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stratified turbulence

By MICHAEL L. WAITEfAND PETER BARTELLO
McGill University, 805 rue Sherbrooke ouest, Montréal, QC H3A 2K6, Canada

(Received 1 April 2005 and in revised form 9 April 2006)

We present numerical simulations of forced rotating stratified turbulence dominated
by vortical motion (i.e. with potential vorticity). Strong stratification and various
rotation rates are considered, corresponding to a small Froude number and a wide
range of Rossby numbers Ro spanning the regimes of stratified turbulence (Ro = o0)
to quasi-geostrophic turbulence (Ro < 1). We examine how the energy spectra and
characteristic vertical scale of the turbulence vary with Rossby number between
these two regimes. The separate dependence on N/f, where N is the Brunt—Viisild
frequency and f is the Coriolis parameter, is found to be of secondary importance.
As the macroscale Ro decreases below 0.4 and the microscale Ro (at our resolution)
decreases below 3, the horizontal wavenumber energy spectrum steepens and the flat
range in the vertical wavenumber spectrum increases in amplitude and decreases in
length. At large Rossby numbers, the vertical scale H is proportional to the stratified
turbulence value U/N, where U is the root mean square velocity. At small Ro, H
takes the quasi-geostrophic form (f/N)L, where L is the horizontal scale of the flow.
Implications of these findings for numerical atmosphere and ocean modelling are
discussed.

1. Introduction

The dynamics of the atmosphere and the ocean are influenced by stable density
stratification and the Earth’s rotation, and the importance of these effects varies with
scale. At the largest geophysical scales, rotation and stratification are both significant,
and the Rossby and Froude numbers

Ro = ﬂ, Fh = L, Fz = L, (1.1)

fL NL NH

are small. Quasi-geostrophic (QG) turbulence dominates at these scales. Here U,
L and H are characteristic velocity, horizontal and vertical length scales that are
diagnosed from the flow (see (3.7) and (3.8)); f is the Coriolis parameter; and N
is the Brunt—Viisild frequency. The influence of rotation and stratification weakens
as one moves downscale. According to the classical view, rotation weakens more
rapidly than stratification since N/f ~ O(100) over most of the atmosphere and
ocean. The atmospheric mesoscale (horizontal scales of kilometres to hundreds
of kilometres) and oceanic submesoscale (tens of metres to tens of kilometres)
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are characterized by strong stratification, but only moderate rotation (Rox1;
e.g. Emanuel 1986). Stratified turbulence (with Ro=c0) is often studied as a first
approximation to this regime. In this work, we examine the influence of rotation on
stratified turbulence.

Stably stratified flows can be decomposed into vortical motion and internal inertia—
gravity waves using potential vorticity (PV). Vortical motion is defined to account for
all the PV, while the inertia—gravity waves have no PV (e.g. Staquet & Riley 1989; this
definition can be difficult in practice, and the standard linear approximation to it is
employed below). Because we are interested in the transition between geostrophic and
stratified turbulence, we limit ourselves in this study to flows dominated by vortical
motion rather than internal waves. Vortical motion makes up a significant part of
the flow in the atmospheric mesoscale (e.g. Cho et al. 1999b), but not necessarily in
the oceanic submesoscale (e.g. Polzin et al. 2003). We further restrict our analysis
to homogeneous turbulence, and examine two quantities: the (anisotropic) energy
spectrum and the associated vertical length scale. These quantities are increasingly
well accounted for in the limiting regimes of QG turbulence and stratified turbulence
without rotation. This intermediate regime, however, remains poorly understood.

In the QG case, the classical theory is due to Charney (1971), who argued that QG
turbulence is isotropic in the scaled vertical coordinate (N/f)z, implying a vertical
scale H ~(f/N)L. This scaling has been verified in numerical simulations of QG tur-
bulence, which found H ~0.8(f/N)L (Reinaud, Dritschel & Koudella 2003). Charney
(1971) gave a phenomenological argument for an isotropic (in scaled coordinates)
energy spectrum of the form k=3, which has been observed in the atmosphere (e.g.
Nastrom & Gage 1985) and in numerical simulations (McWilliams, Weiss & Yavneh
1994).

In stratified turbulence without rotation, vortical motion is not geostrophic, and
the classical QG theory does not apply. The atmospheric mesoscale energy spectrum
has the form kh_s/ 3 (ks is the horizontal wavenumber; e.g. Nastrom & Gage 1985;
Cho et al. 1999a), and numerical simulations of stratified turbulence have generated
consistent results when vigorous small-scale static instability (overturning) is present
(e.g. Riley & deBruynKops 2003; Waite & Bartello 2004 ; Lindborg 2005, 2006). When
overturning is suppressed by dissipation, the spectrum appears to steepen to k,°
(Laval, McWilliams & Dubrulle 2003; Waite & Bartello 2004). The limiting dynamics
of strongly stratified vortical motion are decoupled layers of quasi-horizontal flow,
which implies a vertical scale collapse as Fh — 0 (Riley, Metcalfe & Weissman 1981;
Lilly 1983). Billant & Chomaz (2001) argued that H scales like U/N in stratified
turbulence, suggesting that Fz =1 as Fh —0. This scaling has been observed in
recent numerical simulations, which found that the layers of stratified turbulence are
coupled by overturning and small-scale turbulence at vertical scales of U/N, where U
is the root mean square (r.m.s.) velocity (Waite & Bartello 2004; Lindborg 2006). The
vertical wavenumber spectra are correspondingly flat out to k, ~ N/U. In addition,
many recent studies of forced stratified turbulence have found a slow systematic
transfer of energy into vertically sheared, horizontally uniform velocity (modes with
k, =0, ie. the shear modes or, when f #0, inertial oscillations) (Smith & Waleffe
2002; Laval et al. 2003; Waite & Bartello 2004, 2006).

