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ABSTRACT

The Nastrom–Gage energy spectrum of atmospheric turbulence as a function of wavelength is simulated here
with a two-level quasigeostrophic (QG) model. This simple model has no topography, no direct wave forcing,
and no small-scale forcing, nor any kind of gravity wave generation. The two-level model does, however, allow
for the simple mechanism of baroclinic energy injection at the large (synoptic) scales as the model atmosphere
relaxes to a specified north–south ‘‘radiative equilibrium’’ temperature gradient. It also has a small sink of
energy at the small scales due to subgrid hyperdiffusion; this attempts to model the small-scale sink not resolved
by the two-level QG model, in particular, enhanced viscous dissipation in atmospheric fronts. The magnitude
and shape of the observed energy spectrum, with its characteristic k23 power-law behavior in the synoptic and
subsynoptic scales (from several thousand to about eight hundred kilometers) and the characteristic k25/3 behavior
in the mesoscales (less than about six hundred kilometers), are reproduced convincingly in the model.

The picture that emerges for the energy spectrum of atmospheric turbulence from a few kilometers to tens
of thousands of kilometers is actually quite simple. The potential energy of the mean flow, which is derived
from solar heating with no scale dependence, is transferred selectively to the long synoptic scales of motion via
the mechanism of (nonlinear) baroclinic instability. The injected energy moves both upscale, to the planetary
waves where it is damped by Ekman damping, and also downscale, through the short synoptic waves, through
the mesoscales, to the short mesoscales, where it can be damped by viscous dissipation. There is no need for
dynamics other than QG to produce the spectrum. (However, the present work cannot be used to rule out other
explanations, such as gravity wave generation, or a separate energy source at the small scales.)

1. Introduction

Figure 1 displays the so-called Nastrom–Gage energy
spectrum in the atmosphere as a function of horizontal
wavenumber. Nastrom et al. (1984) and Nastrom and
Gage (1985) analyzed wind and temperature measure-
ments taken from over 6900 commercial airplane flights
during the Global Atmospheric Sampling Program
(GASP) from 1975 and 1979. A majority (;80%) of
these flights were over 308–508N in the upper tropo-
sphere and predominantly in the east–west direction or
near to it. Figure 1 represents an average of these flights
for each wavenumber.

It was reported by those authors that there does not
appear to be a systematic difference in the spectrum

* Nee Wendell Tyler Welch.

Corresponding author address: K. K. Tung, Department of Applied
Mathematics, University of Washington, P.O. Box 352420, Seattle,
WA 98195-2420.
E-mail: tung@amath.washington.edu

over land and oceans, or between winter and summer,
although the energy levels tend to be higher with in-
creasing latitude, and the temperature variance appears
to be higher in winter than in summer. A few flights
were in the lower stratosphere; their temperature vari-
ance appears to be larger than in the troposphere, but
this as well as the seasonal behavior is expected due to
the higher static stability (as measured by the square of
the Brunt–Väisälä frequency N) of the stratosphere ver-
sus troposphere and of winter versus summer; they col-
lapse to a single curve when scaled in the form of avail-
able potential energy.

Each spectrum has two different regions with distinct
slopes, which will form the focus of this work. On the
longer scale, more steeply sloped region, the Nastrom–
Gage spectrum agrees with previous analyses using
global datasets, which showed a power-law dependence
with an approximate 23 slope over the synoptic scales
in the upper troposphere (Wiin-Nielsen 1967; Charney
1971; Boer and Shepherd 1983; Straus and Ditlevsen
1999). There have been many attempts to justify this
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FIG. 1. Variance power spectra of wind and potential temperature near the tropopause from GASP
aircraft data. The spectra for meridional wind and temperature are shifted one and two decades to
the right, respectively; lines with slopes 23 and 25/3 are entered at the same relative coordinates
for each variable for comparison. [Reproduced with permission from Nastrom and Gage (1985).]

slope theoretically. Using dimensional analysis, Kraich-
nan (1967) predicted a k23 power law1 for 2D, isotropic
and homogeneous turbulence in a forward enstrophy
cascading inertial subrange on the short-wave side of
the scale of energy injection, as depicted schematically
in Fig. 2a here. This was argued by Charney (1971) to
carry over to QG turbulence and to the real atmosphere.
However, part of the spectrum (from zonal wavenumber
5 to 12; i.e., wavelengths of approximately 5100–2100
km) is probably not in an inertial subrange (Lambert
1981; Boer and Shepherd 1983), as these are the scales
of baroclinic instability and hence of energy injection
(Welch and Tung 1998b). Furthermore, issues have been
raised with Charney’s arguments relating 2D and QG
turbulence.2 Even so, the shorter synoptic scales (with

1 Kraichnan (1971) suggested a log correction to the k23 leading
behavior to account for the nonlocalness of the model interactions.

2 In Tung and Welch (2001), it was pointed out that QG turbulence
is not isomorphic to 2D turbulence, and so it may be problematic to
apply 2D turbulence theories to the atmosphere. Furthermore, it was
shown there that previous arguments and proofs against downscale
energy cascade in QG turbulence using the twin conservation of
energy and enstrophy were mathematically flawed.

wavenumbers larger than 12) may indeed be close to
an inertial subrange, and therefore we might expect a
k23 energy spectrum due to forward potential enstrophy
cascade.

The Nastrom–Gage spectrum additionally shows a
clear k25/3 power-law behavior for scales between ap-
proximately 600 and 2 km, ‘‘the mesoscales’’. This be-
havior had not been exhibited in previous global datasets
due to a lack of resolution, but it has since been con-
firmed by other analyses of independent aircraft data
(Marenco et al. 1998; Cho et al. 1999a,b). The smooth
transition between the synoptic and the mesoscale spec-
trum is also noteworthy, as previously it had been
thought that there would be a ‘‘mesoscale gap’’ in at-
mospheric turbulence energy (Fiedler and Panofsky
1970) (due to the perception at the time that the large
and the small scales were driven by separate energy
sources) and that this gap might have significant im-
plication for the predictability of weather and climate
(Frisch 1985).

