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Motivated in part by the problem of large-scale lateral turbulent heat transport in the
Earth’s atmosphere and oceans, and in part by the problem of turbulent transport
itself, we seek to better understand the transport of a passive tracer advected by
various types of fully developed two-dimensional turbulence. The types of turbulence
considered correspond to various relationships between the streamfunction and the
advected field. Each type of turbulence considered possesses two quadratic invariants
and each can develop an inverse cascade. These cascades can be modified or halted, for
example, by friction, a background vorticity gradient or a mean temperature gradient.
We focus on three physically realizable cases: classical two-dimensional turbulence,
surface quasi-geostrophic turbulence, and shallow-water quasi-geostrophic turbulence
at scales large compared to the radius of deformation. In each model we assume that
tracer variance is maintained by a large-scale mean tracer gradient while turbulent
energy is produced at small scales via random forcing, and dissipated by linear
drag. We predict the spectral shapes, eddy scales and equilibrated energies resulting
from the inverse cascades, and use the expected velocity and length scales to predict
integrated tracer fluxes.

When linear drag halts the cascade, the resulting diffusivities are decreasing func-
tions of the drag coefficient, but with different dependences for each case. When β is
significant, we find a clear distinction between the tracer mixing scale, which depends
on β but is nearly independent of drag, and the energy-containing (or jet) scale, set
by a combination of the drag coefficient and β. Our predictions are tested via high-
resolution spectral simulations. We find in all cases that the passive scalar is diffused
down-gradient with a diffusion coefficient that is well-predicted from estimates of
mixing length and velocity scale obtained from turbulence phenomenology.

1. Introduction
This paper is concerned with the problem of transport of a passive tracer in a

turbulent flow. In addition to its intrinsic interest, the problem is relevant to the
issue of meridional heat transport in the Earth’s atmosphere and oceans. In mid-
latitudes much of the atmospheric transport is effected by large-scale eddies that are
well-described by the quasi-geostrophic equations of motion (e.g. Pedlosky 1987). In
the classical two-layer model of geostrophic turbulence (e.g. Rhines 1977; Salmon
1980), at scales larger than the deformation radius the baroclinic streamfunction is
nearly passively advected by the barotropic streamfunction, resulting in a down-scale
cascade of its variance. But energy in the barotropic mode itself cascades to large
scales. Since temperature is proportional to the baroclinic streamfunction, its nearly
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passive advection by the barotropic flow determines the heat transport, and this
down-gradient flux of heat in turn determines the extraction of energy from the mean
flow (Larichev & Held 1995). To understand the heat transport properties of this
system we must at least, then, understand the transport properties of a passive tracer
being advected by a turbulent flow in which energy is cascading to larger scales, and
that is the subject of this paper.

A familiar setting in which to explore this problem is that of conventional two-
dimensional turbulence (see e.g. Kraichnan & Montgomery 1980; Vallis 1993; Danilov
& Gurarie 2000 for reviews). In such flows, vorticity ζ is advected by a flow defined by a
streamfunction ψ linked to the vorticity, in Fourier transform space, by ζ = −|k|2ψ. We
will find it useful to consider more general relationships between streamfunction and
advected field of the form ξ = −|k|αψ. This is not only a formal device, for a number
of physical systems can be realized by different choices of α. For example, in surface
quasi-geostrophic dynamics (e.g. Held et al. 1995), streamfunction ψ and advected
quantity ξ are related by ξ = −|k|ψ, and the equations represent the advection
of temperature along a surface bounding a constant potential vorticity interior,
so providing (for example) a simple model for edge waves on the tropopause or
temperature advection near the Earth’s surface. Large-scale quasi-geostrophic flow
(quasi-geostrophic dynamics at scales large compared to the radius of deformation),
may be a particularly useful model for Jovian dynamics, presuming that small-scale
convection constitutes a source of turbulent energy. The latter case corresponds
to, as we will see, yet a third relationship between advected scalar and associated
streamfunction.

The dynamics of such generalized two-dimensional turbulence was explored by
Pierrehumbert, Held & Swanson (1994) and Schorghofer (2000) with an emphasis on
the forward cascade properties of the flow. Our focus is on the inverse cascade and the
transport of a passive tracer by such flows. Thus, we consider fluids that are stirred
at small scales by a random forcing, generating an inverse cascade, and which advect
a passive tracer whose variance is maintained by a large-scale gradient. Most of the
transport of the tracer thus occurs at scales within the inverse cascade of the turbulent
fluid, just as for heat transport in baroclinic turbulence. We derive general expressions
for the spectral shape of the inverse cascade in the presence of friction, as well as
estimates of the halting scale, equilibrated energy level and tracer diffusivity. We
then test these expressions numerically for the three cases of geostrophic turbulence
mentioned above – conventional two-dimensional vorticity dynamics, surface quasi-
geostrophic dynamics, and large-scale quasi-geostrophic dynamics – each of which has
a different relationship between streamfunction and advected scalar. In conventional
two-dimensional turbulence we also explore the effects of differential rotation, and we
will see that the stopping scale of the inverse cascade is not necessarily the same as the
mixing length of a passive scalar; we offer, and test, expressions for these two scales.

The theory presented in the paper is largely that of classical homogeneous tur-
bulence, and accordingly we rely upon Kolmogorov–Kraichnan phenomenology, the
presumption of well-defined eddy scales and magnitudes, and implicitly upon the
convergence of flows to statistically steady states. Kolmogorov–Kraichnan phe-
nomenology has been investigated for two-dimensional flows by many authors, and
is generally found to hold best for flows that are largely free of coherent structures
and devoid of intermittency. Examples of this can be found in, e.g. Maltrud & Vallis
(1991) and Sukoriansky, Galperin & Chekhlov (1999) for the inverse cascade and
Oetzel & Vallis (1997) and (at much higher resolution) Lindborg & Alvelius (2000)
for the direct cascade. In the simulations we present, the flows are forced by small-
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scale random noise, which appears to minimize the production of coherent vortices
in the inverse cascade of standard two-dimensional turbulence. Moreover the inverse
cascade is, in all cases, halted before the up-scale cascading invariant reaches the
domain scale, preventing vortex condensation (Smith & Yakhot 1993). Nevertheless,
in some cases investigated, coherent structures do form, and we will point out where
these deviations from phenomenology occur.

Such phenomenology is sometimes questioned in the light of simulations of two-
dimensional turbulence forced at small scales reported by Borue (1994). In those
simulations it is found that while after a few eddy turn-around times the energy
spectrum possesses a −5/3 slope, at much later times the spectrum evolves to a
−3 slope, accompanied by coherent vortices in the flow. However, Borue employed
an inverse hyper-viscosity (or ‘hypo’-viscosity) to absorb energy at large scales, rather
than the more traditional and geophysically relevant linear drag. The former method
of energy dissipation has recently been shown (Danilov & Gurarie 2001) to cause the
steepening of the energy spectrum in the inverse cascade observed by Borue, while
linear drag merely tapers the −5/3 spectrum at large scales, so long as the drag is
large enough to prevent significant energy from reaching the domain scale.

The paper is organized as follows. In § 2 we introduce the basic formalism of
generalized two-dimensional turbulence, and in § 3 we discuss the fundamental spectral
properties of such flows and calculate their corresponding inertial-range spectra using
Kolmogorov–Kraichnan phenomenology. The dynamics of a passive tracer in an
inverse cascade of generalized two-dimensional turbulence are discussed in § 4. In § 5
we heuristically derive a shape for the spectrum of the inverse cascade in the presence
of drag, which in turn yields an estimate of the halting scale of the cascade. In § 6 we
add to the picture a mean vorticity gradient (the β-effect). This produces zonal jets,
and we suggest expressions for both the jet scale and the eddy mixing scale. Finally,
in § 7, we report on numerical tests of our scaling predictions, and conclude in § 8.
An argument for cascade directions is given in Appendix A and some details of the
numerical model are relegated to Appendix B.

2. Two-dimensional flow: a generalized formalism
Consider the two-dimensional advection equation for a conserved scalar field ξ

∂ξ

∂t
+ J(ψ, ξ) = 0, (2.1)

where ψ is the advecting streamfunction and J(A,B) = ∂xA∂yB − ∂yA∂xB is the

Jacobian operator. The fluid velocity is given by u = k̂ × ∇ψ.
In ordinary two-dimensional turbulence ξ = ∇2ψ. Restricting attention to a doubly

periodic domain, in Fourier transform space, this is equivalent to the relationship
between Fourier components

ξk = −k2ψk, (2.2)

where k = |k| is the isotropic two-dimensional wavenumber. More generally we can
consider the relationship between ξk and ψk discussed by Pierrehumbert et al. (1994),

ξk = −kαψk, (2.3)

where ξ will be referred to as the generalized vorticity field. The independent variables
x, y have units of length [L], and t has units of time [T ]. Therefore, in order for
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(2.1) to be dimensionally balanced, ψ ∼ [L2T−1] and ξ ∼ [L2−αT−1]. Three particular
values of α lead to geophysically relevant equations: α = 2, α = 1 and α = −2.

α = 2: Two-dimensional vorticity dynamics

If α = 2 we obtain the familiar two-dimensional Euler, or barotropic vorticity
equation, with ξ = ζ and ζ ∼ [T−1]. In this paper we shall refer to these dynamics as
two-dimensional vorticity (TDV) dynamics.

α = 1: Surface quasi-geostrophic dynamics

When α = 1 we obtain surface quasi-geostrophic (SQG) dynamics (e.g. Held
et al. 1995, and references therein). These equations describe the evolution of surface
temperature perturbations bounding a constant potential vorticity interior, within the
quasi-geostrophic equations.

