Another advantage of a mathematical statement is that it is so definite that it
might be definitely wrong... Some verbal statements have not this merit.

L. F. Richardson (1881-1953).

CHAPTER 4

Waves, Mean Flows and their Interaction

or zonal average, interacts with a wave-like departure from that mean, and this chapter

provides an elementary introduction to a number of topics in this area. It is ‘elementary’
because our derivations and discussion are obtained by direct and straightforward manipulations
of the equations of motion, often in the simplest case that will illustrate the relevant principle. It
is implicit in what we do that it is a sensible thing to decompose the fields into a mean plus some
departure, and one case when this is so is when the departure is of small amplitude. Departures
from the mean — generically called eddies — are in reality not always small; for example, in the
mid-latitude troposphere the eddies are often of similar amplitude to the mean flow, and chapters
22 and 22 will explore this from the standpoint of turbulence. However, in this chapter we will
usually assume, without any rigorous justification, that eddies are indeed of small amplitude, and,
in particular, that eddy-mean-flow interaction is larger than eddy-eddy interaction.

A wave is an eddy that satisfies, at least approximately, a dispersion relation. It is the presence
of such a dispersion relation that enables a number of results to be obtained that would otherwise
be out of our reach, and that gives rise to the appellation ‘wave-mean-flow’ In mid-latitudes the
relevant waves are usually Rossby waves, as introduced in chapter ?2, although gravity waves also
interact with the mean flow. It is implicit in defining waves this way that they are generally of
small amplitude, for it is this that allows the equations of motion to be sensibly linearized and a
dispersion relation to be obtained (although a monochromatic wave may have finite amplitude and
still satisfy a dispersion relation). However, this does not mean that the waves do not interact with
each other and with the mean flow; we may expect, or at least hope, that the qualitative nature of
such interactions, as calculated by wave-mean-flow interaction theory, will carry over and provide
insights into the finite-amplitude problem. Thus, one goal of wave-mean-flow theory is to provide
a way of qualitatively understanding more realistic situations, and to suggest diagnostics that might
be used to analyze both observations and numerical solutions of the fully nonlinear problem. In
this chapter we will largely concern ourselves with a zonal mean, since this is the simplest and often
most useful case because of the presence of simple — i.e., periodic — boundary conditions. We
will also be mainly concerned with quasi-geostrophic dynamics on a 3-plane. The reader who is
anxious for real examples might wish to first look at chapter 6 and then come back to this chapter
as needed.

W AVE—MEAN-FLOW INTERACTION is concerned with how some mean flow, perhaps a time

129



130

Chapter 4. Waves, Mean Flows and their Interaction

4.1 QUASI-GEOSTROPHIC WAVE-MEAN-FLOW INTERACTION
4.1.1 Preliminaries

To fix our dynamical system and notation, we write down the quasi-geostrophic potential vorticity
equation
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where D represents any non-conservative terms and the potential vorticity in a Boussinesq system
is
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where ( is the relative vorticity and b is the buoyancy perturbation from the background state
characterized by N”. [In an ideal gas q = By +{ +(fy/pg)0, (pr/N 2), where py is a specified density
profile, and most of our derivations can be extended to that case.] We will refer to lines of constant
b as isentropes. In terms of the streamfunction, the variables are
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where V? = (92 + 8}2,). The potential vorticity equation holds in the fluid interior; the boundary
conditions on (4.3) are provided by the thermodynamic equation
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= Wb+ wN’ =H, (4.4)
where H represents heating terms. The vertical velocity at the boundary, w, is zero in the absence of

topography and Ekman friction, and if H is also zero the boundary condition is just

ob
=t J(y,b) = 0. (4.5)

Equations (4.1) and (4.5) are the evolution equations for the system and if both D and H are zero
they conserve both the total energy, E and the total enstrophy, Z:
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where V is a volume bounded by surfaces at which the normal velocity is zero, or that has periodic
boundary conditions. The enstrophy is also conserved layerwise; that is, the horizontal integral of
q* is conserved at every level.

