~ L/R in order ?hat
the dynamics include both planetary and topographic waves. In order to consider
islands and continental margins, & ~ 1, the depth should be allowed to vary through-

out the equations.

C. Effect on the Primary Nonlinear Cascades

The topography can generate relative enstrophy, fragmenting large edc?les into
small ones, and thus counter the red cascade of 2D turbulence, The process with weak
currents resembles wave scattering by a random medium, but this gives a convergent
result only when ¢ < 6 < L/R, plane Rossby waves being the ﬁr_sl apprm‘(imatxon.
But neither inequality is valid for the energy-containing eddies. Figure 32 is a scl}e-
matic diagram of the parameter space (¢, 0R/Ly, kLy) for a single-layer ﬂuld_wnth
topography of dominant horizontal scale L. Near the base plane are found linear
solutions, with weakly scattered Rossby waves at the left (I) (Thompson, 1975;
Rhines, 1970) and topographic Rossby waves (geometrical optics, short waves)
(Smith, 1971) at the far right (III). The range II, ¢ € 6 2 L/R, kLy ~ 1, represents
linear oscillations in a very irregular medium, in the worst case being a kind of
topographic “turbulence” (Rhines and Bretherton, 1974).

Above the base plane nonlinearity acts, approaching 2D turbulence above & ~ & +
(kR)™*. The evolution of solutions is, as in Fig. 19, to the left in the turbulent region
(arrows), until meeting the transition surface where they tend to stagnate. Yet below,
solutions tend to move to the right by scattering and refraction. The representation of a
Wwave number spectrum by a single length scale is less convincing here, however, than
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Fig. 32. The role of rough-bottom topography (for simplification,
with single scale Ly) in homogeneous fluid motions. Sufficiently
intense flows (¢ » 6 + f/k), region IV, act as 2D turbulence,
cascading to the left (arrows). Gentler flows are increasingly frag-
mented by roughness and migrate to the right. f = f,/R.

in Section 6. For spectral broadening develops from interaction of energy at wave
number k and topography at wave number p, producing energy at wave number
k + p. Typically, topography has a rather flat spectrum, H(k) ~ k~'-* or k2, which
quickly “whitens” the energy spectrum, although favoring transfer to large k (in fact,
H oc k™2 is a white slope spectrum).

In the stratified problem, topography may affect the structure in the vertical as
well as the horizontal. Though the nonlinear effects direct energy toward large
vertical scale in the interior, the coup de grace, the destruction of vertical shear
(path d and e in Fig. 19) is no longer so likely; the disappearance of the barotropic
wave type | whenkL, 2 1, ¢ < d is evidence. In its place arise baroclinic waves 2 and
3, of both large and small frequency.

I carried out a series of spin-down experiments to explore the rough bottom eddies,
and these have revealed a number of properties of relevance to the ocean. The topo-
graphy, of rms amplitude 200 m (Fig. 33a) is randomly generated with a k~!-® scalar-
wave number spectrum, cut off at k > 8 (relative to the domain width of 2x). This is
just at the deformation scale, L, = (F, + F,)” /2, set to be 40 km, with the “ocean”
width 2000 km. The contours of f/h,(x) (Fig. 33b) show the potential vorticity
gradientsdueto fand h, to be comparable, with occasional closed contours appearing.
The degree of openness of these contours is crucial to the processes of horizontal
propagation and mean-flow induction (Section 8). As in many of the earlier experi-
ments, an initially narrow-band field of eddies was allowed to evolve freely for 200-500
days, with mild damping, and without driving. Here the evolution of deformation-
scale eddies, very large initial eddies, and linear waves are separately described, as is
another series of inhomogeneous runs in which horizontal propagation is important.

D. Deformation-Scale Eddies

A typical case (Fig. 34) starts with eddies slightly bigger than the deformation
radius above the thermocline and still fluid below. In this instance the currents are
not strong, (U, ~ 15 cm/sec, U, =0 at t = 0) but still significantly nonlinear,
representative of the western Atlantic at 30°N. The initial adjustment phase occupies
about 3 months [~(U,.k,) '], during which the deep ocean is set into motion.
But unlike the flat-bottom case, this development is halted by the irregularity of
f/h (even though the “islands”™ of f/h are few). The layers become detuned by the
topography so that the barotropic mode is a stable vertical structure only at large
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Cl=4.0x10 cm sec

(a) (h)

Fig. 33. Perspective plot and contours of topography (a) and f/h, (b) for succeeding experiments. The
depth has standard deviation 200 m (6 = 0.053), or a typical bottom slope equivalent to f. (Actually (a)
shows minus the topography; a ridge runs southeast through the central region.) Later, flows will be
shown responding to the large rise seen at the western end of y = 0. The box is 2000 km wide. The
domain is 2000 km across. Topography of scale smaller than 40 km was omitted, even though it may be
important.

scales, far from the activity at k,. If in the theory, Section 6, demonstrating the
necessary increase in barotropy, we add a fine-grained pattern of topographic po-
tential vorticity with é 2 &, the argument is destroyed.

To grasp the gross sensitivity of these results to energy level, compare the evolution
in Figs. 34 and 35. The sole difference is the addition of an initially weak eddy field
below the thermocline, in Fig. 35. The more energetic run has rms | U, | = 15.3 cm/sec,
|U,| = 4.1 cm/sec, and no great reservoir of potential energy. It is still a plausible
intensity for the oceans. Yet the eddies succeed in interacting vertically, tending to-
ward barotropy, expanding horizontally, and developing stronger anisotropy and
f/h contour flow, practically oblivious to the roughness.

As it is, in the weakly energized flow (Fig. 34) one can spy the primary cascade
working in limited regions for limited times, over unusually flat f /h topography, orin a
region of unusually strong current (see also Fig. 37). A remarkable feature of this flow,
and those seen earlier, is the persistence of westward phase propagation well into the
nonlinear regime (Fig. 41). This is particularly so in the thermocline eddies, type 3,
which dominate the upper level currents and the thermocline height. There the phase
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Fig. 34. Spin-down of deformation-scale eddies, U ~ 15, deep layer initially at rest. The uneven se

Fig. 19) is now prevented. Note the anticy

=2.9mo t= 8.8
a bed so detunes the vertical structure that barotropy (path e,
months, K/P = 0.85.

clone trapped over a predominant rise in the deep water, right center. After 7
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Fig. 35.  When a 4-cm/sec eddy field is added to the deep layer, it raises the energy level enough to regain the *

t= 6.9

flat-bottom™ cascade. After 7 months, K/P = 12.3.
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Fig. 36. Downward penetration of energy, as measured by the vertical structure, U,/U for a variety of
values of &/0. (a) Growth from small-scale highly baroclinic initial flows toward an equilibrated value.
Values of ¢/0 are (upper): O. 0.70; +, 0.34; A, 0.51; -, 0; (lower): @, 0; x, 0.50; ¥, 1.0; -, 0.50. With
large initial eddies the energy penetrates more easily. The wavy curve (¢ = 0,6 = 0) reminds us that linear
effects can periodically alter U,/U,, here by a beating between vertical modes. Here ¢ is based on the
vertical r.m.s. value of U at t = 0, and the length-scale L,. The values of fL,*/U, are, (upper); O, 0.6;
+,08: A, 08; -, 08; (lower): @, %0: x, 09: V. 1.4: -, 06. A triangle was inadvertently left off the final
graph, (U,/U, = 0.31, /6 = 0.17). (b) The equilibrated vertical structure as a function of &/d. >, L,-
scale initial eddies: @, large-scale initial eddies.

speed is not far from the linear prediction. The deep flow shows westward propaga-
tion in regions of favorable topography, but not elsewhere (Fig. 41). The dual nature
of geostrophic eddies, exhibiting properties of both waves and turbulence even in the
most complex of cases, promises a growing theoretical understanding of them.

For a given configuration at t = 0, the developed vertical structure (which evolves
very slowly after the initial phase) depends upon &/6 and ﬁL,z/U = ¢L,/R. A gross
measure of the structure is U,/U,, based on rms currents without regard to their
relative phase. The time evolution of U, /U, (Fig. 36a) for a number of experiments
(with fixed f) shows a clear dependence on topographic heights and energy level.”
The equilibrated structure (Fig. 36b) rises with /9, providing a plausible ocean
structure, say, U,/U, =}, at ¢/6 < 0.5. But as a warning, points are also shown
corresponding with initial eddies of large scale; these clearly penetrate more easily
to the depths.

7 The dependence on BL,*/U has not been thoroughly explored. When it is large, the fluid will be
unable to develop barotropy even in the absence of topography. Also, the boundary conditions (periodic
in ) imply nonzero large-scale pressure gradients. If, instead, these are taken to vanish, a large-scale
westward flow develops in response to topographic drag (Bretherton and Karweit, 1975). The choice of
boundary conditions (periodic ¥ or periodic velocity) is moot.
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At this point we should compare fields predicted in the models of Sections 5-7
from the point of view of the seagoing experimentalist. Figures 37a-d show time
series measured at a single mooring in a linear, flat-bottom, a nonlinear flat-bottom,
a nonlinear rough-bottom, and a linear, rough-bottom ocean, respectively. In each
case the initial configuration of the current is the same as in Fig. 34. First, with weak
currents the subsequent oscillations are purely linear Rossby waves. The long period
of the baroclinic mode shows in the “temperature” (the interface elevation), and, with
this modal mix, dominates the upper-level currents. The average vertical structure
obeys U,/U, = H,/H, ~ 0.28, and evolves as soon as the two modes separate from
one another, roughly one-half barotropic period.

Second (Fig. 37b), the bottom is flat but the currents are stronger. The deep and
shallow flows begin to move in apparently unrelated ways, but suddenly, after 4
months the layers lock together. The temperature field exhibits much faster oscilla-
tions than are possible in linear theory, owing to horizontal advection. [Sharp
temperature features are found at sea, even well below the surface (Fig. 63) with time
scales far less than those of type 3 waves.] The time scale of the currents decreases
after the switch of modes.

The third comparison run (Fig. 37¢) comes from an ocean with /6 < 0.4. This most
complicated case shows periods during which the layers begin to lock together, but

(a) (h)

Fig 37. “Mooring" records from computer experiments. (a) A linear constant-depth ocean: (b) non-
linear, constant depth.
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Fig 37. (c) nonlinear, rough bottom; (d) linear, rough bottom. Upper graphs give ¥/, ¥/, 1: lower graphs
give velocities (cm/sec). Note different abscissa in (). Although there are crude similarities with the linear
solution, nonlinearity adds shorter time scales to the density signals, redistributes energy in the vertical,
and alters the horizontal scale; topography confines fast oscillations to the deep layer, whitens the hor-
izontal spectra, and counters the downward flow of energy from shallow water. At any given moment,

however, the linear theory has some partial validity, particularly after a comfortable vertical and horizontal
structure has been achieved.

the records soon diverge again, and the vertical shear returns. The topography has a
noticeable effect on the time scale of the deep flow; here it is rather short, but this is
not always true.

Finally (Fig. 37d), a linear rough-bottom ocean responds with fast oscillations in
the deep water. Yet for these initial conditions the vast majority of the energy remains
in and above the thermocline (U,/U, ~ 0.33). The trapping of fast waves in the deep
water and slow waves in shallow water occurs just as in the linear theory for simpler
geometry, in types 2 and 3.