α = −2: Large-scale quasi-geostrophic dynamics

The case α = −2 corresponds to a rescaled shallow-water quasi-geostrophic equa-
tion in the asymptotic limit of length scales large compared to the deformation
scale (this system was investigated by Larichev & McWilliams 1991). We term this
type of flow large-scale quasi-geostrophic (LQG) dynamics. Consider the shallow-water
quasi-geostrophic equations

∂q

∂t
+ J(ψ, q) = 0, q = (∇2 − λ2)ψ, (2.4)

where λ is the deformation wavenumber. In Fourier space the expression for the
potential vorticity q is

qk = −(k2 + λ2)ψk. (2.5)

For wavenumbers such that k � λ, we recover TDV, but when k � λ, (2.4) becomes

−λ2 ∂ψ

∂t
+ J(ψ,∇2ψ) = 0. (2.6)

Because λ only appears in combination with the time derivative, we can rescale time

τ = tλ−2, (2.7)

and make the substitution of variables

ξ = ψ and Ψ = ∇2ψ (2.8)

so that (2.6) becomes

∂ξ

∂τ
+ J(Ψ, ξ) = 0, Ψ = ∇2ξ. (2.9)

In Fourier space the relation between ξ and Ψ is

ξk = k−2Ψk (2.10)

which has the same form as (2.3) with α = −2.
Nonlinear advection is present in all of these geophysical cases, thus turbulence

and turbulent cascades can develop. The character of the turbulence – e.g. the spectral
shapes, eddy scales, cascade directions, statistical amplitudes, coherent structures and
rates of turbulent development – will be distinct in each case. Some aspects of these
distinctions were discussed by Pierrehumbert et al. (1994), who argued, for example,
that the enstrophy cascade should be dominated by local strain for α < 2, and that
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local scaling predictions should break down for α > 2. Furthermore, they note that
the inverse cascade – our primary concern in this paper – should remain local for all
α < 4; the three cases discussed above fall into this category.

The fact that a single generalized formalism describes three cases of geophysical
interest by changing the value of a single parameter provides strong motivation in
itself to investigate the properties of the general system. We may also regard the
generalized turbulence formalism, however, as a shorthand with which we can derive
common aspects of the flows without repetition.

In order to make quantitative statements about scales and energies (a necessary
prerequisite to predicting the statistics of passive tracer advection) we first consider
the Kolmogorov spectra for the generalized dynamics. Some of what follows in the
next section was derived by Pierrehumbert et al. (1994), but we include it for clarity,
notation and as a reference basis for the rest of the paper.

3. Spectral properties of generalized two-dimensional flow
Because ξ is conserved on parcels, the integral over a periodic domain (or an

enclosed domain with no-normal-flow boundary conditions) of any function of ξ is
conserved. Thus, there are an infinite number of invariants. However, just as for TDV
flow, two quadratic invariants determine the cascade directions. From (2.1) these are

EG ≡ − 1
2
ψξ, ZG ≡ 1

2
ξ2, (3.1)

where the overline indicates a horizontal average. We will refer to EG as the gen-
eralized energy, and to ZG as the generalized enstrophy. The invariants have units
EG ∼ [L4−αT−2] and ZG ∼ [L4−2αT−2]. (Note that for LQG, T is the rescaled time
from (2.7).) The spectra of the two quadratic invariants are connected by a simple
relationship involving scale only. To see this, we define the isotropic spectra A(k) of
the positive definite quantity A such that

A =

∫ ∞
0

A(k) dk, (3.2)

where k is the isotropic wavenumber, and A(k) is either EG(k) or ZG(k) (thus the
dimensions of EG(k) ∼ [L][EG] andZG(k) ∼ [L][ZG]). The coupling relationship (2.3),
together with Parseval’s theorem, implies that

ZG(k) = kαEG(k). (3.3)

Well-known arguments (Batchelor 1953) lead one to expect that, in TDV flow,
energy will cascade to larger scale and enstrophy will cascade to smaller scale. These
arguments are based on the presumption that the distribution of the spectra of each
invariant spreads in wavenumber space. In Appendix A we extend such arguments
to the case with arbitrary α and show that, for α > 0, generalized energy cascades to
larger scale and generalized enstrophy cascades to smaller scales. For α < 0, however,
it turns out that generalized energy cascades to small scales, and generalized enstrophy
cascades to large scale.

If there is a spectrally localized source of variance of EG and ZG, then in all the
above cases we expect there will be a transfer of generalized energy and generalized
enstrophy in opposite directions, away from the source region, just as in TDV
dynamics. If frictional effects only act at some spectral distance from the source then
we might expect inertial ranges to form between source and sink. If this is the case
one can derive the spectral slopes of these putative inertial ranges.
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Between source and sink the spectral flux εE or εZ associated with the generalized
energy or enstrophy will be constant, producing an inertial range. We assume that
over their respective inertial ranges, the local spectral density EG(k) and ZG(k) are
functions only of the local spectral flux of EG or ZG and of the scale itself – the
locality hypothesis of Kolmogorov (1941). Thus

εA =
kA(k)

TA(k)
= constant, (3.4)

where A is EG or ZG and TA(k) is a local timescale. From dimensional considerations

TE(k) = [k5−αEG(k)]−1/2, (3.5a)

TZ (k) = [k5−2αZG(k)]−1/2. (3.5b)

Using the expression for the flux (3.4) we obtain

EG(k) = CEε2/3E k(α−7)/3, (3.6a)

ZG(k) = CZε2/3Z k(2α−7)/3, (3.6b)

where CE and CZ are the Kolmogorov constants for the respective cascades of EG
and ZG. Because the dynamics for each type of turbulence are different, CE and CZ
can depend on α. Note also that one can find the spectrum ZG(k) in the EG-range or
EG(k) in the ZG-range via (3.3).

As a useful shorthand, we combine these results by writing the spectrum of a
generalized invariant as

A(k) = Cε2/3k−γ, (3.7)

where the exponent γ is

γ =

{
(7− α)/3, A = EG

(7− 2α)/3, A = ZG.
(3.8)

Note that as defined, γ > 1 for all cases considered in this paper. For future reference,
using (3.4) and (3.7), the generalized eddy timescale is then

TA(k) = [k3γ−2A(k)]−1/2 = C−1/2ε−1/3k1−γ. (3.9)

Schema of the expected cascade directions and spectral slopes for each of the three
cases considered in this paper can be found in figure 1. Also noted are the dimensional
estimates of the linear drag-induced stopping scale (discussed in § 5), and the spectra
of the velocity variance E for each case. The latter is necessary since r.m.s. velocities
will be needed to predict diffusivities in § 4. In order to calculate the spectral slope
of the velocity variance one must multiply A(k), the upscale cascading invariant,
by the power of k necessary to give a spectrum with dimensions [L3T−2], a power
which varies from case to case since A(k) has dimensions which depend on α. One
must be careful in the LQG case, since in this case time has been re-dimensioned via
(2.7). Particulars of the velocity estimates will be addressed for each case separately
as necessary in the context of the numerical calculations discussed in § 7.
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Figure 1. Schematic diagram of the cascades in (a) two-dimensional vorticity dynamics, (b) surface
quasi-geostrophic dynamics, and (c) large-scale quasi-geostrophic dynamics. Each panel indicates
the cascade directions, the spectrum of each cascading invariant in its own inertial range (EG or
ZG), the spectrum of the velocity variance (E), and the dimensional estimate of the scale at which
the inverse cascade is halted by linear drag, kr . The upward arrows represent the injection of the
invariants while the downward arrows represent their dissipation.

4. Passive tracer dynamics
Suppose now that the streamfunction ψ determined by the advection equation (2.1)

and the coupling (2.3) also advects a passive tracer φ, for which the equation is

∂φ

∂t
+ J(ψ, φ) = Dφ, (4.1)

where Dφ represents dissipation, presumed to occur at small scales. (In the LQG case,
the streamfunction advecting the tracer is the QG streamfunction ψ, which determines
the velocities, rather than the redefined streamfunction of (2.8).) The tracer variance

P ≡ 1
2
φ2 (4.2)

is a conserved quantity of the tracer field in the absence of dissipation. In the inertial
range of A – some conserved quantity of the flow field – the spectral flux χ of tracer
variance is

χ =
kP(k)

TE(k)
= constant, (4.3)

where P(k) is the spectrum of the tracer variance and TE(k) is the timescale associated
with the kinetic energy in the inertial range of A. In general there is only one spectrally
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local timescale available, namely (3.9). In this case the tracer variance spectrum is

P(k) =Kχε−1/3k−γ, (4.4)

where K is the Kolmogorov constant for the tracer. In general, then, the tracer
variance follows the same power law as the spectrum of the advecting flow invariant,
in that invariant’s inertial range. For example, in the case α = 2 (TDV), tracer variance
has the slope −5/3 in the energy inertial range, and slope −1 in the enstrophy inertial
range.

When LQG describes the dynamics, however, these predictions should only hold
if the tracer is advected by the redefined streamfunction. This is not the relevant
physical situation. The variance of the tracer as given by (4.1) requires that we specify
the timescale TE(k) in terms of physical scales, which re-introduces the deformation
scale into the calculation. The up-scale cascading invariant is then associated with
the available potential energy (APE) and the direct cascading invariant is the kinetic
energy (KE). The latter has a spectral slope of k−5/3 in the inertial range of the APE,
yielding an expected tracer variance spectral slope of k−5/3 as well.

Suppose now that tracer variance is generated by the presence of a fixed large-scale
meridional gradient and absorbed by small-scale dissipation. Specifically, we consider

∂φ

∂t
+ J(ψ, φ) + θν = Dφ, (4.5)

where ν = ∂ψ/∂x is the meridional velocity of the advecting flow and θ ≡ ∂φ̄/∂y is
the mean tracer gradient. Since (4.5) is linear in φ, we can rescale the equation such
that θ = 1. Multiplying (4.5) by −φ and averaging over space yields

dP

dt
= φν − φDφ, (4.6)

where P is the tracer variance of (4.2). The meridional flux of tracer is the explicit
source of variance in the tracer field, and can be written

φν = −D, (4.7)

where D is the diffusivity, which has dimensions [L2T−1] = [VL]. If the advecting
meridional velocity field is sharply peaked at some scale k0 and has a r.m.s. value
Vrms, then a standard downgradient mixing hypothesis (e.g. Tennekes & Lumley 1994,
chap. 8) yields an expected diffusivity

D ' Vrmsk−1
0 . (4.8)

One can make a crude estimate of the tracer flux spectrum by decomposing the
left-hand side of (4.7) and estimating the two fields separately, yielding

D(k) ∼ E1/2(k)P1/2(k), (4.9)

We shall derive specific diffusivity estimates for each of our cases and test their
accuracy numerically. In order to do so, however, we must first derive estimates for
k0 and Vrms.