4.1.2 Potential vorticity flux in the linear equations

Let us decompose the fields into a mean (to be denoted with an overbar) plus a perturbation
(denoted with a prime), and let us suppose the perturbation fields are of small amplitude. (In linear
problems, such as those considered in chapter 22, we decomposed the flow into a ‘basic state’ plus a
perturbation, with the basic state fixed in time. Our approach here is similar, but soon we will allow
the mean state to evolve.) The linearized quasi-geostrophic potential vorticity equation is then
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where D' represents eddy forcing and dissipation and, in terms of streamfunction,
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If the mean is a zonal mean then 0g/0x = 0 and v = 0 (because v is purely geostrophic) and
(4.7) simplifies to
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where
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using thermal wind, f,0u/0z = —0b/dy.
Multiplying by g’ and zonally averaging gives the enstrophy equation:
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The quantity v'q’ is the meridional flux of potential vorticity; this is downgradient (by definition)
when the first term on the right-hand side is positive (i.e., v'q'0g/dy < 0), and it then acts to
increase the variance of the perturbation. (This occurs, for example, when the flux is diffusive so
that v'q' = —x0g/dy, where k may vary but is everywhere positive.) This argument may be inverted:
for inviscid flow (D = 0), if the waves are growing, as for example in the canonical models of
baroclinic instability discussed in chapter ?2, then the potential vorticity flux is downgradient.

If the second term on the right-hand side of (4.11) is negative, as it will be if D' is a dissipative
process (e.g., if D' = AV?q orif D' = —rq, where A and r are positive) then a statistical balance
can be achieved between enstrophy production via downgradient transport, and dissipation. If the
waves are steady (by which we mean statistically steady, neither growing nor decaying in amplitude)
and conservative (i.e., D' = 0) then we must have

v'q =o0. (4.12)

Similar results follow for the buoyancy at the boundary; we start by linearizing the thermody-
namic equation (4.5) to give
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where H' is a diabatic source term. Multiplying (4.13) by b and averaging gives

Lo - w2 HY. (414)
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Thus growing adiabatic waves have a downgradient flux of buoyancy at the boundary. In the Eady
problem there is no interior gradient of basic-state potential vorticity and all the terms in (4.11)
are zero, but the perturbation grows at the boundary. If the waves are steady and adiabatic then,
analogously to (4.12),

v'b = 0. (4.15)

The boundary conditions and fluxes may be absorbed into the interior definition of potential
vorticity and its fluxes by way of the delta-function boundary layer construction, described in
section ?2. In models with discrete vertical layers or a finite number of levels it is common practice
to absorb the boundary conditions into the definition of potential vorticity at top and bottom.
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4.1.3 Wave-mean-flow interaction

In linear problems we usually suppose that the mean flow is fixed and in that case in the zonal
mean terms, % and g in (4.9), would be functions only of y and z. However, we in reality we might
expect that the mean flow would change because of momentum and heat flux convergences arising
from the eddy-eddy interactions. To calculate these changes we begin with the potential vorticity
equation (4.1) and, in the usual way, express the variables as a zonal mean plus an eddy term and
obtain
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Now, since the mean flow is a zonal mean, and v = 0, the first term is zero and the mean flow evolves

according to
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Similarly, at the boundary the mean buoyancy evolution equation is
b, 2 =T, (418)
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To obtain % from g and b we use thermal wind balance to define a streamfunction ¥. That is,
since B
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whence, using (4.10a), the potential vorticity is
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If g is known in the interior from (4.18), and b (ie. f,0¥/0z) is known at the boundaries, then u
and b in the interior may be obtained using (4.20) and (4.19b).

To close the system we suppose that the eddy terms themselves evolve according to (4.9) and
(4.13). If in those equations we were to include the eddy-eddy interaction terms we would simply
recover the full system, so in neglecting those terms we have constructed an eddy-mean-flow system,
commonly called a wave-mean-flow system because by eliminating the nonlinear terms in the
perturbation equation the eddies will often be wavelike. Non quasi-geostrophic wave-mean-flow
systems may be constructed in a similar fashion: for example, we could construct a system using
the primitive equations with separate equations for eddy and zonal-mean temperature and velocity
fields, and an example involving gravity waves is given in chapter 6.