The k25/3 power law has previously been predicted
theoretically to occur in two distinct situations: by Kol-
mogorov (1941a,b) for 3D homogeneous and isotropic
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FIG. 2. Schematic diagrams of energy spectrum, injection, dissi-
pation, and fluxes vs wavenumber: (a) traditional 2D turbulence think-
ing, (b) Lilly’s (1989) proposal, and (c) our proposal. See text for
details.

turbulence, involving a downscale energy flux, and by
Kraichnan (1967) for 2D homogeneous isotropic tur-
bulence on the large-scale side of energy injection, in-
volving an upscale energy flux (see Fig. 2a). Frisch
(1995) found it ‘‘paradoxical’’ that in the observed spec-
trum the k25/3 part occurs on the short-wave side of the
k23 part of the spectrum, in contrast to the prediction
of Kraichnan (1967).

Three-dimensional turbulence arguments for the k25/3

spectrum rely on an assumption of isotropy in three
dimensions, which is not applicable to the atmospheric
mesoscales, where horizontal dimensions are much larg-
er than the vertical dimension (except at horizontal
scales of a few kilometers). It is possible that motion
in the mesoscales might be isotropic in the horizontal
dimensions, allowing for the possibility of 2D turbu-
lence. Yet, because of the property of upscale energy
cascade, 2D theories require a large energy source at
the short-wave end of the spectrum, strong enough to
pump energy upscale through several decades of scales
(as in Fig. 2b). While sufficient energy can probably be
provided by thunderstorms in the form of stratified tur-
bulence or gravity waves (Lilly 1983), it is not clear
that forcing at the short-wave end of the spectrum in
the microscales, which are 3D, would not simply cas-
cade energy into still shorter scales, as in 3D turbulence.
Furthermore, even if a small portion of the energy (ap-
proximately 2%) could somehow escape into 2D tur-

bulence (Smith et al. 1996) and subsequently move up-
scale (Vallis et al. 1997), there have been problems in
simulating the spectrum with two energy sources.

First, there is the question of a sink (Larsen et al.
1982) for such an upscale energy flux in the transition
region of 600–1000 km. Lilly (1989) suggested that
there was probably no need for a sink for the energy
cascading up from forcing at the smaller scales and for
the enstrophy flux cascading down from forcing at the
large scales, but numerical simulations of 2D turbulence
by Maltrud and Vallis (1991) with forcing at both ends
of the spectrum produced a slope steeper than k23 on
the long-wave side of the transition region. (Of course,
this artifact may be unrelated to forcing at the small
scales.) Also, the transition region itself was found to
be more abrupt in the numerical result using two energy
sources than in atmospheric data. Borue (1994) found,
in 2D numerical simulations with a small-scale force,
that with longer runs the energy spectrum in the inverse
energy cascading range deviates strongly from the 25/3
slope and becomes closer to 23. According to the au-
thor, this was due to the emergence of coherent vortices
at all scales, although the problem may simply be due
to resolution. Most importantly, Gage and Nastrom
(1986) pointed out that the ‘‘remarkable degree of uni-
versality’’ in spectral amplitude and spectral shape over
the entire range of wavelengths encompassing both the
k23 and the k25/3 parts of the spectrum is ‘‘hard to ex-
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plain’’ if it were forced by two unrelated physical pro-
cesses at the two ends of the spectrum. Thus the two-
source theory for the k25/3 portion of the spectrum is
still being debated.

Recently, Koshyk et al. (1999) and Koshyk and Ham-
ilton (2001) simulated the first spectrum showing a k23

slope transitioning to roughly k25/3. They used a high-
resolution version of the Geophysical Fluid Dynamics
Laboratory SKYHI general circulation model (GCM) to
produced a horizontal kinetic energy spectrum. In view
of the difficulty encountered by previous attempts using
2D (and QG) models, it was natural to inquire about
the role played by nongeostrophic motions, contained
in the primitive equations of the GCM but not in 2D
QG models. The authors pointed to the presence of a
strong divergent component, which becomes compa-
rable to the rotational part for total wavenumber n *
100 in their model, and suggested an important role for
gravity waves in the k25/3 part of the spectrum. This
meshes with Yuan and Hamilton (1994), who included
a divergent component in their numerical model (but
with forcing only at the quasigeostrophic scales) and
found a spectral regime shallower than k23 in the me-
soscales.3

The preceding results from models with nonbalanced
components are indeed interesting because one of the
earliest theories for the mesoscale spectrum was an ex-
tension of the internal wave theory of Garrett and Munk
(1972, 1975)—which worked well for the oceanic spec-
trum—to the atmosphere (DeWan 1979; VanZandt
1982). However, Gage and Nastrom (1985, 1986) point-
ed out, with additional observational information on the
vertical velocity spectrum, that there is a basic incon-
sistency between the observed spectra and theories of
internal waves as the cause of the mesoscale spectrum.
There is ‘‘simply too much energy’’ in the horizontal
spectrum compared to the vertical spectrum to be con-
sistent with the idea that both are due to a common
spectrum of internal waves.

In the present work, we test the simpler hypothesis
that the entire Nastrom–Gage spectrum can be produced
by QG motion with forcing at only the large (synoptic)
scales and dissipation at the small scales (i.e., viscous
dissipation), as diagrammed in Fig. 2c. Between the
scales of energy ‘‘injection’’ and ‘‘dissipation’’ lies a
wide inertial subrange, including the k23 regime and the
k25/3 regime, spanning at least three decades of scales.