5. Cascade reduction by linear drag
An inverse cascade will be diminished or halted when the up-scale-cascading

invariant either reaches the domain scale, or the scale at which some competing
process such as friction dominates nonlinear advection. If some mechanism halts the
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cascade of whichever invariant is cascading up-scale at wavenumber k0, and if the
eddies are forced at wavenumber kf , then we must presume that

kf > k0. (5.1)

If the spread between these scales is large, an inertial range may exist between them.
As the eddies cascading through the system become larger, they also become

slower. In particular, we presume an eddy timescale given by (3.9). If the mechanism
competing against nonlinear advection has a timescale (Thalt) that is independent of
scale, or increases less rapidly than Teddy with increasing scale, then at some point in
the cascade, Teddy ∼ Thalt. This expression can presumably be used to find the scale
k0 at which the cascade is halted, analogous to the derivation of the Kolmogorov
micro-scale at which molecular viscosity overcomes the direct cascade.

Consider the case of a linear vorticity drag with the equation of motion

∂ξ

∂t
+ J(ψ, ξ) = F − rξ, (5.2)

where F is the forcing. Physically, the term rξ represents a drag due to Ekman
friction in TDV, or thermal damping in SQG or LQG. Note that r ∼ [T−1]: the drag
coefficient has dimensions of an inverse time for all couplings α. For TDV with linear
drag, Arbic (2000, p. 122) proves that (5.1) must hold for all values of drag coefficient.

If the time-averaged generalized energy (enstrophy) injection rate g is known and
α > 0 (α < 0), the equilibrated generalized energy (enstrophy) level can be calculated
exactly. To see this, multiply (5.2) by −ψ(−ξ) and integrate over space to form the
generalized energy (enstrophy) budget equation

A = g − 2rA, (5.3)

where g is the generation rate

g =

{ −ψF, α > 0

−ξF, α < 0.
(5.4)

In steady state

A = Ar =
g

2r
, (5.5)

thus we know in advance the total generalized energy (enstrophy) of the statistically
steady flow for α > 0 (α < 0). We have neglected the effects of small-scale dissipation in
the above calculation, but in the time-average, small-scale dissipation simply decreases
the net generation rate by a calculable amount. This will be discussed further in the
context of the numerical simulations.

5.1. Dimensional estimates of halting scale

Using (3.9), setting TA = r−1 and assuming g = ε gives an estimate for the halting
scale:

kr ∼ (r3g−1
)1/[3(γ−1)]

. (5.6)

For our three special cases this yields

TDV: kr ∼ (r3g−1
)1/2

, (5.7a)

SQG: kr ∼ (r3g−1
)1/3

, (5.7b)

LQG: kr ∼ (r3g−1
)1/8

, (5.7c)

where g is the injection rate of the appropriate up-scale-cascading invariant.
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The expression (5.6) is demanded by dimensional consistency, and so gives no
indication of the value of any numerical prefactor. One simple way to derive such a
prefactor is to note that the integral of the energy spectrum (3.7) must be consistent
with the total energy as given by (5.5). That is,∫ ∞

kr

Cε2/3k−γ dk =
g

2r
, (5.8)

where we have assumed that the energy content in the larger scales (k < kr) is
negligible. For γ > 1 this gives

kr ≈
(

2C
γ − 1

)1/(γ−1)(
r3g−1

)1/[3(γ−1)]
, (5.9)

which is identical to (5.6), except for the numerical coefficient involving the
Kolmogorov constant. For TDV, this gives

kr ≈ (3C)3/2
(
r3g−1

)1/2
. (5.10)

Danilov & Gurarie (2001) independently proposed an identical scaling. This coefficient
is accurate only to the extent that the energy falls off very rapidly for wavenumbers
smaller than kr .

5.2. Spectral shapes

By making one additional assumption, we can derive an expression for the spectral
shape that is putatively valid in the inertial range and in the range where friction
begins to dominate. The peak of this theoretical spectrum, derived in a manner similar
to that of Leith (1967) and Lilly (1972), yields a better estimate for the stopping-scale
prefactor than (5.9). However, we only expect the theory to be relevant in parameter
regimes such that the underlying inertial range is present and free of intermittency,
and make no claim that the derived spectral shape is universal.

The spectral budget equation for generalized energy (enstrophy) in mode k for
α > 0 (α < 0) is

∂Ak

∂t
= εk − 2rAk + gδ(k − kf), (5.11)

where Ak = |ψk|2/2 (or Re[ξ∗kψk]/2), εk is the transfer rate at k arising from the real
part of the product of −ψ∗k and the spectral Jacobian term, and g is the generalized
energy (enstrophy) injection, localized at isotropic wavenumber kf . We assume a
steady state, so that the time derivative vanishes, and isotropy so that k can be
replaced by k. If the source term is at some high wavenumber kf � kr then we may
expect an inverse cascade initially unfettered by friction. At smaller wavenumbers,
the drag will remove energy from the flow, and, without further approximation, the
spectral transfer is governed by the budget equation

dε

dk
= 2rA(k). (5.12)

That is, the energy flux is reduced by the frictional loss.
We now assume that the spectrum (3.7) can be substituted forA(k), but let ε = ε(k)

therein. This is a perturbative solution for small drag-induced deviations from the
inertial-range flux. Thus we expect the approximation to be valid in the spectral
regions where drag is small and up to the scales where it begins to dominate, but not
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at the frictionally dominated, largest scales. In this approximation (5.12) becomes

dε

dk
= 2rCε2/3k−γ, (5.13)

which readily yields

ε(k) =

[
2C

3(1− γ)rk
1−γ + c

]3

, (5.14)

where c is the integration constant. The transfer rate must be equal to the generation
rate at the forcing scale, i.e.

ε(kf) = g, (5.15)

which we use to solve for the integration constant in (5.14). Using the solution for c,
the flux is

ε(k) = g
[
1− (kc/k)

γ−1 + (kc/kf)
γ−1
]3
, (5.16)

where

kc =

[
2C

3(γ − 1)

]1/(γ−1)

(r3g−1)1/[3(γ−1)]. (5.17)

Substituting this into (3.7) gives us an estimate for the spectrum of the invariant in
the presence of linear drag:

A(k) = Cg2/3k−γ[1− (kc/k)
(γ−1) + (kc/kf)

γ−1]2. (5.18)

For TDV, the expression (5.18) in the limit kf → ∞ was derived by Lilly (1972). The
reader may verify that the expression for A(k) satisfies∫ ∞

kc

A(k) dk =
g

2r
(5.19)

exactly.
For kf � kc, the third term in brackets is small and can be neglected (but we shall

retain it in our predictions for the simulated spectra). For wavenumbers k � kc, the
second term in square brackets in (5.18) is also negligible and the spectrum reduces
to (3.7). For sufficiently small wavenumbers, ε(k) given by (5.16) is not positive. The
critical wavenumber at which the spectral flux vanishes is k = kc (assuming kf →∞),
where kc is given by (5.17). It is unphysical for A(k) to vanish identically at some
finite k. The weakness of this derivation is just the use of the inertial-range spectrum
(3.7) in (5.12), an assumption we expect to be valid only if frictional effects are small
perturbations on the inertial flow, as mentioned above.

The predicted spectral shapes for the three cases we consider here are (assuming
kf →∞)

TDV: E(k) = Cg2/3k−5/3[1− (kc/k)
2/3]2, kc = C3/2(r3g−1)1/2, (5.20a)

SQG: E(k) = Cg2/3k−2[1− (kc/k)]
2, kc = (2C/3)(r3g−1)1/3, (5.20b)

LQG: Z(k) = Cg2/3k−11/3[1− (kc/k)
8/3]2, kc = (C/4)3/8(r3g−1)1/8, (5.20c)

where in each case the spectrum is valid for all k > kc, and C and g are the
Kolmogorov constant and injection rate, respectively, for the particular dynamics at
hand.

A quantitative estimate of the drag-induced halting scale can be made by calculating
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the location of the peak wavenumber k0 = kr by setting

dA(k)

dk

∣∣∣∣
k=kr

= 0. (5.21)

This yields

kr = Γ (r3g−1)1/[3(γ−1)], Γ =

[
2C(3γ − 2)

3γ(γ − 1)

]1/(γ−1)

. (5.22)

For our three cases, the drag-induced stopping scales expected are

TDV: kr = (9C/5)3/2(r3g−1)1/2, (5.23a)

SQG: kr = (4C/3)(r3g−1)1/3, (5.23b)

LQG: kr = (27C/44)3/8(r3g−1)1/8. (5.23c)

As in (5.10), the prefactor Γ in each case is not necessarily an order-unity quantity.
In the case of energy in TDV turbulence, for example, using the estimate C = 5.8
(Maltrud & Vallis 1991) yields Γ = (9C/5)3/2 = 33.7. Using (5.10) gives 72.6, the
larger number being consistent with the assumption that energy is strictly zero for
wavenumbers smaller than kr . Our numerical results (discussed in § 7) are consistent
with these estimates; that is, the strictly dimensional estimate kr = (r3/g)1/2 is more
than an order of magnitude smaller than the actual wavenumber at which the
cascade is halted. The large value of Γ indicates that, in the presence of drag, TDV
turbulence is more inefficient at moving energy to larger scales than one might expect
from dimensional estimates alone.

