
�nother advanta�e of a mathematical statement is that it is so definite that it
mi�ht be definitely wron�. . . �ome verbal statements have not this merit.
L. F. Richardson (����–����).

CHAPTER �

Waves, Mean Flows and their Interaction

W���–���ɴ-�ʟ�� ɪɴ��ʀ���ɪ�ɴ is concerned with how somemean �ow, perhaps a time
or zonal average, interacts with a wave-like departure from thatmean, and this chapter
provides an elementary introduction to a number of topics in this area. It is ‘elementary’

because our derivations and discussion are obtained by direct and straightforwardmanipulations
of the equations ofmotion, o�en in the simplest case that will illustrate the relevant principle. It
is implicit in what we do that it is a sensible thing to decompose the �elds into amean plus some
departure, and one case when this is so is when the departure is of small amplitude. Departures
from themean— generically called eddies— are in reality not always small; for example, in the
mid-latitude troposphere the eddies are o�en of similar amplitude to themean �ow, and chapters
?? and ?? will explore this from the standpoint of turbulence. However, in this chapter we will
usually assume, without any rigorous justi�cation, that eddies are indeed of small amplitude, and,
in particular, that eddy–mean-�ow interaction is larger than eddy–eddy interaction.

A wave is an eddy that satis�es, at least approximately, a dispersion relation. It is the presence
of such a dispersion relation that enables a number of results to be obtained that would otherwise
be out of our reach, and that gives rise to the appellation ‘wave–mean-�ow’. In mid-latitudes the
relevant waves are usually Rossby waves, as introduced in chapter ??, although gravity waves also
interact with the mean �ow. It is implicit in de�ning waves this way that they are generally of
small amplitude, for it is this that allows the equations ofmotion to be sensibly linearized and a
dispersion relation to be obtained (although amonochromatic wavemay have �nite amplitude and
still satisfy a dispersion relation). However, this does notmean that the waves do not interact with
each other and with themean �ow; wemay expect, or at least hope, that the qualitative nature of
such interactions, as calculated by wave–mean-�ow interaction theory, will carry over and provide
insights into the �nite-amplitude problem. �us, one goal of wave–mean-�ow theory is to provide
a way of qualitatively understanding more realistic situations, and to suggest diagnostics thatmight
be used to analyze both observations and numerical solutions of the fully nonlinear problem. In
this chapter we will largely concern ourselves with a zonalmean, since this is the simplest and o�en
most useful case because of the presence of simple — i.e., periodic — boundary conditions. We
will also bemainly concerned with quasi-geostrophic dynamics on a �-plane. �e reader who is
anxious for real examplesmight wish to �rst look at chapter � and then come back to this chapter
as needed.

���
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�.� QUASI-GEOSTROPHIC WAVE–MEAN-FLOW INTERACTION
�.�.� Preliminaries
To �x our dynamical system and notation, we write down the quasi-geostrophic potential vorticity
equation ���� + �(�, �) = �, (�.�)

where � represents any non-conservative terms and the potential vorticity in a Boussinesq system
is � = �� + � + ��� � �0�2 �� , (�.�)

where � is the relative vorticity and � is the buoyancy perturbation from the background state
characterized by�2. [In an ideal gas � = ��+�+ (�0/��)�� ����/�2�,where �� is a speci�ed density
pro�le, andmost of our derivations can be extended to that case.] We will refer to lines of constant� as isentropes. In terms of the streamfunction, the variables are� = ∇2�, � = �0 ���� , � = �� + �∇2 + ��� � �20�2 ������. (�.�)

where ∇2 ≡ (�2� + �2�). �e potential vorticity equation holds in the �uid interior; the boundary
conditions on (�.�) are provided by the thermodynamic equation���� + �(�, �) + ��2 = �, (�.�)

where� represents heating terms. �e vertical velocity at the boundary, �, is zero in the absence of
topography and Ekman friction, and if� is also zero the boundary condition is just���� + �(�, �) = 0. (�.�)

Equations (�.�) and (�.�) are the evolution equations for the system and if both � and� are zero
they conserve both the total energy, �� and the total enstrophy, ��:

d ��
d� = 0, �� = 12 ��(∇�)2 + �20�2 ����� �2 d�,
d��
d� = 0, �� = 12 �� �2 d�. (�.�)

where � is a volume bounded by surfaces at which the normal velocity is zero, or that has periodic
boundary conditions. �e enstrophy is also conserved layerwise; that is, the horizontal integral of�2 is conserved at every level.

�.�.� Potential vorticity flux in the linear equations
Let us decompose the �elds into a mean (to be denoted with an overbar) plus a perturbation
(denoted with a prime), and let us suppose the perturbation �elds are of small amplitude. (In linear
problems, such as those considered in chapter ??, we decomposed the �ow into a ‘basic state’ plus a
perturbation, with the basic state �xed in time. Our approach here is similar, but soon we will allow
themean state to evolve.) �e linearized quasi-geostrophic potential vorticity equation is then����� + ������ + �� ���� + ������ + �� ���� = ��. (�.�)
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where �� represents eddy forcing and dissipation and, in terms of streamfunction,���(�,�, �, �), ��(�,�, �, �)� = �−����� , ����� � , (�.�a)��(�,�, �, �) = ∇2�� + ��� � �20�2 ����� � . (�.�b)

If themean is a zonal mean then ��/�� = 0 and � = 0 (because � is purely geostrophic) and
(�.�) simpli�es to ����� + ������ + �� ���� = ��, (�.�)

where � = �� − ���� + ��� � �0�2 �� , and
���� = � − �2���2 − ��� � �20�2 ����� . (�.��a,b)

using thermal wind, �0��/�� = −��/��.
Multiplying by �� and zonally averaging gives the enstrophy equation:12 �����2 = −���� ���� +���� . (�.��)

�e quantity ���� is themeridional �ux of potential vorticity; this is downgradient (by de�nition)
when the �rst term on the right-hand side is positive (i.e., ������/�� < 0), and it then acts to
increase the variance of the perturbation. (�is occurs, for example, when the �ux is di�usive so
that ���� = −���/��, where �may vary but is everywhere positive.) �is argumentmay be inverted:
for inviscid �ow (� = 0), if the waves are growing, as for example in the canonical models of
baroclinic instability discussed in chapter ??, then the potential vorticity �ux is downgradient.

If the second term on the right-hand side of (�.��) is negative, as it will be if �� is a dissipative
process (e.g., if �� = �∇2�� or if �� = −���, where � and � are positive) then a statistical balance
can be achieved between enstrophy production via downgradient transport, and dissipation. If the
waves are steady (by which wemean statistically steady, neither growing nor decaying in amplitude)
and conservative (i.e., �� = 0) then wemust have���� = 0. (�.��)

Similar results follow for the buoyancy at the boundary; we start by linearizing the thermody-
namic equation (�.�) to give ����� + ������ + �� ���� = ��, (�.��)

where�� is a diabatic source term. Multiplying (�.��) by �� and averaging gives12 ��� ��2 = −���� ���� +���� . (�.��)

�us growing adiabatic waves have a downgradient �ux of buoyancy at the boundary. In the Eady
problem there is no interior gradient of basic-state potential vorticity and all the terms in (�.��)
are zero, but the perturbation grows at the boundary. If the waves are steady and adiabatic then,
analogously to (�.��), ���� = 0. (�.��)
�e boundary conditions and �uxes may be absorbed into the interior de�nition of potential
vorticity and its �uxes by way of the delta-function boundary layer construction, described in
section ??. In models with discrete vertical layers or a �nite number of levels it is common practice
to absorb the boundary conditions into the de�nition of potential vorticity at top and bottom.
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�.�.� Wave–mean-flow interaction
In linear problems we usually suppose that the mean �ow is �xed and in that case in the zonal
mean terms, � and � in (�.�), would be functions only of � and �. However, we in reality wemight
expect that themean �ow would change because ofmomentum and heat �ux convergences arising
from the eddy-eddy interactions. To calculate these changes we begin with the potential vorticity
equation (�.�) and, in the usual way, express the variables as a zonal mean plus an eddy term and
obtain ���� + ∇⋅ (� �) + ∇⋅ (����) = �. (�.��)

Now, since themean �ow is a zonal mean, and � = 0, the �rst term is zero and themean �ow evolves
according to ���� + ��� ���� = �. (�.��)

Similarly, at the boundary themean buoyancy evolution equation is���� + ��� ���� = �. (�.��)

To obtain � from � and � we use thermal wind balance to de�ne a streamfunction �. �at is,
since �0 ���� = −���� , then ��, 1�0 �� = �−���� , ���� � (�.��a,b)

whence, using (�.��a), the potential vorticity is�(�, �, �) − �� = ��� � �20�2 ���� � + �2���2 . (�.��)

If � is known in the interior from (�.��), and � (i.e., �0��/��) is known at the boundaries, then �
and � in the interiormay be obtained using (�.��) and (�.��b).

To close the system we suppose that the eddy terms themselves evolve according to (�.�) and
(�.��). If in those equations we were to include the eddy-eddy interaction terms we would simply
recover the full system, so in neglecting those termswe have constructed an eddy–mean-�ow system,
commonly called a wave–mean-�ow system because by eliminating the nonlinear terms in the
perturbation equation the eddies will o�en be wavelike. Non quasi-geostrophic wave–mean-�ow
systemsmay be constructed in a similar fashion: for example, we could construct a system using
the primitive equations with separate equations for eddy and zonal-mean temperature and velocity
�elds, and an example involving gravity waves is given in chapter �.