Note that such systems do differ from linear ones. In constructing linear systems we posit that
the eddy terms are small compared to the mean flow and thus neglect the eddy-eddy interaction
terms. In a wave-mean-flow problem we similarly suppose the eddy terms are small, and we neglect
eddy-eddy interaction terms where they produce another eddy, because the terms involving the
mean flow are larger. However, in the mean flow equation, (4.16), there are no larger mean flow
terms and we keep the eddy-eddy terms and allow the mean flow to evolve. Such a justification
is hardly a rigorous one, since if the eddy terms are small then the effects on the mean flow will
be small and so one might suppose that the mean flow should be held fixed. The wave-mean flow
equations really can only be justified on a case-by-case basis with a detailed examination of the size
of the terms and the rate at which they evolve, and that is the subject of weakly nonlinear theory. It
is also often the case that in applications one allows only a very limited set of wave terms — for
example, one might allow the eddies to be represented by just a pair of Fourier modes. In any case,
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the wave-mean-flow problem can be a useful tool to gain insight into the behaviour of the full
system. The equations are summarized in the grey box on page 152.

We now consider some more properties of the waves themselves — how they propagate and
what they conserve — beginning with a discussion of the potential vorticity flux and its relative, the
Eliassen-Palm flux

4.2 THE ELIASSEN-PALM FLUX

The eddy flux of potential vorticity may be expressed in terms of vorticity and buoyancy fluxes as
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The second term on the right-hand side can be written as
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Similarly, the flux of relative vorticity can be written
V' = —%(u'v’) + %ai(v —u'? (4.23)
Using (4.22) and (4.23), (4.21) becomes
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Thus the meridional potential vorticity flux, in the quasi-geostrophic approximation, can be written
as the divergence of a vector: v'q' = V- € where
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A particularly useful form of this arises after zonally averaging, for then (4.24) becomes

&

o
7 =57 ) 42
The vector defined by
Jo
Fo_ Vb k 427
W j+ =2 N (4.27)

is called the (quasi-geostrophic) Eliassen-Palm (EP) flux,' and its divergence, given by (4.26), gives
the poleward flux of potential vorticity:

Vg =V, F, (4.28)

where V,- = (0/dy, 0/0z)- is the divergence in the meridional plane. Unless the meaning is unclear,
the subscript x on the meridional divergence will be dropped.
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4.2.1 The Eliassen—Palm relation

On dividing by 0g/dy and using (4.28), the enstrophy equation (4.11) becomes

%;j +V-F=0D, (4.29a)

where L
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Equation (4.29a) is known as the Eliassen—Palm relation, and it is a conservation law for the wave
activity density A. The conservation law is exact (in the linear approximation) if the mean flow is
constant in time. It will be a good approximation if dg/dy varies slowly compared to the variation

(4.29Db)
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If we integrate (4.29b) over a meridional area A bounded by walls where the eddy activity

vanishes, and if D = 0, we obtain
d

G| Ada-o (4.30)
The integral is a wave activity — a quantity that is quadratic in the amplitude of the perturbation
and that is conserved in the absence of forcing and dissipation. In this case A is the negative of
the pseudomomentum, for reasons we will encounter later. (‘Wave action’ is a particular form of
wave activity; it is the energy divided by the frequency and it is a conserved property in many wave
problems.) Note that neither the perturbation energy nor the perturbation enstrophy are wave
activities of the linearized equations, because there can be an exchange of energy or enstrophy
between mean and perturbation — indeed, this is how a perturbation grows in baroclinic or
barotropic instability! This is already evident from (4.11), or in general take (4.7) with D’ = 0 and
multiply by ¢’ to give the enstrophy equation
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where here the overbar is an average (although it need not be a zonal average). Integrating this over
a volume V gives

dz' d J
t dt

1
) 5q” dv = - JV u'q -vgav. (4.32)

The right-hand side does not, in general, vanish and so Z’ is not in general conserved.

4.2.2 The group velocity property for Rossby waves

The vector F describes how the wave activity propagates. We noted in chapter 1 that in the case in
which the disturbance is composed of plane or almost plane waves that satisfy a dispersion relation,
then F = ¢, A, where ¢, is the group velocity and (4.292) becomes
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This is a useful property, because if we can diagnose ¢, from observations we can use (4.29a)
to determine how wave activity density propagates. Let us demonstrate this explicitly for the
pseudomomentum in Rossby waves, that is for (4.29a).
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The Boussinesq quasi-geostrophic equation on the -plane, linearized around a uniform zonal
flow and with constant static stability, is

oq _dq  ,0q9
g rvsl=0 (4.34)

where q' =[V*+ (fOZ/Nz)az/azz]t//' and, if u is constant, 0g/dy = f. Thus we have
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Seeking solutions of the form
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we find the dispersion relation,
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where k> = (k* + I* + m” f} /N?), and the group velocity components:
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Also, if u' = Refiexpli(kx + ly + mz — wt)], and similarly for the other fields, then
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The wave activity density is then

A_lﬁ_’irﬂ (4.40)
T2 Tap?t '

where the additional factor of 2 in the denominator arises from the averaging. Using (4.39) the EP
flux, (4.27), is
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Using (4.38), (4.40) and (4.41) we obtain
F =(F,F) =c,A (4.42)

If the properties of the medium are slowly varying, so that a (spatially varying) group velocity can
still be defined, then this is a useful expression to estimate how the wave activity propagates in the
atmosphere and in numerical simulations.