6. Mean vorticity gradients: the β-effect
In two-dimensional vorticity dynamics, a meridional gradient of planetary vorticity

may be represented by the β-effect. In SQG, a meridional gradient of temperature gives
rise to a similar term in the equation of motion. Including such effects in (5.2), we write

∂ξ

∂t
+ J(ψ, ξ) + β

∂ψ

∂x
= F − rξ, (6.1)

where we use the symbol β for the constant mean gradient of ξ with units
β ∼ [L1−αT−1]. Because β introduces anisotropy into the dynamics (Rhines 1975;
Vallis & Maltrud 1993), the halting scale, if present, will be anisotropic as well. How-
ever, the dual presence of β and r introduces complexities to the dynamics which,
even for TDV, have only recently come to be appreciated (Chekhlov et al. 1996; Man-
froi & Young 1999; Smith & Waleffe 1999; Huang, Galperin & Sukoriansky 2001;
Galperin, Sukoriansky & Huang 2001; Danilov & Gryanik 2001). The mean vorticity
gradient admits a possible tri-partite balance in the equation of motion between
nonlinear advection, advection of the mean gradient (and thereby possible wave
propagation) and dissipation.

We direct the discussion here to the two cases with α > 0: TDV and SQG. The β-
term as defined in (6.1) physically represents the Coriolis gradient in TDV, and a mean
temperature gradient in SQG, but has no obvious physical interpretation for LQG†.
† Keeping the same definition of β as in TDV, we obtain a term of the form β∂ξ/∂x added

to the left-hand side of (2.9). The dispersion relation is the same as that for equivalent barotropic
Rossby waves at large scales, namely ωR,LQG = −kxβ/λ2. The frequency goes linearly to zero rather
than diverging at large scale, hence it is not clear that β can halt the cascade in this case.
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6.1. Waves, turbulence and drag

The first significant scale for these flows is determined by the balance between
nonlinear advection and advection of the mean gradient. Ignoring drag for the
moment, Rossby waves in the generalized two-dimensional formalism will have the
dispersion relation

ωR = −kxβ
kα
. (6.2)

Following Vallis & Maltrud (1993) we set this equal to the eddy strain rate (the
inverse of 3.9) to find the boundary between β-dominated and isotropic flow,

k(θ) = kβ(cos θ)1/(α+γ−2) (6.3)

where

kβ = (C−1/2βε−1/3)1/(α+γ−2). (6.4)

Note that in the case of energy in TDV dynamics (α = 2 and γ = 5/3), expression
(6.4) becomes

kβ '
(

β3

C3/2ε

)1/5

, (6.5)

a form similar to that of Vallis & Maltrud (1993), apart from the non-dimensional
factors in the denominator (which we keep for later use).

The relation (6.3) specifies a parametric relationship between the modulus of
wavenumber k and the wave direction θ = arctan(ky/kx) having the shape of a
dumbbell in the (kx, ky)-plane and having a maximum at θ = 0 (along the kx-axis).
Thus for β such that kβ � kf , we expect an isotropic inverse cascade up to kβ , and
anisotropic flow at wavenumbers below kβ , rather than a simple halting of the inverse
cascade at kβ . Because weakly nonlinear wave interaction typical of anisotropic flows
is not as efficient as isotropic turbulence at cascading the invariant, we expect this
boundary to be significant also in the spectral distribution of energy. Along the ky
axis, (6.3) gives k(θ = π/2) = 0. There is evidence (Vallis 1993; Chekhlov et al. 1996;
Smith & Waleffe 1999; Huang et al. 2001) that energy (in TDV flow on the torus or
sphere) will continue to cascade to larger scale past kβ , but with most of the energy
concentrated along the ky-axis.

When drag is present, and the drag coefficient r is sufficiently large, a balance
can be reached between dissipation and nonlinear advection at scales smaller than
those at which β becomes important, and the cascade is then halted isotropically. A
critical value exists for r, separating the isotropic steady-state flow from one in which
anisotropy is allowed to develop. This critical value of r is found by setting kr = kβ ,
using (5.22) and (6.4), yielding

rc = Γ 1−γg(1−α)/[3(2−γ−α)](C−1/2β)(1−γ)/(2−γ−α). (6.6)

In the TDV case with α = 2 and γ = 5/3 this expression gives

rc,α=2 =
5

9C (β2g)1/5. (6.7)

In the rest of this discussion, we will assume that r < rc, so that an anisotropic,
large-scale spectrum should ensue. It then remains to determine the largest scale to
which this anisotropic spectrum extends, and expecting this scale to depend on both
β and r, we denote it kβ,r .
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6.2. Estimates of the halting scale with β and drag present

For clarity of presentation we focus on TDV, and then discuss how it may be adapted
to generalized two-dimensional turbulence. In the small-drag limit (r � rc) we seek
an estimate for the halting scale kβ,r , that is for the scale at which the maximum
energy is found. Because in anisotropic turbulence most of the energy goes into zonal
jets it is not surprising that this estimate will be particularly apt as an estimate
for the separation scale of the jets themselves. Our argument has two components:
(i) the forcing and dissipation set the r.m.s. velocity; (ii) using this in conjunction
with the β-effect provides an estimate of the halting scale. We shall see that despite the
jet scale being the most energetic scale, it is the inviscid scale (6.4) that characterizes
the meridional transport of passive tracer.

If one assumes that, at scales where β is important but where drag is not yet
significant (kβ,r < k < kβ), the spectral slope is a function only of β and wavenumber,
then dimensional analysis leads to the expression

Eβ(k) = Cββ2k−5, (6.8)

as pointed out by Rhines (1975). Obviously, though, the spectrum cannot be isotropic,
since it is derived specifically in the region where anisotropy is present. Our simula-
tions, as well as those of Galperin et al. (2001) and others cited above, demonstrate
that at scales kβ,r < k < kβ , energy is concentrated along the kx = 0 axis, but does
roughly follow a k−5 power law. Chekhlov et al. (1996) point out that energy continues
to follow a k−5/3 power law for all wavenumbers kβ,r < k < kβ with kx 6= 0, but that
implies that modes with kx 6= 0 contribute negligibly to the total spectrum at large
scale.

Chekhlov et al. (1996) and Smith & Waleffe (1999) discuss the subtleties of the
transfer from the two-dimensional isotropic cascade to the one-dimensional ‘cascade’
along the zonal axis. If the energy is concentrated on the kx = 0 axis, precisely where
the β-term in (6.1) vanishes, then the dependence on β of (6.8) is unexpected. A
dependence on β might arise if resonant nonlinear triad interactions among Rossby
waves were responsible for the transfer to zonal flow, but these are unable to transfer
energy from isotropic two-dimensional motions to modes with kx = 0. Newell (1969)
suggests that quartic resonances or near resonances could explain these transfers, thus
maintaining a β-dependence in the spectrum. Danilov & Gryanik (2001) point out
that in fact the zonal energy is not distributed as a uniform spectrum, but rather as a
series of peaks whose amplitudes increase roughly like k−5, and provide a preliminary
explanation for the observed wavenumber dependence. Given all of the above, we
will take the appearance of such a −5 spectrum (or wavenumber dependence of
the spectral peaks) as an empirical observation with a rather weak theoretical or
phenomenological justification.

Thus, we will suppose an isotropic k−5/3 spectra at scales kβ < k < kf , an anisotropic
k−5 spectral distribution, with most energy concentrated along the zonal axis, at scales
kβ,r < k < kβ , and negligible energy at k < kβ,r . That is,

E(k) '

Cε2/3k−5/3, kβ < k < kf

Cββ2k−5, kβ,r < k < kβ, kx = 0

0, k < kβ,r.

(6.9)

We use this phenomenological picture to determine kβ,r . Note that even in the
presence of β, (5.3) remains valid, so that the total energy is E = g/2r. This constraint
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determines the lowest wavenumber which the inverse cascade may reach, just as in
(5.9). Specifically, using (6.9) we set∫ ∞

kβ,r

E(k) dk ' g

2r
. (6.10)

Because the spectra are so steep in the Rossby wave regime, the integral is dominated
by contributions from its peak at the low-wavenumber end, giving

kβ,r '
(Cββ2r

2g

)1/4

. (6.11)

A simpler derivation results if we begin with the familiar expression for the stopping
scale (Rhines 1975)

kβ,r = (βU−1
rms)

1/2. (6.12)

But from (5.5) Urms = (g/r)1/2 (where we have also assumed that Urms � Vrms), and
substituting this into (6.12) we obtain (6.11), albeit without the numerical constant.
Note that (6.12) is an estimate for a marginally barotropically unstable jet.

Manfroi & Young (1999) predict a jet-separation scale proportional to r−1/3, or
equivalently, kβ,r ∝ r1/3. Distinguishing between r−1/3 and r−1/4 (the latter from our
(6.11)) is difficult numerically due both to the small difference in exponent and to the
slow equilibration of the flow in this parameter regime.

We can formally derive an anisotropic wave spectrum in the general case assuming
a balance between the wave frequency (6.2) and the inverse of the eddy timescale of
(3.9). The wave spectrum in this case is

Aβ(k) = Cββ2k4−2α−3γ, (6.13)

which reduces to (6.8) in the inverse cascade of TDV. In SQG we find a k−4 spectrum
in the Rossby wave regime, also significantly steeper than the isotropic spectrum of
k−2 relevant in that case.

The result analogous to (6.11) for the general case is

kβ,r '
[

2Cββ2r

(2α+ 3γ − 5)g

]1/(2α+3γ−5)

. (6.14)

The simple argument using the analogue of (6.12) is not always possible in the
generalized case, because the integral constraint corresponding to (5.3) does not
always give a value for the r.m.s. velocity. For example, in SQG, the generalized
energy E = ψξ/2 is not a velocity squared. Rather, it is the generalized enstrophy
that has units of velocity squared, but its value is not constrained solely by the forcing
and the drag.