The spectral transfer functions (Fig. 38), now have an added member Ty(k), the
contribution of U,V - h, to (9/dt)E(k). Ty(k) characteristically removes energy from
the spectral maximum of K(k), sending it predominantly to large k. The dynamics
of theispectral tail is different from the flat-bottom ocean (Fig. 31). Now T}, replaces
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Fig. 38. Transfer spectra with topography, for an experiment with L, -sized eddies, initial U, = 8.0,
U, = 2.7 em/sec. Compare Fig. 31 (here < is Ty). The basic shapes of T, Tp, and Cpy are as before, yet
they are relatively smaller, and barotropy fails to develop (compare E and P spectra). Topographic scat-
tering broadens the spectra, relative to Fig. 31, sending energy to large wave number. The spectral
“tail” (magnified) now has totally different dynamics: Ty, rather than T, carries the energy to the right
and T, returns it to the left. Dissipation is small throughout K < 14.

Tp as the carrier of energy to large k, yet T, still carries it back to the left, allowing a
quasi-steady “topographic™ subrange. It reduces the amount of energy carried to
small k (by T,), and seems to reduce both the magnitude of T, and the conversion Cpg
to kinetic energy. In this manner, the progress of the fluid along the paths in Fig. 19 is
impeded, and sometimes reversed. The flow evolves slowly after initial adjustment,
but the persistent broadening due to Ty suggests that a true equilibrium spectrum will
be impossible without forcing and dissipation.

E. Initially Large-Scale Eddies

Those baroclinic eddies with diameter greater than about 150 km contain an excess
of potential energy. Conversion into deformation-scale flow is the dominant non-
linear process, followed, with bottom flat, by further conversion to kinetic energy as
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barotropy develops, and finally the reverse cascade of 2D turbulence. What is the
effect of bottom roughness in the process? We anticipate two competing effects:
first, the horizontal scattering by topography which, if it proceeds to large k, must
release potential energy (for small eddies cannot possibly contain it); second, and in
opposition, roughness has been shown to prevent barotropy, which develops in the
late stage of baroclinic instability.

The net conversion Cpy is shown for a number of comparison runs in Fig. 39. The
initial release is indeed augmented, and the rougher the bottom, the more so. But
in the second phase the conversion drops far below the flat-bottom case, as suggested.
The time-integrated release of potential energy is severely reduced by the inhibition
of barotropy. To aid in the comparison, a calculation shown in the figure was stopped
att = 2 months, the bottom denuded of topography, and the run allowed to proceed.
After a brief shock, the conversion accelerates with this new freedom, as the deep
layer comes up to speed.

In making “rough-smooth” comparisons it must be remembered that the smooth-
bottom baroclinic instability develops at a rate initially depending on the amount of
noise specified at scales near L,. For random “big eddies,” no noise is necessary for
the energy cascade to develop, but with initially simple, rectilinear patterns (here
Y, oc sin 2x at t = 0), noise is essential. Thus there is an unnatural delay in the de-
velopment of Cpg without topography.

It should be clear that potential energy release does not rely solely on nonlinearity
(u- Vi) in this problem, for the scale transformation by topographic scattering brings
about a similar end. A purely linear run (infinitesimal currents) is plotted in Fig. 39
(with its own normalization) and it exhibits this conversion. The vertical structure
resulting late in these runs was included in Fig. 36. The instability process penetrates
the deep water rather more easily than did smaller eddies of comparable energy, thus
making U,/U, a function of both initial configuration, ¢/, and of pL,*/U.

{Cux

o+ topogrophy

switched .
i Pri

5 . Y
>~ §-.083 linear (C,,)
o T v ] T v v SRS ¥

| 2 3 4 5 6 7 8 9
t months

Fig. 39. Total conversion from potential to kinetic energy versus time, for three values of topographic
height, &; large-scale initial eddies. The stronger the topography, the greater the initial conversion (due
to deep scattering) yet the less the total conversion (the area beneath the curves). Cpx is a nonlinear effect
in a flat-bottom ocean, but here occurs also with purely linear mouons Cox = Cpyp P5 Pliikig =2
(P, = initial potential energy), (ko = initial wave number) Cpx = Cpx Py~
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Fig. 40. Flow patterns for rough-bottom baroclinic instability, & = 0.027, /6 ~ 1.0. The large scale of the developing flow (relative to Fig. 25, flat bottom) comes
as scattering carries energy continuously toward large k rather than Jjumping to k = k,. f/h-Contour flow and a significant amount of deep-water energy develops

(U,/U, = 0.7).
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A visual impression of the streamline patterns (Fig. 40)in these runs is one of large-
scale flow, strikingly different from the sharply defined L,-size eddies in pure baro-
clinic instability (compare Fig. 25). This is the result of spegtral broadening by th‘e
roughness, which carries energy continuously along the k axis rather than hqvmg it
leap to the deformation radius. Examination of the wave number spectra verify that
the process of baroclinic instability is intrinsically different with rough topography,
even though the f/h contours are still “open.” As above, its new nature appears when
¢/0 < 1 so that vigorous flows like the Gulf Stream (Section 6) are probabl)'f less
affected by small-scale roughness (although large-scale bottom slopes will still be
important, for they alter the mean cross-stream potential-vorticity gradient).

The vertical structure developing in these flows (Fig. 36) shows greater barotropy,
on the average, than with initially small eddies (for given &/6). This emphasizes that
the oceanic vertical profile of current depends not only on levels of energy and
topography, but also on the manner of supplying the energy. The streamlines (Fig. 40),
show a degree of barotropy at large scale. The huge apparent scale of i is due in part
to the spectral broadening by topography. In fact, the energy-containing eddies as
measured by k, are not strikingly different in scale from k,. Note the strongly zonal
character to the well-developed flow.

F. Fine Structure, Anisotropy, Mean Flows

The experiments described above were meant to be homogeneous in space; both
topography and initial fields have randomly generated spectra, with specified scalar-
wave number shape. Without uneven bottom topography the flow remains reason-
ably homogeneous, at least in its energy density.

A striking spatial intermittency, however, develops over a rough bottom. The
result that the vertical adjustment of the water column occurs in a very few months, is
suggestive of this, in that spatial propagation of energy during this period is small
(less than 200 km in 2 months, say). The fluid can thus respond locally to its topo-
graphic environment, which Fig. 36 shows to be a decisive control over the vertical
structure. Beyond this, the purely linear waves over a rough bottom become rather
intermittent themselves, owing to local “seamount™ resonance. Linear, flat-bottom
waves, of course, tend to be of an extreme opposite nature, propagating with un-
changing vertical structure, and gradual horizontal evolution, in the far field.

The kind of heterogeneity that develops in the current is shown in Fig. 41, a time-
longitude plot of the deep pressure (or /) field from the experiment in Fig. 34. Compare
it with the smoothness of thermocline-height propagation, also shown. Over geo-
strophic contours that are bunched, yet still run east-west, there are fast oscillations
and a clear westward phase propagation (the eastern half of the region; see Fig. 33b).
Conversely, in the west there develops a low-pressure circulation that remains
nearly steady, above the dominant 300-km-wide rise (Fig. 33b). The flow field is variable
in energy density, as well as character, as is consistent with recently observed fine-
structure of eddy energy (Section 9). Another example of topographically induced
spottiness in the deep eddies may be seen by looking ahead to Fig. 43f. Whether or not
one is interested in the erratic statistical distribution of the eddies per se, it presents a
severe aliasing problem for ocean experiments.

The generation of mean currents by eddy vorticity-flux is discussed in Section 8.
An example with f = 0 (Fig. 42) shows a weak (U, ~ 2 cm/sec, &/0 ~ 0.14) deep-
current field to begin more and more to resemble the topographic contours (Fig. 33a)
with time. G. Holloway (private communication) has shown this condition to be
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Fig. 41. Time-longitude plots of i, and n, from the southernmost latitude shown in Fig. 33. The topog-
raphy causes a natural inhomogeneity in the deep water: unusually fast oscillations in one area, yet a
strong anticyclone trapped above a ridge in another. The thermocline eddies are less disturbed, and
propagate westward with occasional episodes of vertical interaction.

reliable in a single-layer fluid, and it seems to be the generalization to f /h flow of the
zonal currents appearing spontaneously throughout Section 6. He points out that,

with ({ + f ii/h)2 conserved for at least the initial period, an increase in relative
enstrophy, (%, implies an initially growing negative correlation between { (and
hence ) and the geostrophic contours, (0/61)(f/h < O (the overbar is integration

throughout space). In fact, we have shown {? to increase owing to either topographic
scattering or the presence of energy at a western boundary. This suggests both the
appearance of persistent gyres about small seamounts and, on the large, appearance

of basin-scale circulation with {y < 0 (f = f, + f); see Section 8.
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Fig. 42. ¢ fields late in an experiment with f = 0. The rather weak eddy field is nearly held above the
thermocline by the topography, U,° = 9.3, 6 = 0.11, ¢/6 = 0.4, U,/U, - 0.3. The weak abyssal current
develops toward a contour circulation (see Fig. 33a) with anticyclones above high ground, and conversely.

G. Lateral Propagation

One motivation for this kind of work was to develop improved ideas about the
horizontal transports of energy by unsteady currents, for both their intrinsic interest
and their role in the general circulation. This is of particular relevance to the oceans
owing to their great size, measured against that of the O(L,) energetic eddies, and
to the sparse distribution of really active energy sources. Estimates of travel time from
a conjectured source of energy are often made from linear, flat-bottom theory. But
what the experiments have shown most conclusively is that nonlinearity and topo-
graphy can act to transform these scales, and the mix of vertical modes, in a rapid
fashion.

We have initiated some further experiments with oceans initially one-half full of
eddies, to provide information about the energy velocity and to suggest what the
appearance of eddies arriving from a distant source should be. The energy was
initially placed above the thermocline in deformation-scale eddies, occupying 1000-km
bands separated by equal areas of quiet ocean. Time-latitude sections, (Figs. 43a—c)
show the intrusion of energy from the north and south. Figure 43a is linear, with a
flat bottom; the tilted contours indicate northward phase propagation, hence
southward group velocity. After 250 days the barotropic mode has grought some
energy into the quiet region, but the baroclinic mode has made only a meager contribu-

tion (the largest north-south group velocity of the baroclinic mode is f/4(F, + F,) ~
0.8 cm/sec).
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Fig. 43. Time-latitude plots of n, J,, showing propagation from an active east-west band into a quiet one (periodic boundary
conditions). (a) Linear flat bottom. The greater speed of barotropic waves is visible in i/, . (b) Nonlinear, rough bottom. The north-
south propagation is somewhat inhibited.
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Fig. 43. (c) As above, yet a greater initial energy level. The nonlinear switch from baroclinic to barotropic modes, horizontal
expansion, and Cp release all combine to increase the energy flux into the quiet region. (d) Time-longitude maps of nonlinear,
rough-bottom, east-west propagation from meridional bands of energy. The linear prediction survives, of greater flux east-west
than north-south. Note westward phase propagation, even for energy moving eastward in .



THE DYNAMICS OF UNSTEADY CURRENTS 273

iJHH!V"'ll{l:lllll"l""l l "”"8 """'H""ﬂ:_
8 @ :
LS
: O 3
£ {@ Yy g
/ PE <
Cl= .063
KE2
Cl= .039 cl=.97
(e) (f)

Fig. 43. (e) ¥ Fields for experiment (b). Southward propagation has been slight aﬁ.er 7 mqn_ths. The_re isa
zonal-average Eulerian zonal flow in both layers, related to the eddy-flux of potential vorticity (Secuon.8).
(f) Maps of potential and deep-kinetic energy in the east-west experiment in(d), t = 69. A 250-km-wide
seamount has trapped 95 %, of the deep energy in a single eddy (it also affects (e)).