3 It should be noted, however, that the GCM used in Koshyk et al.
(1999) and Koshyk and Hamilton (2001) overpredicted the observed
energy in the mesoscales, resulting in a slope shallower than the
observed 25/3, and that some spurious gravity waves in mid me-
soscales may have contributed to the overprediction. Also, Koshyk
and Hamilton (2001) (like Yuan and Hamilton 1994) remarked that
the divergent part of their numerical solutions were sensitive to model
resolution and had not converged in the GCM results presented. In
contrast, the authors demonstrated that the rotational part, including
the QG motions, seemed to have converged. Yuan and Hamilton
(1994) further pointed out that their spectrum was ‘‘highly sensitive’’
to both the forcing amplitude and rotation rate.

Both regimes, and a transition region in between, are
part of the same inertial subrange. While we acknowl-
edge the importance of unbalanced and divergent com-
ponents of the flow in contributing to the energy spec-
trum in the mesoscales, we test the hypothesis that they
are not essential in explaining the observed k25/3 spec-
trum.

In our inertial range there is a simultaneous downscale
flux of both energy and enstrophy. Observational sup-
port for a positive energy flux in the subsynoptic or
mesoscales exists. Lambert (1981) found evidence of
an inertial subrange for total spherical wavenumbers
larger than 22, a downscale flux of available potential
energy for almost all resolved wavenumbers, and a small
downscale flux of kinetic energy over the subsynoptic
scales. Straus and Ditlevsen (1999) found a small down-
scale flux of kinetic energy for total spherical wave-
number over 40. Recently, Cho and Lindborg (2001)
pointed out a sign error in Lindborg (1999), who first
argued for an inverse energy cascade in the atmospheric
data over the mesoscales. When corrected, the conclu-
sion is that their new analyses of the data ‘‘at mesoscales
in both the upper troposphere and lower stratosphere
provide no support for an inverse energy cascade 2D
turbulence.’’ Using third-order structure functions, Cho
and Lindborg calculate a downscale energy flux using
observed data. We will discuss such observed values of
dissipation in section 4f.

The observed features of the spectrum are simulated
here numerically with a simple two-level QG model,
which does not contain gravity waves. The two-level
model appears to be the simplest model possessing what
we believe is the relevant mechanism in the atmosphere
for energy and enstrophy injection into the synoptic
scales of motion: self-excited baroclinic instability
drawing on the available potential energy of the mean
flow, which in turn is forced by the thermal energy of
the sun. As the amplifying baroclinic waves saturate
nonlinearly (see Welch and Tung 1998b), a large fraction
of the injected energy moves upscale, contributing to
the large-scale variability of the planetary waves. A re-
maining small part moves downscale. In the atmosphere
the downscale transfer of energy probably involves the
mechanism of frontogenesis (Hoskins and Bretherton
1972), as the horizontal scales of a maturing baroclinic
wave collapse near the surface and the tropopause, as
well as the process of gravity wave generation by QG
flows (à la Yuan and Hamilton 1994). It is likely that
these small scales are then dissipated. None of these
processes at the small scales can be represented by the
present model, first because of the QG scaling and sec-
ond because of the coarse vertical resolution. Instead
we use subgrid hyperdiffusion near the scale of nu-
merical truncation to include a crude sink at the smallest
scales. As a result of this small energy sink there is a
small flux of energy downscale in the model. This flux,
though small, is crucial in explaining the two-sloped
shape of the spectrum.
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The numerical setup is presented in section 2, results
in section 3, analysis in section 4, and conclusions in
section 5.

2. The numerical model

The model used in our numerical experiments is a
two-level QG channel model forced thermally by re-
laxation to a prescribed, zonally symmetric, ‘‘radiative
equilibrium’’ temperature. This is the only form of forc-
ing; there is no topography in the model. The model
was documented fully in Welch (1996) and Welch and
Tung (1998a,b). The model flow is damped by Ekman
damping at the lower level, which, being a linear fric-
tion, affects mainly the large-scale waves, which are
more energetic in the model and in the real atmosphere.
This provides a large-scale sink of wave energy pri-
marily at the planetary scales. There is subgrid dissi-
pation at the short-wave end of the model, in a range
of wavenumbers near the wavenumber of truncation, to
be discussed later. This provides a sink of energy at the
small scales. The model setup is thus as depicted in Fig.
2c, with sinks of energy at both the large and small
scales and energy and enstrophy injection in the inter-
mediate scales.

The dimensional form of the governing equations was
given in Welch and Tung (1998a). Here we list the lev-
eled equations, after all independent and dependent var-
iables have been nondimensionalized:

] ]C12 2¹ C 5 2dJ(C , ¹ C ) 2 db 1 v 2 v (2.1)d 1 1 d 1 2 0]t ]x

] ]C32 2¹ C 5 2dJ(C , ¹ C ) 2 db 1 v 2 v (2.2)d 3 3 d 3 4 2]t ]x

]
(C 2 C )3 1]t

1
5 2 dJ(C 1 C , C 2 C ) 2 2s v1 3 3 1 o 22

†2 2h0[C 2 C 2 (C 2 C ) ]. (2.3)3 1 3 1

Here x is the longitudinal position (made dimensionless
by Lx), y the latitudinal position (made dimensionless
by Ly) on a b plane centered at latitude fo, p the pres-
sure (the vertical coordinate), and t the time; C is the
geostrophic streamfunction, its dimensional form being
defined in terms of the geopotential via C 5 F/ f o, and
v 5 dp/dt is the vertical velocity. The Jacobian J(g1,
g2) 5 (]g1/]x)(]g2/]y) 2 (]g1/]y)(]g2/]x) is made di-
mensionless by ; 5 d2(]2/]x2) 1 (]2/]y2) is a2 2L ¹y d

Laplacian operator made dimensionless by , that is,2Ly

¹2 5 (see below for definition of d). Subscripts2 2L ¹y d

1 and 3 indicate the upper and lower levels, 2 the mid-
point between levels 1 and 3, and 0 and 4 the top and
bottom of the model, respectively. Also f 5 f o 1 boy
is the dimensional Coriolis parameter at latitude fo, and
the dagger indicates radiative equilibrium values, which
are prescribed as forcing.