4.2.3 ¢ The orthogonality of modes

It is a direct consequence of the conservation of wave activity that disturbance modes are orthogonal
in the ‘wave activity norm, defined later on, and thus are a useful measure of the amplitude of a
particular mode.” To explore this, we start with the linearized potential vorticity equation,
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Let us formally seek solutions of the form y' = Re ¥ exp(ikx) where ¥ is the sum of modes,
Y= 7,(y,2)e ", (4.44)

where # is an identifier of the modes. The modes satisfy
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The upper and lower boundary conditions (at z = 0, —H) are given by the thermodynamic equation
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and if we simplify further by supposing du1/0z = 0 then the boundary condition becomes

o, oy,
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There are no meridional buoyancy fluxes at the boundary. If N* is a constant (a simplifying but not
essential assumption) then we can let §,(y, z) = v, (y) cos pz, with p = jn/H where j is an integer
and the mode n now labels only the meridional modes. The corresponding potential vorticity modes
are given by

aZ
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and the boundary conditions are then built in to any solution we construct from (4.45) and (4.49).2
We may then consider a single zonal and a single vertical wavenumber. (If there is no horizontal
variation of the shear, the meridional modes are harmonic functions, for example y,, o sin(nny/L)
for a channel of width L.)

For a given basic state we may imagine solving (4.45), numerically or analytically, and determin-
ing the modes. However, these modes are not orthogonal in the sense of either energy or enstrophy.
That is, denoting the inner product by

(@b) = 2L)" JL abdy, (4.50)

then, in general,
IE = <1//n’ qm> # O’ IZ = <qn’ qm> # O’ (451a’b)

for n # m, where g, = A7, V- Perturbation energy and enstrophy are thus not wave activities of the
linearized equations, and it is not meaningful to talk about the energy or enstrophy of a particular
mode. However, by the same token we may expect orthogonality in the wave activity norm. To
prove this and understand what it means, suppose that at ¢ = 0 the disturbance consists of two
modes, n and m, so that at a later time g = (g, "' +g,,e ¥’ + c.c.), where ¢,, # ¢, and we assume
that both are real. The wave activity is

P= JAdy dz = <qn,q:n/21y> e kGt <qm,q:n/21y> + <qn, qZ/ZIy> +c.c. (4.52)

The second and third terms on the right-hand side are the wave activities of each mode, and these
are constants (to see this, consider the case when the disturbance is just a single mode). Now,
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because dP/dt = 0 the first term must vanish if ¢, # ¢,,, implying the modes are orthogonal and, in
particular,

Re J _iqnq:n dy =0, (4.53)
1y
for n # m. The inner product weighted by 1/g,, defines the wave activity norm. Orthogonality is
a useful result, for it means that the wave activity is a proper measure of the amplitude of a given
mode unlike, for example, energy. The conservation of wave activity will lead to a particularly
straightforward derivation of the necessary conditions for stability, given in section 4.7.

4.3 THE TRANSFORMED EULERIAN MEAN

The so-called transformed Eulerian mean, or TEM, is a transformation of the equations of motion
that provides a useful framework for discussing eddy effects under a wide range of conditions.* It is
useful because, as we shall see, it is equivalent to a very natural form of averaging the equations
that serves to eliminate eddy fluxes in the thermodynamic equation and collect them together, in a
simple form, in the momentum equation and in so doing it highlights the role of potential vorticity
fluxes. The TEM also provides a natural separation between diabatic and adiabatic effects or between
advective and diffusive fluxes and, in the case in which the flow is adiabatic, a pleasing simplification
of the equations. In later chapters we will use the TEM to better understand the mid-latitude
troposphere and the dynamics of the Antarctic Circumpolar Current, and as a framework for the
parameterization of eddy fluxes. Of course, there being no free lunch, the TEM brings with it its
own difficulties, and in particular the implementation of boundary conditions can cause difficulties,
especially in the actual numerical integration of the equations.