The same configuration of currents was set off over a rough bottom, with rms upper-
level speed initially of 7.4 cm/sec (Fig. 43b). The propagation is less orderly, as the
usual spectral broadening occurs. The thermocline eddies are at least as slow as in the
linear case. In the deep water, rather less energy reaches the empty region than
before, due to topographic backscatter and distortion. The topography works in
subtle ways, affecting both vertical and horizontal scale of the fluid, as well as causing
backscatter and refraction.

The third comparison run (Fig. 43c) illustrates the crucial influence that nonlinear
scale transformations can exert. Here the current speed is initially 14 cm/sec in
the upper ocean, 13 cm/sec below, so that the topographic resistance to barotropy is
ineffective. The eddies switch modes and in doing so augment greatly their group
velocity. The empty region is filled within 200 days, suggesting an effective north-
south group velocity of about 5 cm/sec.
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A fourth experiment (Fig. 43d) shows the relatively rapid propagation in the
cast-west direction, from alternating meridional bands of energetic and quiet ocean.
The energy level is rather weak, yet the spatial field for Fig. 43¢ is shown in Fig. 43e.
After 7.2 months, little energy has reached the initially empty fluid. The deep flow is
again intermittent, with much of the energy trapped in a single anticyclone. This same
rise in the sea floor trapped the majority of the deep energy in the east-west run
(Fig. 43d); see Fig. 43f.

If the ocean were subjected to intermittent, strong episodes of forcing by winds or
meandering of boundary currents, energy could burst across the domain with ease.
The nonlinear effects contrive doubly to increase the group velocity, by switching to
the fastest vertical mode, and then expanding in horizontal scale. This suggests rather
intermittent far-field energy levels, bearing in mind that periods of greatest group
velocity occur when the greatest energy density is to be transported. Is it possible that
far-reaching spasms of activity occur in the oceans, if only we could see them?

H. The Linear-Wave Problem and Small-Scale Topography

It has proved useful to imagine the properties of eddies near the transition between
wave motion and turbulence, for in the region of overlap, both theories can contribute.
The parameter ¢/0, which discriminated between “rough™ and “smooth™ nonlinear
casca'des, in fact also represents the steepness of topographic waves. For topography
of a single dominant horizontal scale, Ly, if significant, tends to induce fluid motions
of scales near Ly, and frequency ~ &f, whence &/d is the ratio of current speed to the
phase spec:d. In addition, ¢/0 measures the extent to which fluid crosses an entire
topqgraphlc feature during a wave period (+2n); linear waves apply when the ex-
cursions thus measured are small, and one approaches quasi-steady Taylor column-
and Taylor “cone” problems when they are large.

'!'hlS extreme, &/6 > 1, holds especially for small-scale (10-30 km) seamounts,
which have been filtered from our model. Hogg (1973), and McCartney (1975) are
among the recent investigators of the purely steady limit, and Huppert and Bryan
(1975) have looked at the crucially important “start-up” problem. Recent ocean
measurements (Section 9) emphasize that the larger-scale flow shifts sufficiently
often in the deep water that the steady, potential-vorticity conserving deflections are
a poor dcs.cnpnon of the effects of topography, even at the smallest scales relevant to
geostrc_)phlc flow (~ 10 km). The transient-flow problem is complex, and it is essential
to decide whether flow, starting from rest, causes just a single starting vortex to be
swept from above the bottom feature (leaving behind the steady, bound vortex), or
whether a continual train of shed vortices is created, as in a classical cylinder wake.
(The author believes he has seen vortex shedding from a Taylor column in the labora-
tory, and there are numerous satellite photographs of vortex streets in the lee of
1slan§is, occupying either fluid.) The parameterization of small-scale topography,
and its wave drag (including internal waves) on the mesoscale eddies is crucial; our
present practice of removing all topography with Ly < L,, and replacing it with a
linear drag, may be severely in error.

We return to the larger scales, where /6 < 1 frequently (if only by inference from
the observed baroclinity of ocean currents). There the wave theory has already
suggested some of the turbulent cascade results. First, linear scattering of long waves
provides a model for Ty(k), the topographic energy transfer spectrum, in the general
case. This may allow a quantitative estimate of spectral broadening and fragmenta-
tion, of even nonlinear eddies. Second, the occurrence of the bottom-trapped type 2 is
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consistent with high-frequency oscillations found in the deep water (but not above the
thermocline) in the simulations. Third, the disappearance of the barotropic type 1
at L < L, suggests, in the turbulent runs, the sustenance of vertical shear (the defeat
of barotropy), for it is the scales near L, that form the aperture through which the
different levels communicate. Fourth, the prediction from theory of horizontally
trapped waves over rough topography is suggestive of the immobility of energy
found in the nonlinear cases. This argues further that spatial intermittency of energy
and “local” equilibrium of the eddies should develop in both linear and nonlinear
oceans.

The linear-wave theory becomes difficult in the most relevant case of topographic
“turbulence,” kLy ~ 1, ¢ € 0 2 Ly/R. Some closed-form solutions have been
found but there is much to be done. A relevant idealization is that of isolated bottom
features, which occur when f/h contours are packed together (as at the continental
margins and Mid-Atlantic Ridge), or when they form closed “islands.”

The simplest such wave, which we derive for illustration, is that found at a near-
discontinuity in the depth, say, along y = 0, h, = H, for x < 0, h = H,(1 + ) for
x > 0. This provides a delta function of the restoring effect, the slope. The two-layer
equations (linear, ff = 0) become, in dimensional variables,

[Vz\"l + F:(Wz = '/’1)]: =0
(V% + Fas — ¥l = a2, = 0
2

for 6 < 1. Trapped waves exist of the form
¥, = (a;e” " + aje~*M)ei*=—V
(1 + W, = (ae” " — a, e Peitx—20

They satisfy the exterior equations if xk* = k* + Fy; + Fy, y= Hy/H, =F 1/F: 2
The interface height (oce™*")) is tent-shaped, with its scale being the smaller of k

and the deformation radius k,”*. At y = 0 we must match nortpal flux agd pressure;
integration of the lower-level equation across the step determines the discontinuity

iny, .

(] =0 = [¥a] = 1,
Wad=Lo02, =0

An oscillatory vortex sheet occurs in the lower layer, driven by the upslope velocity
(and has this strength even when the particle excursions are rather great). The match-
ing conditions yield the dispersion relation

0' — éL £ + 1

S 21+9\m
Large scales, k* < F, + F, are barotropic “double Kelvin waves” (Rhines, 1969)
with ¢/ f = —(8/2)(y/(1 + 7)) = — § x fractional change in total depth across the
step, with J/, = ,. Waves shorter than the deformation scale become increasingly
confined to the lower layer. In this limit they feel the interface as a rigid lid, and hence
o/f = —0/2, |Y,/¥,| = k,|k < 1. The topography provides trapping in vertical
and horizontal directions. For the simplest case the group velocity, éw/dk, vanishes
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at both extremes of k, but is significant near k = k,. Phase and energy each move to
the left, facing shallow water. Simple solutions also may be found for seamounts and
islands, where the phase progresses clockwise (the analogue of westward-propagating
Rossby waves).

The eigenvalue problem for sinusoidal depth variations (Suarez, 1971 ; McWilliams,
1974; Rhines and Bretherton, 1974) provides an interesting model of “roughness”

LTI T T T T I T T TTIT T T T T TV T T T T I T I T I TTT T,

J,
FTTTRTERTET dilidis 3

t= 0

Cl=094

t=55

Cl=.027

Fig. 44. Linear-wave dissolution of a circular vortex in a rough-bottom ocean (homogeneous fluid). The
topography is confined to wave number 6-11. Compare Fig. 11. In spite of the spatial complexity, the
pressure at a fixed point varies rather sinusoidally in time, as in a trapped “seamount™ oscillation.
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waves, the frequencies again being O(3). For arbitrary depth in a one-layer ocean
enclosed by a coast, upper bounds can be established for the frequency, and are of
this same order:

o< . [ — fo—h

A ”

where f, and h,, are the mean values of fand h, respectively. If SR/L < 1 this essentially
sets the greatest planetary-wave frequency at | f — fo lmax-

If we fix the total rms derivation of f /h from its mean in a model basin, the average
energy propagation tends to be faster, the more smoothly the topography is dis-
tributed. This is not quite the same as saying that the addition of rough topography
to a smooth f plane must reduce the group velocity, for the group velocity eventually
scales up with 4, and hence must become large if 6 does.

Numerical experiments with a single-layer fluid exhibit some of the interesting
horizontal-cascade effects. Figure 44, taken from a movie sequence, shows the frag-
mentation of a large Gaussian vortex by narrow-band bottom roughness. (See also
Rhines, 1973, figure 5.) The energy gradually percolates outward from seamount to
seamount, for there is no large-scale f§ effect to support fast, long waves. A natural
fine structure builds up, even with these linear dynamics. 53

A linear experiment in the two-layer stratified ocean (Fig. 45) uses initial cgndmons
and topography very like the nonlinear runs (Figs. 34, 35). The energy regchmg (:lown
to the lower layer is rapidly “whitened,” and again becomes severely intermittent

max

t=0 t=5.28 mo

Fig. 45. Linear solution for a rough-bottom two-layer ocean (see time series, Fig. 37d). The wave number
spectrum is very “white” in the deep water, although the finer scales are not evident in .
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Fig. 46. The linear solution, after a Gaussian vortex is placed over a tessellated bottom, h oc sin x sin y.

in space. The time series at fixed moorings, shown in Fig. 37d, are dominated by slightly
modified baroclinic Rossby waves in the upper currents and temperature, yet fast
topographic waves in the deep flow. In this instance, the average vertical structure
(included on Fig. 36) remains strongly baroclinic, U,/U, =~ 0.33.

Surely the topographic waves best documented in nature are those trapped in the
coastal wave guide formed by the continental slope. These are particularly quickly
propagatory because 6 ~ 1, providing periods as short as a few days; see Chapter 10.

But the convenience of acquiring coastal data should not deter us from looking
elsewhere: the possibilities for lateral trapping and for unanticipated kinds of fluid
dynamics in mid-ocean are numerous. Within so complex a domain as the sea, we
may yet find Cthulhu (Fig. 46).

8. Mean-Flow Interaction

The energy-containing eddies are themselves worthy of attention, and in addition
can affect the time- or space-averaged flow in which they are embedded. The inter-
action takes many forms. A purely steady forcing effect, if sufficiently strong, leads to
circulations that become unsteady. There can then be feedback of the eddies onto the
mean. Conversely, a purely oscillatory forcing frequently causes a rectified flow.
Examples of both extremes are given below.

It is important to realize how many different ways there are to define “mean flow.”
Meteorologists, possessing a simple geometry at the large scale, favor the zonal,
Eulerian mean of instantaneous wind velocity. Their eddy field contains the meanders
of the mid-latitude jet streams, nearly steady monsoon circulations and orographic
deflections, as well as detached cyclones. Owing to the generalized Stokes drift, the
velocity averaged about fixed control surfaces does not accurately describe the
average paths of fluid parcels, either in a meridional plane or a level surface. But
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oceanographers, who are interested in the life history of salts, heat, and chemical
tracers, as well as momentum, must pay more attention to such Lagrangian means,
averaging over an ensemble of realizations. In the presence of coastal boundaries it is
particularly difficult to find fixed control surfaces that yield useful overall statements
about linear or angular momentum, or vorticity. The oceanographer’s interest in the
paths of fluid parcels is in part pragmatic: in much of the ocean the time-averaged
current at a fixed point is nearly unmeasurable by direct means. (An illustrative
example is given in Section 9.)