Note that such systems do di�er from linear ones. In constructing linear systems we posit that
the eddy terms are small compared to themean �ow and thus neglect the eddy-eddy interaction
terms. In a wave–mean-�ow problem we similarly suppose the eddy terms are small, and we neglect
eddy-eddy interaction terms where they produce another eddy, because the terms involving the
mean �ow are larger. However, in themean �ow equation, (�.��), there are no largermean �ow
terms and we keep the eddy-eddy terms and allow themean �ow to evolve. Such a justi�cation
is hardly a rigorous one, since if the eddy terms are small then the e�ects on themean �ow will
be small and so onemight suppose that themean �ow should be held �xed. �e wave–mean �ow
equations really can only be justi�ed on a case-by-case basis with a detailed examination of the size
of the terms and the rate at which they evolve, and that is the subject of weakly nonlinear theory. It
is also o�en the case that in applications one allows only a very limited set of wave terms— for
example, onemight allow the eddies to be represented by just a pair of Fouriermodes. In any case,
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the wave–mean-�ow problem can be a useful tool to gain insight into the behaviour of the full
system. �e equations are summarized in the grey box on page ���.

We now consider somemore properties of the waves themselves— how they propagate and
what they conserve — beginning with a discussion of the potential vorticity �ux and its relative, the
Eliassen–Palm �ux

�.� THE ELIASSEN–PALM FLUX
�e eddy �ux of potential vorticitymay be expressed in terms of vorticity and buoyancy �uxes as���� = ���� + �0�� ��� � ���2� . (�.��)

�e second term on the right-hand side can be written as�0�� ��� � ���2� = �0 ��� ������2 � − �0 ����� ���2= �0 ��� ������2 � − �0 ��� ������ � ���2= �0 ��� ������2 � − �202�2 ��� ������ �2 ,
(�.��)

using �� = �0���/��.
Similarly, the �ux of relative vorticity can be written���� = − ��� (����) + 12 ��� (��2 − ��2) (�.��)

Using (�.��) and (�.��), (�.��) becomes���� = − ��� (����) + ��� � �0�2 ����� + 12 ��� �(��2 − ��2) − ��2�2� . (�.��)

�us themeridional potential vorticity �ux, in the quasi-geostrophic approximation, can be written
as the divergence of a vector: ���� = ∇⋅ E where

E ≡ 12 �(��2 − ��2) − ��2�2� i − (����) j + � �0�2 ����� k. (�.��)

A particularly useful form of this arises a�er zonally averaging, for then (�.��) becomes���� = − ��� ���� + ��� � �0�2 ����� . (�.��)

�e vector de�ned by

F ≡ −���� j + �0�2 ���� k (�.��)

is called the (quasi-geostrophic) Eliassen–Palm (EP) �ux,� and its divergence, given by (�.��), gives
the poleward �ux of potential vorticity: ���� = ∇� ⋅F , (�.��)

where ∇�⋅ ≡ (�/��, �/��)⋅ is the divergence in themeridional plane. Unless themeaning is unclear,
the subscript � on themeridional divergence will be dropped.
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�.�.� �e Eliassen–Palm relation
On dividing by ��/�� and using (�.��), the enstrophy equation (�.��) becomes�A�� + ∇⋅F = D, (�.��a)

where

A = ��22��/�� , D = ������/�� . (�.��b)

Equation (�.��a) is known as the Eliassen–Palm relation, and it is a conservation law for the wave
activity density A. �e conservation law is exact (in the linear approximation) if themean �ow is
constant in time. It will be a good approximation if ��/�� varies slowly compared to the variation
of ��2.

If we integrate (�.��b) over a meridional area � bounded by walls where the eddy activity
vanishes, and if D = 0, we obtain

d
d� ��A d� = 0. (�.��)

�e integral is a wave activity— a quantity that is quadratic in the amplitude of the perturbation
and that is conserved in the absence of forcing and dissipation. In this case A is the negative of
the pseudomomentum, for reasons we will encounter later. (‘Wave action’ is a particular form of
wave activity; it is the energy divided by the frequency and it is a conserved property in many wave
problems.) Note that neither the perturbation energy nor the perturbation enstrophy are wave
activities of the linearized equations, because there can be an exchange of energy or enstrophy
between mean and perturbation — indeed, this is how a perturbation grows in baroclinic or
barotropic instability! �is is already evident from (�.��), or in general take (�.�) with �� = 0 and
multiply by �� to give the enstrophy equation12 ���2�� + 12� ⋅ ∇��2 + ���� ⋅ ∇� = 0, (�.��)

where here the overbar is an average (although it need not be a zonal average). Integrating this over
a volume � gives

d ���
d� ≡ d

d� �� 12��2 d� = −�� ���� ⋅ ∇� d�. (�.��)

�e right-hand side does not, in general, vanish and so ��� is not in general conserved.

�.�.� �e group velocity property for Rossby waves
�e vectorF describes how the wave activity propagates. We noted in chapter � that in the case in
which the disturbance is composed of plane or almost plane waves that satisfy a dispersion relation,
thenF = ��A, where �� is the group velocity and (�.��a) becomes�A�� + ∇⋅ (A��) = 0. (�.��)

�is is a useful property, because if we can diagnose �� from observations we can use (�.��a)
to determine how wave activity density propagates. Let us demonstrate this explicitly for the
pseudomomentum in Rossby waves, that is for (�.��a).
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�e Boussinesq quasi-geostrophic equation on the �-plane, linearized around a uniform zonal
�ow and with constant static stability, is����� + ������ + �� ���� = 0, (�.��)

where �� = [∇2 + (�20 /�2)�2/��2]�� and, if � is constant, ��/�� = �. �us we have� ��� + � �����∇2�� + ���� �20�2 ����� �� + ������ = 0. (�.��)

Seeking solutions of the form �� = Re ��ei(��+��+��−��), (�.��)

we �nd the dispersion relation, � = �� − ���2 . (�.��)

where �2 = (�2 + �2 +�2�20 /�2), and the group velocity components:��� = 2����4 , ��� = 2����20 /�2�4 . (�.��)

Also, if �� = Re �� exp[i(�� + �� +�� − ��)], and similarly for the other �elds, then�� = −Re i� ��, �� = Re i� ��,�� = Re i��0 ��, �� = −Re �2 ��, (�.��)

�e wave activity density is then

A = 12 ��2� = �44� | ��2|, (�.��)

where the additional factor of � in the denominator arises from the averaging. Using (�.��) the EP
�ux, (�.��), is

F� = −���� = 12��| ��2|, F� = �0�2 ���� = �202�2 ��| ��2|. (�.��)

Using (�.��), (�.��) and (�.��) we obtain

F = (F�,F�) = ��A. (�.��)

If the properties of themedium are slowly varying, so that a (spatially varying) group velocity can
still be de�ned, then this is a useful expression to estimate how the wave activity propagates in the
atmosphere and in numerical simulations.

�.�.� � �e orthogonality of modes
It is a direct consequence of the conservation ofwave activity that disturbancemodes are orthogonal
in the ‘wave activity norm’, de�ned later on, and thus are a useful measure of the amplitude of a
particularmode.� To explore this, we start with the linearized potential vorticity equation,����� + ������ + �� ���� = 0. (�.��)
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Let us formally seek solutions of the form �� = Re� exp(i��) where � is the sum ofmodes,� =�� ���(�, �)e−i����, (�.��)

where � is an identi�er of themodes. �emodes satisfy(��2� + ��) ��� = ���2� ���, (�.��)

where �2� = �2��2 + ��� � �20�2 ���� − �2. (�.��)

�e upper and lower boundary conditions (at � = 0,−�) are given by the thermodynamic equation����� + ������ + �� ���� = 0, (�.��)

and if we simplify further by supposing ��/�� = 0 then the boundary condition becomes������ + ������� = 0. (�.��)

�ere are no meridional buoyancy �uxes at the boundary. If�2 is a constant (a simplifying but not
essential assumption) then we can let ���(�, �) = ��(�) cos��, with � = �π/� where � is an integer
and themode � now labels only themeridional modes. �e corresponding potential vorticitymodes
are given by �� = �2�,���, �2�,� = �2��2 − (�20 /�2)�2 − �2, (�.��)

and the boundary conditions are then built in to any solution we construct from (�.��) and (�.��).�
Wemay then consider a single zonal and a single vertical wavenumber. (If there is no horizontal
variation of the shear, themeridional modes are harmonic functions, for example �� ∝ sin(�π�/�)
for a channel of width �.)

For a given basic state wemay imagine solving (�.��), numerically or analytically, and determin-
ing themodes. However, thesemodes are not orthogonal in the sense of either energy or enstrophy.
�at is, denoting the inner product by��, �� ≡ (2�)−1 �� �� d�, (�.��)

then, in general, �� = ���, ��� �= 0, �� = ���, ��� �= 0, (�.��a,b)

for � �= �, where �� = �2�,���. Perturbation energy and enstrophy are thus not wave activities of the
linearized equations, and it is notmeaningful to talk about the energy or enstrophy of a particular
mode. However, by the same token wemay expect orthogonality in the wave activity norm. To
prove this and understand what it means, suppose that at � = 0 the disturbance consists of two
modes, � and�, so that at a later time � = (��e−i���� + ��e−i���� + c.c.), where �� �= �� and we assume
that both are real. �e wave activity is� ≡ �A d� d� = ���, �∗�/��� e−i�(��−��)� + ���, �∗�/��� + ���, �∗�/��� + c.c. (�.��)

�e second and third terms on the right-hand side are the wave activities of each mode, and these
are constants (to see this, consider the case when the disturbance is just a single mode). Now,
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because d�/d� = 0 the �rst termmust vanish if �� �= ��, implying themodes are orthogonal and, in
particular,

Re � 1�� ���∗� d� = 0, (�.��)

for � �= �. �e inner product weighted by 1/�� de�nes the wave activity norm. Orthogonality is
a useful result, for itmeans that the wave activity is a propermeasure of the amplitude of a given
mode unlike, for example, energy. �e conservation of wave activity will lead to a particularly
straightforward derivation of the necessary conditions for stability, given in section �.�.