4.3.1 Quasi-geostrophic form

For simplicity we will use the Boussinesq equations on the beta-plane, and the zonally averaged
Eulerian mean equations for the zonally averaged zonal velocity and the buoyancy may then be
written as (see section 2?)

3—1: - (f+Z)U+Eg—: = —%W— a%u’w’ +F, (4.54a)
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where F and S represent frictional and heating terms, respectively. Note that the meridional
velocity, v, is purely ageostrophic. Using quasi-geostrophic scaling we neglect the vertical eddy
flux divergences and all ageostrophic velocities except when multiplied by f, or N*. The above
equations then become

3—;‘ = fou- %W +F, (4.55a)
% = -Nw- ;W +S. (4.55b)
y

These two equations are connected by the thermal wind relation,
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which is a combination of the geostrophic v-momentum equation ( f,u = ~9¢/dy) and hydrostasy
(65/ 9z = b). One less than ideal aspect of (4.55) is that in the extratropics the dominant balance is
usually between the first two terms on the right-hand sides of each equation, even in time-dependent
cases. Thus, the Coriolis force closely balances the divergence of the eddy momentum fluxes, and
the advection of the mean stratification (N*w, or ‘adiabatic cooling’) often balances the divergence
of eddy heat flux, with heating being a small residual. This may lead to an underestimation of the
importance of diabatic heating, as this is ultimately responsible for the mean meridional circulation.
Furthermore, the link between % and b via thermal wind dynamically couples buoyancy and
momentum, and obscures the understanding of how the eddy fluxes influence these fields — is it
through the eddy heat fluxes or momentum fluxes, or some combination?

To address this issue we combine the terms N*w and the eddy flux in (4.55b) into a single total
or residual (so recognizing the cancellation between the mean and eddy terms) heat transport term
that in a steady state is balanced by the diabatic term S. To do this, we first note that because v and
w are related by mass conservation we can define a mean meridional streamfunction y,, such that

5 - (-2, W)
(v,w)—< 2 oy ) (4.57)

The velocities then satisfy 0v/dy + 0w/0dz = 0 automatically. If we define a residual streamfunction
by

v =y, + #v’_b’, (4.58a)

the components of the residual mean meridional circulation are then given by
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Note that by construction, the residual overturning circulation satisfies
ov"  ow 0 (4.60)
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Substituting (4.59) into (4.55a) and (4.55b) the zonal momentum and buoyancy equations then
take the simple forms

Z—l: = f,o" +v'q +F, (4.61a)
% = -N*w* +8S. (4.61b)

which are known as the (quasi-geostrophic) transformed Eulerian mean equations, or TEM equations.
The potential vorticity flux, v'q’, is given in terms of the heat and vorticity fluxes by (4.26), and is
equal to the divergence of the Eliassen—Palm flux as in (4.28).

The TEM equations make it apparent that we may consider the potential vorticity fluxes, rather
than the separate contributions of the vorticity and heat fluxes, to force the circulation. If we know
the potential vorticity flux as well as F and S, then (4.60) and (4.61b), along with thermal wind
balance B
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form a complete set. The meridional overturning circulation is obtained by eliminating time
derivatives from (4.61b) using (4.62), giving

Pyt Ly o _OF 0%
5 az/z N a;ljz = fogg 0 oy 5 (4.63)

Thus, the residual or net overturning circulation is driven by the (vertical derivative of the) potential
vorticity fluxes and the diabatic terms — driven in the sense that if we know those terms we can
calculate the overturning circulation, although of course the fluxes themselves depend on the
circulation. Note that this equation applies at every instant, even if the equations are not in a steady
state.

Use of the TEM equations in TEM form is particularly advantageous when the eddy potential
vorticity flux arises from wave activity, for example from Rossby waves. The potential vorticity flux
is the convergence of the EP flux F, as in (4.28), and if the eddies satisfy a dispersion relation the
components of the EP flux are equal to the group velocity multiplied by the wave activity density
A, as in (4.42). Thus, knowing the group velocity tells us a great deal about how momentum is
transported by waves. We'll use the TEM to deduce the mean flow acceleration in sections 4.5, 4.6
and, in particular, in section 6.4.