This paper builds on the study of Waite & Bartello (2004) by examining numerically
the intermediate regime of strongly stratified rotating turbulence between the non-
rotating and QG limits. As the rotation rate is gradually increased from zero, the
energy spectra and vertical length scales of stratified turbulence (kh_s/ ’ kK fork, <N/U,
H oc U/N) must evolve to those of QG turbulence (k—3, H oc (f/N)L). Our aim in
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this study is to investigate how this transition occurs. Dimensionally, H depends
independently on Ro and N/f, and takes the form

H = %G(Ro, N/f), (1.2)

if dissipation effects can be neglected. Babin, Mahalov & Nicolaenko (1998) have
argued that very weak rotation will couple (‘glue’) the layers of stratified turbulence
together such that H takes the QG value (f/N)L even when Ro>> 1. However,
U/N > (f/N)L when Ro> 1, and so this coupling may be obscured by overturning
and small-scale turbulence unless Ro < 1. Billant & Chomaz (2001) have accounted
for this complication and argue that H transitions from (f/N)L (when Ro < 1) to
U/N (when Ro> 1) around Ro ~ 1. In other words, G is a function of Ro alone and
not N/f. Lindborg (2005) finds that the transition from stratified to QG turbulence,
defined by the emergence of an inverse cascade, occurs at Ro~0.1. To the best of
our knowledge, however, a numerical study of the transition of H between these two
regimes has not been made.

To investigate these issues, we have performed a set of simulations of forced
strongly stratified turbulence over a wide range of rotation rates (O(0.1) < Ro < 0),
and examined how the energy spectra and length scales vary with Rossby number.
In the next section, we present the Boussinesq equations and discuss the normal
mode decomposition into vortical and wave parts. Our numerical methodology is
described in §3. In §4, we present the results of our primary simulations and show
how the energy spectra and vertical length scales vary with Ro. In §5, we discuss the
dependence of our results on N/f. Conclusions are given in §6.

2. Governing equations

Making the Boussinesq approximation, the equations of motion for a rotating
stratified fluid are

ou

5 tu Vet fixu=—Vp+ it F, + D) (2.1a)
Veu=0, (2.1b)

b’ , 2 ,
91 +ll'Vb +Nw= be +Dbf(b ), (216)

where u=uXx+vy+ w2 is the velocity, b’ is the buoyancy, and p is the dynamic
pressure divided by a reference density. D,(¢) and F, denote the dissipation and
forcing of the quantity ¢, respectively. We limit our study to homogeneous turbulence
and therefore take f and N to be constant.

When expressed in terms of the linear normal mode basis, the Fourier-transformed
Boussinesq equations take the compact form

BY . . Al
o TiA'B) = > Il BYBY + F + DY, (2.2)
k=p+q

where j is 0 or + (following Bartello 1995; see Appendix A). In (2.2), B,(CO), B,(f) and
B.”) are the amplitudes of the three normal modes at wavevector k, and the I" are

the interaction coefficients. The normal modes have linear frequencies igf ) given by

172

/l(k()) —o. /l(ki) _ (Nzkizl + fzkf) /k, (2.3a, b)
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where k, = (kj +k;)"/? and k = (k] + k] + k)!/%. The zero frequency mode is known
as the vortical mode, and it corresponds to horizontal rotational flow which is (when
f #0) geostrophically balanced. We refer to the two higher-frequency modes as the
wave modes because they satisfy the dispersion relation for inertia—gravity waves.
Note however, that when f =0, we could equally call B;(O) the geostrophic mode
and B,(ci) the ageostrophic modes, with the latter coming from balanced ageostrophic
motion in addition to waves. In this work, we use ‘vortical’ and ‘wave’ to be consistent
with the full range of f considered.

The normal mode decomposition is linear, and therefore provides only a linear
approximation to the dynamically significant PV decomposition. The PV for (2.1) is
I1/py, where

IT=(w+ f2)-(N°z2+ VD), (2.4)
and w =V X u is the vorticity. Vortical modes account for only the linear PV
b
IT, = N’w, + foo (2.5)
Z

I, is a good approximation to I71, and hence the normal modes provide a meaningful
decomposition for the flow, when Fz <1 (see Appendix B). The normal modes lose
their physical interpretation in terms of PV when Fz 2 1, i.e. at vertical scales smaller
than U/N.