There are four nondimensional parameters:

Lyd [ , a horizontal aspect ratio
Lx

L by ob [ , a nondimensionalized beta
f o

h9dh0 [ , a coefficient of Newtonian cooling
2 f o

2 2(Dp) s (Dp) 1 ]uos [ 5 2 ,o 2 2 2 21 22L f 2L f ru ]py o y o o

a measure of static stability

221 N Dz
5 .

21 21 22 f L0 y

Here Dp is the pressure difference between model levels
1 and 3 (Dz [ 2Dp/rg), and uo is a base state potential
temperature, assumed not to change in time; N 2 [ gd
lnuo/dz. The fluid exists on top of an Ekman layer, which
yields v4 ø 22n C3, where n is the Ekman damping2¹d

coefficient. The upper boundary is assumed to be a rigid
tropopause, such that v0 5 0.

We restrict our attention here to the earth, for which
a midlatitude ‘‘channel’’ centered at fo 5 508 should
have zonal length 2pLx 5 25 700 km and for which
the width should be that of the meridional jet, that is,
roughly 308 of latitude or pLy 5 3340 km. This yields
an aspect ratio of d 5 Ly/Lx 5 0.26, similar to that
studied extensively in Welch and Tung (1998b). We also
use a realistic bo to give b 5 0.16, and a value for
Newtonian cooling time of 18 days, as in Welch and
Tung (1998b). For so, a measure of static stability of
the atmosphere, we use an average value for winter of
so 5 0.193.4 The forcing is prescribed as a radiative
equilibrium temperature profile across our latitude band;
we have used an average winter cross-channel temper-
ature difference of DT † 5 57 K (Lindzen 1990, Fig.
2.2; and Welch and Tung 1998a). The coefficient n is
chosen so as to yield an Ekman damping timescale of
6.7 days.

A subgrid diffusion of the form 12ns C j is addedg¹d

to the vorticity equations (2.1) and (2.2), where the co-
efficient ns is chosen so that at the smallest scale the
subgrid is equal to some multiple of the Ekman damping
(see below). The order g is chosen to concentrate the
damping at the last decade of wavenumbers and to max-
imize the range of scales uncontaminated by the subgrid
dissipation. However, g cannot be too large or it may

4 This is the same dimensional static stability for winter used in
Welch and Tung (1998b), that is, swinter 5 2.65 3 1026 m4 s2 kg22,
but the different channel widths yield different values of so. Here
we use a 308 wide channel such that Ly 5 1062 km, yielding so 5
0.193; there a 458 channel was used such that Ly 5 1600 km and so

5 0.085.
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cause an effective discontinuity and hence unphysical
reflections of energy from the smallest scales. We have
found that g 5 20 works quite well. For all the cases
shown, no reflection from the truncated wavenumbers
is detected. Equations (2.1)–(2.3) are then solved by
expanding in 3M 3 3N complex Fourier exponentials
in the x and y directions, respectively. This results in
2M 3 2N dealiased components (using the three-halves
rule to prevent aliasing), thus representing the positive
and negative wavenumbers up through M and N. For
example, one of the resolutions used here, 129-km res-
olution in the x- and y-directions, requires a computa-
tional domain of (3M 3 3N 3 2) 5 (600 3 75 3 2)
since there are two levels in the vertical. The highest
resolution shown uses 720 3 360 3 2 modes.

Two-dimensional FFTs (written by Rodney James of
NCAR) are used to calculate the nonlinear terms in
physical space. Simulations are started from a Hadley
solution (i.e., a zonal mean state with the temperature
gradient the same as the specified radiative equilibrium
value). There is no initial energy in any of the waves,
except for a very small random ‘‘seeding’’ of wave am-
plitudes for scales larger than 1000 km to allow the
baroclinic instability to occur. To save time, many runs
are started from the equilibrium of a previous run, which
is nearby in parameter space, and are integrated forward
until statistical equilibrium is established. This requires
approximately 1000 time steps (116 days)5 but 2000
time steps were allowed to ensure equilibrium. Data
from running an additional 1000 or 2000 time steps (116
or 231 days), depending on the run, are then time-av-
eraged using every tenth time step, to yield ‘‘equilib-
rium’’ values. Statistical equilibrium is confirmed by
ensuring that energy and enstrophy dissipation rates at
the smallest scales (among other measures) have become
roughly constant in time.

In QG theory (Charney 1971), the total energy E
(when integrated over the whole atmosphere) is con-
served in the absence of forcing and dissipation. Note
that E includes both kinetic and available potential en-
ergy. This is given in dimensional terms (and before
leveling) by

21 g
2 2 2E 5 (u 1 y ) 1 T

2 22 2N T o

2 2 221 ]C ]C f ]Co5 1 1 ,1 2 1 2 1 2[ ]2 ]y ]x 2s ]p

where To is a reference temperature and all other sym-
bols have their usual meanings. The total energy from
observations can be obtained from the Nastrom–Gage
data by summing the two horizontal velocity variances
and adding the temperature variance multiplied by (g/
NTo)2 (see Charney 1971), with the total sum then mul-

5 The numerical code further subdivides this specified ‘‘timestep’’
adaptively, depending on the specified error tolerance.

tiplied by 1/2. The energy displayed in this work is in
the form of E(m), the energy density as a function of
zonal wavenumber, where

M

E 5 E(m) dm.E
0

(Note that we will use k and m interchangeably in this
study to refer to zonal wavenumber.)