Connection to potential vorticity and wave—mean-flow interaction

If we take the curl of (4.61b) — that is, cross differentiate its components — then, after using
the residual mass continuity equation (4.60), we recover the zonally averaged potential vorticity
equation namely

99 __ 9055 OF (4.642)
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which is essentially the same as (4.18) and (4.20), noting that we may add 3y to the definition of
zonally-averaged potential vorticity with no effect.

The corresponding equation for the evolution of eddy potential vorticity is, in its inviscid form,
0q

0 _ o0\ /.
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as in (4.7). Equations (4.64) and (4.65) are a closed set of quasi-linear equations, and we have
recovered the wave-mean-flow system described in section 4.1.3.

4.3.2 The TEM in isentropic coordinates

The residual circulation has an illuminating interpretation if we think of the fluid as comprising
multiple layers of shallow water, or equivalently if we cast the problem in isentropic coordinates
(section ??). Using the notation of a shallow water system, the momentum and mass conservation
equation can then be written as

ou oh
= .Vu- fu=F, — . =S. 4.66a,
o +u-Vu- fo o +V-(hu) =S (4.66a,b)
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The quantity h is the thickness between two isentropic surfaces and S is a thickness source term.
(The field h plays the same role as o in section ?2.) With quasi-geostrophic scaling, so that variations
in Coriolis parameter and layer thickness are small, zonally averaging in a conventional way gives

oh g% _ 9.3 (4.67a,b)
ot oy dy

ou .- 5. %
— — fov=v'¢' +F,
ot f 0 (

The overbars in these equations denote averages taken along isentropes — i.e., they are averages for
a given layer — but are otherwise conventional, and the meridional velocity is purely ageostrophic.
By analogy to (4.59), we define the residual circulation by

—%

v =0+ lW, (4.68)
H
where H is the mean thickness of the layer. Using (4.68) in (4.67) gives

_ - A " _
% o - Vg +F oh  y% _3 (4.69a,b)

where

v =7 - Lo, (4.70)

is the meridional potential vorticity flux in a shallow water system. From (4.68) we see that the
residual velocity is a measure of the total meridional thickness flux, eddy plus mean, in an isentropic
layer. This is often a more useful quantity than the Eulerian velocity v because it is generally the
former, not the latter, that is constrained by the external forcing. What we have done, of course, is
to effectively use a thickness-weighted mean in (4.66b); to see this, define the thickness-weighted
mean by

=i

] (4.71)

*

(We use v, to denote a thickness- or mass-weighted mean, and 0" to denote a residual velocity; the
quantities are closely related, as we will see.) From (4.71) we have

T, =T+ Ul (4.72)
h
then the zonal average of (4.66b) is just
oh 0 = . <
9oL 9 ) =5, 4,
5 ay(hv*) S (4.73)

which is the same as (4.69b) if we take H = h. Similarly, if we use the thickness weighted velocity
(4.72) in the momentum equation (4.67a) we obtain (4.69a).

Evidently, if the mass-weighted meridional velocity is used in the momentum and thickness
equations then the eddy mass flux does not enter the equations explicitly: the only eddy flux in
(4.69) is that of potential vorticity. That is, in isentropic coordinates the equations in TEM form are
equivalent to the equations that arise from a particular form of averaging — thickness weighted
averaging — rather than the conventional Eulerian averaging. A similar correspondence occurs in
height coordinates, as we now see.
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Fig. 4.1 Two isentropic surfaces, r; and #,, and their mean positions, 77, and 7#,. The depar-
ture of an isentrope from its mean position is proportional to the temperature perturbation
at the mean position of the isentrope, and the variations in thickness (1) of the isentropic
layer are proportional to the vertical derivative of this.

