The Gent-McWilliams parameterization of eddy buoyancy fluxes

(as told by Cesar)

slides at tinyurl.com/POTheory-GM

Gent & McWilliams. JPO. 1990 (The most cited JPO paper ★)

Griffies. JPO. 1998

The problem

Climate models are devoid of mesoscale eddies In 1990, ocean models had "coarse resolution" (many still do today)

Source: Hallberg & Gnanadesikan.

A stroll through GM

Along-isopynal eddy fluxes

Mixing in isopycnal coordinates

$$\overline{\mathbf{u}'\rho'}\cdot\nabla\bar{\rho}=\overline{\mathbf{u}'_h\rho'}\cdot\nabla_h\bar{\rho}+\overline{w'\rho'}\;\bar{\rho}_z\approx 0$$
.

Along-isopynal eddy fluxes

$$\overline{\mathbf{u}'\rho'}\cdot\nabla\bar{\rho}=\overline{\mathbf{u}'_h\rho'}\cdot\nabla_h\bar{\rho}+\overline{w'\rho'}\;\bar{\rho}_z\approx0$$
.

The parameterization

Ansatz:
$$\overline{\mathbf{u}_h' \rho'} = -\kappa \nabla_h \bar{\rho} \implies \overline{w' \rho'} = \kappa \frac{|\nabla_h \bar{\rho}|^2}{\bar{\rho}_z^2} \bar{\rho}_z$$
.

A stroll through GM

Along-isopynal eddy fluxes

$$\overline{\mathbf{u}'\rho'}\cdot\nabla\bar{\rho}=\overline{\mathbf{u}'_h\rho'}\cdot\nabla_h\bar{\rho}+\overline{w'\rho'}\;\bar{\rho}_z\approx0.$$

The parameterization

Ansatz:
$$\overline{\mathbf{u}_h' \rho'} = -\kappa \nabla_h \bar{\rho} \implies \overline{w' \rho'} = \kappa \frac{|\nabla_h \bar{\rho}|^2}{\bar{\rho}_z^2} \bar{\rho}_z$$
.

Properties of the parameterization

- **1** Preserves moments of ρ .
- 2 Releases available potential energy (cf. baroclinic instability).

Density (buoyancy) coordinates

"Isopycnal thickness"

$$f(x,y,z,t) = f(\tilde{x},\tilde{y},\tilde{\rho},\tilde{t}), \qquad f_x = f_{\tilde{x}} + \rho_x f_{\tilde{\rho}}, \qquad f_z = \rho_z f_{\tilde{\rho}}, \qquad \cdots$$
(cf. Young, JPO, 2012.)

Eddy-resolving models

The adiabatic thickness equation [cf. Young's σ equation (Y37)]

$$\frac{\partial}{\partial t} \frac{\partial h}{\partial \rho} + \nabla_{\!\!\rho} \cdot \left(\frac{\partial h}{\partial \rho} \mathbf{u} \right) = 0. \tag{GM1}$$

The distribution of the fact was a second (V27)

The adiabatic thickness equation [cf. Young's σ equation (Y37)]

$$\frac{\partial}{\partial t} \frac{\partial h}{\partial \rho} + \nabla_{\!\!\rho} \cdot \left(\frac{\partial h}{\partial \rho} \mathbf{u} \right) = 0. \tag{GM1}$$

The adiabatic tracer au equation

$$\underbrace{\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla_{\rho}\right)}_{\stackrel{\text{def}}{=} D/Dt} \tau = \underbrace{\left(\frac{\partial h}{\partial \rho}\right)^{-1} \nabla_{\rho} \cdot \left(\mu \frac{\partial h}{\partial \rho} \mathbf{J} \cdot \nabla_{\rho} \tau\right)}_{\stackrel{\text{def}}{=} R(\tau)}, \quad (GM2)$$

with the matrix J defined in (GM4).

The adiabatic thickness equation [cf. Young's σ equation (Y37)]

$$\frac{\partial}{\partial t} \frac{\partial h}{\partial \rho} + \nabla_{\!\!\rho} \cdot \left(\frac{\partial h}{\partial \rho} \mathbf{u} \right) = 0. \tag{GM1}$$

The adiabatic tracer au equation

$$\underbrace{\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla_{\rho}\right)}_{\stackrel{\text{def}}{=} D/Dt} \tau = \underbrace{\left(\frac{\partial h}{\partial \rho}\right)^{-1} \nabla_{\rho} \cdot \left(\mu \frac{\partial h}{\partial \rho} \mathbf{J} \cdot \nabla_{\rho} \tau\right)}_{\stackrel{\text{def}}{=} R(\tau)}, \quad (GM2)$$

with the matrix \mathbf{J} defined in (GM4).