3. Numerical approach

We have integrated (2.1) with a pseudo-spectral model in a domain of size (21)
with 180 collocation points in each direction. While our choice of a cubic domain
prevents us from attaining the high vertical resolution of Lindborg (2005) (where a
small aspect ratio domain was employed), it reduces the likelihood of domain-size
effects playing a role in the vertical, at least at large and intermediate Rossby numbers.
Aliasing errors were eliminated by truncating Fourier modes cylindrically at k;, |k,| =
60. Leapfrog time stepping was employed (with Ar =0.0042), along with a Robert filter
(of 0.004) to stabilize the computational mode (Asselin 1972). We excited vertically
uniform vortical modes with the forcing function

FO = A(k)G(1), (3.1a)
P =0, (3.1b)

where G(t) is a Gaussian random process correlated over 10Az, and A(k) is centred
around kj, =k, with k, =0 as

d(kf + 1 — kh)(kh — kf + 1), ‘kh — kf‘ < 1, k, = 0,

Ak) = { : (3.2)

0, otherwise.
The 10A¢ correlation time scale prevents the forcing from exciting the leapfrog
computational mode. We have checked that the statistics of the resulting flows are
qualitatively insensitive to this time scale when the amplitude « is appropriately
rescaled.

The forcing (3.2) is meant to represent large-scale geophysical vortices which break
down in the atmospheric mesoscale and oceanic submesoscale. The restriction to
modes with k, =0 is a significant idealization of the real atmosphere and ocean, but
it has the advantage of not imposing a vertical scale on the flow; rather, H emerges
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f N/f  Ro, Fh,  Fz, Ro, Fh, Fz,
0 e % 0.19 053 e 0026  0.056
1/16 128 250 0.19 052 34 0026  0.056
1/8 64 12.0 019 052 17 0026 0055
1/4 32 6.3 0.19 052  0.83 0026  0.054
1/2 16 3.2 0.19 051  0.39 0025 0051
3/4  32/3 22 021 049 025 0024 0051
1 8 17 021 047  0.18 0022 0.048
3/2 16/3 12 022 042 0.2 0022 0.040
2 4 089 022 037 009 002 0033
4 2 047 023 021 0048 0024 0018
8 1 024 023 010 0024 0024  0.0091

TaBLE 1. The Coriolis parameters f used in our primary simulations (N =8) along with
N/f and the microscale (vorticity-based) and macroscale (velocity-based) Rossby and Froude
numbers. The Rossby and Froude numbers are from the simulations with large-scale damping,
and are averaged over 70 <z < 100.

spontaneously. The forcing wavenumber k, was set to 5 and the amplitude a was
set, somewhat arbitrarily, to 0.049. This number has no geophysical significance, but
since it is related to the energy dissipation rate e, it will determine how all other
parameters are to be selected. Velocity and buoyancy were dissipated by fourth-order
cylindrical hyperviscosity to maximize the inertial range, i.e.

8

Dy(q) =—v (V,ﬁ + aag> q. (3.3)
Z

The dissipation coefficient (v =6.0 x 10~'*) was chosen to give a dissipation wave-

number k; = (€/v?)/? of approximately 50.

The balance between forcing and dissipation produces statistically stationary fields
in stratified turbulence (ignoring the slow growth of the shear modes), and so time
averages can be studied in place of ensemble averages. No such balance is obtained
in the QG limit, since vortical mode energy is transferred to large scales as well as
small. In order to achieve stationarity at all Rossby and Froude numbers, we have
modified the dissipation term to damp velocity and temperature at large scales. In
Fourier space, (3.3) is replaced with

Di(q)=—(v(k} + k%) + r(K)) i (34)
where
<k <
= {o LShisV2, (3.5)
0, otherwise,

and ro =0.05. All vertical wavenumbers are damped equally, so this process does not
bias the vertical scale of the turbulence. In the following section, simulations with
and without large-scale damping will be discussed.

We have performed our primary simulations at a single stratification over a range
of f. N =28 was chosen to yield a small Froude number, while the f values (between
0 and 8§; see table 1) were chosen to span a wide range of Rossby numbers. These
are not realistic geophysical values for N and f, and must be interpreted through the
Rossby and Froude numbers that they, along with the forcing parameters, produce.
Note that by varying f at fixed N, we are not allowing the two parameters Ro and
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N/f to vary independently. We will explore the separate dependences on these para-
meters with additional simulations at different N in §5.

In order to determine the Rossby and Froude numbers of a computed flow, we must
measure U, L and H ; these measurements can be made in different ways. Perhaps the
most straightforward approach is to deduce U/L and U/H directly from the r.m.s.
vorticity, which yields vorticity-based Rossby and Froude numbers

2 2 %‘i‘ 2 2
5d Fh, = G szzu. (3.6a—c)

ROw = 5 )
7 N N

We have employed this definition in previous studies (Waite & Bartello 2004, 2006).
However, as pointed out by a referee, these numbers favour the smallest scales when
the energy spectrum is sufficiently shallow, and are therefore possibly dependent on
the Reynolds number. We refer to Ro,,, Fh, and Fz, as the microscale Rossby and
Froude numbers.

A second approach is to measure U, L and H independently. We take U to be the
r.m.s. velocity, i.e.