A simple calculation of the difference between Eulerian and Lagrangian mean flow
can be made for a field of geostrophic turbulence. Imagine, as a model, that the
dispersal of particles obeys a diffusion equation,

(£ =V. (KVC )
ot

where C(x, ) is the spatial concentration of fluid markers, and « the diffusivity.
Multiplying by x and integrating, we find that the center of mass obeys
X

e LU,
ot ¥

where () = f( )Cdx/f Cdx. If C is a delta function, this gives the_ most likely
flow of a single particle. The particles move preferentially toward regions of le}(ge
diffusivity, even in the absence of an Eulerian mean flow. The sgread_ of the probfblht.y
distribution about the expected path occurs, to a first approximation at rate &. This
model was investigated by Kolmogorov (see Monin and Yaglom, 1972, p. 610).. :
It is very likely that, for a stationary, turbulent field of slqwly varying statistics
(relative to the excursion of particles during one eddy-period), the appropriate

generalization is

oKxy _ 0y

% + Cufdx))

where
r
K= [Rueldr, Ry = CulelXhufe + 1))
0

This uses Taylor’s formula for the diffusivity in terms of the Lagrangian correlation
function, R, (z|x) for particles released at the point x = (x;, x gyatt =10, ‘Tl§e brackets
are an ensemble average, and (u(x)) is the Eulerian mean flow. In the limit of small-
amplitude waves this becomes the classical Stokes drift. The difference between the
two mean flows will be most significant when the eddy intensity varies greatly on the
scale of the eddies themselves. In surface gravity waves, for example, the difference is
dx/ét = x,,/0z,and below the troughs the Eulerian average flow completely vanishes.
To get a feel for the result imagine the dispersion of neutrally buoyant particles in a
turbulent boundary layer, say, at the base of the atmosphere. The boundary exerts
the same effect as a strong diffusivity gradient (which also exists in the air itself). It is
intuitive that eventually the center of mass of a marked region will rise away from the
boundary, even though the Eulerian-average vertical velocity vanishes everywhere.
Taylor’s (1921) formulation of turbulent diffusion (essentially the identity that
(@/d) {x;x;» = |, Rift) dt in a homogeneous field) emphasizes also that in a given
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region there are many different Lagrangian drifts and many different 'diﬁ'usivities.
depending on the subset of particles being counted, and on the recent history of the
field.* At small times a delta-function cloud disperses with (x;*) oc (u;*>t* (initially
zero diffusivity) yet after the initial velocities are forgotten, the expansion slows
toward a random walk, {x;*)> = 2(t [§ R;; dt — ¢ tR;; d7). Dyed patches of fluid
of different sizes (marked with different colors) thus spread at rates inconsistent with a
single diffusivity and their centroids move with different velocities.

This result suggested itself after neutrally buoyant SOFAR floats in MODE were
observed to behave rather erratically in their mean drift, at times acting very unlike
the mean flow seen by current meters moored nearby. In the same region, we found
precipitous, permanent gradients in eddy intensity.

A. A Whole-Gyre Model

The dynamical studies in Sections 5-7 focused for simplicity on homogeneous
fields, without boundaries. But we know the ocean to be heterogeneous, and an
independent line of attack includes an explicit source, here the meanders of a wind-
driven circulation, which may in turn radiate to the central ocean. A number of
investigators have been experimenting with such models reminiscent of Stommel’s
single-gyre circulation, yet with stratification and explicit eddies present. One such
calculation, by Holland and Lin (1975), has reached an advanced stage,” and we
describe their results in some detail.

Holland and Lin drive their ocean, in which there is simple lateral friction, by
spinning up from rest with a steady wind stress, sinuosidally varying with latitude.
At moderate Reynolds number the mean flow is highly inertial. The Gulf Stream
(with free-slip boundary conditions) turns along the northern wall and then decelerates
as fluid returns to the interior (Fig. 47). This is typical of inertial gyres; only at smaller
Reynolds number, or with no-slip walls, do the more classical western boundary layer
patterns return.

After 2 yr of driving by the wind (of amplitude 1 dyne/cm?) the circulation spon-
taneously begins to meander, and closed cells of transport move throughout the
basin. Unlike our free initial-value experiments, the mean state here is continuously
maintained and a statistically steady, fully interactive state is reached after about
3 yr (Fig. 47).

The time-mean and perturbation fields are at first sight surprising. The perturba-
tions are strongest, not in the vicinity of the Gulf Stream, but in the westward return
flow. There the upper layer meanders lag those in the lower layer by roughly 60°.
This is a tilt of the phase of pressure in the xz plane opposite to the sense of the mean
velocity, a familiar signature of baroclinic instability. The dominance of the open-
ocean return flow is in part due to the stabilization provided by the northern wall,
but more strongly due to the narrowness of the westward flow. For the intensity of the
eastward-flowing Gulf Stream is about 20 cm/sec (averaged over its 80-km width),
whereas that of the return flow is about one-third as great. Simple instability theory
Section 6, which ignores horizontal shear, suggests that the eastward flow, to be
unstable, must obey |Ug| > ¢'H,f/f (in order that the mean potential vorticity
gradient Q, have opposite signs in the two layers). The westward flow can more easily

® The identity in general involves |7 _, (Rifr, t|x, o) + Ry(z, 1|x, to) dz. If the statistics are stationary

but inhomogeneous, however, this diffusivity is non-stationary.
? Others currently investigating this area include Haidvogel, Mintz, Robinson, and co-workers.
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INSTANTANEOUS FIELDS

v,

Fig. 47 Typical flow pattern from Holland and Lin’s wind-driven ocean. P1 and P2 are ¢, and ¥, in
our notation, PSI is y, 4 y,. the total transport.

reverse the gradient in the thin upper layer, ifonly | Uy | > ¢'H, B/ f.'° Thusif Uy/U, >
H,/H,, the return flow will be the more vulnerable, as it is here: H,/H, ~ 0.2,
Uw/Ug ~ 0.3 (averaging horizontally over the Rossby radius ~ 50 km). When Holland
doubled the north-south extent of the basin, so that the maximum westerly winds
blew at its middle latitude, a two-gyre circulation occurred (Fig. 49). With the re-
straint of the rigid wall removed, the separated Gulf Stream was weakly unstable,
but the predominant energy conversion occurred, as before, in the return flow.
There is in the deep layer of Holland and Lin’s ocean a time-mean flow (Fig. 48)
including gyres both co- and counterrotating relative to the upper flow; here the
eddies drive an abyssal circulation. Above the thermocline, however, Holland
demonstrates that the flow is significantly weaker with eddies than without. Averaging
over the water column, there is a net transfer of kinetic energy from mean to per-
turbations at a rate § the conversion from potential to kinetic energy. This remarkable
braking action is suggested by Thompson’s (1971a) qualitative argument, and our
analysis below, that spontaneous wave radiation will intensify an eastward jet, yet
weaken a westward jet. It is likely that, given a more realistic intensity of the separated
Gulf Stream (which exceeds 100 cm/sec averaged over the upper kilometer) and of the
return flow, which cannot far exceed 10 cm/sec, the center of energy release will move

' The wedge model of a two-layer f plane ocean (Fig. 6) shows this asymmetry simply, for the slope
equivalent to f is greater in the thicker lower layer. Hence a rather steep uptilt of the thermocline to the
north is required to cause dh/dy to have opposite signs in the two layers, yet a milder tilt in the opposite
sense will manage to do so.
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Fig. 48. Time-averaged flow, showing an abyssal circulation driven by the eddies.

INSTANTANEOUS FIELDS
H_CI=20 PSI CI=S

Fig. 49. As above, but in an elongated basin with the maximum eastward stress at mid-latitude. The
separated Gulf Stream is now unstable, and becomes more so, the larger the Reynolds number.

282



THE DYNAMICS OF UNSTEADY CURRENTS 283

to the Stream itself, which will meander more like the model in Fig. 27, and the eddies
will then act, as in meteorological flows, to intensify the circulation in both layers."
The experiment nevertheless shows the sensitivity of westward flows to baroclinic
instability (relying on the upper layer being thinner than the lower layer) which
theoreticians have remarked upon (e.g., Gill, Green, and Simmons, 1974). It may be
that in the real ocean the region of eddy production analogous to Holland’s case is
farther south in the equatorial currents. Dominance of the tight non-Sverdrup gyre
of north-south scale ~L,, which is not observed in the oceans, may lessen when
reasonable meandering instabilities of the Gulf Stream are included, by raising the
Reynolds number (Holland, private communication).

The distinction between instability of eastward and westward currents is par-
ticularly important in considering the north-south heat flux, for baroclinically
unstable westward streams will mix heat, equatorward, against the overall global
gradients of temperature.

The distant eddy field radiated from the north in Holland’s experiment is virtually
barotropic. Neither mean advection nor relatively slow baroclinic propagation was
able to carry thermocline eddies to the south (in fact, the basin-average eddy kinqtlc
energy was 6.8 times the eddy potential energy). This dearth of strong thermocll_ne
eddies is in disagreement with the observed ocean, where the ratio of eddy potential
to eddy kinetic energy probably exceeds unity. Yet the disparity is just the same one
found in the flat-bottom cascades (Section 6). It is very likely that additiqn of realistic
topography and reduction of the lateral damping will allow a baroclinic far field to
develop. It is also an illustration that long-term experiments, involving a balance
between forcing and dissipation, may be rather sensitive to the nature of the friction,
more so than the short-term evolution in initial-value experiments. Heterogeneous
experiments like this one also require accurate modeling of horizontal fluxes of
energy, which in turn are themselves very dependent on both friction and bottom
topography. ¢

Despite these intricacies the calculations seem to be the first to include the entire
list of ingredients (excepting rough topography) needed to understand the mean
circulation. .

B. Rectified Circulation on a Homogeneous  Plane

The problem of eddy-mean flow interaction needs the focus provided by simplified
geometry and forcing, in addition to calculations like Holland’s showing its role in
complex ocean models. A laboratory experiment by Whitehead (1975) exhibits
succinctly the rectified flow generated by localized forcing on a homogeneous f plane.
The 2-m Woods Hole tank was rotated with its surface free (covered by a plastic
“windscreen”), yielding a paraboloidal f§ plane. A circular disk was mounted in a
horizontal plane, at mid-depth and mid-latitude. Forced vertical oscillation of the
disk produced a mixture of waves and turbulence in the otherwise still fluid. Radial
dye streaks revealed a persistent zonal circulation (Fig. 50) which was prograde
(“eastward ™) at the latitude of the forcing and retrograde (“westward”) elsewhere.
Circulation in this sense occurred equally well when the disk was replaced by a source
of small air bubbles. E. Firing, G. Williams, and E. Lorenz (private communications)
have reported the analogous result from truncated numerical calculations on a
rotating sphere covered by homogeneous fluid.

" In this case the eddies are likely to have a decisive effect on the upper-layer circulation, as well as
abyssal flow, rather than altering it only slightly.