Sloppy notation ALERT

$$abla_{
ho} heta= heta_{ ilde{x}}\;\mathbf{e}_{1}+ heta_{ ilde{y}}\;\mathbf{e}_{2}\,,\qquad
abla\cdot\mathbf{f}=\left(rac{\partial h}{\partial
ho}
ight)^{-1}
abla_{
ho}\cdot\left[\left(rac{\partial h}{\partial
ho}
ight)\mathbf{f}
ight]\,.$$

Three important properties (GM90)

Mixing in isopycnal coordinates

Three Important properties (GM90)

Between any two isopycnals, the system conserves

- **A.** All moments of density ρ and the volume.
- B. The domain-averaged tracer concentration τ .
- R(
 ho)=0 (no isopycnal mixing of density), so that
 - C. The density identically satisfies the tracer equation:

$$\frac{D\rho}{Dt} = \rho_t + u\rho_{\tilde{x}} + v\rho_{\tilde{y}} = 0.$$

Three important properties (GM90)

Mixing in isopycnal coordinates

Between any two isopycnals, the system conserves

- A. All moments of density ρ and the volume.
- B. The domain-averaged tracer concentration τ .
- R(
 ho)=0 (no isopycnal mixing of density), so that
 - C. The density identically satisfies the tracer equation:

$$\frac{D\rho}{Dt} = \rho_t + u\rho_{\tilde{x}} + v\rho_{\tilde{y}} = 0.$$

The thickness balance of eddy-resolving models (GM90)

In statistical steady state:

$$\nabla_{\!\!\rho}\cdot\left(rac{\partialar{h}}{\partial
ho}ar{\mathbf{u}}
ight)+\overline{
abla_{\!\!
ho}\cdot\left(rac{\partial h'}{\partial
ho}\mathbf{u}'
ight)}pprox0\,,$$
 (GM5)

Non-eddy-resolving models

The non-eddy-resolving thickness equation

$$\frac{\partial}{\partial t} \frac{\partial h}{\partial \rho} + \nabla_{\!\rho} \cdot \left(\frac{\partial h}{\partial \rho} \mathbf{u} \right) + \nabla_{\!\rho} \cdot \mathbf{F} = 0.$$
 (GM6)

with the eddy thickness "flux" F.

Non-eddy-resolving models

The non-eddy-resolving thickness equation

$$\frac{\partial}{\partial t} \frac{\partial h}{\partial \rho} + \nabla_{\!\rho} \cdot \left(\frac{\partial h}{\partial \rho} \mathbf{u} \right) + \nabla_{\!\rho} \cdot \mathbf{F} = 0.$$
 (GM6)

with the eddy thickness "flux" F.

Choices for parameterizing **F**

- Adiabatic (but compressible) flow.
- 2 Incompressible (but diabatic) flow.

The non-eddy-resolving thickness equation

$$\frac{\partial}{\partial t} \frac{\partial h}{\partial \rho} + \nabla_{\!\!\rho} \cdot \left(\frac{\partial h}{\partial \rho} \mathbf{u} \right) + \nabla_{\!\!\rho} \cdot \mathbf{F} = 0. \tag{GM6}$$

with the eddy thickness "flux" F.

Choices for parameterizing F

- Adiabatic (but compressible) flow.
- 2 Incompressible (but diabatic) flow.

The GM90 choice: (2) incompressible flow

$$\frac{D\rho}{Dt} = Q\,, (GM7)$$

with the non-conservative density source Q.