Which of the scales (6.5) and (6.11) (or (6.4) and (6.14) in the general case) is relevant
for the meridional transport of a passive tracer? The scale (6.11) determines a jet
scale, with vanishing meridional velocity. Bartello & Holloway (1991) demonstrate
that at the jet scale, zonal advection so dominates meridional advection that little
meridional mixing occurs. We thus expect the scale (6.5), the largest scale of isotropic
turbulence, to act as a mixing length, and explore this further in § 7. Held & Larichev
(1996) utilized the scaling (6.5), without the numerical prefactor, as a mixing length
in their theory for turbulent quasi-geostrophic heat fluxes.
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7. Numerical examinations of diffusivity scalings
We now describe sets of numerical simulations designed to test the diffusivity

predictions for TDV, SQG and LQG with linear drag. We also test TDV with linear
drag and β. Mixing lengths for each case have been derived in the previous two
sections, but velocity scales have not – both are required for estimates of diffusivity
given by (4.8). It is difficult to generalize the calculation of velocity variance among
the various cases, so we consider this detail, and the predictions for the diffusivities
themselves, in the context of each case separately.

All simulations were performed using a two-dimensional de-aliased spectral model
with 5122 equivalent horizontal gridpoints (kmax/kmin = 255). A leap-frog timestep is
used to advance the solution, and a weak Robert filter suppresses the computational
mode. In each case, a passive tracer is advected with the calculated flow. The flow is
forced with an isotropic forcing at high wavenumber, typically about kf/kmin = 160.
The magnitude of the generation rate is fixed at g = 1, less an amount due to
small-scale dissipation (see Appendix B for details of the forcing function).

Small-scale variance in both the generalized vorticity field (i.e. enstrophy) and in
the tracer field are dissipated with a highly scale-selective exponential cutoff filter
((B 9) and (B 10)) with vanishing dissipation below a cutoff wavenumber kcut. For all
simulations presented here, kcut/kmin = 165 for the advecting flow and kcut/kmin = 1
for the tracer. The exponent s in (B 9) is s = 8 for the advecting flow and s = 2 for
the tracer. For the advecting flow, kcut is just larger than the forcing scale and is the
scale at which we begin to allow small-scale dissipation – traditional hyperviscosity, by
contrast, dissipates at all scales. The dissipation level does not become significant until
near the maximum wavenumber in the computational domain. Thus, while we focus
here on maintaining as wide an inverse cascade range as possible, we have allowed
a reasonable direct cascade for wavenumbers k > kf . The small-scale dissipation,
despite its presence only at k > kf , removes some of the up-scale-cascading invariant.
We calculate this loss and use it to define a geff < g = 1 (geff ' 0.5 for all the
simulations – see Appendix B).

In each of the following sections, we state values as non-dimensionalized using a
length given by the inverse forcing scale L = k−1

f and a time given by a combination
of the generation rate g and forcing scale. The former has units

g ∼ [L3(γ−1)T−3],

so that a non-dimensional measure of the time is

T = [gk3(γ−1)
f ]−1/3. (7.1)

All values with a ∗ superscript have been non-dimensionalized by these scales.
For each dynamical case considered, a series of simulations was performed.

Each simulation described is run for several eddy turnover times after a statistically
steady state is achieved; averages are taken over the equilibrated phase of a given
run. Each simulation was performed with a different drag coefficient, the values of
which were chosen such that the halting scales were large compared to the forcing
scale, but not too close to the domain scale.

7.1. Two-dimensional vorticity flow with linear drag

We begin with the straightforward case of two-dimensional vorticity dynamics dis-
sipated by linear drag, namely equations (5.2) and (2.3) with α = 2. In this case E
cascades up-scale with spectral slope γ = 5/3. Five simulations were performed in
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which the drag was set to

r∗ = r(gk2
f)
−1/3 = (0.86, 1.5, 2.4, 3.7, 6.0)× 10−2.

We predict a spectral shape given by (5.20a) and a spectral peak given by (5.23a).
Since the total energy, according to (5.5), is E = g/2r = (U2

rms + V 2
rms)/2 ' V 2

rms

(assuming isotropy), the integrated (r.m.s.) meridional velocity Vrms is

Vrms =
( g

2r

)1/2

. (7.2)

Using (4.8), (5.23a) and (7.2), we estimate the eddy diffusivity, or integrated tracer
flux, to be

D '
[(

5

9C
)3

1

2

]1/2

gr−2. (7.3)

We use C = 6 in numerical estimates.
Figure 2 shows the spectra of the energy, tracer variance and tracer flux, as well as

the stopping scales, r.m.s. velocities and diffusivities for each simulation, along with
their respective predictions. The halting scale k0 is predicted by (5.23a) with some
accuracy. (A similar result is inferred from the soap-film experiments of Rivera &
Wu 2000.) However, the amplitude of the predicted spectrum (5.20a) falls off much
more rapidly than the experimental spectrum at small wavenumbers; the predicted
spectrum evidently fails when drag is dominant. Consistently, the largest overall
discrepancy between theory and simulation occurs for the simulation with the highest
drag, in which case the magnitude of the predicted spectrum falls well below that
obtained numerically. Neither fact is surprising, since the theoretical spectrum is
derived under the assumption of significant separation between the drag and forcing
scales, and is formally valid only where deviations from constant ε are small, which is
not true at small wavenumbers. Both the tracer variance and flux spectra have slopes
close to −5/3, as predicted by (4.4) and (4.9), respectively.

The physical-space streamfunction and tracer fields for the run with the lowest
drag are shown in figure 3(a). Streamfunction, rather than vorticity, is plotted since
the latter is dominated by noise from the random forcing field. The large-scale flow
represented in the streamfunction is nearly structureless, but with undulations whose
scale represents that of the spectral peak. The absence of coherent vortices in the
flow is consistent with the good fit of the theory for the spectrum in figure 2(a).
The tracer field, plotted with its mean gradient, is composed of meridionally oriented
plumes, with a characteristic scale similar to that of the streamfunction. The presence
of fronts and ‘sheets’ in the passive tracer field has been investigated by Constantin,
Majda & Tabak (1994).

7.2. Surface quasi-geostrophic flow

We now present simulations of SQG flow with linear drag, i.e. equations (5.2) and
(2.3) with α = 1. Since α > 0, the up-scale-cascading invariant has a spectral slope
γ = 2. Five simulations were performed, differing only in the magnitude of drag,
whose value was set to

r∗ = r(gk3
f)
−1/3 = (0.18, 0.35, 0.72, 1.4, 2.9)× 10−2,

respectively.
The spectral shape and peak are predicted by (5.20b) and (5.23b), respectively.

Estimating the velocity in this case is less straightforward. As defined in § 3, for α = 1,
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Figure 2. Equilibrated statistics for five simulations of TDV dynamics which differ only in the
value of the drag coefficient. Values of drag used are r∗ = (0.86, 1.5, 2.4, 3.7, 6.0) × 10−2 and the
effective generation rates are geff = 0.57, 0.59, 0.61, 0.64, 0.69. All statistics are non-dimensionalized
by the timescale (7.1) and the length scale k−1

f . Panels show (a) energy spectra as a function of total
wavenumber (solid) and theoretical predictions (dashed) for each simulation; (b) tracer variance
spectra as a function of total wavenumber for each simulation; (c) peaks of energy spectra (stars)
and theoretical prediction (solid) vs. drag; (d ) r.m.s. meridional eddy velocity (stars) and theoretical
prediction (solid) vs. drag; (e) tracer flux spectra (the spectra of −ν ′φ′) as a function of total
wavenumber for each simulation; ( f ) integrated tracer flux −ν ′φ′ (stars) and theoretical prediction
for the diffusivity (solid) vs. drag. Theoretical predictions are discussed in § 7.1. In this case, the
halting scale k0 is compared to the drag scale kr .
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TDV

(a)

Streamfunction w

SQG

(b)

LQG

(c)

Tracer φ

Figure 3. Snapshots of streamfunction (left) and tracer (right) fields for TDV (a), SQG (b) and
LQG (c) simulations. Each field is taken from the equilibrated phase of the simulation with the
lowest drag in each ensemble. For TDV, r∗ = 8.6 × 10−3; for SQG, r∗ = 1.8 × 10−3; for LQG,
r∗ = 3.5× 10−5.
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the invariants of the flow have units E ∼ [L3T−2] and Z ∼ [L2T−2], thus in this
case Z has the dimensions of energy (physically it is the temperature variance, or
available potential energy). In SQG then, the r.m.s. velocity of the flow is related
to the generalized enstrophy as Z = V 2

rms (assuming isotropy). Ignoring drag for the
moment, in the inverse cascade range Z has the spectrum

Z(k) = CEε2/3E k−1. (7.4)

The integral of this spectrum diverges logarithmically, and we must explicitly include
the forcing scale

Z '
∫ kf

kc

Z(k) dk, (7.5)

where kc is as given by (5.20b). We thus obtain our estimate of the r.m.s. meridional
velocity scale

Vrms = [CEg2/3 ln(kf/kc)]
1/2, (7.6)

where we have taken g = εE .

Using (4.8), (5.23b) and (7.6), we estimate the eddy diffusivity, or integrated tracer
flux, to be

D ' (g2/3r−1)

[
9

16CE ln(kf/kc)

]1/2

. (7.7)

The spectra of E(k), the tracer variance and tracer flux, as well as the stopping
scales, r.m.s. velocities and diffusivities, and their respective theoretical predictions, are
plotted in figure 4. The predictions for the spectral shapes in figure 4(a) are noticeably
less accurate than were the analogous curves for TDV in the previous subsection.
In particular, the spectra are more shallow than the expected −2 slope, even at
scales which fall well inside the inverse-cascade inertial range. One might attribute
this deviation from the expected slope to intermittency caused by the formation
and persistence of coherent vortices in the flow. Indeed, we see evidence for such
structures, but in this case one would expect the spectral slope to be steeper than its
inertia-range theory prediction, when in fact it is somewhat more shallow. We offer
no explanation for this behaviour at present.