�.� THE TRANSFORMED EULERIAN MEAN
�e so-called transformed Eulerian mean, or TEM, is a transformation of the equations ofmotion
that provides a useful framework for discussing eddy e�ects under a wide range of conditions.� It is
useful because, as we shall see, it is equivalent to a very natural form of averaging the equations
that serves to eliminate eddy �uxes in the thermodynamic equation and collect them together, in a
simple form, in themomentum equation and in so doing it highlights the role of potential vorticity
�uxes. �eTEM also provides a natural separation between diabatic and adiabatic e�ects or between
advective and di�usive �uxes and, in the case inwhich the �ow is adiabatic, a pleasing simpli�cation
of the equations. In later chapters we will use the TEM to better understand the mid-latitude
troposphere and the dynamics of the Antarctic Circumpolar Current, and as a framework for the
parameterization of eddy �uxes. Of course, there being no free lunch, the TEM brings with it its
own di�culties, and in particular the implementation of boundary conditions can cause di�culties,
especially in the actual numerical integration of the equations.

�.�.� Quasi-geostrophic form
For simplicity we will use the Boussinesq equations on the beta-plane, and the zonally averaged
Eulerian mean equations for the zonally averaged zonal velocity and the buoyancymay then be
written as (see section ??)���� − (� + �)� + ����� = − ��� ���� − ��� ���� + �, (�.��a)���� + ����� + ����� = − ��� ���� − ������� + �, (�.��b)

where � and � represent frictional and heating terms, respectively. Note that the meridional
velocity, �, is purely ageostrophic. Using quasi-geostrophic scaling we neglect the vertical eddy
�ux divergences and all ageostrophic velocities except when multiplied by �0 or �2. �e above
equations then become ���� = �0� − ��� ���� + �, (�.��a)���� = −�2� − ��� ���� + �. (�.��b)

�ese two equations are connected by the thermal wind relation,�0 ���� = −���� , (�.��)
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which is a combination of the geostrophic �-momentum equation (�0� = −��/��) and hydrostasy
(��/�� = �). One less than ideal aspect of (�.��) is that in the extratropics the dominant balance is
usually between the �rst two terms on the right-hand sides of each equation, even in time-dependent
cases. �us, the Coriolis force closely balances the divergence of the eddymomentum �uxes, and
the advection of themean strati�cation (�2�, or ‘adiabatic cooling’) o�en balances the divergence
of eddy heat �ux, with heating being a small residual. �ismay lead to an underestimation of the
importance of diabatic heating, as this is ultimately responsible for themean meridional circulation.
Furthermore, the link between � and � via thermal wind dynamically couples buoyancy and
momentum, and obscures the understanding of how the eddy �uxes in�uence these �elds— is it
through the eddy heat �uxes ormomentum �uxes, or some combination?

To address this issue we combine the terms�2� and the eddy �ux in (�.��b) into a single total
or residual (so recognizing the cancellation between themean and eddy terms) heat transport term
that in a steady state is balanced by the diabatic term �. To do this, we �rst note that because � and� are related bymass conservation we can de�ne amean meridional streamfunction �� such that(�,�) = �−����� , ����� � . (�.��)

�e velocities then satisfy ��/�� + ��/�� = 0 automatically. If we de�ne a residual streamfunction
by �∗ ≡ �� + 1�2 ����, (�.��a)

the components of the residual mean meridional circulation are then given by(�∗,�∗) = �−��∗�� , ��∗�� � , (�.��b)

and �∗ = � − ��� � 1�2 ����� , �∗ = � + ��� � 1�2 ����� . (�.��)

Note that by construction, the residual overturning circulation satis�es��∗�� + ��∗�� = 0. (�.��)

Substituting (�.��) into (�.��a) and (�.��b) the zonal momentum and buoyancy equations then
take the simple forms ���� = �0�∗ + ���� + �,���� = −�2�∗ + �.

(�.��a)

(�.��b)

which are known as the (quasi-geostrophic) transformed Eulerianmean equations, or TEM equations.
�e potential vorticity �ux, ���� , is given in terms of the heat and vorticity �uxes by (�.��), and is
equal to the divergence of the Eliassen–Palm �ux as in (�.��).

�e TEM equationsmake it apparent that wemay consider the potential vorticity �uxes, rather
than the separate contributions of the vorticity and heat �uxes, to force the circulation. If we know
the potential vorticity �ux as well as � and �, then (�.��) and (�.��b), along with thermal wind
balance �0 ���� = −���� , (�.��)
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form a complete set. �e meridional overturning circulation is obtained by eliminating time
derivatives from (�.��b) using (�.��), giving�20 �2�∗��2 +�2 �2�∗��2 = �0 ��� ���� + �0 ���� + ���� . (�.��)

�us, the residual or net overturning circulation is driven by the (vertical derivative of the) potential
vorticity �uxes and the diabatic terms— driven in the sense that if we know those terms we can
calculate the overturning circulation, although of course the �uxes themselves depend on the
circulation. Note that this equation applies at every instant, even if the equations are not in a steady
state.

Use of the TEM equations in TEM form is particularly advantageous when the eddy potential
vorticity �ux arises from wave activity, for example from Rossby waves. �e potential vorticity �ux
is the convergence of the EP �uxF , as in (�.��), and if the eddies satisfy a dispersion relation the
components of the EP �ux are equal to the group velocitymultiplied by the wave activity density
A, as in (�.��). �us, knowing the group velocity tells us a great deal about how momentum is
transported by waves. We’ll use the TEM to deduce themean �ow acceleration in sections �.�, �.�
and, in particular, in section �.�.

Connection to potential vorticity and wave–mean-flow interaction
If we take the curl of (�.��b) — that is, cross di�erentiate its components — then, a�er using
the residual mass continuity equation (�.��), we recover the zonally averaged potential vorticity
equation namely ���� = − ��� ���� − ���� , (�.��a)

where �(�, �) = ��� � �0�2 �� − ���� , (�.��b)

which is essentially the same as (�.��) and (�.��), noting that wemay add �� to the de�nition of
zonally-averaged potential vorticity with no e�ect.

�e corresponding equation for the evolution of eddy potential vorticity is, in its inviscid form,� ��� + �(�, �) ���� �� + �� ���� = 0, (�.��)

as in (�.�). Equations (�.��) and (�.��) are a closed set of quasi-linear equations, and we have
recovered the wave–mean-�ow system described in section �.�.�.

�.�.� �e TEM in isentropic coordinates
�e residual circulation has an illuminating interpretation if we think of the �uid as comprising
multiple layers of shallow water, or equivalently if we cast the problem in isentropic coordinates
(section ??). Using the notation of a shallow water system, themomentum andmass conservation
equation can then be written as���� + � ⋅ ∇� − �� = �, ���� + ∇⋅ (��) = �. (�.��a,b)
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�e quantity � is the thickness between two isentropic surfaces and � is a thickness source term.
(�e �eld � plays the same role as � in section ??.) With quasi-geostrophic scaling, so that variations
in Coriolis parameter and layer thickness are small, zonally averaging in a conventional way gives���� − �0� = ���� + �, ���� +����� = − ��� ���� + �. (�.��a,b)

�e overbars in these equations denote averages taken along isentropes— i.e., they are averages for
a given layer— but are otherwise conventional, and themeridional velocity is purely ageostrophic.
By analogy to (�.��), we de�ne the residual circulation by�∗ ≡ � + 1����� , (�.��)

where� is themean thickness of the layer. Using (�.��) in (�.��) gives���� − �0�∗ = ���� + �, ���� +���∗�� = �, (�.��a,b)

where ���� = ���� − �0����� , (�.��)

is themeridional potential vorticity �ux in a shallow water system. From (�.��) we see that the
residual velocity is ameasure of the total meridional thickness �ux, eddy plusmean, in an isentropic
layer. �is is o�en amore useful quantity than the Eulerian velocity � because it is generally the
former, not the latter, that is constrained by the external forcing. What we have done, of course, is
to e�ectively use a thickness-weightedmean in (�.��b); to see this, de�ne the thickness-weighted
mean by �∗ ≡ ��� . (�.��)

(We use �∗ to denote a thickness- ormass-weightedmean, and �∗ to denote a residual velocity; the
quantities are closely related, as we will see.) From (�.��) we have�∗ = � + 1����� , (�.��)

then the zonal average of (�.��b) is just ���� + ��� (��∗) = �, (�.��)

which is the same as (�.��b) if we take� = �. Similarly, if we use the thickness weighted velocity
(�.��) in themomentum equation (�.��a) we obtain (�.��a).

Evidently, if themass-weightedmeridional velocity is used in themomentum and thickness
equations then the eddymass �ux does not enter the equations explicitly: the only eddy �ux in
(�.��) is that of potential vorticity. �at is, in isentropic coordinates the equations in TEM form are
equivalent to the equations that arise from a particular form of averaging— thickness weighted
averaging— rather than the conventional Eulerian averaging. A similar correspondence occurs in
height coordinates, as we now see.
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Fig. �.� Two isentropic surfaces, �1 and �2, and their mean positions, �1 and �2. �e depar-
ture of an isentrope from its mean position is proportional to the temperature perturbation
at the mean position of the isentrope, and the variations in thickness (��) of the isentropic
layer are proportional to the vertical derivative of this.