The GM90 choice: (2) incompressible (quasi-adiabatic) flow

$$\frac{\partial h}{\partial \rho}Q = \int^{\tilde{\rho}} \nabla_{\!\!\rho} \cdot \mathbf{F} \, \mathrm{d}\tilde{\rho} \,.$$
 (GM8)

The GM90 choice: non-conservative source in the tracer equation

$$\underbrace{\left(\partial_{t}+u\partial_{x}+v\partial_{y}+Q\partial_{\tilde{\rho}}\right)}_{\stackrel{\text{def}}{=}D/Dt}\tau=R(\tau)+\left(\frac{\partial h}{\partial \rho}\right)^{-1}E(\tau). \quad \text{(GM10)}$$

The GM90 choice: non-conservative source in the tracer equation

$$(\partial_t + u\partial_x + v\partial_y + Q\partial_\rho)\tau = R(\tau) + \left(\frac{\partial h}{\partial \rho}\right)^{-1} E(\tau).$$
 (GM10)

The choice that satisfies property B

$$E(\tau) = \frac{\partial}{\partial \rho} \left[\left(\frac{\partial h}{\partial \rho} \right) Q \tau \right] + \nabla_{\!\!\rho} \cdot \mathbf{G} \,. \tag{GM11}$$

The choice that satisfies property **C**

$$\left(\frac{\partial h}{\partial \rho}\right)Q = E(\rho).$$
 (GM12)

Mixing in isopycnal coordinates

The "flux" **G** satisfy

$$\nabla_{\rho} \cdot [\rho \mathbf{F} + \mathbf{G}(\rho)] = 0, \qquad (GM13)$$

so that the simplest solution is

$$\mathbf{G}(\tau) = -\tau \mathbf{F}$$
 .

The non-eddy-resolving tracer equation

$$(\partial_t + \mathbf{u} \cdot \nabla_{\!\rho}) \tau + \underbrace{\left(\frac{\partial h}{\partial \rho}\right)^{-1}}_{\mathsf{Eddy velocity}} \cdot \nabla_{\!\rho} \tau = R(\tau) \,. \tag{\mathsf{GM14}}$$

Recall:
$$\mathbf{F} = \overline{\left(\frac{\partial h}{\partial \rho}\right)' \mathbf{u}'}$$
.

Non-eddy-resolving models

The simple choice for **F**

$$\mathbf{F} = -\frac{\partial}{\partial \rho} (\kappa \nabla_{\!\rho} h), \qquad (GM15)$$

with thickness diffusivity κ .

It is simple, but is it justified?

If anything, this choice makes Q a local function:

$$\left(rac{\partial h}{\partial
ho}
ight)Q = -
abla_{
ho}\cdot\left(\kappa
abla_{
ho}h
ight).$$
 (GM16)

Tracer equation

$$(\partial_t + \mathbf{u} \cdot \nabla)T = R(T), \tag{G1}$$

with tracer T (temperature, salinity, or passive), and the mixing operator

$$R(T) = \partial_m (J^{mn} \partial_n T). \tag{G2}$$

The second-order mixing tensor J

Mixing in isopycnal coordinates

 K^{mn} Symmetric (diffusive) part: $K^{mn} = (J^{mn} + J^{nm})/2$.

 A^{mn} Anti-symmetric (advective) part: $A^{mn} = (J^{mn} - J^{nm})/2$.

The GM skew flux

Two forms of the stirring operator

$$R_{A}(T) = \partial_{m}(\underline{A}^{mn}\partial_{n}T) = (\partial_{m}A^{mn})\partial_{n}T + \underline{A}^{mn}\partial_{n}\partial_{m}T^{0}$$
(G7)
$$= \partial_{n}[(\underline{\partial_{m}A^{mn}})T] - \underline{T}\partial_{m}\partial_{n}A^{mn}^{0}$$
(G3)

The advective flux \mathbf{F}_{adv}

$$F_{adv}^n = U_{\star}^n A^{mn} \,, \tag{G4}$$

with the non-divergent eddy velocity U^n_{\star} : $\partial_n U^n_{\star} = -\partial_n \partial_m A^{mn} = 0$.

$$\mathbf{F}_{adv} = T(\nabla \times \boldsymbol{\psi}), \tag{G6}$$

with the vector streamfunction $A^{nm} \stackrel{\text{def}}{=} \epsilon^{mnp} \psi_p$.