[u2 + v2 4+ w?], (3.7)

and deduce L and H from the spectra of vortical mode energy (defined below in
equation (4.5)) as

2 2
EO E©)
H =2mn , L= . 3.8a,b
(f k%”E?)(kz)dkz) (f k" E} (k) dkh> (38a.0)

This definition of H exploits the fact that the vertical wavenumber spectrum of
vortical energy in a stratified fluid is relatively flat at small wavenumbers and falls off
at large wavenumbers. The flat range indicates the vertical scales over which the flow
is decoupled. The definition of H in (3.8a) is designed to pick out the length scale of
this transition in the spectrum, and L is defined consistently. These scales are discussed
at length in Waite & Bartello (2004). We refer to Ro,, Fh, and Fz, as the macroscale
Rossby and Froude numbers. Note that the macroscale numbers are defined in terms
of a single dominant length and velocity scale, while the microscale numbers are
essentially integrals over all scales. In what follows, we will use the macroscale Rossby
number to distinguish our simulations. However, the microscale Froude numbers
should be kept in mind for comparisons with Waite & Bartello (2004).

All simulations were initialized with a small amount of seed energy with an isotropic
spectrum of the form

E(k) oc k*exp(—2(k/ks)?), (3.9)

and random phases. The initial energy was 0.01 equipartitioned between vortical and
wave modes. Simulations were then integrated from ¢ =0 to 100. This is an integration
length of around 130 buoyancy periods and 20 eddy turnover times, which we define
as t=L/U. Various quantities were averaged over 500 samples from the last 30 %
of the integration. Time-averaged Rossby and Froude numbers are given in table 1.
The microscale and macroscale values differ by an O(10) factor, even at small Rossby
numbers where (as we shall see below) the energy spectra are steep. Some of this
discrepancy is probably due to the factor of 2m, which is included in (3.8) but not
(3.6).
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FiGUure 1. Time series of vortical energy for different Ro,, (a) without and (b) with
large-scale damping. At each time, the energy increases with decreasing Ro,.

4. Results: fixed N

Time series of vortical energy (with and without large-scale damping) are shown in
figure 1. The total energy of the flow has vortical, wave and shear mode contributions,
which are given by

1 2
EO — 3 > B (4.1a)
kn 0
1 2 2
E® — 3 Z |Bl(c+)| + |BI(‘ )7, (4.1b)
](;,7&0

1 A A 21

E =2l + 10 + B /N°. (4.1¢)
k=0

Below we will consider only the kinetic energy in E'; this is the quantity that
was found to grow by Smith & Waleffe (2002) and that corresponds to the energy of
inertial oscillations when f # 0. Vortical energy is injected directly by the forcing, while
wave and shear energy are generated via nonlinear interactions. Even without large-
scale damping, statistical stationarity is obtained when Ro, =>0.39. At smaller Rossby
numbers, though, vortical energy grows systematically along the entire integration
when no large-scale damping is employed. With damping, stationary time series
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FIGURE 2. The small- and large-scale energy dissipation rates €, and ¢;.

are obtained at all Rossby numbers, although the amount of energy at stationarity
increases with decreasing Ro. The strength of the upscale and downscale energy
transfer can be quantified by the large-scale and small-scale energy dissipation rates
€, and ¢, which are given by

a=2r0 Y (il + 0 + [dul” + B/ N?), (4.2a)
1<k <2
e =20 (ki +K5) (il + [0ef + [el + B[P/ N?), (4.2b)

k

and are plotted in figure 2. The transition from a regime dominated by downscale
transfer (i.e. stratified turbulence) to one dominated by upscale transfer (i.e. QG
turbulence) begins around Ro,~0.4, and the upscale transfer dominates when
Ro, <0.1. These findings agree with those of Lindborg (2005).

A closer look at other quantities, however, reveals that stationarity is in fact not
obtained even when rotation is weak. In figure 3, we plot time series of kinetic energy
in the shear modes from the undamped simulations (large-scale damping slightly
enhances the growth of these modes). The shear mode energy grows in our simulations
when Ro, >0.39. This growth appears to be inhibited at smaller Rossby numbers,
although it may simply be very slow (much longer simulations are required to say for
sure). These results suggest that the transfer of energy into the shear modes does not
occur, or is greatly inhibited, when the Rossby number is small enough to produce
a QG inverse cascade. This transition happens at Ro, between 0.2 and 0.4, and has
N/f > 10. QG motion therefore dominates over the shear modes at large scales when
the Rossby number is small, even if resonant three-wave interactions are possible, as
is the case outside the range 1/2< N/f <2. This result can be compared with those
of Smith & Waleffe (2002), taking note of the different forcing and time scales.
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FiGure 3. Time series of shear mode kinetic energy for different Rossby numbers without
large-scale damping. When damping is employed, the growth is slightly enhanced.
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FIGURE 4. The time-averaged vortical, wave and shear mode kinetic energy as defined in §2
for the simulations with large-scale damping.

The time-averaged vortical, wave and shear mode energies are plotted against Ro,
in figure 4. Vortical energy dominates in all cases, but when Ro, > 1 there is also
significant wave and shear energy (this problem was considered in detail in Waite &
Bartello 2004). The presence of rotation enhances the amount of vortical energy at
statistical stationarity, and the vortical energy increases with decreasing Rossby
number below Ro,~1. The dependence on Rossby number appears to weaken
as Ro, — 0 when almost all the injected energy is transferred upscale. The shear mode
kinetic energy decreases with decreasing Ro, when Ro, < 1. The wave energy, by



98 M. L. Waite and P. Bartello

contrast, is surprisingly insensitive to the Rossby number when Ro, > 0.1. At smaller
values, it decreases rapidly as Ro, decreases, which is consistent with the first-order
decoupling discussed by Bartello (1995). Recall that balanced ageostrophic motion
makes up an unknown fraction of the wave energy in figure 4.