Fig. 50. Mean circulation induced by an isolated disturbance
(beneath the black square) on a polar f plane (Whitehead,
1975). The dye streaks deforming with time show a prograde
(eastward) jet at the forcing latitudes, with westward flow
elsewhere.
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C. Inviscid Theory

It is of interest to write an analytical expression for this mean flow which holds
for both waves and geostrophic turbulence. Consider a polar f plane like Whitehead’s
but, for simplicity, with constant depth and Coriolis frequency, f, decreasing linearly
away from the center (Fig. 51). Neglecting at first forcing and dissipation, we have
simple conservation of barotropic potential vorticity,

gq=Py+{ [=( xu),]
Dq

Dt

Here y, vare the (inward) radial coordinate and velocity. Integrate over a regipn within
a fixed latitude circle, €. The Eulerian, zonally averaged u velocity is then given by

0 b=

al A q
where () = §, () dx is the integral about the latitude circle. Now a fluid column
which would have zero relative vorticity at latitude yo hfas potential vorticity g =
Byo = By — B(y — v,). With v = Dy/Dt, & = 0, and defining 7 = y — yo, it follows
that

(35)

il D(y — yo)
Se= - By =) =
ot Dt (36)
| 0+ T
= _EBEE”

which is an exact relation, regardless of the intensity or nature of the fluid motion.
If the convective part of the right side is small, equation 36 becomes

i, = —pn’ (37
for an initial state of rest. The neglect of the convective terms leading to equatio_x: 37
is not so severe as to require linear wave motion. It implies u- Vp~ = (0/oy)ym~ <

n? 0 i i flicient between v and n?,
(@n2/3t) or y(U /) [(n?)/?/L] < 1 where y is a correlation coe :
U',is a scal.f:( partiE:le speed, ¢ a scale-phase speed, and L a length scale defining the

lofitudes  Fig. 51. Geometry for the circulation experiment.
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L& Fig. 52. Sketch of the inviscid solution for the Eulerian
. circulation due to random forcing confined to the dashed
iy band. At successive times the jet strengthens, as the westward
\ flow (of constant strength) fills an ever-greater region.

north-south envelope of variation of n?. Equation 37 is thus valid for either weak
disturbances (U/c < 1) or nonlinear fields in which the scale of variation L of the
intensity is much greater than the typical north—south particle displacement.
Random trading of fluid particles across the latitude circle ¢ systematically
decreases the net relative vorticity within €, yielding an Eulerian mean circulation.
This westward momentum appears at “free” latitudes for which equation 35 holds.
At forced latitudes, where the wave maker was located in Whitehead’s experiment,
eastward momentum is left behind as a prograde jet whose strength depends upon the
nature of the wavemaker : net angular momentum vanishes if the source (for example,
the air bubbles used in some of Whitehead's runs) provides none. In the steadily
excited inviscid case the westward circulation at a given latitude builds up to its
asymptotic value —4fn? as soon as the disturbance arrives. The westward jet con-
tinues to accelerate indefinitely, to compensate for the presence of westward flow
in an ever larger region. The solution is sketched in Fig. 52. The central result, which
holds in more general circumstances, is that the depth-averaged flux of potential
vorticity equals the force, plus the momentum influx, exerted along ¢ by eddies on
the fluid instantaneously occupying the fixed contour, . Green (1970) made use of
the steady form of this relation. Below, it is shown to shed light also on the eddy-

forcing of flow, averaged in time at a point in space, rather than about a geostrophic
contour.

D. Viscous Theory

Add to the problem a simple bottom drag, —Du, which would be provided by a
linear Ekman layer. The vorticity equation,

D
(E + D>C e _BU
has the formal solution, following a fluid parcel,

1
{=-8 Jov(t')e"‘""’ dt' + {oe™™
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with initial value {, at t = 0. The northward flux of vorticity becomes
- ! " _— —
o= —vive”“ dt' + {pe” P
0

which is simplified by defining & = [} ve®* " dr’, to

lv= —/1.5(%f + D¢ i+ e 2Tov

The exact relation analogous to equation 36 is

¢ = ilD iz -Dry 38
(‘é;*f‘[))ll,—— 2Dt+D§+e Cov ( )

Here, ¢ is the north-south particle displacement weighted over the previous spin-up
time, which expresses the fading memory that fluid has for its initial ]atitude.”l.'he
second right side term gives the decaying dependence on initial relative vorticity.
Again, if "

U ('72 )1/2
.

<1

the advective part of D/Dt may be neglected, and the explicit solution is

i, = —%ﬂ(é_z + Df'?e""""’dt’) - e""Ckodf

0 0
There are two interesting limits, the inviscid, which yields equation 36, or
i, = —4pE% = —4pn* (39)
(if {, = 0), and the steady, which yields

.

If the spinup time, D', far exceeds the time scale of the eddies, this simplifies to:
(@) u, = — Pi,,/D if the field is diffusive (k,, # 0): (b) u, = —3Pn*. if n* is bounded
(x5, = 0) and the correlation R,, falls to zero rapidly, relative to D' or (c)
u, = —fn’ (twice that of (b)) if x5, = 0 and R,, has long memory, relative to the
time D '. Note that (a) resembles (b) if we replace n by the average excursion of
particles in one spinup time. This illustrates the difference between wavelike and
turbulent flow, as according to whether n? is bounded or not. Neither expression
depends explicitly on the time or length scales of the eddies. In the solution, (c), the
circulation reaches —f&?/2 as soon as the disturbance is established but then,
gradually if D is small, the circulation continues to increase to twice this value after a
few spin-up times. This would be a feature to look for in an experiment.

At forced latitudes the flow depends, as before, on the exact nature of the source.
If no time-averaged forces are exerted on the fluid, the regions of positive and negative
angular momentum sum to zero: each is not finite, being limited by friction.

This analysis contributes to earlier arguments for anisotropy, favoring zonal or
f/hcurrents on a f§ plane, even without external forcing. Random increase or decrease

f “Raslt)e " d (40)

0
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in 5% will occur due to the eddy motion itself. The slowness of energy propagation
north-south, relative to east-west, may enhance the effect by maintaining north-
south gradients, yet smoothing out those east and west.

E. Taylor's Formula

The derivation was suggested by a result in Taylor’s remarkable 1915 paper which
considered, among other things, the stability of a plane, nonrotating, inviscid flow
in a channel. He finds (in our notation)

u 1 an?
e l
a2 i ot @)

as a consequence of conservation of relative vorticity. (See also Dickenson, 1969.)
Here Ul(y) = u,; Taylor’s formulation is centered on slight deviations from a
strong, parallel flow. In this case, unless U” is a constant, the displacements, #, and
perturbation velocities must be assumed small. Equation 41 in effect equates the
vorticity flux to the divergence of the momentum flux. When integrated across the
channel the left side vanishes, there being no sources of momentum. This gives
Rayleigh’s criterion, that U”(y) must change sign somewhere for the spontaneous
growth of disturbances, based on the novel definition of instability, that n* increase
everywhere. [In our analogous f plane application, the integration of equation 37
(where f is a positive constant) across a zonal channel bounded by rigid walls (or,
without walls, to distant latitudes which are quiescent) shows that H_z dy must be
constant in the absence of forcing or dissipation: on an unforced f plane random

motion is ultimately limited in north-south excursion. External agents are required
to mix the potential vorticity.]

Now a positive value of $(n?)dt, which we henceforth call «, acts (though not
exactly) like a positive viscosity, reducing the momentum where U” is positive, and
conversely (Fig. 53). This redistribution of momentum, on the whole, reduces the
energy of the mean flow.

Two situations exist, however, in which the perturbations sharpen the jet and
increase its energy. First, stable perturbations, x < 0, can exist in a potentially
unstable flow and they will increase U wherever the curvature U” is negative. Second,
the flow may be absolutely stable, U” # 0 everywhere, and then the integral of
equation 41 shows that x must take on both signs within the fluid. Imagine, for

example, a parabolic inviscid flow, with imposed initial values of n* that are large
near its axis, and vanish towards the edges. It is most plausible that the disturbance
will decrease where it is large and increase where it is small. If this is so, the flow will
be intensified, with a flux of x momentum against its own gradient.

Starr (1968), in describing *“ negative viscosity,” frequently invoked two-dimensional
thought problems. Here we have shown in detail how such flows may redistribute
momentum aginst its gradient, but only when, in some part of the flow, the eddy
diffusivity of vorticity, x, is negative.

Consider now the combined situation of a zonal current, U(y), on a 8 plane. The
equivalent of equations 36 and 41 is

0

U Lo
2 0t

—=U-p

= = (U" - P (42)
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The unstable case requires that the potential vorticity gradient vanish somewhere

for n* to increase everywhere. By sketching the curvature of a typical jetlike profile,
it becomes clear that westward jets are less stable than eastward jets of the same shape.
During the instability the role of f is to cause westward accelerations of the mean
flow in a broader band, and eastward accelerations in a narrower band, than in the
comparison problem with f = 0.

In the stable case, U" — f # 0, k must once again take both signs, and singling
out the case where x < 0 near the jet axis and x > 0 elsewhere, we find a dramatic
difference in the momentum redistribution. The stable, outward moving disturbance
sharpens an eastward jet (in the sense that oU/dt > 0 where k < 0), as it did with
B = 0, but, by equation 42, a westward jet is now instead decelerated at the center.
The westward momentum moves out to its flanks, where x > 0.
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Fig. 53. Sketch of energy transformation terms and Reynolds’ stress in a simple “laboratory™ parallel
jet. The perturbation field spreads the jet, reducing its energy. The conversion between x-mean and per-
turbation flow is clear, in an integrated sense, yet its local evaluation is obscured by spatial fluxes.

This shows the interplay between mean shear and f in deciding the redistribution
of momentum. 8 takes the dominant role when Ba*/U > 1, a being the horizontal
scale of U. The contribution of mean shear is in a sense included in the original
derivation (equation 36) where it appears by altering the reference latitudes, y,, of the
fluid particles.

The descriptions show simply how a variety of up- and down-gradient momentum
fluxes may occur in parallel flows; they are meant to contrast linear stability theory on
the one hand (e.g., Howard and Drazin, 1964), with countergradient fluxes that
may appear in a stable flow, on the other. It is significant that in unforced, stable flows
the north-south diffusivity of fluid parcels, k, must take both signs and average to zero.
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F. Energy Conversion to and from the Mean Flow

We have discussed the redistribution of momentum by eddies, without writing
down the corresponding energetic relations. For two-dimensional inviscid channel

flow, homogeneous in x, the usual equations for mean (in x) and perturbation kinetic
energy are

Ky, 0 —
iyt Wy 43
i Uayuv (43)
AR T )
Y ' ' 7 = § 43.
== +ay[”(K +p)] = u'v % (43a)
where
u=U+u,...,K =3u? +v?, Ky =302,
and

A 1 (L

( )= lim — I ( )dx
L=w 2L ). L

Mean energy increases wherever downstream momentum converges, and perturba-

tion energy changes owing to fluxes of energy, pressure work, or conversion from

mean energy.

One must not be too facile in describing the conversion terms, however. At the
outer edges of an unstable, classical jet, (Fig. 53) for example, the perturbations are
growing, with the right side of equation 43a positive: yet the mean. flow is also
growing, and the right side of equation 43 is also positive! The two conversion terms
differ by a divergence, (3/dy)(u'v'U), which vanishes upon integration over the domain.
It may be appropriate to rewrite equation 43a in the form

a? a ’ G 6 G
a—t-i-g}-’[v(l(—l("-i—p)] = Ua—yuv
K= 4w+ Uy +v?]

Now the conversions are equal and opposite, and the flux of perturbation energy is
altered: the naming of (K — K,,) as perturbation energy flux seems appropriate,
since K = Ky + K’ + u'U, the final cross-term vanishing only after x averaging.
The spatial flux terms are thus difficult to distinguish from the conversions between
mean and perturbations. After integration over the entire domain the fluxes vanish,
but it is not easy to ascribe the conversion to a particular region in space. Conclusions

drawn from incomplete measurements, in only one part of the flow, may thus be
ambiguous.