Similarly, the potential enstrophy, Z, is also con-
served in QG flow absent forcing and damping. It is
given dimensionally, before leveling, by

2
2] f ]Co2Z 5 f 1 by 1 ¹ C 1 ,o5 1 2 6[ ]]p s ]p

and the potential enstrophy density, Z(m), is then defined
via

M

Z 5 Z(m) dm.E
0

Although no measurement of potential enstrophy was
presented from the aircraft data, potential enstrophy and
its fluxes are important in QG theory. Unfortunately,
analyses of global datasets (Boer and Shepherd 1983;
Straus and Ditlevsen 1999) often show relative enstro-
phy and its fluxes instead of potential enstrophy. Rel-
ative enstrophy is not conserved in the absence of forc-
ing and dissipation and hence is not as helpful a di-
agnostic. Below we will show fluxes of both total energy
and potential enstrophy, though at times the adjectives
‘‘total’’ and ‘‘potential’’ will be dropped when it is un-
derstood that we are discussing QG quantities.

3. Numerical spectra

Figure 3 shows a typical energy spectrum (thick solid
curve) from our numerical model at 107-km resolution.
(The thick dashed curve is discussed below.) The sub-
grid dissipation is chosen to be 10 times Ekman damping
at the last scale before truncation. This is close to the
smallest value of subgrid dissipation that we can use
before we encounter numerical problems.

In Fig. 3 we have, using vertical lines, separated the
zonal wavelengths into the planetary scales ($8580 km;
m 5 1, 2), synoptic scales (8580 to 1980 km; m 5 3–
12;), subsynoptic scales (1980 to 640 km; m 5 13–40)
and mesoscales (2 to 640 km; m $ 41). The division
is made for dynamical purposes within our model (see
section 4) and may not correspond exactly to common
usage, although it is close. The solid and dashed curves
in Fig. 3 are two separate 116-day averages, both taken
after the spectrum has settled down to an equilibrium
(as defined in section 2) but at different nonoverlapping
times. Nevertheless, as can be seen, the large scales still
have large low-frequency variability (see section 4a).
This low-frequency variability is also found in real at-
mospheric flows (Wallace and Blackmon 1983). Apart
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FIG. 3. Dimensional energy density vs wavelength for two 107-km
runs: averaged over days 231–347 (thick solid curve) and over days
347–463 (thick dashed curve). Thin solid line has slope 25/3. Thin
dashed line indicates 23 slope. Vertical lines are at m 5 3 (8580
km), m 5 13 (1980 km), and m 5 40 (643 km).

TABLE 1. Approximate magnitudes of spectral energy density at
various wavelengths from observations of Nastrom and Gage (1985)
(Fig. 1 here) and from our QG model simulations (Fig. 3).

Zonal
wavelength

(km)

Energy density (m3 s2)

Observed Simulated

2000
1000

100

1.8 – 2.0 3 107

2.5 – 2.6 3 106

3.3 – 3.5 3 104

1.0 3 107

1.0 3 106

1.0 3 104

FIG. 4. Same as in Fig. 3 except for various resolutions: 214 km
(long dashed), 184 km (dot–dashed), and 129 km (dotted).

from this, the spectrum has reached statistical equilib-
rium. As in the observed spectrum, the subsynoptic
scales follow roughly a k23 shape until about 800 km.
Then there is a gradual transition to a k25/3 slope from
800 to 600 km. Note that the synoptic scales are not in
the so-called inertial subrange because there is energy
injection from the mean flow at these scales; the fact
that their spectrum lies slightly above the 23 slope is
explainable using the theory of nonlinear baroclinic ad-
justment (Welch and Tung 1998b).

The magnitudes of our energy spectrum compare well
with Nastrom and Gage (1985). Table 1 compares the
total energy density at various wavelengths from obser-
vations (Fig. 1, multiplying the temperature variance by
(g/NTo)2, summing all three components and then divid-
ing by 2; see section 2) with results from our model
simulation in Fig. 3. At synoptic, subsynoptic, and me-
soscales, our simulated energy density has the correct
order of magnitude as the observed data, although slightly
smaller. The slight—on a log scale—deficiency probably
comes from the model available potential energy due to
the well-known artifact of the two-level model at large
horizontal wavenumbers (Merilees and Warn 1972). Thus
our two-level QG model can reproduce the magnitudes,
slopes, and transition wavelengths of the observations.

We show in Fig. 4 the numerical energy spectra for
runs with resolution of 214, 184, and 129 km. This is
less of a test of numerical convergence than of the effect
of different subgrid hyperdiffusion rates. In all the cases
shown, the coefficient of the subgrid hyperdiffusion is
chosen such that the effective damping rate is 10 times
that of Ekman friction at the last resolved scale. Thus
as resolution increases, the effective small-scale dissi-
pation rate decreases since the energy level at the last
resolved scale is smaller for higher resolution. We note

first that the k23 and k25/3 slopes are robust, and are
therefore probably not artifacts of numerical truncation.
Even for a lower resolution of 322 km (not shown), the
presence of the k23 and k25/3 ranges is clearly demon-
strated. Second, we note that as the dissipation rate is
reduced—as the resolution is increased—the k25/3 por-
tion moves to a lower energy level. This is consistent
with the Kolmogorov scaling for the energy spectrum
associated with a downscale energy flux e

2/3 25/3E(k) 5 Ce k , (3.1)

where C is a universal constant. The downscale energy
flux e is equal to eD, the rate of energy dissipation at
the small scales. Thus as eD is reduced, the energy level
is lowered. As a consequence, the break in the slope
between the 23 part of the spectrum and the 25/3 part
shifts slightly to a larger wavenumber. This will be dis-
cussed more in section 4e.

The large-scale low-frequency variability seen in Fig.
3, which exists for runs with the same resolution, is also
seen in Fig. 4 at the planetary scales. It should not be
taken as a problem with numerical convergence.

4. Physical interpretation and diagnostics

Energy diagnostics for the 129-km resolution run are
given in Fig. 5. The top panel shows the components
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FIG. 5. Components of nondimensional perturbation energy growth
rate at equilibrium for the 129-km run in Fig. 4: wave–mean flow
extraction (thick solid curve); wave–wave interaction (dashed); Ek-
man damping (dot–dashed); subgrid dissipation (dotted); sum of all
terms, a proxy for ]E/]t (thin solid). (top) ]E/]t; (bottom) (1/E)
]E/]t.