�.�.� Connection between the residual and thickness-weighted circulation
It is evident from the above arguments that, in a shallow water system or in isentropic coordinates,
the residual velocity is ameasure of the total (i.e.,mean plus eddy) thickness transport. In height
coordinates, the de�nition of residual velocity, (�.��) does not lend itself so easily to such an
interpretation. However, the residual velocity in height coordinates is, in fact, also ameasure of the
total thickness transport, or equivalently of themass transport between two isentropic surfaces,
as we now discover. Speci�cally, we show that averaging the total transport in isentropic layers
is equivalent to themass transport evaluated by the TEM formalism in height coordinates, and
speci�cally that the thickness-weightedmean, �∗ is equivalent to the residual velocity, �∗ in height
coordinates. Our demonstration is for a Boussinesq system, but the extension to a compressible gas
is reasonably straightforward.�

Consider two isentropic surfaces, �1 and �2 with mean positions �1 and �2, as in Fig. �.�. (We
use � to denote the vertical coordinate, and � to denote the location of isentropic surfaces.) �e
meridional transport between these surfaces is given by� = ��1�2 � d�. (�.��)

If the velocity does not vary with height within the layer (and in the limit of layer thickness going
to zero this is the case) then � = �� where � = �1 − �2 is the thickness of the isentropic layer. �e
zonally averaged transport is then given by� = 1� �� � d� = 1� �� ���1�2 � d�� d� = ��1�2 � d� = �� = �� + ����, (�.��)

with obvious notation, and with an overbar denoting a zonal average. Letting the distance between
isentropes shrink to zero this result allows us to write�∗ ≡ ���� = �� + ������ , (�.��)

where (⋅)� denotes an average along an isentrope and � = ��/�� is the thickness density, ameasure
of the thickness between two isentropes. Equation (�.��) is analogous to (�.��), for a continuously
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strati�ed system. �e averaged quantity �∗ is not proportional to the average of the velocity at
constant height, or even to the average along an isentrope; rather, it is the thickness-weighted zonal
average of the velocity between two isentropic surfaces, �� apart, ofmean separation proportional
to ���. Our goal is to express this transport in terms of Eulerian-averaged quantities, at a constant
height �.

Let us �rst connect an average along an isentrope of some variable � to its average at constant
height by writing, for small isentropic displacements,�� = �(� + ��)� ≈ �(�) + ����/���, (�.��)

where the superscript explicitly denotes how the zonal average is taken, and �� is the displacement of
the isotherm from itsmean position. �is can be expressed in terms of the temperature perturbation
at the location of themean isentrope by Taylor expanding � around its value on thatmean isentrope.
�at is, �(�) = �(�) + �������=� (� − �) + ⋅ ⋅ ⋅ , (�.��)

where � = �(�), giving �� ≈ −�����(�) ≈ − ������ , (�.��)

where �� = � − � and �� = �(�) − �(�). Using (�.��) in (�.��) (and omitting the superscript � on ���)
we obtain, with � = �, �� = �� − ���������� . (�.��)

Note that if � is in thermal wind balance with � then the second term vanishes identically, but we
will not invoke this.

We now transform the second term on the right-hand side (�.��) to an average at constant �.
�e variations in thickness of an isothermal layer are given by�� ≈ ������ = −� ��� � ������ , (�.��)

using (�.��). �us, neglecting terms that are third-order in amplitude,

����� = −��� ��� � �������. (�.��)

Using both (�.��) and (�.��), (�.��) becomes

�∗ = �� − ���������� − �� ��� � ������� = �� − ��� �������� ��. (�.��)

�e right-hand side of the last equation is the TEM form of the residual velocity; thus, we have
shown that �∗ ≡ ��� = �� + ������ ≈ �� − ��� ��������� � ≡ �∗. (�.��)

We see the equivalence of the thickness-weighted mean velocity on the le�-hand side and the
residual velocity on the right-hand side. In the quasi-geostrophic limit�2 = ��� and � is a reference
thickness.
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�.� � THE TEM IN THE PRIMITIVE EQUATIONS
[�is section has been removed for further editing]

�.� THE NON-ACCELERATION RESULT
For the rest of this chapter we return to quasi-geostrophic dynamics, and consider further the
interpretation and application of the potential vorticity �ux and its relatives. We �rst consider an
important result in wave–mean-�ow dynamics, the non-acceleration result.� �is result shows
that under certain conditions, to bemade explicit below, waves have no net e�ect on the zonally
averaged �ow, an important and somewhat counter-intuitive result.

�.�.� A derivation from the potential vorticity equation
Consider how the potential vorticity �uxes a�ect themean �elds. �e unforced and inviscid zonally
averaged potential vorticity equation is ���� + ������� = ��. (�.��)

Now, in quasi-geostrophic theory the geostrophically balanced velocity and buoyancy can be
determined from the potential vorticity via an elliptic equation, and in particular� − �� = �2���2 + ��� � �20�2 ���� � , (�.��)

where � is such that (�, �/�0) = (−��/��, ��/��). Di�erentiating (�.��) with respect to � we obtain� �2��2 + ��� � �20�2 ����� ���� = (∇⋅F)��. (�.��)

where ∇ ⋅ F = ���� is the divergence of the EP �ux. �is is determined using the wave activity
equation which, reprising (�.��a), is �A�� + ∇2 ⋅F = D. (�.��)

If the waves are statistically steady (i.e., �A/�� = 0) and have no dissipation (D = 0) then evidently∇⋅F = 0. If there is no acceleration at the boundaries then the solution of (WMF.�) is���� = 0. (�.��)

�is is a non-acceleration result. �at is to say, under certain conditions the tendency of themean
�elds, and in particular of the zonally-averaged zonal �ow, are independent of the waves. To be
explicit, those conditions are the following.
(i) �e waves are steady (so that, using the wave activity equationA does not vary).
(ii) �e waves are conservative [i.e.,D = 0 in (�.��a)]. Given this and item (i), the Eliassen–Palm

relation implies that ∇⋅F = 0; that is, the potential vorticity �ux is zero.
(iii) �e waves are of small amplitude (all of our analysis has neglected terms that are cubic in

perturbation amplitude).
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(iv) �e waves do not a�ect the boundary conditions (so there are no boundary contributions to
the acceleration).

�e result applies to the buoyancy and velocity �elds that are directly invertible from potential
vorticity, and not to the ageostrophic velocities. Given the way we have derived it, it does not seem
a surprising result; however, it can be powerful and counter-intuitive, for itmeans that steady waves
(i.e., those whose amplitude does not vary) do not a�ect the zonal �ow. However, they do a�ect the
meridional overturning circulation, and the relative vorticity �uxmay also be non-zero. In fact, the
non-acceleration theorem is telling us that the changes in the vorticity �ux are exactly compensated
for by changes in themeridional circulation, and there is no net e�ect on the zonally averaged zonal
�ow. It is irreversibility, o�en manifested by the breaking of waves, that leads to permanent changes
in themean �ow.

�e derivation of this result by way of themomentum equation, which onemight expect to
bemore natural, is rather awkward because onemust considermomentum and buoyancy �uxes
separately. Furthermore, the zonally averagedmeridional circulation comes into play: for example,
meridional velocity, �, is, although small because it is purely ageostrophic, not zero and we cannot
neglect it because it ismultiplied by the Coriolis parameter, which is large. �us, the eddy vorticity
�uxes can a�ect both themeridional circulation and the acceleration of the zonal mean �ow, and it
might seem impossible to disentangle the two e�ects without completely solving the equations of
motion. However, we can proceed by way of themomentum and buoyancy equations if we use the
transformed Eulerian mean and this provides a useful alternate derivation, as follows.

�.�.� Using TEM to give the non-acceleration result
Wemay use the TEM formalism to obtain the non-acceleration result. �e explanation is largely
equivalent to that given above, but the explication may be useful.

A two-dimensional case
Consider two-dimensional incompressible �ow on the �-plane, for which there is no buoyancy �ux.
�e linearized vorticity equation is ����� + ������ + �� ���� = ��, (�.��)

from which we derive, analogously to (�.��a), the Eliassen–Palm relation�A�� + �F�� = D, (�.��)

where F = −���� , D represents non-conservative forces, and

A = ��22��� = 12��2 ���� . (�.��)

�e quantity �� ≡ −��/��� is proportional to themeridional particle displacement in a disturbance.
Now consider the �-momentum equation���� = −��2�� − ����� − ���� + ��. (�.��)

Zonally averaging, noting that � = 0, gives���� = −����� = ���� = �F�� . (�.��)
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Finally, combining (�.��) and (�.��) gives��� (� +A) = D. (�.��)

In the absence of non-conservative terms (i.e., if D = 0) the quantity � +A is constant.� Further, if
the waves are steady and conservative thenA is constant and, therefore, so is �.
�e stratified case
In the strati�ed case we can use the TEM form of themomentum equation to derive a similar result.
�e unforced zonally averaged zonal momentum equation can be written as���� − �0�∗ = ∇⋅F , (�.��)

and using the Eliassen–Palm relation thismay be written as��� (� +A) − �0�∗ = D, (�.��)

and so again A is related to the momentum of the �ow. If, furthermore, the waves are steady
(�A/�� = 0) and conservative (D = 0), then ��/��−�0�∗ = 0. However, under these same conditions
the residual circulation will also be zero. �is is because the residual meridional circulation (�∗,�∗)
arises via the necessity to keep the temperature and velocity �elds in thermal wind balance, and is
thus determined by an elliptic equation, namely (�.��). If the waves are steady and adiabatic then,
since ���� = 0, the right-hand side of the equation is zero and it becomes�20 �2�∗��2 +�2 �2�∗��2 = 0. (�.��)

If�∗ = 0 at the boundaries, then the unique solution of this is�∗ = 0 everywhere. At themeridional
boundaries wemay certainly suppose that �∗ vanishes if these are quiescent latitudes, and at the
horizontal boundaries the buoyancy �ux will vanish if the waves there are steady, because from
(�.��) we have ���� ���� = −12 ��� ��2 = 0. (�.��)

Under these circumstances, then, the residual meridional circulation vanishes in the interior and,
from (�.��), themean �ow is steady, thus reprising the non-acceleration result.