We estimate the Kolmogorov constant such that the closest possible fit was achieved
for all five cases, resulting in the value C = 7.9. Despite the poor fits, the simulated
stopping scales are fairly well predicted by the peaks of the theoretical spectral shapes.
Both tracer variance and flux have the expected slopes −2. Furthermore, despite
the problematic dependence of the r.m.s. velocity on the forcing scale in (7.6), the
predictions made thereby are relatively accurate. The kinks in the theoretical curves
for the velocities and diffusivities are due to the fact that the effective generation rate
geff changed somewhat from one run to the next (see Appendix B). The diffusivity
scales as anticipated, but is overestimated in magnitude by about a factor of 2.

The physical-space streamfunction and tracer fields for the run with the lowest
drag are shown in figure 3(b). The structures of the flow and tracer are similar to
those for TDV, but with a higher degree of localization in the streamfunction field,
due to the presence of some small-scale coherent vortices in the flow. We nevertheless
see patterns in the tracer field similar to those found for TDV flow in the previous
subsection.
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Figure 4. As for figure 2 but for SQG with varied linear drag. Values of drag used are r∗ = (0.18,
0.35, 0.72, 1.4, 2.9) × 10−2 and the effective generation rates are geff = 0.35, 0.37, 0.42, 0.54, 0.60. The
theoretical predictions for the velocity and diffusivity are slightly curved due to the relatively large
variations in geff between simulations. Theoretical predictions are discussed in § 7.2.

7.3. Large-scale quasi-geostrophic flow

Here we consider the case (5.2) with α = −2, termed LQG. We actually integrate the
shallow-water quasi-geostrophic equation

∂q

∂t
+ J(ψ, q) = F − rq, q = (∇2 − λ2)ψ, (7.8)
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Figure 5. Spectra of generalized enstrophy |ψ|2 for LQG with linear drag r∗ = 2.3 × 10−4 (solid).
Also shown is theoretical prediction (dashed). Arrow indicates location of deformation wavenumber
(λ/kf = 0.44).

with λ/kmin = 70, or λ/kf = 0.44 so that at small wavenumbers the dynamics should
be described by (5.2) with α = −2. By integrating (7.8) one may see the transition from
QG to LQG near scales just larger than the deformation scale (a similar approach
was used by Kukharkin, Orszag & Yakhot 1995).

In the LQG regime (k � λ), the generalized energy and enstrophy are in fact the
kinetic energy (KE) and available potential energy (APE), respectively. One can see
this by using the variable change (2.8) in the general expressions for the invariants
(3.1), which yields

EG = 1
2
Ψξ = 1

2

∑
k

k2|ψk|2 = KE, (7.9)

and

ZG = 1
2
ξ2 = 1

2

∑
k

|ψk|2 = APE/λ2. (7.10)

Since α < 0, the generalized enstrophy, or APE, cascades up-scale, while the gen-
eralized energy, or KE, cascades toward small scales. Because we have chosen the
deformation wavenumber λ < kf , we expect a transition from the TDV-like inverse
cascade at scales such that k � λ to the LQG inverse cascade at scales k � λ.
Furthermore, there will be no direct cascade range for LQG in this arrangement,
since the forcing scale is at smaller scale than the transition region.

In the LQG regime, from (3.8), α = −2 implies that for Z (the APE) the spectral
slope is γ = 11/3. But since ZLQG(k) = |ψ2

k|, the spectral slope of the kinetic energy
ELQG(k) = k2|ψ2

k| is −5/3, just as it is for k2|ψ2
k| in the TDV regime. Thus we expect

no change in slope of k2|ψ2
k| as we transit from TDV to LQG, but possibly a kink in

the spectrum due to a possible change in the Kolmogorov constant.
In figure 5 we have plotted the spectrum of Z(k) for the run with the smallest

drag, along with the theoretical prediction described below. Notice that at scales just
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larger than the deformation scale (indicated by the arrow), the spectrum slumps but
maintains a similar slope, rising slightly near the spectral peak. Because of the limited
extent of the inertial range, an accurate determination of the appropriate Kolmogorov
constant is not possible, and we use the value from TDV, C = 6.

We expect the spectrum of generalized enstrophy to follow (5.20c) and the peak of
this spectrum to be given by (5.23c). These expressions refer to the LQG formalism
as derived in § 3, in which g is the generation rate of the generalized enstrophy.
Dimensionally g ∼ [L8τ−3], where τ is the rescaled time coordinate (see equation
(2.7)). Thus in terms of unscaled time, g̃ = λ6g, hence

kc = (C/4)3/8(r3λ6g̃−1)1/8, (7.11)

and

kr = (27C/44)3/8(r3λ6g̃−1)1/8, (7.12)

where g̃ is the familiar energy generation rate (the rate we set to unity in the numerical
model). Since the spectral density has units Z ∼ [L9τ−2], we can also define a spectral
density in unscaled time, Z̃ = λ4Z. But g̃2/3 = λ4g2/3 as well, so that the factors of
λ in the unscaled spectra only appear inside the expression for kc and kr . Finally,
though, Z is a spectrum of |ψ|2/2, so the APE spectrum is expected to be

APE(k) = Cλ2g̃2/3k−11/3[1− (kc/k)
8/3]2, (7.13)

with kc given by (7.11).
From (7.9), the spectrum of kinetic energy is the spectrum of E(k) = k2Z(k), so the

total KE can be estimated

KE =

∫ ∞
kr

k2Z(k) dk. (7.14)

The r.m.s. eddy meridional velocity V 2
rms = KE (assuming isotropy) is thus predicted

to be

Vrms '
(

33C3

4

g̃3

rλ2

)1/8

. (7.15)

Following (4.8) the diffusivity of the tracer is then

D '
(

22

9

g̃

rλ2

)1/2

. (7.16)

Four simulations were performed, differing only in the value of the linear drag
coefficient. The non-dimensional values used were

r∗ = r(gk8
f)
−1/3 = rλ2(g̃k8

f)
−1/3 = (0.035, 0.23, 1.4, 8.9)× 10−3.

The spectra of APE, tracer variance and tracer flux, and the stopping scales, r.m.s.
velocities and diffusivities, along with their respective theoretical predictions, are
plotted in figure 6. At the largest scales, under which the assumptions used to
derive LQG are most accurate, our theory predicts the spectral shape quite well. The
tracer spectra are more complicated, but still roughly follow their expected slopes
of −5/3 (see discussion of LQG tracer in § 4). In the case with the smallest drag,
the tracer flux spectrum is actually negative in the transition region k . λ, but we
offer no explanation for this behaviour. The stopping scales and r.m.s. velocities
are also predicted somewhat successfully by our theory. Moreover, the divergence
of simulation from theory is very slight, even when the stopping scale is on order
the deformation scale. The theoretical prediction for the diffusivity scales like the
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Figure 6. Same as figure 2 but for LQG with varied linear drag. Values of the drag coefficient used
are r∗ = (0.035, 0.23, 1.4, 8.9)× 10−3 and the effective generation rates are geff = 0.57, 0.59, 0.62, 0.75.
Theoretical predictions are discussed in § 7.3. Missing values in (e) are negative but small. Dashed
line in ( f ) shows the prediction one would attain for TDV dynamics with the same flow parameters
(see § 7.1).

simulations, but exceeds the simulated diffusivities by about a factor of 2. Also shown
(the dashed line in figure 6f ) is the prediction for the diffusivity from TDV with linear
drag, which behaves nothing like the simulated diffusivities.

The physical-space streamfunction and tracer fields for the run with the lowest
drag are shown in figure 3(c). The streamfunction is quasi-crystalline in structure,
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and populated by deformation-scale vortices, as predicted by Kukharkin et al. (1995).
This effect would presumably not be present had we simulated the strictly defined
LQG equation rather than the shallow-water quasi-geostrophic equations. Despite
the predominance of small-scale ordered structures in the streamfunction, and the
intermittency one would presume to accompany their presence, the spectrum is well-
predicted by the inertial-range theory modified for linear drag. Moreover, and perhaps
more surprisingly, the tracer field is dominated by smooth plume-like structures whose
characteristic scale is the energy-containing scale associated with the APE, rather
than the deformation scale which strikes the eye in the physical-space image of the
streamfunction.

There is a wealth of phenomena in these simulations which require further research
to understand. The key point of the present investigation, however, has been to
determine the scale responsible for the mixing of a tracer.

7.4. Two-dimensional vorticity flow with linear drag and β

Lastly, we present the results of simulations of (6.1) with α = 2. We have no prediction
for the spectral shapes in this case, since we cannot derive a flux equation similar
to (5.12) when β is present, but we do predict the jet scale, mixing length and r.m.s.
velocity at the mixing scale (derived below). Note that now we have two independent
parameters to consider: β and r.

In order to see the effects of β, drag must be set such that r . rc, where rc is defined
by (6.7). In the simulations described here β is fixed such that the isotropic scale (6.5)
lies within the computational domain at some relatively large wavenumber, but below
the forcing wavenumber. The critical drag rc is then fixed by β and the generation rate
(which is fixed for all simulations described in this paper). Five values of drag are then
chosen such that the largest value is just at rc while the rest are smaller. In this way
we hope to see a transition from the purely drag-induced diffusivity computed in § 7.1
to the β-controlled diffusivity, which should be independent of drag. In particular, we
choose

β∗ ≡ β(gk5
f)
−1/3 = 0.73,

so that the inviscid β-scale (6.5) is (assuming a Kolmogorov constant C = 6 and an
effective generation of g = geff ' 0.5 – see Appendix A) kβ/kmin = 89, or

kβ/kf ' 0.56.

The non-dimensional critical drag, according to (6.7) (using the same values for g
and C as above), is

r∗c ' 9.0× 10−2.

The values of drag are then chosen to be

r∗ = (0.04, 0.43, 2.1, 4.3, 8.5)× 10−2

yielding predicted jet scales from (6.11) of

kβ,r/kf ' 0.18, 0.33, 0.48, 0.58, 0.69.