4.3.3 Connection between the residual and thickness-weighted circulation

It is evident from the above arguments that, in a shallow water system or in isentropic coordinates,
the residual velocity is a measure of the total (i.e., mean plus eddy) thickness transport. In height
coordinates, the definition of residual velocity, (4.58) does not lend itself so easily to such an
interpretation. However, the residual velocity in height coordinates is, in fact, also a measure of the
total thickness transport, or equivalently of the mass transport between two isentropic surfaces,
as we now discover. Specifically, we show that averaging the total transport in isentropic layers
is equivalent to the mass transport evaluated by the TEM formalism in height coordinates, and
specifically that the thickness-weighted mean, v, is equivalent to the residual velocity, 7" in height
coordinates. Our demonstration is for a Boussinesq system, but the extension to a compressible gas
is reasonably straightforward.®

Consider two isentropic surfaces, #; and #, with mean positions 7, and #,, as in Fig. 4.1. (We
use z to denote the vertical coordinate, and 7 to denote the location of isentropic surfaces.) The
meridional transport between these surfaces is given by

m
7= v (4.74)
)

If the velocity does not vary with height within the layer (and in the limit of layer thickness going
to zero this is the case) then T = vh where h = 1, — 1, is the thickness of the isentropic layer. The

zonally averaged transport is then given by

— 1 1 M m — =

T:—Jde:—j <J vdz> dx:J vdz =vh =vh+v'H, (4.75)
L L 2 2

with obvious notation, and with an overbar denoting a zonal average. Letting the distance between
isentropes shrink to zero this result allows us to write

o v'o’
U= — =0+ —) (4.76)
o] o

—b N
where (-) denotes an average along an isentrope and o = dz/0b is the thickness density, a measure
of the thickness between two isentropes. Equation (4.76) is analogous to (4.72), for a continuously
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stratified system. The averaged quantity v, is not proportional to the average of the velocity at
constant height, or even to the average along an isentrope; rather, it is the thickness-weighted zonal
average of the velocity between two isentropic surfaces, Ab apart, of mean separation proportional
to 0Ab. Our goal is to express this transport in terms of Eulerian-averaged quantities, at a constant
height z.

Let us first connect an average along an isentrope of some variable y to its average at constant
height by writing, for small isentropic displacements,

¥ =xz+1) = x(2) +19x/oz (4.77)

where the superscript explicitly denotes how the zonal average is taken, and ' is the displacement of
the isotherm from its mean position. This can be expressed in terms of the temperature perturbation

at the location of the mean isentrope by Taylor expanding b around its value on that mean isentrope.
That is,

_ ob _
b(n)=b(n>+<a—) (=) + e, (4.78)
z z=7]
where 77 = 7(2), giving
' - b

= - = = (479)
TT® T ok
where i’ = #—7and b’ = b(7) - b(y). Using (4.79) in (4.77) (and omitting the superscript z on E)ZE)
we obtain, with y = v,
P v

ob

Note that if v is in thermal wind balance with b then the second term vanishes identically, but we
will not invoke this.

We now transform the second term on the right-hand side (4.76) to an average at constant z.
The variations in thickness of an isothermal layer are given by

! !
L Y (b > (4.81)

”“az _05

(4.80)

Y
using (4.79). Thus, neglecting terms that are third-order in amplitude,
v _ o (b
Vo' = —Ev’aa—z <§> . (4.82)

Using both (4.80) and (4.82), (4.76) becomes

Voo o lb \ o (v
v, =0 - v () - 2 () (4.83)
0,b az(azb) az(azb>

z

The right-hand side of the last equation is the TEM form of the residual velocity; thus, we have
shown that

—b —z

v ! ! a 7b/ "

5,= 2 -, YC :az——<” >55. (4.84)
o o 0z

o a,b
We see the equivalence of the thickness-weighted mean velocity on the left-hand side and the

residual velocity on the right-hand side. In the quasi-geostrophic limit N* = 3,b and @ is a reference
thickness.
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4.4 ¢ THETEMIN THE PRIMITIVE EQUATIONS

[This section has been removed for further editing]

4.5 THE NON-ACCELERATION RESULT

For the rest of this chapter we return to quasi-geostrophic dynamics, and consider further the
interpretation and application of the potential vorticity flux and its relatives. We first consider an
important result in wave-mean-flow dynamics, the non-acceleration result.” This result shows
that under certain conditions, to be made explicit below, waves have no net effect on the zonally
averaged flow, an important and somewhat counter-intuitive result.