Compare (�.��) with themomentum equation in conventional Eulerian form, namely���� − �0� = ���� . (�.���)

�ere is no reason that the vorticity �ux should vanish when waves are present, even if they are
steady. However, such a �ux is (under non-acceleration conditions) precisely compensated by the
meridional circulation �0�, something that is hard to infer or intuit directly from (�.���); even
when non-acceleration conditions do not apply there will be a signi�cant cancellation between the
Coriolis and eddy terms. �e di�culty boils down to the fact that, in contrast to ����, ���� is not the
�ux of a wave activity.

Unlike the proof of the non-acceleration result given in section �.�.�, the above argument does
not use the invertibility property of potential vorticity directly, suggesting an extension to the
primitive equations, but we do not pursue that here.� Various results regarding the TEM and
non-acceleration are summarized in the shaded box on page ���.



��� Chapter �. Waves, Mean Flows and their Interaction

�.�.� �e EP flux and form drag
Itmay seem a littlemagical that the zonal �ow is driven by the Eliassen–Palm �ux via (�.��). �e
poleward vorticity �ux is clearly related to the momentum �ux convergence, but why should a
poleward buoyancy �ux a�ect themomentum? �e TEM form of themomentum equation may be
written as ���� = ��� � �0�2 ����� + ��, (�.���)

where �� = ���� + �0�∗ represents forces from themomentum �ux and Coriolis force. �e �rst
term on the right-hand side certainly does not look like a force; however, it turns out to be directly
proportional to the form drag between isentropic layers. Recall from section ?? that the form drag,��, at an interface between two layers of shallow water is

�� = −�� ����� , (�.���)

where � is the interfacial displacement. But from (�.��) �� = −��/�2 and with this and geostrophic
balance we have �� = �0�0�2 ����. (�.���)

�us, the vertical component of the EP �ux (i.e., the meridional buoyancy �ux) is in fact a real
stress acting on a �uid layer and equal to themomentum �ux caused by the wavy interface. �e net
momentum convergence into an in�nitesimal layer ofmean thickness � is then [cf. (??)],

�� = ������ = ��0�0 ��� ������2 � , (�.���)

and a layer ofmean thickness � is accelerated according to���� = �0 ��� �������� � + ��. (�.���)

�e appearance of the buoyancy �ux is really a consequence of the way we have chosen to average
the equations: obtaining (�.���) involved averaging the forces over an isentropic layer, and given
this it can only be the residual circulation that contributes to the Coriolis force. Onemight say that
the vertical component of the EP �ux is a force in drag,masquerading as a buoyancy �ux.

�.� � INFLUENCE OF EDDIES ON THE MEAN FLOW IN THE EADY PROBLEM
We now consider the eddy �uxes in the Eady problem, and, in particular, how thesemight feed
back on to themean �ow. Because of the simplicity of the setting the problem can be fully solved
in both the Eulerian or residual frameworks and it is therefore a very instructive, albeit somewhat
algebraically complex, example.��

�.�.� Formulation
Let us �rst distinguish between the basic �ow, the zonal mean �elds, and the perturbation. �e
basic �ow is the �ow around which the equations ofmotion are linearized; this �ow is unstable, and
the perturbations, assumed to be small, grow exponentially with time. Because the perturbations
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are formally always small they do not a�ect the basic �ow, but they do produce changes in the zonal
mean velocity and buoyancy �elds. In Eulerian form this is represented by,���� = �0� − ������� , ���� = −�2� − ������� , (�.���)

and the TEM version of these equation is���� = �0�∗ + ���� , ���� = −�2�∗, (�.���)

where in the Eady problem ��(����) and ���� are both zero. We can calculate the perturbation
quantities from the solution to the Eady problem (e.g., calculate ����) and thus infer the structure
of themean �ow tendencies ��/�� and ��/�� and themeridional circulation, (�,�) or (�∗,�∗). All
of these �elds are perturbation quantities and all are exponentially growing, and so in reality they
will eventually have a �nite e�ect on the pre-existing zonal �ow, but in the Eady problem, or any
similar linear problem, such recti�cation is assumed to be small and is neglected.

Using the thermal wind relation, �0��� = −��� to eliminate time derivatives in (�.���) gives an
equation for themeridional streamfunction ��, namely,�2�2� �2����2 + �2����2 = − 1�2 �2������2 , (�.���)

where (�,�) = (−���/��, ���/��) and we have non-dimensionalized � with � and � with �. �e
boundary conditions are that �� = 0 at � = 0, � and � = 0,�. Similarly, and analogously to to (�.��),
we obtain an equation for the residual streamfunction, �∗, namely�2�2� �2�∗��2 + �2�∗��2 = 0, (�.���)

where now the boundary conditions are that�2�∗ = �����/�� at the upper and lower boundaries,
and � = 0 at the lateral boundaries. In terms of the residual streamfunction this is�∗ = 1�2 ���� , at � = 0, 1, �∗ = 0, at � = 0, 1. (�.���)

�e residual and overturning circulations are related by (�.��a), and (�.���) and (�.���) are, at one
level, simply di�erent representations of the same problem, connected by a simplemathematical
transformation. However, the residual streamfunction better represents the total transport of the
�uid. Equation (�.���) is particularly simple, because of the absence of potential vorticity �uxes in
the interior, and it is apparent that the residual circulation is driven by boundary sources. We care
only about the spatial structure of the right-hand sides of (�.���) and of the boundary conditions of
(�.���). �e former is given by− �2������2 ∝ − �2��2 sin2 �� = −2�2 cos 2��. (�.���)

�e eddy heat �uxes in the Eady problem are independent of height, asmay be calculated explicitly
from the solutions of chapter ??. In fact, the result follows without detailed calculation, by �rst
noting that the eddy potential vorticity �ux is zero because the basic state has zero QG potential
vorticity and therefore nonemay be generated. Further, because the basic state does not vary in �
there can be no momentum �ux convergence in the �-direction, and so themomentum �ux itself
is zero if it is zero on the boundary. �us [using for example (�.��) and (�.��)] the eddy heat �ux is
independent of height and the EP vectors are directed purely vertically (Fig. �.�).

�e boundary conditions for the residual circulation are�∗(�, 0) = �∗(�, 1) ∝ sin2 ��. (�.���)
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Fig. �.� �e Eliassen–Palmvector in the Eady problem.
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�.�.� Solution
�e solutions to (�.���) and (�.���) may be obtained either analytically or numerically. In a domain0 < � < 1 and 0 < � < 1 the residual streamfunction for � = π is given by:�∗ = ∞��=1�� sin[(2� − 1)��]cosh[��π(2� − 1)(� − 0.5)/�]cosh[��π(2� − 1)/2�] ,�� = 2π(2� − 1) − 1π(2� − 1) − 2� − 1π(2� − 1) + 2� . (�.���)

�e solution is obtained by �rst projecting the boundary conditions [proportional to sin2 ��, or(1 − cos 2��)/2] on to the eigenfunctions of the horizontal part of the Laplacian (i.e., sine functions),
and this gives the coe�cients of��. �e vertical structure is then obtained by solving (�/��)2�2��∗ =−�2��∗, which gives the cosh functions. �e series converges very quickly, and the �rst term in the
series captures the dominant structure of the solution, essentially because, for � = π, sin �� is not
unlike sin2 �� on the interval [0, 1].

�e Eulerian circulation is obtained from the residual circulation using (�.��a) and so by the
addition of a �eld independent of � and proportional to sin2 ��. �e resulting structure is dominated
by this and the �rst term of (�.���) (proportional to sin ��) and, noting that the circulation is
symmetric about � = 0.5, we obtain a circulation dominated by a single cell, with equatorward
motion alo� and polewardmotion near the surface (Fig. �.�). �e heat �ux convergence in high
latitudes is leading to mean rising motion, with the precise shape of the streamfunction determined
by the boundary conditions. Although this is true, the heat �ux arises because of themotion of �uid
parcels, so itmay be a littlemisleading to infer, as onemight from the Eulerian streamfunction, that
the heat �ux causes the individual parcels to rise or sink in this fashion. �e residual streamfunction
is a better indicator of the total mass transport and, perhaps as onemight intuitively expect, these
show parcels rising in the low latitudes and sinking in high latitudes, providing a tendency to �atten
the isopycnals and to reduce themeridional temperature gradient.

�e residual circulation also shows �uid entering or leaving the domain at the boundary—what
does this represent? Suppose that instead of solving the continuous problem we had posed the
problem in a �nite number of layers (and we explicitly consider the two-layer problem below). As
the number of layers increases the solutions to the linear baroclinic instability problem approaches
that of the Eady problem (e.g., Fig. ??); however, as we saw in section �.� the residual circulation is
closed in the layeredmodel, and the sum over all the layers of themeridional transport vanishes.
Now, in the layeredmodel the vertical boundary conditions are built in to the representation by
way of a rede�nition of the potential vorticity of the top and bottom layers, so that, in the layered
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Fig. �.� �e Eulerian streamfunction (top) and the residual streamfunction for the Eady
problem, calculated using (�.���) and (�.���), with �2/�2� = 9.

version of the Eady problem there appears to be a potential vorticity gradient in these two layers,
instead of a buoyancy gradient at the boundary. �e residual circulation is then closed by a return
�ow that occurs only in the top and bottom layers, and as the number of layers increases this �ow is
con�ned to a thinner and thinner layer, and to a delta-function in the continuous limit. To indicate
this we have placed arrows just above and below the domain in Fig. �.�. (�is equivalence between
boundary conditions and delta-function sources is the same as that giving rise to the delta-function
boundary layer of section ??.)