In order to illustrate the layering of the vortical modes, we have plotted vertical
slices of velocity and vorticity for three different Rossby numbers in figure 5 (the
normal component is shown in each case). When Ro, =o0, the flow is dominated
by strong vertical layering, although a vertically uniform signal from the forcing is
visible. The characteristic stratified turbulence vertical scale U/N is larger than the
dissipation scale I, =1/k; and, as a result, small-scale instability and overturning
is visible. The layers broaden as the Rossby number decreases. The increase in
vertical scale appears more prominently in the velocity field than in the vorticity field,
suggesting that the effects of rotation are felt first at large vertical scales as the Rossby
number decreases. Indeed, this conclusion is reinforced by figure 6, which plots the
number of zero-crossings in vertical profiles of v and w, against Ro,. As Ro, decreases
from oo, the number of zero-crossings in the velocity field begins to decrease before
that of the vorticity field. Since velocity is a larger-scale quantity than vorticity, we
conclude that the effects of rotation are felt in the large vertical scales before the small
scales.

Horizontal slices of velocity and vorticity (again the normal components, i.e. w
and w,) are shown in figure 7 for the same Rossby numbers as in figure 5. Without
rotation, the vertical vorticity resembles that reported by Waite & Bartello (2004). We
see the large-scale vortical structure associated with the forcing, along with patches
of small-scale vorticity due to overturning. As the Rossby number decreases, coherent
vortices and vortex filaments emerge, but isolated patches of small-scale vorticity
remain. The vertical velocity field is correlated with the vorticity field, with strong
vertical velocity coinciding with regions of small-scale vertical vorticity, as expected
if these regions are characterized by overturning.

There are also correlations between vertical velocity and large-scale vortex struc-
tures, especially when Ro, = 0.090. It should be recalled that vertical velocity, although
it contributes exclusively to the linear wave modes, is also induced by QG motion. The
QG portion of the vertical velocity w, can be approximated by the omega equation
(e.g. Hoskins, Draghici & Davies 1978)

(N2V§ + f2;;) w, =2V-Q (4.3)

where
Q =—(Vb;"-V)uy, (4.4)
u; =(—vg, uy), uy and v, are the components of the geostrophic velocity, b, is the

corresponding buoyancy from thermal wind balance, and Vb’gl =(—0db,/dy, db,/dx).
In figure 8, we plot the resulting vertical velocity for the two finite Rossby
numbers in figure 7. The w, field is noticeably correlated with w at large scales
when Ro, =0.090, but it does not capture the small-scale filamentary structure.
The variance of w, is 5% of the total w variance when Ro,=0.18 and 14 %
when Ro, =0.090. This proportion increases to 34 % when Ro, =0.048 and 60 %
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FIGURE 5. Vertical slices (x, z) of the normal velocity v (left) and the normal vorticity w,
(right) for Ro, = oo (top), Ro, =0.18 (middle) and Ro=0.090 (bottom) at ¢ = 100.

when Ro,=0.024 (not shown). Whether the remainder of w is due to genuine
internal gravity waves or to a higher-order balance than (4.3) is unclear from these
results.

The horizontal and vertical wavenumber spectra of vortical energy are computed
by binning at integer wavenumbers as

1 1
EV() =5 > [BYT EP() =5 > (B[ (4.5a,b)

k,EIh(kh,-) k,EIz(kzi)
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FIGURE 6. (a) The number of zero crossings in vertical profiles of v and w, averaged over x
and y at t =100, and (») the same quantity normalized by its value at Ro = co.

where
Ly (ki) = {K' | kp, — 1/2 < |kp,| < ky, +1/2}, (4.6a)
Lk,)={K |k, —1/2<kl <k, +1/2, Kk, #0}. (4.6b)

Time-averaged spectra (with large-scale damping) are plotted in figure 9. When
Ro, =0.83, they are not significantly affected by rotation. The horizontal wavenumber
spectra are peaked at k, =k, and their spectral slopes (measured by a least-squares
power-law fit over 10 < k;, < 30) are around —2.7. This value is between —5/3 (thought
to result in stratified turbulence when vigorous overturning is present) and —5
(obtained when no overturning is present; see Waite & Bartello 2004). Increasing the
vertical resolution leads to a shallowing of the spectrum towards —5/3 (not shown).
By contrast, the vertical wavenumber spectra at these Rossby numbers are flat along
1<k, <20, which suggests that vertical layers are decoupled across these scales.
The spectra steepen somewhat along 20 < k, <40, and then fall off rapidly owing to
dissipation.

When Ro, <0.39, the vertical and horizontal wavenumber spectra are very sensitive
to the presence of rotation. The transfer of vortical energy to small horizontal scales
is inhibited as the Rossby number decreases; the spectra steepen at large k;, while
energy accumulates at small k,. The vertical wavenumber spectra evolve in a similarly
systematic way: the flat range increases in amplitude and decreases in length as Ro,
goes from 0.39 to 0.090. The increased amplitude of the flat range down to |k,| =1
indicates that rotation is indeed modifying the large vertical scales. When Ro, =0.18,
the flat range is reduced to around 1<k, <10, and when Ro, =0.090 it is, at most,
only a couple of points long. No flat range remains at smaller Rossby numbers, where
both the &, and k, spectral slopes are steeper than —3, as expected for QG turbulence
at this resolution.