FIG. 6. Expanded versions of top panel of Fig. 5 showing only
wavenumbers m 5 1–20.

of energy change in each zonal wavenumber m, time-
averaged at equilibrium: quasilinear extraction of en-
ergy from the mean flow (thick solid line); nonlinear
wave–wave interaction (dashed); Ekman damping (dot–
dashed); subgrid dissipation (dotted); and the sum of all

these terms, which is an approximation for ]E(m)/]t
(thin solid line).6 For readability, an expanded version
of this plot is given in Fig. 6, showing only the first 20
wavenumbers. The bottom panel of Fig. 5 is the same
as the top except that each quantity has been divided
by E(m) for that wavenumber so as to show better the
energetics of the small scales.

To diagnose the spectra of Figs. 3 and 4 we also
consider the fluxes of total energy and potential enstro-
phy. The flux of total energy, e(m), is defined from the
wave–wave interaction terms in the horizontally aver-
aged perturbation energy equation. This latter equation
can be written symbolically as

6 The method of Whitaker and Barcilon (1995) has been used to
perform these diagnostics. Each ‘‘wave’’ m is a deviation from the
zonal and time mean; hence, m 5 0 here is only the time-varying
portion of the zonal mean flow.

dE(m)
5 wave–wave interactions(m) 1 wave–mean interactions(m) 1 dissipation(m), (4.1)

dt

and the wave–wave (nonlinear) term can be written for
each wavenumber as the convergence of a flux:

]e
T (m) [ wave–wave interactions(m) [ 2 .

]m

This expression is integrated in our discrete spectral
space, imposing as boundary condition that e(0) 5 0,
to yield

m95m21

e(m) 5 2 T (m9), m 5 1, M 1 1.O
m950

Similarly, from the nonlinear terms Y (m) in the potential
enstrophy equation analogous to (4.1), we define the
enstrophy flux h(m) by

m95m21

h(m) 5 2 Y (m9), m 5 1, M 1 1.O
m950

Therefore, a positive (negative) e indicates a downscale
(upscale) energy flux, and likewise for h. Note that the

sum over all wavenumbers of the nonlinear terms in the
energy equation (4.1) must be zero, since nonlinear in-
teraction only moves energy among different scales but
does not create it, and thus we must have e(M 1 1) 5
0 and similarly h(M 1 1) 5 0. Figure 7 shows fluxes
at equilibrium for the 129-km case (discussed below)
and confirms this fact.

We will now discuss the spectra of Figs. 3 and 4 using
these diagnostic tools.

a. The synoptic scales: The energy injection
wavenumbers

The large synoptic scales, with zonal wavenumbers m
ø 3 to 12, are the scales where ‘‘energy injection’’ occurs.
Energy is transferred from the zonal-mean available po-
tential energy to these waves via the mechanism of bar-
oclinic instability (Welch and Tung 1998b). The energy
injected to each wave is balanced, at equilibrium, chiefly
by nonlinear energy transfers, mostly upscale to the plan-
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FIG. 7. Nondimensional fluxes of total energy (top) and potential
enstrophy (bottom), time-averaged at equilibrium, for the 129-km
case. Thin solid curve in the bottom panel is energy flux times m2.
Very thin horizontal line indicates zero flux.

etary waves but with a small amount downscale towards
the subsynoptic scales and beyond, as shown in Fig. 6.
The fact that this part of the energy spectrum—even in
the energy injection region—approximately follows the
23 power law predicted for inertial subranges (without
forcing or dissipation) is fortuitous.7 There is, however,
an explanation for this power law due to baroclinic in-
stability, as discussed in Welch and Tung (1998b).8

In some previous studies this synoptic region was
mistakenly identified as an inertial subrange, but such
a range is only possible well away from the scales of
energy injection.

b. The planetary scales

The planetary scales, m 5 1–2, receive transient en-
ergy from the large synoptic scales through upscale en-

7 The slope in the energy injection region does not follow a uni-
versal power law and is dependent on the static stability N 2. This
may explain why in the observed data, the slope is different at dif-
ferent heights in the troposphere over the synoptic scales (Boer and
Shepherd 1983; Straus and Ditlevsen 1999).

8 The wavenumbers 3–12 are linearly unstable to baroclinic insta-
bility, but their growth saturates because the earth’s radiative forcing
is so highly supercritical. The saturation first occurs for the linearly
most unstable waves, then for the next unstable wave upscale, then
the next, etc., until saturation reaches the dominant mode. The sat-
urated part of the spectrum has a characteristic shape: the heat flux
spectrum shows roughly a k24 dependence, and consequently the
energy spectrum is slightly steeper than k23. There is, however, height
dependence in the spectral shape (see previous footnote). The spec-
trum is otherwise robust; it is independent of the level of forcing, as
long as it is highly supercritical. This is consistent with observations,
which show very little seasonal dependence of the spectrum for wave-
numbers m . 6 [see the comparison with Randel and Held (1991)
in Welch and Tung (1998b) Fig. 11], while the wavenumber of the
peak heat flux shifts from 6 to 5 between summer and winter.

ergy transfer via wave–wave interaction. The planetary
waves themselves are stable with respect to baroclinic
instability (Welch and Tung 1998b) and so do not re-
ceive significant energy injection from the mean flow;
the energy they gain from wave–wave transfer is bal-
anced at equilibrium mainly by Ekman damping (Fig.
6). Some variability is evident at these scales (and for
the synoptic scales as well) in Fig. 3. This is also found
in analyses over time: even when statistical equilibrium
has been reached in diagnostic values such as subgrid
energy dissipation and subgrid enstrophy dissipation,
large variability can still be seen in the energy at large
scales. This can be decreased somewhat by shortening
the timescale of Ekman damping (i.e., raising n), which
also decreases the level of energy in the largest scales.
However, such a practice makes our model less, not
more, realistic; in fact there is low-frequency variability
on large scales in the real atmosphere (Wallace and
Blackmon 1983). Hence we have retained our realistic
timescale for Ekman damping and not attempted to elim-
inate all variability in, nor pinpoint the energy level of,
the planetary scales.