The skew flux \mathbf{F}_{skew}

The skew flux

$$F_{skew}^{m} = -A^{mn}\partial_{n}T \tag{G8}$$

is perpendicular to the tracer surfaces

Mixing in isopycnal coordinates

$$\nabla T \cdot \mathbf{F}_{skew} = -(\partial_m T) A^{mn} (\partial_n T) = 0.$$
 (G9)

Thus

$$F_{skew}^{m} = -\nabla T \times \psi, \qquad (G10)$$

and

$$\mathbf{F}_{adv} = \mathbf{F}_{skew} + \nabla \times (T\psi). \tag{G11}$$

The GM skew flux

The GM choice [Recall, in density coordinates, ${f F}=-rac{\partial}{\partial ho}(\kappa abla_{\! ho}h)]$

$$\mathbf{A} = A^{mn} = \kappa \begin{bmatrix} 0 & 0 & -S_x \\ 0 & 0 & -S_y \\ S_x & S_y & 0 \end{bmatrix} , \tag{G14}$$

with the isopycnal slope $\mathbf{S}\stackrel{\mathrm{def}}{=} -\nabla_h \rho/\partial_z \rho$. Thus

$$\mathbf{F}_{adv} = T\nabla \times (\mathbf{k} \times \kappa S) = T\mathbf{U}_{\star}, \tag{G15}$$

$$\mathbf{F}_{skew} = -\nabla T \times (\mathbf{k} \times \kappa \mathbf{S}) = \kappa \mathbf{S} \partial_z T - \mathbf{k} (\kappa \mathbf{S} \cdot \nabla_h T). \tag{G16}$$

GM stirring + Redi diffusion (with diffusivity A)

$$\mathbf{J} = J^{mn} = \begin{bmatrix} A & 0 & (A - \kappa)S_{x} \\ 0 & A & (A - \kappa)S_{y} \\ (A + \kappa)S_{x} & AS_{y} & A \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} A & 0 & AS_{x} \\ 0 & A & AS_{y} \\ AS_{x} & AS_{y} & A|\mathbf{S}|^{2} \end{bmatrix}}_{=K^{mn}} + \underbrace{\begin{bmatrix} 0 & 0 & -\kappa S_{x} \\ 0 & 0 & -\kappa S_{y} \\ \kappa S_{x} & \kappa S_{y} & 0 \end{bmatrix}}_{=A^{mn}},$$
(G27)

The tracer equation

$$(\partial_t + \mathbf{u} \cdot \nabla) T = \underbrace{\partial_m(K^{mn}\partial_n T)}_{\text{Redi diffusion}} + \underbrace{\partial_m(A^{mn}\partial_n T)}_{\text{GM stirring}}.$$

Summary

- Quasi-adiabatic parameterization.
- Tracer stirring performed by total (mean + eddy) velocity.
- Tracer mixing can be equivalently represented by advective or skew fluxes.
- (GM90: unclear, if not inconsistent, paper.)

Long live GM

There once was an ocean model called MOM,
That occasionally used to bomb,
But eddy advection, and much less convection,
Turned it into a stable NCOM.

(Limerick by Peter Gent)

The future of climate modeling: GM *1990 — †2020? The ocean component will fully resolve mesoscales eddies

Source: Los Alamos National Laboratory.

But...

There is always something to parameterize

Snapshot of vorticity in a "fine-scale-resolving" (1 km) model

Visualization credit: Ryan Abernathey.

(Or things to think about in the privacy of your own study)

How to determine the GM coefficient κ ?

- i. Is it spatially variable? (Yes)
- ii. It is sign definite?
- iii. How does it relate to eddy diffusivities estimated from data?

Why was GM successful?

Can we transfer some of the GM experience to parameterizations of finer scales?

GM does not parameterize momentum fluxes and $\overline{b'^2}/N^2$...

$$\begin{split} \overline{u'q'} &= \left(\overline{u'v'}\right)_x + \frac{1}{2} \left[\left(\overline{v'^2 - u'^2}\right) - \frac{\overline{b'^2}}{N^2} \right]_y + \left(f_0 \frac{\overline{u'b'}}{N^2} \right)_z \\ \overline{v'q'} &= - \left(\overline{u'v'} \right)_y + \frac{1}{2} \left[\left(\overline{v'^2 - u'^2}\right) + \frac{\overline{b'^2}}{N^2} \right]_x + \left(f_0 \frac{\overline{v'b'}}{N^2} \right)_z \end{split}$$

Useful references Clearer than the original GM paper

Redi diffusion

Redi, JPO, 1982, Isopycnal mixing by coordinate rotation.

Better interpretations of the GM parameterization

- Gent et al., JPO, 1996, Parameterizing eddy-induced tracer transports in ocean circulation models.
- Gent, OM, 2011. The GM parameterization: 20/20 hindsight.

Beyond GM

 Marshall et al., JPO, 2012, A Framework for parameterizing eddy potential vorticity fluxes.