The above results appear to confirm the notion that rotation couples the layers
of stratified turbulence together; but are the layers ‘glued’ together by rotation, or
are they broadened by an increased value of U/N? In figure 10, we plot H along
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FiGure 7. Horizontal slices (x, y) of the normal velocity w (left) and the normal vorticity w,
(right) for Ro, = oo (top), Ro, =0.18 (middle) and Ro=0.090 (bottom) at ¢ = 100.

with U/N and (f/N)L against Rossby number. H increases with decreasing Ro, as
expected from figures 5 and 9, but so does (to a lesser degree) U/N. The increase
in the layer thickness appears to be accounted for by an enhanced U/N as Ro,
decreases to 0.25, but at smaller Ro,, H and U/N diverge rapidly. We note that
when Ro, >0.25, U/N appears to under-predict H by a factor of 10 using the
precise definitions that we have adopted; nevertheless, in the next section we show
that the scaling H oc U/N holds. When Ro, <0.18, H is proportional to the QG
scale (f/N)L.
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(b)

FiGure 8. Horizontal slices (x, y) of QG vertical velocity w, given by (4.3) for (a) Ro, =0.18
and (b) 0.090 at r =100.
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FIGURE 9. Horizontal wavenumber spectra (a, b) and vertical wavenumber spectra (c, d) of
vortical energy for 0.39 < Ro, < (a, c¢) and 0.024 < Ro, <0.18 (b, d).

5. Dependence on N/f

The simulations described above cover a wide range of Rossby numbers at a fixed
stratification of N =8. The characteristic vertical scale H may depend independently
on Ro and N/f, and a set of simulations at a fixed N is not able to distinguish
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FIGURE 10. Vertical scales as a function of Ro: the measured vertical scale H, the QG scale
(f/N)L, and U/N.

between these dependencies. Billant & Chomaz (2001) have argued that the N/f
dependence is not significant, and that (N/U)H is therefore a universal function of
Ro as long as dissipation effects are unimportant. Additional simulations at different
N are required to determine whether this is indeed the case.

We have performed two further sets of simulations, one at N =4 and the other at
N =16, with ten f values between 0 and 8 and large-scale damping. We followed
the same methodology and employed the same forcing and dissipation parameters as
described above. The time-averaged vortical, wave and shear kinetic energy are plotted
against Ro, for all three sets of simulations in figure 11. The vortical energy curves
collapse for Ro, < 0.2, suggesting that dependence on N/f is weak in this regime. At
larger Rossby numbers, the vortical energy is insensitive to rotation but dependent
on stratification, as expected from Waite & Bartello (2004). The shear energy behaves
similarly. The wave energy, by contrast, does not collapse, and appears to depend
independently on both Ro, and N/f.

In figure 12, we plot (N/U)H as a function of Ro, for each set of simulations.
Our data collapses reasonably well to a single curve which goes to the QG limit
((N/U)H oc 1/Ro,) when Ro, < 1 and the stratified turbulence limit (N/U)H =~ 20)
when Ro, > 1. The transition between these two regimes occurs around Ro, ~0.2.
There are, however, some exceptions to this universal scaling. At the lowest Rossby
number for N =4, (Ro, =0.025), (N/U)H is much larger than the corresponding
values at N =8 and 16. Energy in this case is unable to escape from the forced
two-dimensional modes, and so H, as defined in (3.8a), is greatly enhanced. Unlike
the others, this simulation has stronger rotation than stratification (N < f).

The collapse of the curves also fails at large Rossby numbers. This regime was
investigated in detail by Waite & Bartello (2004), who found that H scales like U/N
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FiGure 11. The time-averaged vortical, wave and shear mode kinetic energy as defined in §2
for the sets of simulations with N =4, N =8 (as in figure 4) and N = 16.
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FIGURE 12. The normalized vertical scale (N/U)H for the three sets of simulations N =4, 8
and 16.
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as long as U/N is sufficiently larger than the dissipation scale I,;. Viscous effects are
important when this condition is not satisfied. Note that Waite & Bartello (2006)
found that it is not necessary to have the Ozmidov scale larger than /;; it is smaller
than I, in all of our cases. In the simulations presented here, only those with N =4
and N =8 have U/N >1;. When N =16, U/N and l; are not significantly different
from one another, and H is set by viscosity as a result. Even in this case, however, the
collapse of (N/U)H is excellent as Ro, decreases below O(0.1) and H increases above
the dissipation scale and U/N.

6. Conclusions

We have presented a set of strongly stratified turbulence simulations with two-
dimensional vortical mode forcing over a wide range of Rossby numbers. At large
Ro, the characteristic vertical scale of the turbulence is H oc U/N, there is no inverse
cascade of energy, the energy spectra are insensitive to rotation, and the shear modes
grow slowly. At smaller Ro, the effects of rotation are apparent. As the macroscale
(velocity-based) Rossby number Ro, decreases below 0.4 and the microscale (vorticity-
based) Rossby number Ro, decreases below 3 (at the resolution considered here),
some of the injected energy begins to go upscale and the transfer of energy into the
shear modes stops (or is greatly inhibited). The energy spectra vary with Ro in this
regime: as Ro decreases, the flat range of the k, spectrum increases in amplitude and
decreases in length, while the k, spectrum steepens beyond a spectral slope of —3. By
decreasing Ro with fixed resolution, we are essentially moving upscale through the
observed atmospheric &, spectrum, from the mesoscale towards the QG scales. The
vertical scale of the turbulence departs from U/N and, when Ro, <0.2 (Ro,, < 2), is
proportional to (f/N)L.