In figure 7 we try to give a sense of these flows before showing their statistics.
Figure 7(a) shows a contoured snapshot of the physical-space streamfunction for the
case with the lowest drag, and demonstrates that the flow is dominated by zonal jets,
as expected. The upper right panel contains the averaged two-dimensional energy
spectrum for the same run. The surface height is the logarithm of the spectrum and
only the smallest wavenumbers are shown. Energy is concentrated along the zonal
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Figure 7. Results from simulations of TDV flow with fixed β∗ = 0.73 and varied drag. Values
of drag used and effective generation rates are listed in caption of figure 8. (a) Physical-space
streamfunction contours for the case with lowest drag (solid lines are positive and dashed lines are
negative); (b) energy spectrum as a function of kx and ky for the simulation with the lowest drag
(surface height is logarithmically scaled energy, and spectrum is restricted to the 20 wavenumbers
in each direction closest to the origin); (c) zonal (kx = 0; dashed) and meridional (ky = 0; solid)
slices of energy spectra each simulation; (d ) inner-most contours at the edge of ‘dumb-bell’ region
of spectra for simulations with r∗ = 4.0× 10−4 and 4.3× 10−2.

(kx = 0) axis, and is excluded from a dumb-bell region about kx = ky = 0 (an
argument for this shape can be found in Vallis & Maltrud 1993). Energy clearly
propagates more efficiently on the zonal axis, where it is uninhibited by the β-effect.

Slices along the kx- and ky-axes of similar spectra for all five TDV runs with
β are shown in figure 7(c). In order to compare the slopes of these spectra to
our isotropic predictions, remember that integration over angle yields an integration
factor 2πk. Hence we see that the slopes of the kx slice-spectra are about k−8/3, which
corresponds to an isotropic spectrum with slope k−5/3, while the slopes of the ky
slice-spectra are about k−6, which corresponds to an isotropic spectrum with slope
k−5 (see equation (6.8)). Both of these slopes are as expected from arguments made
and previous work noted in § 6. Furthermore, we see that all of the ky spectra start
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to steepen at the same scale (the scale at which the −8/3 and −6 slopes cross),
approximately k/kf = 0.56 ' kβ/kf , as predicted. (Since β is held constant, this
scale should be the same for all simulations.) Interestingly, energy cascades along the
kx-axis past k ' kβ , typically peaking at about the same wavenumber, but with smaller
magnitude, than the corresponding ky spectra. This phenomenon was also observed
by, for example, Chekhlov et al. (1996) and Smith & Waleffe (1999), who point out
that despite the anisotropy present at large scale, an underlying isotropic cascade still
occurs.

A sense of how the two-dimensional spectrum changes as drag is increased can be
gleaned from figure 7(d ), which shows the inner-most contours of energy values just
shy of the maximum wavenumber along the kx-axis (so just inside the dumb-bell)
for the case with the weakest drag (r∗ = 4 × 10−4) and the case with the second to
largest drag (r∗ = 4× 10−2). Despite the energy along the ky-axis starting to steepen
at a fixed scale for all five simulations, the dumb-bell increases in size with increasing
drag coefficient.

Let us now consider the statistics of the flow. The peaks of the energy spectra along
the ky-axis correspond to the jet scales, which we expected to be described by (6.11).
If the isotropic β-scale kβ is the relevant mixing length, then despite the spectrum
of meridional velocity extending past kβ , we require the meridional velocity at the
mixing scale in order to calculate the diffusivity. We estimate the turbulent meridional
velocity near the mixing scale as

Vmix '
[∫ ∞

kβ

E(k) dk

]1/2

'
(

3

2

)1/2(C3g2

β

)1/5

. (7.17)

Then (6.5) and (7.17) imply a diffusivity

D '
(

3

2

)1/2(C9/2g3

β4

)1/5

, (7.18)

which is independent of r.
If, on the other hand, the jet scale kβ,r or (6.11) is the appropriate mixing length,

then we expect D ∼ r−1/4. Moreover, at values of drag r � rc, the diffusivity should
roll over to the slope predicted for TDV dynamics with linear drag and no β, namely
D ∼ r−2.

In figure 8 we plot the energy spectra, tracer variance and tracer flux as functions
of total wavenumber, and the jet scales (peaks along ky-axis), r.m.s. meridional eddy
velocities and integrated tracer fluxes, for the five simulations. The total energy spectra
show a break at a wavenumber slightly larger than kβ , where the spectra along the
ky-axis begin to steepen. The shape of these spectra can be best understood by
referring back to figure 7(c) – the contribution to the spectra in the region with slope
−5 is almost solely due to zonal energy. Strikingly, there is no significant tracer flux
at scales larger than kβ – the spectra of the diffusivity (or tracer flux) vary only slightly
as drag is varied, but are essentially peaked at kβ . This supports our hypothesis that
kβ is the relevant meridional mixing length.

We also plot some predictions for the jet scales, r.m.s. velocities and diffusivities.
The jet-scale is slightly over-predicted by kβ,r , but for the small-drag runs, the slope is
close to r1/4, as predicted by (6.11). At values of drag approaching rc, the slope of jet
scale steepens. The meridional eddy velocity is somewhat flat at smaller values of r,
but gently curves over the entire range. The fact that the spectrum along the ky = 0



40 K. S. Smith and others

103

102

101

100

10–2 10–1 100

k /kf

(a)

10–2 10–1 100

k /kf

(b)

–5/3

10–5

10–6

10–7

P
(k

)

E
G

(k
)/

(g
 k

f–5
/2

)2/
3

(c) (d)

100

10–1

10–2

10–210–3

r /(g k f
2)1/3

k 0
/k

f

V r
m

s/
g 

k
f)

1/
3

101

10–1

10–210–4

r /(g k f
2)1/3

(e) ( f )

10–210–4

r /(g k f
2)1/3

10–2 10–1 100

k /kf

102

101

D
/(

g 
k

f–
4 )

1/
3

101

100

D
(k

)/
(g

 k
f–7

)1/
3

10–3

10–3
100

104

10–110–4 10–1

10–1

10–2

105

–5

10–1

100

Figure 8. Same as figure 2 but TDV flow with varied drag and fixed β∗ = 0.73. Values of drag used
are r∗ = (0.040, 0.43, 2.1, 4.3, 8.5)× 10−2, and the critical drag of (6.7) is r∗c = 9.0× 10−2. The effective
generation rates are geff = 0.35, 0.37, 0.42, 0.54, 0.60. Theoretical predictions are discussed in § 7.4.
Missing values in (e) are negative but small. Dashed lines in (d ) and ( f ) represent predictions for
large-drag, β = 0 limit.

axis increases beyond kβ in figure 7 seems to be reflected in the fact that ν ′2 increases
even at the smallest drags examined.

Finally the diffusivity of the tracer, while being quite different in magnitude, shows
the expected trend: it is approximately constant for small r, then decreases for r ∼ rc.
A diffusivity proportional to r−1/4, which would increase by a factor of 4 over the
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range of r examined, is not seen, despite the fact that ν ′2 continues to increase slowly
with decreasing r. In fact, the diffusivity decreases slightly with decreasing r for
the smallest values examined. This implies that in the small-drag limit, the inviscid,
isotropic β-scale kβ of (6.5), independent of drag, is a reasonable approximation
to the mixing length for the diffusivity estimate. However, these estimates are
clearly not as accurate in this anisotropic problem, where more sophisticated closures
(e.g. resonant interaction theory) may help in obtaining quantitatively better fits.

8. Conclusion
This paper has been concerned with the inverse cascade in geostrophic turbulence,

and with the transport of a passive scalar by that turbulent fluid. We considered con-
ventional two-dimensional (vorticity) dynamics, surface quasi-geostrophic dynamics,
and large-scale quasi-geostrophic dynamics with a finite deformation radius.

We first showed that, for a general vorticity–streamfunction spectral field relation-
ship of the form ξk = −kαψ, we may indeed expect forward and inverse cascades of a
generalized enstrophy and energy. In this context enstrophy refers to the variance of
the advected field, and energy refers to the variance of the associated velocity. If α > 0
(α < 0) then generalized energy will cascade to larger (smaller) scale and generalized
enstrophy to smaller (larger) scale. (The precise form of this statement is given in
equations (A 9) and (A 10).) One notable aspect of this result is that, if α < 0 as for
example in large-scale geostrophic turbulence, the variance of the advected field is
transferred to larger scales, in contrast to the usual passive-scalar-like behaviour of a
cascade to smaller scales.

Given the cascade directions, we can apply classical phenomenology to obtain
predictions of the spectral slope in each inertial range, the halting scale of the
inverse cascade and, at a rather less-well-founded level, a prediction for a spectrum in
the inverse cascade that includes a frictional decay at small wavenumbers. The inverse
cascades will be modified and made anisotropic by the presence of a mean gradient
of the advected quantity – the natural generalization of the familiar β-effect in TDV.
However, because β cannot alter the overall energy level in barotropic flow, the inverse
cascade will only be halted by friction. (This situation should be contrasted with the
baroclinic case, in which eddy energies are a highly sensitive function of β because of
the feedback between the energy injection rate and the mixing length – see, e.g. Held
& Larichev 1996.) The anisotropy of the inverse cascade leads to two distinct length
scales: a wavenumber (e.g. (6.11)) characterizing the scale of zonal flow, and a smaller
scale (e.g. (6.5)) that characterizes the mixing length in the meridional direction.

From these predictions we construct estimates of the diffusion coefficient of a
passive tracer field stirred by the turbulent fluid and whose variance is maintained
by a fixed meridional gradient. The expected dependences for the cases in which only
linear drag is present are

TDV: D ∼ r−2,

SQG: D ∼ r−1 ln1/2(kf/kc), kc = (2C/3)(r3g−1)1/3,

LQG: D ∼ r−1/2,

and, in the small-drag limit when β is present,

TDV: D ∼ β−4/5,

SQG: D ∼ β−1 ln1/2(kf/kβ), kβ = βC−1/2g−1/3.
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The last of these follows from using (6.4) for SQG as the mixing length, but was not
derived nor tested here; the LQG case is special and we do not predict its diffusive
behaviour in the presence of β, notwithstanding its probable relevance to geophysical
flows. (See Kukharkin & Orszag 1996 for some treatment of this case.)