G. Webster's Experiment

Apparently the first measurement of these fluxes and conversions in a large-scale
ocean current was by Webster (1965). The Gulf Stream between Miami and Cape
Hatteras frequently exhibits billowlike undulations on its inshore side. These are
now a familiar sight, thanks to satellite-borne infrared photography (Fig. 58), but
were once known only from sparse point measurements. The importance of turbulent-
viscous theories of the Gulf Stream motivated this experiment in which towed
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electrodes established the surface values of «', v', and U, where Ox is downstream and
time averages replace x averages in many experiments (although not in Fig. 54).

A typical cross-stream profile of near-surface values of the flux and conversion
terms is shown in Fig. 54, from near Cape Hatteras. The persistently negative value
of — U(é/éy)u'v’ nearest the shore, in the absence of other fluxes, indicates a retardation
of the time-average flow there, whereas its positive value at the core indicates an
intensification. This action may be related to the rather sharp inshore edge of the
Stream. The net conversion in the region of measurement is directed into the mean
kinetic energy, agreeing in sense with the computer simulation of Orlanski and Cox
(1973), and the theoretical speculations of Starr (1968) and Green (1970). In each of
these works, the energy source is the density structure below the surface.

u,x, north
. 1 [ 15
i vy, west conversion

IO'zcro i osed’

Fig. 54. The quantities analogous to Fig. 53 estimated by Webster for the Gulf Stream near Cape Hatteras.
The energetic terms are very different, and both indicate net transfer from eddies to mean flow at the
ocean surface. As above, the local evaluation of conversion is precarious.

This example reminds one of the difficulty in making energetic analyses when the

measurements do not extend out to vanishing values of w'v'or U. The integrated
conversion terms between mean and perturbation kinetic energy are not then equal
and opposite, when written as in equation 43. The common practice of using

uv'(@U/cy) to sum up the mutual interaction of mean with fluctuations is therefore
incomplete.
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H. Linearized Theory: Momentum Transport in Rossby Waves

Returning to the theory of zonal-flow generation, we concentrate on the role of f.
We have shown that outward-moving disturbances in a basically stable flow neces-
sarily sharpen an eastward jet while broadening a westward jet. But § also hastens

the redistribution of »* itself by allowing waves to propagate. Thompson (1971b)
first suggested this qualitative result on the basis of far-field, linear theory. As a
consequence of their dispersion relation, equation 21, barotropic Rossby waves
generated along an east-west line have crests arranged in a herringbone pattern
which points to the east. The correlation of east and north velocities implied by motion
to and fro along these crests represents a flux of westward momentum, uv, away from
the source. The eastward momentum left behind in a force free environment would
augment an eastward jet like the Gulf Stream beyond Cape Hatteras (see also Figs.
11, 55).

A similar pattern of u—v correlation may be seen in the wave-crests generated by a
point source oscillating at a single frequency (Section 5). The Green’s function is

V= H},”(%) exp [—i(zﬁ—ui) - wot>:|

rP=x*+y, tan 0 = ¥

X

In the far field the crests, r = const/cos? (30), look somewhat like the waves excited
by a fishline in a moving stream.

Thompson (1971a) verified that, indeed, currents at a site mooring (Site D) north
of the Gulf Stream at 39°N, 70°W, are polarized with significantly negative uv. This
region, though not in the far field of the stream, is sufficiently removed that a persistent
westward countercurrent occurs, which is very like that suggested by the theory;
see also Green (1970). The role of such countercurrents in the general circulation is
significant; at shallow levels they seem to form closed, climatological-mean gyres by
reconnecting with the stream, whereas at deep levels they contribute to the equator-
ward flow of North Atlantic Deep Water.

Reinforced by general results like equation 37, and powerful qualitative arguments
like Thompson’s, we are encouraged to write down a simple, nearly linear result
which Semonstrates more exactly the westward momentum contained in Rossby
waves.

Consider an unbounded, barotropic, § plane. The zonal, inviscid momentum
equation,

ou ou ou op

a—t+u$+vb;—fv— "'a—x’
yields upon averaging zonally, and expansion of the fields in powers of the non-
linearity, y ~ &/w,

T
s u(o)v(o)

ot dy

where u = u'® + yu" + .. This gives the O(y*) induced Eulerian circulation due to
the O(y) wave field. Now imagine exciting the fluid with a moving corrugated wall

12 Dr, Stern has recently reported a similar calculation (private communication).
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aty = 0. A convenient artifice, the term e™(x < ), will be used to show the uniqueness
of the wave-induced flow [otherwise, one can add an arbitrary steady zonal flow,

YUK
The equation and boundary conditions, at lowest order, are
a aw(m
— V3 —=0
S
oy e ) ]
=A k(x — cxt)e™, © 50
o cos k(x — c,t)e” V] as et
with

aw(O) 6¢(0)
OO R [

™, ™) ( 2y o
The general solution, Y'? = #{B exp [ik(x — c,t) + ily + at]} is constrained by
the boundary conditions to have B = —iA/k, and by the equation to have

Bik — (k* + PP)(ikey, + ) =0
Now specifying k and c, to be real, we find [ is complex,
B e
ike, + o

For small «, let | = [, + iad, yielding

B 1/2
lo = (_kl + C—x

-1 Pa
ke,?

a(s = ilo

The complete linear solution,
Yo = %sin [k(x — cxt) + loy]e™™® + 0(y) + O()

automatically reveals the energy velocity by the rate of northward propagation of the
envelope, e~ . The rate is the same as that predicted by group-velocity theory.

The second-order zonal flow, u™, is found from

u® (a.p“" aww))

or

(1)

‘SIO 2 2a(t—&y)
% A%e

The solution to this order includes an outward propagating wave, growing everywhere
because the boundary forcing is increasing, and a westward flow induced by it. For

=
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this problem the Eulerian mean flow varies only slightly over a wavelength, and hence
the Lagrangian (particle-drift) mean is identical, to O(x). Here, unlike the free jet
models, there is an increase in total x momentum, owing to the external agent.

This total westward momentum may be found from an argument used by R. W.
Stewart for the case of internal gravity waves (see Bretherton, 1969). The force, say, F,
exerted westward to maintain the motion of the corrugated wall creates kinetic
energy in the fluid at a rate Fc,, and creates momentum (or more generally, impulse)
at a rate F. Thus the average (in x and y directions) energy density E and momentum
density M must obey

. E
Cx
where ¢, = — p/K? for Rossby waves of total wave number K.'* With E = $#%?/K?,
this becomes a special case of our result, equation 37.

I. Rossby Waves in a Shear Flow

To this point we have omitted the classic eddy-mean flow interaction, that of linear
waves moving through a slowly varying zonal flow, for reasons of appropriateness.
Nevertheless the results of the theory are interesting. First, wave action, E/(w — U k),
is a conservative property for a packet of waves. Here E is the integrated wave energy,
measured by an observer moving with the mean flow, U = Ui, and w and k are the
frequency and wave number in an absolute frame of reference. Multiplied by k * i, this
is the total westward momentum of the waves, which is invariant even though energy
is being exchanged with the mean flow (a consequence of the constant wave momen-
tum being carried up the gradient of ambient mean flow).

Now it seems to be less than well-known that this conservation property holds for
more extreme, geophysically more interesting, variation in U with y. Imagine the
case when U takes on two uniform values, U, and U ,, on either side of a vortex sheet
lying along y = 0. A steady train of Rossby waves approaches from the south.
Ignoring possible instability, we can calculate the partial reflection that occurs at the
interface. The fluid boundary between the two regions can be treated rather like the
corrugated wall considered above; an observer in region 2, moving with speed U,,
sees the corrugations move steadily westward at speed ¢ = w/k - i, and records that
that material surface is doing work on region 2 at a rate —F(U, — ¢) where F is the
x force exerted by fluid in region 1, on the interface. Similarly, an observer in region 1,
moving with speed U, reports that the upper fluid is doing work at a rate F(U,; — ¢)
on the lower. The evidence implies that wave-energy fluxes #, and # ,, measured
in either case by observers riding on the mean flow, obey

T )
w-kU, o-kU,
by elimination of the force, F. Thus the wave action is conserved also in this rapidly

varying medium, and is now partitioned among incident, reflected, and transmitted
waves.'* The argument applies to a large class of waves, including some with non-

13 The work of Bretherton (1969) and Mclntyre (1971) suggests extreme caution in the application of
ideas of wave-momentum density; the mean flows associated with wave packets radiate far away from
them. Here the x averaging conceals this.

!4 Yet an observer at rest, including as ** wave energy " both the oscillatory and induced mean flow due
to the waves, reports from the same argument that wave energy flux is conserved.



THE DYNAMICS OF UNSTEADY CURRENTS 295

?rivial structure normal to the propagation plane (e.g., short surface waves propagat-
ing among currents). It is related to the result of Eliassen and Palm (1960) for steady
wave trains in a density-stratified atmosphere with horizontal winds of arbitrary
vertical structure, that the momentum flux @w is independent of height. '

These results add further light to the discussion of jetlike mean flows. For waves
propagating outward from the center of an eastward jet, where U — ¢ (ocE) is large
(recall that ¢ < 0), will transport westward momentum outward from the jet core,
thus increasing the x-mean energy there, while E decreases. If U — ¢ > 0 everywhere
in the corresponding westward jet, outward-propagating waves will still carry
westward momentum, now at the expense of the zonal-average energy of the core as E
increases. When the theory of critical-layer absorption is added in, covering flows
where U — ¢ vanishes at some latitude, the interactions can be calculated in detail,
and are of relevance particularly to atmospheric flows (Dickenson, 1970).

J. Topographic Effects: Nonlinear Theory

The theory of circulation induced by eddies given in most general form in equations
36 and 38 applies as well when the potential vorticity gradient is not simp}y a constant.
The geostrophic contours of f/h, where h is the depth of a barotropic model, are
generalizations of latitude circles, and the induced circulation obeys

-
IR
ot 2 h Dt
for inviscid flow: a similar generalization of equation 38 follows with Ekman fncngn.
Here 5 denotes the particle displacement normal to the contours, and the averaging
bar is a line integral about a complete contour. The var}at}ons of V(f/h) in space,
over distances ~ L,, however, impose the additional restriction that n < .L,,. ;

We may expect to see anticyclonic circulation above seamounts 'and. ridges in th'e
deep ocean, when random forcing acts at a distance so that the region in question is
“free.” Such circulation has indeed been found in my numerical experiments
(Section 7), and Holloway (private communication) has discovered similar contour
currents in his barotropic model (Section 7). :

An illustrative example from my early barotropic experiments (Fig. 55a) shows
particle trajectories in finite-amplitude “roughness ” waves above a sinusoidal bottom.
The oscillations, in the mean, cause the fluid over ridges to have negative relative
vorticity, and conversely. This yields contour currents of both Eulerian and La-
grangian flow, which are fully as strong as the currents associated with the primary
wave.

An extreme example from the sea is the persistent anticyclonic current found above
the Great Meteor Seamount by Meincke (1971), which occurred in the presence of
fluctuations at tidal period and longer. The results apply not only to the deep ocean;
the continental rise and shelf provide a systematic, strong potential-vorticity gradient,
and shelf waves and turbulence are present in abundance. The above theory, which
applies when lateral boundaries do not block the geostrophic contours, provides an
alternative to direct wind-generated longshore currents.