�e e�ect on themean �ow is inferred directly from the residual circulation: themean �ow
acceleration is proportional to �∗ and the buoyancy tendency is proportional to −�∗, and these
are plotted in Figs. �.� and �.�. Because there is no momentum �ux convergence in the problem
the zonal �ow tendency is entirely baroclinic — its vertical integral is zero — and over most of
the domain is such as to reduce themean shear. Consistently (using thermal wind) the buoyancy
tendency is such as to reduce themeridional temperature gradient; that is, the instabilities act to
transport heat polewards and so reduce the instability of themean �ow.

�.�.� �e two-level problem
�e residual circulation andmean-�ow tendencies can also be calculated for the two-level (Phillips)
problem, with the �-e�ect. �e potential vorticity �uxes in each layer are non-zero and themean
�ow equations are, for � = 1, 2,����� = �0�∗� + ������ , ���� = −�2�∗. (�.���)
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zero. (b)�e vertically averaged buoyancy tendency.
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�e vertical velocity and buoyancy are evaluated atmid-depth, and the thermal wind equation is�1 − �2 = −(�/2)��� and, bymass conservation, �∗1 = −�∗2 . If we de�ne a residual streamfunction�∗ such that �∗1 = −�∗2 = �∗, �∗ = ��∗�� , (�.���)

then eliminating time derivatives in (�.���) gives an equation for the residual streamfunction,�2�∗��2 − �2�2 �∗ = 2�0�2�2� (��1��1 − ��2��2), (�.���)

where �2�/2 = [2�0/(��)]2 and � is the total depth of the �uid, and we have non-dimensionalized
vertical scales by� and horizontal scales by �. As in the Eady problem it is only the spatial structure
of the terms on the right-hand side that are relevant, and thesemay be calculated from the solutions
to the two-level instability problem. �emain di�erence from the Eady problem is that the potential
vorticity �uxes are non-zero, even in the casewith � = 0: e�ectively, the boundary �uxes of the Eady
problem are absorbed into the potential vorticity �uxes of the two layers. Solving for the residual
circulation and interpreting themean-�ow tendencies is le� as an exercise for the reader (problem
�.??).
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Quasi-Geostrophic Wave–mean flow Interaction

�e inviscid and unforced Boussinesq quasi-geostrophic set of wave–mean-�ow equations
is ����� + ������ + �� ���� = 0, (WMF.�a)���� + ��� ���� = 0. (WMF.�b)

along with similar equations as needed for buoyancy at the boundary (seemain text). �e
eddy terms are�� = �∇2 + ��� � �20�2 �������, (��, ��) = �−����� , ����� � . (WMF.�a,b)

�emean �ow terms are �(�, �) = �� − ���� + ��� � �0�2 �� . (WMF.�)

and ���� = � − �2���2 − ��� � �0�2 ����� = � − �2���2 − ��� � �20�2 ����� , (WMF.�)

using thermal wind. To solve for themean-�ow wemay de�ne a streamfunction � such
that ��, 1�0 �� = �−���� , ���� � (WMF.�)

whence �(�, �) − �� = ��� � �20�2 ���� � + �2���2 . (WMF.�)

Given � from (WMF.�b) we solve (WMF.�) to give � and �. Equivalently, wemay derive a
single equation for the zonal wind by di�erentiating (WMF.�b) with respect to � and, using
(WMF.�), we obtain � �2��2 + ��� � �20�2 ����� ���� = �2��2 ����. (WMF.�)

�e evolution of themean �owmay also usefully be written in TEM form as���� − �0�∗ + ���� = 0, (WMF.�a)���� +�2�∗ = 0, (WMF.�b)

where �∗ and �∗ are found by solving the elliptic equation (�.��), and the value of ��/��
[for use in (WMF.�a)] is obtained using (WMF.�).
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Aspects of the TEM Formulation

Properties and features� �e residual mean circulation is equivalent to the total mass-weighted (eddy plus
Eulerian mean) circulation, and it is this circulation that is driven by the diabatic
forcing.� �ere are no explicit eddy �uxes in the buoyancy budget; the only eddy term is the
�ux of potential vorticity, and this is divergence of the Eliassen–Palm �ux; that is���� = ∇� ⋅F .� �e residual circulation, �∗, becomes part of the solution, just as � is part of the
solution in an Eulerian mean formulation.

But note� �e TEM formulation does not solve the parameterization problem, and eddy �uxes
are still present in the equations.� �e theory and practice are well developed for a zonal average, but less so for three-
dimensional, non-zonal �ow. �is is because the geometry enforces simple boundary
conditions in the zonal mean case.�� �e boundary conditions on the residual circulation are neither necessarily simple
nor easily determined; for example, at a horizontal boundary �∗ is not zero if there
are horizontal buoyancy �uxes.

Examples of the use of the TEM and its relatives in the general circulation of the atmosphere
and ocean arise in sections ??, ??, �.�, �.� and ??.
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TEM, Residual Velocities, Non-acceleration, and All �at

For a Boussinesq quasi-geostrophic system, the TEM form of the unforced momentum
equation and the thermodynamic equation are:���� − �0�∗ = ∇⋅F , ���� + �∗ ��� �0 = �, (T.�)

where ��0/�� = �2, � represents diabatic e�ects,F is the Eliassen–Palm (EP) �ux and its
divergence is the potential vorticity �ux; that is ∇� ⋅F = ���� . �e residual velocities are�∗ = � − ��� � 1�2 ����� , �∗ = � + ��� � 1�2 ����� . (T.�)

Spherical coordinate and ideal gas versions of these take a similar form. Wemay de�ne a
meridional overturning streamfunction such that (�∗,�∗) = �−��∗/��, ��∗/���, and using
thermal wind to eliminate time-derivatives in (T.�) we obtain�20 �2�∗��2 +�2 �2�∗��2 = �0 ��� ���� + ���� . (T.�)

�e abovemanipulationsmay seem formal, in that they simply transform themomentum
and thermodynamic equation from one form to another. However, the resulting equations
have two potential advantages over the untransfomed ones.
(i) �e residual meridional velocity is approximately equal to the average thickness-

weighted velocity between two neighbouring isentropic surfaces, and so is ameasure
of the total (Eulerian mean plus eddy) meridional transport of thickness or buoyancy.

(ii) �e EP �ux is directly related to certain conservation properties of waves. �e diver-
gence of the EP �ux is themeridional �ux of potential vorticity:

F = −(����) j + � �0�2 ����� k, ∇⋅F = ����. (T.�)

Furthermore, the EP �ux satis�es, to second order in wave amplitude,�A�� + ∇⋅F = D, where A = ��22��/�� , D = ������/�� . (T.�)

�e quantity A is a wave activity density, and D is its dissipation. For nearly plane
waves,A andF are connected by the group velocity property,

F = (F�,F�) = ��A, (T.�)

where �� is the group velocity of the waves. If the waves are steady (�A/�� = 0) and
dissipationless (D = 0) then ∇ ⋅ F = 0 and using (T.�) and (T.�) there is no wave-
induced acceleration of themean �ow; this is the ‘non-acceleration’ result. Commonly
there is enstrophy dissipation, or wave-breaking, and ∇⋅F < 0; such wave drag leads
to �ow deceleration and/or a poleward residual meridional velocity.
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�.� � NECESSARY CONDITIONS FOR INSTABILITY
�et’s take a taxi to the finish line.
Chris Garrett, Ocean Science Meeting, Hawaii ����.

As we noted in chapter ??, necessary conditions for instability, or su�cient conditions for stability,
can be very useful because when satis�ed they obviate the need to perform a detailed calculation.
In the remainder of this chapter we use the conservation of wave activities— pseudomomentum
and pseudoenergy— to derive such conditions. In sections ?? and ?? we derived such conditions
assuming the instability to be of normal-mode form. Here we give derivations that are both more
general and, in some ways, simpler; they utilize the fact that the potential vorticity �ux may be
written as a divergence of a vector and therefore vanishes when integrated over a domain, aside
from possible boundary contributions.

�.�.� Stability conditions from pseudomomentum conservation
Consider the perturbation enstrophy equation,12 �����2 = −����∇� ⋅F , (�.���)

whereF is the Eliassen–Palm �ux given by (�.��), the overbar is a zonal mean and the divergence
is in �-� plane. Dividing by ��/�� and integrating over a domain � which is such that the Eliassen–
Palm �ux vanishes at the boundaries gives the pseudomomentum conservation law,

�� ��� � ��2���� d� d� = 0. (�.���)

Equation (�.���) implies that, in the norm ���2/����, the perturbation cannot grow unless ��/��
changes sign somewhere in the domain, or at the boundaries. �is result does not depend upon the
instability being of normal-mode form. �e simplest result of all occurs in a barotropic problem
with no vertical variation. �en ��/�� = �/���� = � − �2�/��2, and demanding that this must
change sign for an instability reprises the in�ection point (Rayleigh–Kuo) condition. In themore
general case, if ��/�� changes sign along a vertical line then the instability is called a baroclinic
instability, and if it changes sign along a horizontal line the instability is barotropic — thesemay
be taken as the de�nitions of those terms. A mixed instability has a change of sign along both
horizontal and vertical lines.