These observations lead us to conclude that the transition from stratified to quasi-
geostrophic turbulence, manifested by the emergence of an inverse cascade, the
steepening of the k;, spectrum, and the increase of the vertical scale above U/N,
occurs around Ro, =0.4 and Ro, =3. This conclusion agrees with that of Lindborg
(2005), who found an inverse cascade when Ro, =€!/3/(L*? f) was below 0.1. Using
Lindborg’s (2005) Rossby number, our transition occurs at Ro. =0.2.

Our results indicate that the prediction of Babin et al. (1998) that the characteristic
vertical scale of rotating stratified turbulence is given by the QG scale (f/N)L does
not hold when Ro = 1, since for these weak rotation rates, the vertical scale is given
by the stratified turbulence value U/N. (N/U)H appears to collapse to a universal
function of Rossby number as predicted by Billant & Chomaz (2001), as long as
U/N is greater than the dissipation scale and N > f. Under these conditions, the
characteristic vertical scale has no separate dependence on N/f. The velocity and
vorticity fields indicate that decreasing the Rossby number affects the large vertical
scales before the small scales, in opposition to the analysis of Babin et al. (1998).
As Ro decreases, we see k. spectra modified from k, > 1 and velocity layers growing
more dramatically than vorticity layers, underlying the influence of rotation on large
vertical scales.

As we move downscale from the large QG scales of the atmosphere and ocean, our
simulations suggest that the characteristic vertical scale decreases as (f/N)L until
it reaches U/N at Ro~ O(1), below which it is independent of Rossby number and,
as a result, horizontal scale. This conclusion has implications for the choice of the
vertical grid spacing Az in large-scale atmosphere and ocean models as Ax decreases
and extends into the atmospheric mesoscale and oceanic submesoscale. At coarse
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resolutions, Az =(f/N)Ax may be an appropriate choice, but at higher resolutions,
Az is constrained instead by the need to resolve overturning, which sets in at
H~U/N (O(1) km in the atmosphere and O(10) m in the ocean). Az need not be as
small as (f/N)Ax as long as it is sufficiently smaller than U/N. These conclusions are
based on our simulations of turbulence dominated by vortical motion. In the future,
the influence of rotation on breaking internal waves, which make up an important
part of the dynamics of the atmospheric mesoscale and oceanic submesoscale, should
also be considered.

This paper benefited greatly from the suggestions of Erik Lindborg and two
anonymous reviewers. Financial support from the Natural Sciences and Engineering
Research Council of Canada is gratefully acknowledged, as are the computer resources
generously provided by the Consortium Laval-UQAM-McGill et I'Est du Québec.

Appendix A. Normal modes

We briefly state the linear normal modes of the Boussinesq equations (2.1) (see
Bartello 1995 for details). The Fourier-transformed equations can be written in terms
of the three independent variables

. ~ N . k A A kh a0
S = (ke Vg — kyitg), Dy = 1F(kxuk +k0p), Ti= N e (A1)
when k, #0 and k,#0. Expressed in this basis, the linear Boussinesq equations
without forcing or dissipation take the Hermitian form

0 .
gwk =1LxWy, (A2)
where
x 0 ifk./k 0
Wi=|Dv]|, Li=|—-ifk/k 0 —Nky/k | . (A3)
T 0 —Nk,/k 0
W, can be expanded in an orthonormal basis given by the eigenvectors of L, as
Wi=> al'xy, (A4)

J

where j is summed over 0, + and —. The eigenvectors are

1 Nkh 1 ilsz
X)=— 1 0o |, xXP)=——| ok |, (A5)
o\ sk, V2ouk \ 2y,
where
Nzk% +f2k2
of = —" (A6)
The amplitudes are expressed in the variables (A 1) as
A0 Nkptr +1fk, Ty A — oxkDy Fifk.tx + Nkth‘ (A7)
k Ukk ’ k ﬁakk

A;O) and Agci) are the vortical and wave modes (or, when f 0, the geostrophic and
ageostrophic modes). Both vertical vorticity and (when f = 0) vertical buoyancy shear
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contribute to the vortical mode. The wave modes account for all of the horizontal
divergence as well as (when f # 0) the inertia-wave component of the vertical vorticity.
In this paper, we employ the normalized normal mode amplitudes B;(’ ) =A(k’)/ ky,

since they have the units of velocity. The definition of the B,({j ) terms can be expanded
to all k by setting

A — iA/
BY =g, B =i F L, (A38)
when k, =0, and
o b + —
B = T\I/{’ B = i F by, (A9)

when k, =0. They are zero when both %, k, =0.