'* A further consequence of this formula is that, if the phase speed, c, lies between U, and U, #, and
# , have opposite signs. With no incoming energy from + oo, then, #, < 0, and net energy must flow
away from the interface on both sides of it. This is known as * overreflection™ of an incident wave.
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Small-scale roughness on the bottom acts in a distinct way on mesoscale flows,
probably providing an augmented drag owing to both its small-scale geostrophic
wake and lee Rossby-wave and internal-wave generation. Bretherton and Karweit
(1975) have emphasized this role of the roughness.

K. Applications

The theory has been presented in an idealized form, but its extensions bear on the
oceanic case with stratification, topography, and lateral boundaries. There the eddy
flux of vorticity into a fixed, elemental region yields an average stress curl which can
then drive a large-scale Eulerian circulation in the classical manner. The result
analogous to equation 36 for a single-layer ocean, with mean potential vorticity
Q(x, y) is that the potential vorticity flux-divergence may be rewritten to give

3, o ( @

7t V) + J(Y), Q) = ax, (’\ik ("/’x,‘>
where ;; = Jo RizIx) dz, R;; = Cufthuft + 1)), u; = (@Y/dx,, —P/éx,). Here (Y
is the ensemble-averaged flow, and Q(x, y), k;; are assumed slowly varying in space,
relative to the particle excursions. If k;; is identified with the eddy diffusivity, then this
beco_mes Welander’s (1970) formulation, which was based heuristically on a down-
gradient diffusion of vorticity. Unlike Welander (1970), Green (1970), and Rossby
(1947),.howevcr, we suggest that the time-dependent theory, with k;; allowed to
vary wildly in space, is likely to be of interest for the ocean. Over times greater than
an eddy period, but less than the climatological time scale, a pulsing of eddy energy
can dnyg temporary “mean” flows with the diffusivity either positive or negative;
in ffele1 el(rintml-value problems described earlier, in fact, the area-averaged diffusivity
vanished.

Fig. 55. Two examples of eddy-induced mean circulation in a homogeneous model. (a) The Lagrangian
paths of particles in finite-strength waves above a sinusoidally corrugated bottom lie east-west along

depth contours.
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Fig. 55. (b) an initial cluster of eddies near the center interacts and radiates, developing a large-scale
castward jet in the center, westward flow at the periphery (full lines are positive y here). The vorticity field
shows the small-scale tilted troughs, the vehicle of vorticity flux.
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As an example (Fig. 55b) witness the large-scale Eulerian flow induced in a simple
B plane spin-down experiment. The fluid is homogeneous. Initially a small cluster
of eddies is prescribed at the center of the region. As these interact and radiate into
the surrounding, quiet fluid, the intensity decreases at the center and increases else-
where. Direct application of equation 36 promises an eastward zonal-mean flow at
mid-latitudes (x < 0) and westward flow elsewhere (x > 0).

The eddy-stress term is related to the expression for Lagrangian mean flow, given
at the beginning of this section; combination of that result with the above turbulent
vorticity equation shows that, if k;; is symmetric, then

S DcL> Y .
<6_t> = <FI = =2B{v").

The Eulerian and Lagrangian rates of change of vorticity are equal but opposite for
ensembles which have (v*) = 0. Over brief periods, floats and current meters will
tend to register the same vorticity tendency, but over long times, the opposite tendency.

As an example, in the configuration of Whitehead’s rotating paraboloid, it turns
out that the circulation integral about a moving fluid contour is equal and opposite
to the Eulerian circulation about a fixed latitude circle (which itself often is equal
to the Lagrangian particle drift). This may be appreciated by realizing that the area
en(_:losed by a dyed contour, initially lying on a latitude circle, must decrease if the
fluid is displaced in any fashion. Kelvin’s theorem then yields eastward circulation
about this moving contour, but all particle motion (in free latitudes), and the Eulerian
momentum, are directed westward.

In adfiition to the time-dependent flows driven by eddy vorticity flux, the discovery
of quasi-permanent fine structure in the eddy intensity both in the models and the
ocean, tremendously increases the stress curl, (6/6x;)[k,(6Q/dx,)].

. In a stra.ltiﬁe.d ocean these ideas apply to vertically averaged vorticity flux. The
vigorous diffusivity of the upper-level flow may, in this case, drive abyssal circulation,
asin Holland’s model. The required vertical flux of horizontal momentum has been
filscu.ssed by Bretherton and Karweit (1975). An experiment yielding mean circulation
in th.ls way was shown in Fig. 43e; the advancing front of eddy energy in this “prop-
agation " run yielded a positive diffusivity with strong gradient, and created westward
zonal-average flow in both shallow and deep layers. In other regions being drained of
their eddy energy, the diffusivity was negative and the mean flow eastward.

The vorticity-flux theory gives dynamical significance to the‘observed diffusion of
water-mass properties, for instance, the silicate in Antarctic Bottom Water, and the
salt in the Mediterranean outflow. In addition, the direct measurement of Lagrangian
diffusion can now be made with neutrally buoyant SOFAR floats (Freeland, Rhines,
and Rossby, 1975); the spreading of the cluster with time (Fig. 64) gives a first estimate
of 1500-m-level diffusivity, ~8 x 10° cm?/sec.

9. Observational Notes

Observations of unsteady currents are now widespread, and we may anticipate a
rapidly improving picture of their geographical distribution. For a sample, Hamon
(1968), and Boland and Hamon (1970) have recorded eddies and pulsations in the
East Australia Current; Mazeika (1973) and Koshlyakov and Grachev (1973) have
described eddies in the North Equatorial Current; Bernstein and White (1975) have
produced time sequences of thermocline eddies in the eastern North Pacific; Swallow
and Bruce (1966) and Bruce (1973), describe a “separation bubble” in the Somali
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Fig. 56. Sea-surface temperature patterns along the west coast of the United States (from the NOAA-II
satellite, courtesy of NOAA-National Environmental Satellite Service). Darker areas are warm, light
areas cold. Sept. 11, 1974, after an intense period of coastal upwelling.
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Current; Diiing, Katz, and the GATE group (private communication) have found
the Atlantic Equatorial Undercurrent to be oscillating on a large scale: Foster (1972)
has seen gross irregularities in the Antarctic Circumpolar Current at the Drake
Passage (where the net inferred transport was westward during the current meter
experiment!); the MEDOC Group (1970) found eddies to occur after violent, meso-
scale, deep convection in the western Mediterranean ; and Swallow and Hamon (1960)
and Gould (1971) report variable currents in the eastern North Atlantic and Bay
of Biscay. As in the atmosphere, the meandering and pulsation of intense currents
appears as eddy energy if time averaging is used, yet there is some distinction between
such dynamics, and those of detached, freely moving eddies and waves in the ocean
interior.

Surely the most dramatic evidence for eddies is the infrared photographs of the
sea-surface temperature field, from earth satellites. Figure 56, from the NOAA
series of satellites, shows billowlike patterns at the edge of cold coastal water lying
off Oregon and California. Can these be the instabilities of the cold, southward
coastal current? The temperature structure of the separated Gulf Stream (Fig. 57)

> o

Fig. 57. The Gulf Stream near Cape Hatteras from a NOAA sate);
Oceanographic Institution’s Site D is found to the left side of the promj
(black dot).

ite, April 28, 1974. Woods Hole
fient eddy just north of the Stream
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shows the distinctness of transition between shelf, slope, Gulf Stream, and Sargasso
Sea water masses, giving life to these classical water-mass divisions. Active entrain-
ment of cold water by warm eddies appears at the shelf edge (cf. Fig. 15) and a cold
eddy seaward of the Gulf Stream entrains warm water from the stream near Cape
Hatteras. Site D, the source of current records (Fig. 13), is indicated. It is remarkable
that, amidst this chaos, linear wave theory continues to have qualitative truth (Sections
4 and 8). At Hatteras, the southward flowing shelf water is also éntrained into the
Gulf Stream, and but occasionally penetrates the crescent-shaped bays farther south.
The crispness of these patterns reemphasizes the inability of geostrophic flow to
cascade energy to small scales, in the efficient sense of 3D turbulence. Even though
surface frontogenesis is no doubt occurring, and sharpening the temperature gradients,
the picture lacks the fuzziness that we see in a laboratory turbulent jet, rich in energy
over a broad range of scales.

Finally (Fig. 58), surface traces of eddies have appeared in mid-ocean. Dr. Legechis
of NOAA has enhanced the signals (the satellites were designed for meteorology, not

Fig. 58. NOAA-satellite view of the Sargasso Sea, April 1, 1974, enhanced by Dr. Legechis. Eddies are
visible (at least in the original) not only near the Florida Current, but in open ocean. The MODE experi-
ment occurred beneath the prominent north-south tongue of warm water in the right-center. Observed
structure suggests that thermocline eddies should be made visible on the surface by the action of their
velocities, more than their own temperatures. A cold, cyclonic Gulf Stream ring is visible, entraining warm
water from the Stream. The gray shades cover a 9.1°C temperature range (darker = warmer), while
black is 2.1°C range above this, and white represents all other temperatures, whether cold or hot.
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oceanography), and finds warm and cold tongues hundreds of kilometers in scope with
a clear imprint of horizontal advection. This picture reveals the organic reality of the
mid-ocean north-south temperature gradient (which on climatological maps is so
smooth). It is suggestive of down-gradient mixing by thermocline eddies. The con-
nection with the deeper density field is unknown, as is the strength of the subtropical
front suggested by the picture. Here at the top of the mixed layer, one can imagine
the white imprint of cold windstorms continually being distorted by lateral stirring
of the thermocline eddies. Elsewhere, entrainment appears by a cold eddy (the same
as in Fig. 57) near the Gulf Stream, and billows occur on the shoreward side of the
stream (see Rao, Strong, and Koffler, 1971), which were associated with momentum
convergences by Webster (Section 8). A great deal of activity, perhaps with pulse-
like variations of the Florida Current, occurs on the Blake Plateau.

A. Sources

With improved observation, the sources and sinks of eddy energy will become more
and more apparent. Our present list of sources includes direct wind generation, violent
instabilities of intense currents and radiation from them, slower instability of the
gentle mid-ocean currents, flow past rough topography and irregular coastline,
occasional sinking of cold water, enhancement by western-boundary reflection, and
possible driving by internal-wave stresses. The analogy of the dynamics to those in
the atmosphere appears rather weak here, for the sources of energy seem to be more
sparsely Qistﬁbuted in the ocean, and the domain itself is far bigger, measured by
deformation radii and propagation rates, than the atmosphere.

B. Dissipation

A crucial, unknown aspect of the long-term distribution of energy is the dissipation
process. For example, the nature of interaction between mesoscale eddies and internal
waves is uncertain even as to sign (Miiller, 1974, predicts that internal waves drain
energy from eddies, whereas other, more deterministic theories like critical-layer
al;sqrp}mn may suggest the opposite). Again the ocean and atmosphere are very
dissimilar, internal waves being far weaker than the large-scale flows in the atmo-
sphere. The reason may be the absorptive nature of the stratosphere (owing to the
effect of decreasing density in the kinetimatic viscosity), and less efficient generation
at the ground. The ocean bottom, on the other hand, probably has an albedo of at
least 4, and turbulence and wind waves at the surface are a potentially strong source.