�.�.� Inclusion of boundary terms
Suppose now the �ow is contained between two �at boundaries, at � = 0 and � = �. �e relevant
equations of motion are the potential vorticity evolution in the interior, supplemented by the
thermodynamic equation at the boundary. For unforced and inviscid �ow these give [cf. (�.��) and
(�.��)] ��� �12 ��2���� = −����, 0 < � < �, (�.���)

and ��� �12 ��2���� = −����, � = 0, �. (�.���)
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�e poleward �ux of potential vorticity is���� = − ��� ���� + ��� � �0�2 ����� , (�.���)

and integrating this expression with respect to both � and � gives�� ���� d� d� = � �0�2 ������0 , (�.���)

assuming that themeridional boundaries are at quiescent latitudes. Integrating (�.���) over � and �,
and using (�.���) gives ��� � 12 ��2��� d� d� = − � �0�2 ������0 . (�.���)

Using (�.���) to eliminate ���� �nally gives��� ������ 12 ��2��� d� d� − ���12 �0�2 ��2�����
�
0 d������ = 0. (�.���)

If this expression is positive or negative de�nite the perturbation cannot grow and therefore
the basic state is stable. Stability thus depends on the meridional gradient of potential vorticity
in the interior, and themeridional gradient of buoyancy at the boundary. If ��/�� changes sign
in the interior, or ��/�� changes sign at the boundary, we have the potential for instability. If
these are both one signed, then various possibilities exist, and using the thermal wind relation
(�0��/�� = −��/��) we obtain the following.

I. A stable case: ���� > 0 and ���� ���������=0 < 0 and ���� ���������=� > 0 �⇒ stability. (�.���)

Stability also ensues if all inequalities are switched.

II. Instability via interior-surface interactions:���� > 0 and ���� ���������=0 > 0 or ���� ���������=� < 0 �⇒ potential instability. (�.���)

�e condition ��/�� > 0 and (��/��)�=0 > 0 is the most common criterion for instability
that ismet in the atmosphere. In the troposphere we can sometimes ignore contributions
of the buoyancy �uxes at the tropopause (� = �), and stability is then determined by the
interior potential vorticity gradient and the surface buoyancy gradient. Similarly, in the ocean
contributions from the ocean �oor are normally very small.

III. Instability via edge wave interaction:���� ���������=0 > 0 and ���� ���������=� > 0 �⇒ potential instability. (�.���)

(And similarly, with both inequalities switched.) Such an instabilitymay occur where the
troposphere acts like a lid, as for example in the Eady problem. If ��/�� = 0 and there is no
lid at � = � (e.g., the Eady problem with no lid) then the instability disappears.
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One consequence of the upper boundary condition is that it provides a condition on the depth
of the disturbance. In the Eady problem the evolution of the system is determined by temperature
evolution at the surface,

D�
D� = 0 at � = 0, �, (�.���)

(where � = �0��/��) and zero potential vorticity in the interior, which implies that

∇2� + �2��2 �2���2 = 0 0 < � < �, (�.���)

where �� = �0/(��). Assuming a solution of the form � ∼ sin �� then the Poisson equation (�.���)
becomes �2�2� �2���2 = �2�, (�.���)

with solutions� = � exp(−��)+� exp(��),where �2 = �2�2/�20 . �e scale height of the disturbance
is thus � ∼ �0�2π� . (�.���)

where � ∼ 2π/� is the horizontal scale of the disturbance. If the upper boundary is higher than
this, it cannot interact strongly with the surface, because the disturbances at either boundary decay
before reaching the other. Put another way, if the structure of the disturbance is such that it is
shallower than�, the presence of the upper boundary is not felt. In the Eady problem, we know
that the upper boundary must be important, because it is only by its presence that the �ow can
be unstable. �us, all unstable modes in the Eady problem must be ‘deep’ in this sense, which
can be veri�ed by direct calculation. �is condition gives rise to a physical interpretation of the
high-wavenumber cut-o�: if � is too small, themodes are too shallow to span the full depth of the
�uid, and from (�.���) the condition for stability is thus� < �� = 2π���0 or � > �� = �0�� = �−1� . (�.���)

where �� and �� are the critical length scales and wavenumbers. Wavenumbers larger than the
reciprocal of the deformation radius are stable in the Eady problem. If � is non-zero, this condition
does not apply, because the necessary condition for instability can be satis�ed by a combination of
a surface temperature gradient and an interior gradient of potential vorticity provided by �, as in
condition (II.) in section �.�.�. �us, wemay expect that, if � �= 0, higher wavenumbers (� > ��)
may be unstable but if so they will be shallow, and thismay be con�rmed by explicit calculation
(see Figs. ?? and ??). In the two-level model shallowmodes are, by construction, not allowed so that
high wavenumbers will be stable, with or without beta.

�.� � NECESSARY CONDITIONS FOR INSTABILITY: USE OF PSEUDOENERGY

In this section we derive another necessary condition for instability, sometimes called an ‘Arnold
condition’, that is based on the conservation properties of energy and enstrophy. Such conditions
can be derivedmore generally by variational methods, and these lead to somewhat stronger results
(in particular, nonlinear results that do not require the perturbation to be small) but our derivations
will be elementary and direct.��
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�.�.� Two-dimensional flow
First consider inviscid, incompressible two-dimensional �ow governed by the equation ofmotion���� + �(�, �) = 0, (�.���)

where � = � + � = ∇2� + � is the absolute vorticity and � is the streamfunction. In a steady state,
the streamfunction and the potential vorticity are functions of each other so that� = �(�) and � = �(�), (�.���)

where � is a di�erentiable but otherwise arbitrary function of its argument, and � its functional
inverse. Equation (�.���) is then ���� = −d�d� �(�,�) = 0 (�.���)

and all steady solutions are of the form (�.���). We shall prove that if d�/d� > 0 then the �ow is
stable, in a sense to bemade explicit below. Consider the evolution of perturbations about such a
steady state, so that � = � + ��, � = � + ��, (�.���)

and we suppose that the perturbation vanishes at the domain boundary or that the boundary
conditions are periodic. �e potential vorticity perturbation satis�es, in the linear approximation,����� + �(��,�) + �(�, ��) = 0. (�.���)

Now, because potential vorticity is conserved on parcels, any function of potential vorticity is also
materially conserved, and in particular

D�(�)
D� = ���� + �(�,�) = 0. (�.���)

Linearizing this using (�.���) gives

d�
d� ����� + �(��,�) + ���, d�d���� = 0. (�.���)

We now form an energy equation from (�.���) by multiplying by −�� and integrating over the
domain. Integrating the �rst term by parts we �nd

d
d� � 12(∇��)2 d� = ����(�, ��) d�. (�.���)

Similarly, from (�.���) we obtain

d
d� � 12 d�d���2 d� = −�����(��,�) + �����, d�d����� d�. (�.���)

�e second term in square brackets vanishes. �is follows using the property of Jacobians, obtained
by integrating by parts, that���(�, �)� = ���(�, �)� = ���(�, �)� = − ���(�, �)� , (�.���)
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where the angle brackets denote horizontal integration. Using this we have������, d�
d����� = −�d�d����(�, ��)� = −12 �d�d��(�, ��2)�= −12 ���2��d�d� ,��� = 0. (�.���)

Adding (�.���) and (�.���) the remaining nonlinear terms cancel and we obtain the conservation
law, �� = 12 ��(∇��)2 + d�d���2� d�,

d ��
d� = 0. (�.���)

�e quantity �� is known as the pseudoenergy of the disturbance and because it is a conserved quantity,
quadratic in the wave amplitude, it is (like pseudomomentum) a wave activity. Its conservation
holds whether the disturbance is growing, decaying or neutral.

If d�/d� is positive everywhere the pseudoenergy is a positive-de�nite quantity, and the growth
of the disturbance is then largely prevented and the basic state is said to be stable in the sense of
Liapunov. �is means that the magnitude of the perturbation, as measured by some norm, is
bounded by its initial magnitude. In the case here we de�ne the norm||�||2 ≡ ��(∇�)2 + d�

d� (∇2�)2� d�, (�.���)

so that ||��(�)||2 = ||��(0)||2. (�.���)

If d�/d� > 0 then, although the energy of the disturbance can grow, its �nal amplitude is bounded
by the initial value of the pseudoenergy, because if perturbation energy is to grow perturbation
enstrophymust shrink but it cannot shrink past zero. Normal-mode instability, in which modes
grow exponentially, is completely precluded.

If the pseudoenergy is negative de�nite then stability is also assured, but this is a less common
situation for it demands that d�/d� be su�ciently negative so that the (negative of the) enstrophy
contribution is always larger than the energy contribution, and this can usually only be satis�ed
in a su�ciently small domain. To see this, suppose that �� = ∇2��, and that in the domain under
consideration the Laplacian operator has eigenvalues −�2 where∇2�� = −�2�� (�.���)

and the smallest eigenvalue, bymagnitude, is �20. �en, using Poincaré’s inequality,�(∇2��)2 d� ≥ �20 �(∇��)2 d�, (�.���)

a su�cient condition to make �� negative de�nite is that

d�
d� < − 1�20 . (�.���)

As the domain gets bigger, �0 diminishes and this condition becomes harder to satisfy.��
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Parallel shear flow and Fjørtoft’s condition
Consider the stability of a zonal �ow (i.e., a �ow in the �-direction), that varies only with �. �e
�ow stability condition is then

d�
d� = d�/d�d�/d� = − � − ��� − ��� > 0, (�.���)

where �� is a constant, representing an arbitrary, constant, zonal �ow. �e last equality follows
because the problem isGalilean invariant, and we are therefore at liberty to choose�� arbitrarily. To
connect this with Fjørto�’s condition (chapter ??) multiply the top and bottom by (�−���), whence
we see that a su�cient condition for stability is that (� − ��)(� − ���) is everywhere negative. �e
derivation here, unlike our earlier one in section ??,makes it clear that the condition does not only
apply to normal-mode instabilities.