c. The subsynoptic scales

Figures 5 and 6 show that the wave–mean flow in-
teraction term (the energy injection) becomes insignif-
icant for zonal wavenumbers m * 13. These scales are
baroclinically stable at equilibrium (Welch and Tung
1998b) and so do not receive energy from the mean
flow. Their dynamics (and those of the mesoscales) are
dominated by wave–wave interaction, as shown in Fig.
5 bottom.9 As can be seen in Fig. 3, these subsynoptic
scales, with zonal wavenumber m $ 13, follow a k23

power law consistent with inertial subrange theory of
Kraichnan (1967) for a forward (potential) enstrophy-
cascading range. To be a strict inertial range these scales
would have to experience zero damping. We see from
Figs. 5 and 6 that this is effectively true. As confir-
mation, we removed Ekman damping from all but m 5
1–4 and found only negligible change in the spectrum
or diagnostics (not shown).

These subsynoptic waves form part of an inertial sub-
range with the mesoscales, as discussed further in section
4d. While we leave theoretical consideration of the spec-
tral shape to a later work, here we briefly discuss the
shape in terms of simple dimensional analysis. Figure 7
shows the nondimensional fluxes of total energy and po-
tential enstrophy at equilibrium (thick solid curves).
There are simultaneously a downscale potential enstro-

9 Figure 5 bottom shows that some waves gain energy while others
lose it in this time average at equilibrium. Another average taken
over later times would look similar, except that some m which gained
(lost) energy in Fig. 5 would now lose (gain) energy. Much longer
time averages would cancel out some of these oscillations but are
computationally too expensive. Note that the spectra are not altered
by such variation in nonlinear interactions; Fig. 3 gives an example.
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phy flux and a downscale total energy flux, in the sub-
synoptic and the mesoscales. We can determine whether
the energy flux is negligible (as in an enstrophy-cascading
inertial range of 2D or QG turbulence) by comparing the
dimensionally equivalent ek2 and h, as in the bottom
panel of the figure. While both fluxes must be taken into
account to describe this inertial range, in the subsynoptic
scales the enstrophy flux appears to be the larger. Ac-
cording to Kraichnan’s (1967) dimensional analysis, if
the energy density E(k) is a function primarily of h and
k, then it must have the form ;h2/3k23, and thus the
spectrum should obtain a k23 spectral shape in this region.

The k23 behavior in the inertial subrange blends
smoothly with the energy injected wavenumbers in the
large synoptic scales discussed in section 4a, although
the energetics are completely different in the two re-
gions, as seen in Figs. 5 and 6.

d. The mesoscales

The mesoscales in our discussion refer to scales short-
er than about 600 km. (The last 10 or so wavenumbers
actually form the dissipation range, which is discussed
in section 4f.) We showed in Fig. 3 that the energy
spectrum follows a k25/3 shape over the mesoscales. Dy-
namically, the mesoscales and the subsynoptic scales in
our model form the same inertial subrange, with down-
scale potential enstrophy flux and downscale total en-
ergy flux present in both scale ranges (Fig. 7). In the
mesoscale range, however, the energy flux is more im-
portant (ek2 k h) and the shape of the energy spectrum
in this range is determined to a great extent by the energy
flux e. From Kraichnan’s dimensional analysis, then,
E(k) should have the form ;e2/3k25/3. This accounts for
the 25/3 slope of the energy spectrum over the me-
socales. Note that Kraichnan (1967) applied this think-
ing, instead, to the large-scale side of the energy injec-
tion wavenumbers and a negative (upscale) energy flux.
In that case the flux is equal to the large-scale energy
sink rate. In the present model, the downscale energy
flux through the mesoscales is of order 1026 m2 s23,
which is the same as the small-scale dissipation rate in
the dissipation range (see section 4f). This shows that
all energy fluxed to small scales is indeed being removed
by subgrid dissipation.

e. The transition scale

From the discussions in sections 4c and 4d, it follows
that the enstrophy flux, h, is important in the subsy-
noptic scales and this fact determines the h2/3k23 shape
of the energy spectrum there. In the mesoscales, the
energy flux, e, is more important and determines the
shape e2/3k25/3 in the mesoscales. At wavenumbers k
such that ek2 is comparable to h, the k23 shape transi-
tions to the k25/3 shape. It follows then that the transition
wavenumber should be of the order of (h/e)1/2. For ex-
ample, such a calculation yields a transition wavenum-

ber mT of the order of (h/e)1/2 ø 53 for the 129-km
simulation of Fig. 7; this agrees with Fig. 4, in which
the transition appears to be in the range m 5 35–55
(450–750 km). The simulated mT also agrees with the
observed data in Fig. 1.

The relationship between h and e is determined by
the energy and enstrophy injection and dissipation
mechanisms. The consistency between our dissipation
rates and observed dissipation rates is discussed in sec-
tion 4f.

f. The dissipation range

The small-scale end of the mesoscale range is actually
a dissipation range, for that is where the subgrid damp-
ing becomes important. This can be seen from Fig. 5,
bottom panel, to encompass the last 10 or so wavenum-
bers for the 129-km case (and similarly for other res-
olutions). Thus the last part of each spectrum in Figs.
3 and 4 is dynamically separate from the rest of the
mesoscales.

The fact that the slope in the dissipation range is rough-
ly the same as that in the mesoscale range in our sim-
ulations, that is, both about 25/3, is fortuitous. For other
forms and magnitudes of subgrid the slope in this last
group of wavenumbers would be different. In particular,
for larger subgrid than used in this study, the slope in
the dissipation range would be steeper than 25/3.