Appendix B. Potential vorticity

The potential vorticity of the Boussinesq equations (2.1) is I7/py, where I1, given
in (2.4), can be expanded to

Il = Ily + Iy, + Iy + 115, (B1)
where
2 ab, 2 /
H():fN, Hlb:fia s 1715:N @y, HQZ(:)'V]?. (B2)
Z

The subscripts 0, 1 and 2 refer to the order in the variables @ and b’. Vortical modes
contain all the linear PV (Bartello 1995). Our aim is to show that IT,/(ITy, +11;;) — O,
i.e. that the linear PV is a good approximation to the full PV, when Fz — 0.

We proceed by performing a straightforward scale analysis of the terms in (B 2).
Define scales u, v~ U, w ~W,b' ~ B, x,y~L and z ~ H. Then IT;, ~ fB/H,
I, ~ N°U/L and

(B3)

UB WB UB
H2~max< ><

LH L)~ LH’
if we assume that H <L and W/H < U/L, which is reasonable for rotating stratified
turbulence. Balancing the pressure term with the nonlinear term in the u and v

components of (2.1) and assuming hydrostatic balance in the w component, the
buoyancy term can be shown to scale as B =U?/H, implying

U? U U3
Hlefﬁ, Hl;"’N Z’ nzgmo (B4)
The ratio IT,/(ITy, + I1;.) then scales as
IT Fz?
s (BS)
Iy + Iy~ 14+ Fz7/Ro
< Fz2 (B6)

The linear term therefore dominates the quadratic term when Fz < 1.



108 M. L. Waite and P. Bartello

REFERENCES

ASSELIN, R. 1972 Frequency filter for time integrations. Mon. Wea. Rev. 100, 487-490.

BABIN, A., MAHALOV, A. & NICOLAENKO, B. 1998 On nonlinear baroclinic waves and adjustment of
pancake dynamics. Theor. Comput. Fluid Dyn. 11, 215-235.

BARTELLO, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratified turbulence.
J. Atmos. Sci. 52, 4410-4428.

BiLLANT, P. & CHOMAZ, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids
13, 1645-1651.

CHARNEY, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 1087-1095.

CHo, J. Y. N, ZHu, Y., NEWELL, R. E., ANDERSON, B. E., BARRICK, J. D., GREGORY, G. L., SACHSE,
G. W, CarroLL, M. A. & ALBERCOOK, G. M. 19994 Horizontal wavenumber spectra of
winds, temperature, and trace gases during the Pacific Exploratory Missions: 1. Climatology.
J. Geophys. Res. 104, 5697-5716.

CHo, J. Y. N, NEweLL, R. E. & BaRrrICK, J. D. 19996 Horizontal wavenumber spectra of winds,
temperature, and trace gases during the Pacific Exploratory Missions: 2. Gravity waves,
quasi-two-dimensional turbulence, and vortical modes. J. Geophys. Res. 104, 16 297-16 308.

EMANUEL, K. A. 1986 Overview and definition of mesoscale meteorology. In Mesoscale Meteorology
and Forecasting (ed. P. S. Ray), pp. 1-17.

Hoskins, B. J., DraGHiIc, 1. & Davies, H. C. 1978 A new look at the w-equation. Q. J. R. Met. Soc.
104, 31-38.

Lavar, J.-P, McWiLLiams, J. C. & DuBRULLE, B. 2003 Forced stratified turbulence: successive
transitions with Reynolds number. Phys. Rev. E 68, 036308.

Lirry, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos.
Sci. 40, 749-761.

LINDBORG, E. 2005 The effect of rotation on the mesoscale energy cascade in the free atmosphere.
Geophys. Res. Lett. 32, L010809.

LINDBORG, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207-242.

McWiLLiams, J. C., WEIss, J. B. & YavNen, 1. 1994 Anisotropy and coherent vortex structures in
planetary turbulence. Science 264, 410-413.

NastrOM, G. D. & GAGE, K. S. 1985 A climatology of atmospheric wavenumber spectra observed
by commercial aircraft. J. Atmos. Sci. 42, 950-960.

Porzin, K. L., Kunzg, E., TooLE, J. M. & ScHMITT, R. W. 2003 The partition of finescale energy
into internal waves and subinertial motions. J. Phys. Oceanogr. 33, 234-248.

RemNnauD, J. N, DritscHEL, D. G. & KoupeLrLa, C. K. 2003 The shape of vortices in quasi-
geostrophic turbulence. J. Fluid Mech. 474, 175-192.

RiLEY, J. J. & DEBrRUYNKOPS, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy.
Phys. Fluids 15, 2047-2059.

RiLEY, J. J., METCALFE, R. W. & WEIssMaN, M. A. 1981 Direct numerical simulations of homogeneous
turbulence in density-stratified fluids. In Nonlinear Properties of Internal Waves (ed. B. J. West),
pp. 79-112.

SmitH, L. M. & WALEFrE, F. 2002 Generation of slow large scales in forced rotating stratified
turbulence. J. Fluid Mech. 451, 145-168.

STAQUET, C. & RILEY, J. J. 1989 On the velocity field associated with potential vorticity. Dyn. Atmos.
Oceans 14, 93-123.

WAITE, M. L. & BARTELLO, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid
Mech. 517, 281-308.

WAITE, M. L. & BARTELLO, P. 2006 Stratified turbulence generated by internal gravity waves. J. Fluid
Mech. 546, 313-339.