Dissipation by lateral friction is far weaker than classical eddy coefficients would
suggest. The very nature of geostrophic turbulence, by its inability to extend vortex
lines indefinitely, is to avoid such dissipation. The deep valley in frequency spectra
between periods of a day and a few weeks (e.g., Rhines, 1973) attests to the lack of a
homogeneous cascade, local in (o, k) space, between geostrophic and ageostrophic
flow. Bottom friction, from conventional drag laws, is very slight, a few percent of
1 dyne/cm? in mid-ocean, giving a spin-down time exceeding 500 days. [Lee-wave
drag exerted by topography of a few kilometers’ lateral extent, may be far more
significant (Bell, 1975).]

Once again the analogy between atmosphere and ocean breaks down in com-
parisons of the boundary drag and dissipation. The atmospheric lower boundary
layer is O(1 km) thick, fully 10% of the depth of the troposphere. Perhaps one-half of
the energy dissipation occurs there (Kung, 1967). This suggests a rapid spin-down of
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atmospheric energy (e folding, say, in 3-6 days compared with an inertial time scale
L/U ~ 1 day for L ~ 1000 km, U ~ 10 m/sec). In the ocean, on the other hand,
active three-dimensional turbulence does not seem to exist in regions thicker than
O(10 m), or 0.2 % of the fluid depth.

Yet a crude estimate of overall dissipation time for oceanic kinetic energy is the
ratio of vertically integrated kinetic energy density, to the rate of working by wind
stress, 7, or pf |u|? dz/tU,, where U, is a subsurface downwind current. For U, = 10
cm/sec, T = 1 dyne/cm, and currents of 10 cm/sec above the thermocline and 4 cm/sec
below, this yields a time of 19 days: a very short time in view of the paucity of three-
dimensional turbulence, and one comparable with the inertial time scale L/U (~ 5-20
days). The presence of severe intermittency may make such an estimate meaningless,
but it suggests the need to search for the sinks as well as the sources of energy.

C. MODE; Velocity

Some further data from the MODE experiment, discussed by Schmitz et al. (1975),
is of more than casual interest here. Two site moorings were maintained for longer
than 2 yr: MODE “east™ (28°10'N, 68°35'W) over hilly topography and, 100 km to
the west, MODE “center” (28°00'N, 69°40'W), above the Hatteras abyssal plain.
Daily current vectors at three levels (filtered of internal waves) (Figs. 59, 60) show the
usual decrease in time scale with depth. The energy level also decreases downward
across the thermocline, yet rises slightly below 1500 m. The series are quite regular,
yet there are occasional bursts of unusual activity. The 1500-m and 4000-tp levels
are visually coherent in the vertical, but not the horizontal. There appears, partlcula.rly
at 1500 m, an eastward decrease in eddy-energy density. At the 4000-m eastern site,
an unusually strong mean current flows at 2 cm/sec to the south-southwest. The
presence, some 15 km to the southeast, of a dominant ridge toppgraphy (35km x 5
km x 500 m high) may not be incidental. This deep mean flow is known frorp other
measurements to be of small lateral extent. The appearance of these noticeable
gradients in intensity over small lateral separations, and of small-scale, deep, mean
flows was a dominant feature of the rough bottom simulations (Section 7).

D. Zonal Bands

At 500 m (note the rotated coordinates, Fig. 60), on several occasions, a strong burst
of zonal flow appears at both moorings. This coherence over 100 km is unusual (it
does not appear below the thermocline) and is suggestive of the anisotropy found to
be so persistent in the computer experiments, when they were sufficiently energetic
(Figs. 20b, 23d, 25d). There is some indication of a sympathetic pulse of energy in the
deep water at these times.

There is evidence in other forms of zonally banded currents, from a variety of
sources; P. Richardson and collaborators have recently followed SOFAR floats,
depths 700-1100 m, in the region 32°N to 36°N, attempting to lay them within Gulf
Stream rings. The trajectories, as well as showing some loops, followed long zonal
excursions, westward and occasionally eastward, at an average velocity of about
5 em/sec. Yoshida (1970) and Bryan (private communication) suggest that tropical
regions exhibit banded currents, more extensive than the usual equatorial system.
(Yoshida describes five or six distinct jets in the Pacific, 20°N to 30°N.) One must
of course be wary of contours drawn from north-south sections widely spaced in
longitude. Recalling Whitehead’s experiment, we remark that any permanence in the
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forcing pattern will yield permanent bands, whereas in our free spin-down experiments
a banded appearance occurred by chance, with the growth or decay of {5*) in a given
region. G. Williams’ (private communication) experiments very likely involve the
same physics, in a model of Jupiter’s atmosphere.

A shorter sequence with dense vertical coverage is from the intensive period of the
experiment (Fig. 61). The upper portion is excerpted from the record at MODE-east,
in the rough area. It shows the kind of waxing and waning of vertical coherence that
appeared, with nonlinear “capture” followed by topographic scattering, in the
simulations, Fig. 37¢. A period of southward flow (the eastern side of a warm thermo-
cline eddy) begins at almost all levels; yet it gives way, below, to the shorter time scales
natural to the deep water. The deepest level, 100 m above the sea floor, is grossly
out of step; we suggest that it is dominated by fine-scale topographic oscillations,
frontal activity (where thermal gradients intersect the boundary), and perhaps
occasional intrusion of the bottom mixed layer.
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Bryden (1975) has demonstrated the value of such dense vertical sampling of

currents for dynamical studies. The thermal-wind equation may be manipulated
to give

where 0 is the angle of the horizontal current, ug, from the east. The right side is
difficult to measure directly. Its importance in the adiabatic density equation,

relative to the nearly linear, right term, gives a direct comparison of the advective and
propagative nature of the eddy field. [Moored temperature recorders and instru-
mented SOFAR floats measure dp/dt and dp/dt + uy - Vp, respectively (given a
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Fig. 62. Three representations of the average vertical current structure, from the two site moorings and
the brief, spatially intense MODE experiment.
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T-S relation). In all, they provide three determinations of the three terms in the
equation.] Bryden concluded that, for a few weeks in MODE-I, the horizontal
advection of density was well-correlated with, and comparable in magnitude to. the
local time-derivative of density. This is consistent with the nonlinear picture of an
eddy field.

The lower section of Fig. 61 shows perhaps a more classical structure of a slowly
varying thermocline eddy, superimposed upon fast oscillations which are themselves
more highly coherent in the vertical. This record was taken 170 km north of the
MODE center.

In the time-averaged vertical structure (Fig. 62), the minimum in speed at 1500 m
is visible, with a slight increase toward greater depth. If we adopt this profile to a
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two-layer model, U,/U, =~ 0.4, and &/d, based on 5 cm/sec rms current (the vertical
average) and 200-m rms topographic height, yields & ~ 0.02, § ~ 0.05, ¢/6 ~ 0.4.
Referring to Fig. 36, this agrees satisfactorily with the simulated U,/U,. The depen-
dence of the simulated structure on the manner of supplying the energy, however,
requires study. The computer experiments, despite their spontaneous fine structure,
suggest that the Hatteras abyssal plain is too narrow (~ 150 km) at this latitude to
allow the fluid to respond to it; one cannot apply Fig. 36 to such a small region.

D. Temperature

The MODE center was heavily instrumented. also. for temperature (Schmitz
et al,, 1975; Wunsch, 1975). Figure 63, the pressure-corrected time series, shows a
rapid warming, extending nearly to the ocean bottom, followed by a more gradual
cooling. The noisy signal at mid-depth is characteristic of salty Mediterranean water,
undergoing active mixing with its surroundings. There is unusual noise just above the
bottom, where the currents were also observed to be special. It is easy to imagine
a simple, sharp-edged thermocline eddy from this figure, but in fact the temperature
rise seems to be a frontlike feature embedded in the more gradual and extensive
western side of the eddy. During the arrival of this front, the currents veered sharply
at all levels. These kinds of quickly varying, interlocked fields of temperature and
velocity are an example of “mobile ” fine structure, which linear dynamics is incapable
of producing.

E. Particle Paths

The superposition of all tracks (October 1972-March 1974) of the 1500-m SOFAR
floats appears in Fig. 64 (Rossby, Voorhis, and Webb, 1975). The floats were released
at various times to June 1973, in the neighborhood of the MODE center (28°N,
69°40W). The paths, although at the least energetic depth of the ocean, show most
clearly the “steepness” of the field of unsteady currents. Rather than executing
slight oscillations about latitude lines, added to slow Sverdrup drift, they undergo
wild hooks and spirals, and also an occasional long, straight track. The particle
excursion during the time characteristic of the deep eddies (say, 10-20 days) is fully
equal to their length scale, and this sets the wave steepness near unity. Yet within this
pattern (Fig. 12) there was clear westward propagation of phase; a ubiquitous feature
of the nonlinear simulations was in fact the westward phase progression, except where
the large-scale (L > L,) f/h contours were badly distorted (Figs. 20, 24).

The spacing of daily fixes indicates the speeds, which have strong geographical
variation. Averaged plots of the kinetic energy (Fig. 65) agree with this impression;
the energy level increases by a factor of three in the 500 km south of the center, and
decreases by one-half in 300 km east of center. Later data seem to support these
profiles. The intensity of eddies thus varies on scales far smaller than those of the ocean
basins.

The orientation of the tracks seems also to have a persistent geographical variety.
Regions of predominantly zonal tracks abut regions of frequent north-south flow.
Farther to the north and south, the paths seem to trace out the shape of the large-scale
topography (the Blake Outer Ridge and Escarpment and in the south, the Antilles).

These geographical gradations of particle trajectories and energy were familiar
in the rough bottom numerical experiments. They may in addition give us clues to
the source of the deep eddies. One sees the nearby Florida Current (Fig. 58), and the
western boundary undercurrent (which has been recorded directly beneath the looping
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This permanent O(1) variation in eddy intensity over scales no bigger than the eddies themselves forms a
fixed “fine structure,” and hints at a dearth of energy farther east, and an abundance to the north, west,
and south. Topography of both large and small scale can lead to such gradients (e.g., Figs. 41, 43f), but
so also could highly structured driving agents.
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tracks at 30°N, 73°W), and the abundance of Gulf Stream energy to the north. In
addition the region is near a “corner” in the large-scale topography, which probably
forms a jagged, dynamic western wall for the subthermocline eddies.

When, soon, we have similar trajectories from amidst the thermocline eddies (say,
at 500 m), their behavior will be very different. Given both the longer Eulerian time
scale of upper-level flow (say, by a factor of 2-3), and its greater speed (a factor of
2-5), the floats may be expected to race around the eddies, mapping them while
they change slowly with time. In this sense, they may be particularly “cost effective.”
Furthermore, the particle tracks in these westward-moving thermocline patterns will
provide the most direct resolution of their dynamics, subtly apportioned between
advection and propagation.

The development of dynamic theory has rested on the conservation of quasi-
geostrophic potential vorticity, with an assumed, weak dissipation. If these quasi-
Lagrangian floats, following close to constant pressure surfaces, are sufficiently like
fluid particles, their tracks can provide immediate statements of dynamics; it is
attractive to imagine testing the potential vorticity relation using float clusters. One
sees in Fig. 64 an excursion of 550 km to the south in 120 days. If the change in plane-
tary vorticity (0.23f) from start to finish were to appear entirely as relative vorticity,
it would be 10 times the typical value in the field (0.02f)! Nor can a change in isopycnal
thickness of this degree be expected. (For coherent motion of the subthermocline
water, it would imply an 880-m difference in thermocline height from start to finish.)
One is left to suggest that rather rapid dissipation of enstrophy can occur, if the quasi-
geostrophic theory is to be believed.

The final figure, Fig. 66, shows the tracks of some such southward journeys of the
floats. It describes, better than my commentary, the flow of a nonlinear ocean.
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