We have used a small subgrid damping magnitude,
but one that is large enough to produce the downscale
energy flux necessary for the two-sloped shape of the
spectrum. The sink provided by our subgrid dissipation
is roughly 0.5–1.1 (31026 m2 s23) for the simulations
in Fig. 4, consistent with observed free tropospheric
values (John Cho 2002, personal communication). Thus
we can say that the size of the sink necessary for down-
scale energy flux is easily achievable in the real at-
mosphere.

We can also compare our enstrophy dissipation rate
(i.e., enstrophy flux through the mesoscales) with ob-
served values, at least in part. Cho and Lindborg (2001)
calculated a value of 2 3 10215 s23 for relative enstrophy
flux in the observed polar stratosphere while we obtain
the same value for potential enstrophy flux in our sim-
ulation.

g. Observed diagnostics

For comparison, we present in Fig. 8 energetics from
Straus and Ditlevsen (1999) using reanalyzed ECMWF
data. The observed data agree with our model’s ener-
getics of Figs. 5 and 6, showing different balances in
the different wavenumber ranges: nonlinear gain and
dissipative loss in the planetary scales; baroclinic gain
and nonlinear loss in the synoptic scales; and nonlinear
gain and dissipative loss in the subsynoptic and me-
soscales. Figure 10a of Straus and Ditlevsen (1999) also
shows downscale energy flux in the mesoscales, and
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FIG. 8. Vertically integrated components of energy tendency, based on
transient departures from seasonal means, multipled by total spherical
wavenumber n and plotted vs log n. Solid (winter) and short-dashed
(summer) curves are due to nonlinear interactions, and dotted (winter)
and dot-dashed (summer) curves are due to the combination of baroclinic
conversion, dissipation, vertical fluxes, and analysis increments. [Repro-
duced with permission from Straus and Ditlevsen (1999).]

Fig. 10b downscale enstrophy flux. Thus our model sim-
ulations with only QG dynamics are reproducing the
energetics seen in observations.

5. Conclusions

Our numerical results suggest that the dynamics re-
sponsible for the observed spectrum of Nastrom and
Gage appear to be rather simple and probably are al-
ready contained in a QG model. The absence of other
forms of forcing other than self-excited baroclinic in-
stability, or other (e.g., unbalanced) dynamics, does not
appear to present any difficulty for the model in pro-
ducing the right amount of turbulent energy in all scales
of motion.

The observed energy spectrum shows a k23 power
law for the synoptic and subsynoptic scales of motion
(5000 to 800 km) and a k25/3 power law for the me-
soscales (600 to 2 km), with a smooth transition in
between.

From dimensional arguments (similar to Kraichnan
1967) it seems that the k23 part of the spectrum is as-
sociated with the enstrophy flux, h, while the k25/3 part
of the spectrum is associated with the energy flux, e.
Both parts of the spectrum are present in the same in-
ertial subrange: the k23 part is dominant at the larger
scales where the effect of h is felt, and the k25/3 part at
the smaller scales where the effect of e is dominant.

Our subgrid dissipation, albeit small, appears to be
sufficient to ensure a downscale energy flux throughout
the subsynoptic and mesoscales. In the real atmosphere
such dissipation likely occurs via such processes as
frontogenesis and gravity wave radiation. A two-level
model cannot resolve these real physical effects but our
hyperdiffusion seems to incorporate their dissipative ef-
fect, yielding a small-scale sink of energy. This in turn

leads to a positive energy flux, which then produces a
25/3 slope in the subsynoptic and mesoscales, as in the
observations of Nastrom and Gage (Fig. 1). It should
be pointed out, however, that we have not done a de-
tailed study of how our results would vary with a dif-
ferent form of subgrid dissipation, such as dissipating
enstrophy differently from energy or with a different
magnitude of subgrid dissipation coefficient.

The transition between the two slopes occurs ap-
proximately at a wavenumber k where ek2 is comparable
to h. The value for the transition wavenumber mT in
our simulations agrees with that of observations. The
energy flux and the enstrophy flux are related by their
common origin in the baroclinic energy and enstrophy
injection mechanism in the synoptic scales, and their
simultaneous presence in the entire range of scales on
the short-wave side of the injection region, from a few
thousand to a few kilometers, may be what is responsible
for the robustness of the observed spectrum over wide
geographical regions.

It should be pointed out that at present there is no
agreement on the mechanisms responsible for the k25/3

power law observed for the mesoscales of motion. Al-
most all previous theories for the mesoscale spectrum
involve treating this spectrum as separate from the 23
spectrum, either by spontaneous generation of inertial
gravity waves in the mesoscale (Koshyk et al. 1999; Ko-
shyk and Hamilton 2001) or with separate forcing of 2D
turbulence at small scales (Lilly 1983; Vallis et al. 1997).
The former mechanism, involving divergent and unbal-
anced motions, is difficult to simulate numerically, as
discussed in section 1. Regarding the latter, Vallis et al.
(1997) remarked that although in regions of active con-
vection a spectrum slope close to 25/3 was produced by
their model, given the fact that commercial aircraft mea-
surements of Nastrom and Gage (1985) are likely biased
away from regions of active convection, it is ‘‘perhaps
surprising that the measured spectra fit the 25/3 shape
so well.’’

Ours is the first proposal that involves a forward en-
ergy cascade from the synoptic-scale energy source.
This is supported by observational evidence of a small
but positive energy flux over the mesoscales and by a
positive observed dissipation rate at the small scales. In
fact, the magnitude of the dissipation used here is con-
sistent with the observed value. Although gravity waves
may play some role in contributing to the observed en-
ergy spectrum in the short mesoscales, the robustness
and near universality of the Nastrom–Gage spectrum
over the entire range of scales 100–104 km, and over
various locations around the globe, argue for a single
source of energy and enstrophy at the large scales. In
our theory (see Fig. 2c) this single source is provided
by the available potential energy of the mean flow sup-
plied by the thermal energy of the sun and no small-
scale source is needed.
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