�.�.� � Stratified quasi-geostrophic flow
�e extension of the pseudoenergy arguments to quasi-geostrophic �ow ismostly straightforward,
but with a complication from the vertical boundary conditions at the surface and at an upper
boundary, and the trusting readermay wish to skip straight to the results, (�.���)–(�.���).�� For
de�niteness, we consider Boussinesq, �-plane quasi-geostrophic �ow con�ned between �at rigid
surfaces at � = 0 and � = �. �e interior �ow is governed by the familiar potential vorticity equation
D�/D� = 0 and the buoyancy equation D�/D� = 0 at the two boundaries, where� = ∇2� + �� + ��� ��(�)���� � , � = �0 ���� , (�.���)

and �(�) = �20 /�2 is positive. �e basic state (� = �, � = �, � = �1,�2) satis�es� = �(�), 0 < � < �,� = �1(�1), � = 0 and � = �2(�2), � = �. (�.���)

Analogous to the barotropic case, we obtain the equations ofmotion for the interior perturbation����� + �(��,�) + �(�, ��) = 0, (�.���a)

d�
d� ����� + �(��,�) + ���, d�d���� = 0, (�.���b)

and at the two boundaries ����� + �(��,��) + �(��, ��) = 0, (�.���a)

d��
d�� ����� + �(��,��) + ����, d��d�� ��� = 0, (�.���b)

for � = 1, 2. (By d��/d�� wemean the derivative of �� with respect to its argument, evaluated at ��.)
From these equations, we form the pseudoenergy bymultiplying (�.���a) by −��, (�.���b) by ��, and
(�.���a) by ��, (�.���b) by ��. A�er somemanipulation we obtain the pseudoenergy conservation
law: �� = E+Z + B1 + B2 ,

d ��
d� = 0, (�.���)
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where

E = 12 �(∇��)2 + ������� �2� , Z = 12 �d�d���2� ,
B1 = 12 ��(0)�0 d�1

d�1 ��(0)2� , B2 = −12 ��(�)�0 d�2
d�2 ��(�)2� . (�.���)

where the curly brackets denote a three-dimensional integration over the �uid interior, and the angle
brackets denote a horizontal integration over the boundary surfaces at 0 and�. �e pseudoenergy�� is positive-de�nite, and therefore stability is assured in that norm, if all of the following conditions
are satis�ed:

d�
d� > 0, 1�0 d�1d�1 > 0, 1�0 d�2d�2 < 0. (�.���)

If the �ow is compressible, the potential vorticity is � = ∇2�+��+�−1� ��(������), where �� = ��(�),
but the �nal stability conditions are unaltered. If the upper boundary is then removed to in�nity
where ��(�) = 0 then only the lower boundary condition contributes to (�.���). In the layered form
of the quasi-geostrophic equations the vertical boundary conditions are built in to the de�nitions of
potential vorticity in the top and bottom layers. In this case, a su�cient condition for stability is that
d�/d� > 0 in each layer. Indeed, an alternate derivation of (�.���)–(�.���) would be to incorporate
the boundary conditions on buoyancy into the de�nition of potential vorticity by the delta-function
construction of section ??.

Zonal shear flow
Consider now zonally uniform zonal �ows, such as might give rise to baroclinic instability in a
channel. �e �elds are then functions of � and � only, and the su�cient conditions for stability are:

d�
d� = ��/����/�� = − �d�/d� > 0,
d�1
d�1 = d�1/d�d�1/d� = �(0)d�(0)/d� > 0,
d�2
d�2 = d�2/d�d�2/d� = �(�)d�(�)/d� < 0.

(�.���)

using the thermal wind relation, and setting �0 = 1 (its value is irrelevant). �ese results generalize
Fjørto�’s condition to the strati�ed case,�� and as in that case we are at liberty to add a uniform
zonal �ow to all the velocities.

�.�.� � Applications to baroclinic instability
Wemay use the stability conditions derived above to provide a fewmore results about baroclinic
instability, including an alternate derivation of theminimum shear criterion in two-layer �ow, and a
derivation of the high-wavenumber cut-o� to instability. In what follows we do not derive any new
criteria; rather, the derivationsmake it apparent that the criteria are not restricted to perturbations
of normal-mode form.

Minimum shear in two-layer flow
We consider two layers of equal depth, on a �at-bottomed �-plane with basic state�1 = −�1�, �2 = −�2� (�.���a)�1 = �� − �2�2 (�2 − �1)�, �2 = �� − �2�2 (�1 − �2)�. (�.���b)
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�is state is characterized by �� = ���� where�1 = − (� + �2���)(� + ��) , �2 = − (� − �2���)(� − ��) , (�.���)

with� = (�1+�2)/2 and �� = (�1−�2)/2. �e barotropic �ow does not a�ect the stability properties,
so without loss of generality wemay choose � < −��, and thismakes �1 > 0. �en �2 is also positive
if � > �2���/2. �us, a su�cient condition for stability is that�� < ��2� , (�.���)

as obtained in chapter ??. However, we now see that the stability condition does not apply only to
normal-mode instabilities.��

Use of pseudomomentum conservation provides an alternative derivation of the same result.
�e �ow will also be stable if in both layers ��/�� > 0, for then the conserved pseudomomentum
will be positive de�nite. If �1 > �2 then, from (�.���) d�1/d� > 0. �e �ow will be stable if
d�2/d� > 0, and this gives �� = 12(�1 − �2) < ��2� , (�.���)

as in (�.���).

�e high-wavenumber cut-off in two-layer baroclinic instability
We can use a pseudoenergy argument to show that there is a high-wavenumber cut-o� to two-layer
baroclinic instability, with the basic state (�.���). �e conserved pseudoenergy analogous to (�.���)
and (�.���) is readily found to be�� = �(∇��1)2 + (∇��2)2 + 12�2�(��1 − ��2)2 + ��21�1 + ��22�2 � = 0. (�.���)

Let us choose (without loss of generality) the barotropic �ow to be � = �/�2�. We then have�1 = �2 = −1/�2�, and the pseudoenergy is then just the actual energy minus �−2� times the total
enstrophy. If we de�ne � = (��1 + ��2)/2 and � = (��1 − ��2)/2 then, using (??) and (??), (�.���) may
be expressed as �� = �(∇�)2 + (∇�)2 + �2��2 − �−2� �(∇2�)2 + �(∇2 − �2�)��2�� . (�.���)

Now, let us express the �elds as Fourier sums,(�,�) =��,� (���,�, ���,�)ei(��+��). (�.���)

(�is expression assumes a doubly-periodic domain; essentially the same end-result is obtained in
a channel.) �e pseudoenergymay then be written as�� =��,� ��2 ��2�,�(�2� −�2) +��2��2�,�(�2� −��2)� (�.���)

where �2 = �2 + �2 and ��2 = �2 + �2�. If the deformation radius is su�ciently large (or the domain
su�ciently small) that �2 > �2�, then the pseudoenergy is negative-de�nite, so the �ow is stable,
no matter what the shearmay be. Such a situation might arise on a planet whose circumference
was less than the deformation radius, or in a small ocean basin. In the linear problem, in which
perturbation modes do not interact, horizontal wavenumbers with �2 > �2� are stable and there is
thus a high-wavenumber cut-o� to instability, as was found in chapter ?? by direct calculation.
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Notes
� After Eliassen & Palm (����).

� Andrews & McIntyre (����), Ripa (����) and Held (����). See also problem �.??.
� �ese restrictions on the basic state are not necessary to prove orthogonality, but they make the
algebra simpler. Also, we pay no attention here to the nature of the eigenvalues of (�.��), which, in
general, consist of both a discrete and a continuous spectrum. See Farrell (����) and McIntyre &
Shepherd (����).

� �e TEM was introduced by Andrews & McIntyre (����, ����) and Boyd (����b). A precursor is the
paper of Riehl & Fultz (����), who noted the shortcomings of zonal averaging in uncovering the
meaning of indirect cells in laboratory experiments, and by extension the atmosphere.

� �is problem can be worked around in some cases (Plumb ����, Greatbatch ����).

� �e main result of this subsection was originally obtained by McIntosh & McDougall (����). I thank
A. Plumb for a discussion about the derivation given here. See also de Szoeke & Bennett (����) for
related earlier work, and Juckes (����) and Nurser & Lee (����) for generalizations.

� Non-acceleration arguments have a long history, with contributions from Charney & Drazin (����),
Eliassen & Palm (����), Holton (����) and Boyd (����b). Andrews & McIntyre (����) put these
results in the context of the EP flux and the TEM formalism, and Dunkerton (����) reviews and
provides examples.

� Conservation laws of this ilk, their connection to the underlying symmetries of the basic state
and (relatedly) their finite-amplitude extension, are discussed by McIntyre & Shepherd (����) and
Shepherd (����). Conservation of momentum is related to the translational invariance of the
medium whereas conservation ofA is related to the translational invariance of the basic state, and
hence the appellation ‘pseudomomentum’.

� See Andrews & McIntyre (����).

�� Steve Garner and Raffaele Ferrari both provided very helpful input to this section.

�� �e original papers are Arnold (����, ����), with a number of results being subsequently developed
by Holm et al. (����). See Shepherd (����) for a review.

�� �e stability criterion is sometimes referred to as ‘Arnold’s second condition’. More discussion,
especially with regard to boundary conditions, is given in McIntyre & Shepherd (����).

�� Blumen (����), but the method we use is more direct.

�� Pedlosky (����) derived these conditions by a normal-mode approach.

�� Pierini & Vulpiani (����) and Vallis (����) further consider the finite-amplitude case.

Further reading
Andrews, D. G., Holton, J. R. & Leovy, C.B., ����. Middle Atmosphere Dynamics.

Provides a discussion of a number of topics in wave dynamics and wave–mean-flow interaction,
including the TEM, mainly in the context of stratospheric dynamics.

Buhler, O. ����.Waves and Mean Flows.
�is book provides a comprehensive and readable discussion of waves, mean flows and their interac-
tion, including the Transformed Eulerian Mean, the Generalized Lagrangian Mean, and more.