In each case in which linear drag halts the cascade, the diffusivity decreases with
increasing drag coefficient. This is perhaps not immediately obvious, since, from
the perspective of Brownian motion for example, damping can act to increase the
irreversibility of the flow for a given eddy energy. In turbulent inverse cascades,
however, decreasing drag allows for increasing eddy scales, thus increasing the eddy
mixing length, and thereby increasing the diffusivity. On the other hand, when β is
significant relative to the drag (i.e. when r < rc in (6.6) or (6.7)), a diffusivity which
is increasing or constant with drag is reasonable. In this less-turbulent, more-wave-
dominated parameter regime, zonal jets act as mixing barriers, and the underlying
flow is less irreversible. In this case, understanding and predicting the transport of
tracer probably requires a different type of mathematical machinery than employed
here.

We have tested many of these predictions numerically. Overall, the predictions
for the halting scale of the inverse cascade, and the velocity amplitude at the halt-
ing scale, are quantitatively well-satisfied. We saw little evidence of non-universal
behaviour over a wide range of frictional parameters, providing that the inertial
range was well-developed and that the halting scale was substantially smaller than
the domain scale, with no pile up of energy at the halting scale. If any of these
are not satisfied the predictions may fail. (Note also that all of our simulations
utilized a single type of forcing, namely a random stirring localized in wavenum-
ber.) The form of the predicted spectrum is less well-satisfied by the numerical
simulations – the latter typically falling off much less rapidly than the former at
small, frictionally dominated wavenumbers. However, because the flow in this low-
wavenumber regime has little energy, it does not contribute to the meridional flux of
the tracer.

Consistent with these results, the transport of a passive scalar advected by the
turbulent flow is down-gradient diffusive, with a diffusion coefficient well-estimated
by turbulence phenomenology. In particular, for an isotropic inverse cascade, the
diffusion coefficient is proportional to the product of the mixing length and the r.m.s.
velocity amplitude, which are both determined by the halting scale of the inverse
cascade. In the presence of a β-effect, the inverse cascade can develop significant
anisotropy; the mixing length appropriate to the meridional transport of a passive
tracer scales more or less with the isotropic β-scale given by (6.5), whereas the
energy-containing scale is the jet scale (6.11).

Our predictions of the diffusion coefficients owe their approximate success to the
presence of a good scale separation between the mean gradient and the energy-
containing scales, and a second scale separation between the energy-containing scale
and the forcing scale, enabling a well-defined inverse cascade to occur and minimizing
the effects of the forcing. Both of these conditions are formally necessary for simple
scaling behaviour, but in many cases such scalings may well remain valid well
into more weakly nonlinear regimes (e.g. Held & Larichev 1996). While neither
scale separation is particularly well-satisfied by meridional heat transport in the
Earth’s atmosphere, scale separations between large-scale gradients and the internal
radius of deformation are certainly significant in the Earth’s mid-oceans and on the
giant gas planets, and the present diffusivity predictions may be particularly useful in
those arenas.
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Appendix A. Phenomenology of cascade directions
We first define a rescaled wavenumber k′ ≡ kα/2. In this space, the energy and

enstrophy spectra are such that

EG =

∫
E′G(k′) dk′, (A 1a)

ZG =

∫
Z′G(k′) dk′, (A 1b)

where

Z′G(k′) = k′2E′G(k′). (A 2)

The centroid of the energy distribution in this space is given by

k′e ≡

∫
k′E′G(k′) dk′∫
E′G(k′) dk′

. (A 3)

We now suppose that there is some initial distribution of energy distributed around
this wavenumber, and that turbulence acts irreversibly to broaden this distribution.
That is,

I ′ =

∫
(k′ − k′e)2E′G(k′) dk′, (A 4a)

dI ′

dt
> 0. (A 4b)

Then, expanding (A 4a) and using (A 3),

I ′ =

∫
(k′2 − k′2e )E′G(k′) dk′. (A 5)

Since dI ′/dt > 0, and both
∫ E′G(k′) dk′ and

∫
k′2E′G(k′) dk′ are constant, we must have

that
dk′2e
dt

< 0. (A 6)

This implies that

dkαe
dt

< 0, (A 7)

where kαe is a measure of the centre of the energy distribution in conventional
wavenumber space, given by

ke ≡


∫
kα/2EG(k) dk∫
EG(k) dk


2/α

. (A 8)
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From (A 7) we immediately have

dke
dt

< 0, α > 0

dke
dt

> 0, α < 0.

 (A 9)

It is because the mapping between the two wavenumber spaces is monotonic that a
monotonic direction of energy or enstrophy transfer in the new wavenumber space
corresponds to a monotonic transfer in the true wavenumber space, although the
rates of transfer (and the direction of transfer if α < 0) will differ.

Finally, we note that in the above derivations we may substitute ZG(k) for EG(k),
and α → −α, in equations (A 8) onward. We then readily obtain the direction of the
generalized enstrophy transfer,

dkz
dt

> 0, α > 0

dkz
dt

< 0, α < 0,

 (A 10)

where, analogous to (A 8),

kz ≡


∫
kα/2ZG(k) dk∫
ZG(k) dk


2/α

. (A 11)

For TDV and SQG the generalized enstrophy, corresponding to the square of the
advected quantity, cascades to smaller scales and the energy cascades to larger scales.
However, for LQG dynamics the generalized enstrophy (that is, the variance of the
advected quantity) cascades to larger scales, and generalized energy to smaller scales.
This occurs in spite of the fact that the equation of motion is identical to that of a
passive tracer, save for the additional constraint Ψ = ∇2ξ. This serves to emphasize
the point that inferring cascade directions in two-dimensional vorticity dynamics by
analogy to passive tracer dynamics is valid only to the extent that vorticity acts as
a passive tracer. This may well be the case for small-scale vorticity, but it is not a
general rule.

Appendix B. The numerical model
The forcing function

The forcing is random Markovian in time and normalized at each timestep such that
g = 1. Specifically, at each wavenumber k and timestep n, we calculate an initial
forcing function

F̂n = cFn−1 + (1− c2)1/2 eiθ, (B 1)

where θ is a random phase and c is the correlation coefficient, set to 0.99 in all cases.
Since the generation rate is g = −ψF , in order to make g = 1 the actual forcing Fn
is calculated as

Fn = −
(
ψF̂n

)−1

F̂n. (B 2)
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The effective forcing, however, is less than 1 due to some loss from the small-scale
filter, but this loss is restricted to scales smaller than the forcing scale. We calculate
this loss and find the effective generation rate via

geff = 1 + 〈ψDψ〉, (B 3)

where Dψ represents the filter dissipation and 〈 〉 means a time average. The latter
term quickly reaches a steady value (usually about 0.45) in all the simulations and
thus the effective rate geff is well defined.

The enstrophy filter and timestep

The equation of motion is stepped forward via a leap-frog step but with the enstrophy
filter applied implicitly,

ξn+1 − ξn−1

2δt
= Rn +H(k)ξn+1, (B 4)

where Rn represents the right-hand-side terms at time step n and δt is the magnitude
of the timestep. Thus

ξn+1 = (2δtR
n + ξn−1)F(k), (B 5)

where

F(k) = [1 + 2δtH(k)]−1 (B 6)

is the filter.
Although we do not use it, let us, as an example, consider a hyperviscosity filter of

order s, i.e. (−1)s/2+1νs∇sξ, then

H(k) = −νsks.
Optimal estimates for the timestep and hyperviscosity are (see, e.g. Maltrud & Vallis
1991)

δt ' 2π

Nk2−α
maxξrms

, νs ' (ξrms k
2−α
max)k−smax. (B 7)

(This former estimate is used to calculate an adaptive timestep in the model.) Using
these estimates in the hyperviscous filter then yields

Fhv(k) =

[
1 +

4π

N

(
k

kmax

)s]−1

, (B 8)

which is independent of the flow. N = 2kmax is the equivalent horizontal resolution.
Note that F(0) = 1 and F(kmax) = (1 + 4π/N)−1, so that no dissipation happens on
the largest scale, and the maximum dissipation is a function only of the resolution.
Furthermore, and sensibly, as N → ∞, F(kmax) → 1. Finally, the power s only affects
the curvature of the filter – the higher the power, the less affected are the smaller
wavenumbers (larger scales).

Loosely following LaCasce (1996, and personal communication) we construct an
exponential cutoff filter with the explicit property of having absolutely no dissipation
at wavenumbers smaller than some preset cutoff wavenumber, kcut. In particular,
suppose we choose

Fec(k) =

{
exp[−a(k − kcut)s], k > kcut

1, k 6 kcut.
(B 9)
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Figure 9. Comparison of energy spectra for TDV with various small-scale dissipation functions.
Exponential cutoff filter (solid) vs. ∇8 (dashed), ∇12 (dash-dot) and ∇16 (dotted) hyperviscous
filters. Resolution for these runs is 2562, forcing is at kf/kmin = 60 and drag is r∗ = 0.03. Also
shown are lines representing slopes expected from simple Kolmogorov scaling. Exponential cutoff
wavenumber in these simulations is kcut/kmin = 70 and the order of the filter is s = 8 (see (B 9)
and (B 10)).

Let us choose a such that F(kmax) = (1 + 4π/N)−1, as for the optimal hyperviscous
filter. Hence

a =
ln(1 + 4π/N)

(kmax − kcut)s . (B 10)

The combination of (B 9) and (B 10) gives our filter.
Comparisons of the exponential cutoff filter to the hyperviscous filters are shown

for a series of TDV and tracer calculations in figure 9. The slope of energy spectra
with the exponential cutoff filter at small scales is closer to the expected −3 than for
any order of hyperviscous filter. Also, both tracer variance and energy are higher at
the largest scales with the cutoff filter.
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