4.5.1 A derivation from the potential vorticity equation

Consider how the potential vorticity fluxes affect the mean fields. The unforced and inviscid zonally
averaged potential vorticity equation is
oa S
9q . dv'q
ot Jy

=F, (4.85)

Now, in quasi-geostrophic theory the geostrophically balanced velocity and buoyancy can be
determined from the potential vorticity via an elliptic equation, and in particular

Iy 3 (fooy
G- By = I (LY 4,
=55t (N2 oz (4.86)
where ¥ is such that (@, b/ f,) = (-0y/dy, 0%/dz). Differentiating (4.85) with respect to y we obtain
* o (fio)\lou
— ¢+ — )| = =(V- . 4.87
[ay2+az(N2az ot =V Py (487)

where V- F = v/q' is the divergence of the EP flux. This is determined using the wave activity
equation which, reprising (4.29a), is

oA, Y, F =D. (4.88)
ot
If the waves are statistically steady (i.e., d.4/0t = 0) and have no dissipation (D = 0) then evidently
V- F = 0. If there is no acceleration at the boundaries then the solution of (WME.7) is

ou

— =0. 4.89

3 (4.89)
This is a non-acceleration result. That is to say, under certain conditions the tendency of the mean

fields, and in particular of the zonally-averaged zonal flow, are independent of the waves. To be
explicit, those conditions are the following.

(i) The waves are steady (so that, using the wave activity equation A does not vary).

(ii) The waves are conservative [i.e., D = 0 in (4.29a)]. Given this and item (i), the Eliassen—-Palm
relation implies that V- F = 0; that is, the potential vorticity flux is zero.

(iii) The waves are of small amplitude (all of our analysis has neglected terms that are cubic in
perturbation amplitude).
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(iv) The waves do not affect the boundary conditions (so there are no boundary contributions to
the acceleration).

The result applies to the buoyancy and velocity fields that are directly invertible from potential
vorticity, and not to the ageostrophic velocities. Given the way we have derived it, it does not seem
a surprising result; however, it can be powerful and counter-intuitive, for it means that steady waves
(i.e., those whose amplitude does not vary) do not affect the zonal flow. However, they do affect the
meridional overturning circulation, and the relative vorticity flux may also be non-zero. In fact, the
non-acceleration theorem is telling us that the changes in the vorticity flux are exactly compensated
for by changes in the meridional circulation, and there is no net effect on the zonally averaged zonal
flow. It is irreversibility, often manifested by the breaking of waves, that leads to permanent changes
in the mean flow.

The derivation of this result by way of the momentum equation, which one might expect to
be more natural, is rather awkward because one must consider momentum and buoyancy fluxes
separately. Furthermore, the zonally averaged meridional circulation comes into play: for example,
meridional velocity, v, is, although small because it is purely ageostrophic, not zero and we cannot
neglect it because it is multiplied by the Coriolis parameter, which is large. Thus, the eddy vorticity
fluxes can affect both the meridional circulation and the acceleration of the zonal mean flow, and it
might seem impossible to disentangle the two effects without completely solving the equations of
motion. However, we can proceed by way of the momentum and buoyancy equations if we use the
transformed Eulerian mean and this provides a useful alternate derivation, as follows.

4.5.2 Using TEM to give the non-acceleration result

We may use the TEM formalism to obtain the non-acceleration result. The explanation is largely
equivalent to that given above, but the explication may be useful.

A two-dimensional case

Consider two-dimensional incompressible flow on the S-plane, for which there is no buoyancy flux.
The linearized vorticity equation is

D, 4,
o +uax+vay (4.90)

from which we derive, analogously to (4.29a), the Eliassen—Palm relation

0A OF
92,92 Cp, 491
oty (4.91)
where F = —u'v', D represents non-conservative forces, and
rn Y4
A= Lmok (4.92)

Ti 2oy

The quantity ' = -’/ ayZ is proportional to the meridional particle displacement in a disturbance.
Now consider the x-momentum equation

Ju ou* Ouv 0J¢
E__E_E_a-*—fv. (493)

Zonally averaging, noting that v = 0, gives
ou _ ouv _— OF

__——:’,:_' 4.4
ot oy VYT, (4.94)
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Finally, combining (4.91) and (4.94) gives

% @+ A) =D, (4.95)

In the absence of non-conservative terms (i.e., if D = 0) the quantity u + A is constant.® Further, if
the waves are steady and conservative then A is constant and, therefore, so is #.

The stratified case

In the stratified case we can use the TEM form of the momentum equation to derive a similar result.
The unforced zonally averaged zonal momentum equation can be written as

ou .
E — fOU =V-F, (496)
and using the Eliassen-Palm relation this may be written as
g —x
a(u +A) - f,u" =D, (4.97)

and so again A is related to the momentum of the flow. If, furthermore, the waves are steady
(0.A/0t = 0) and conservative (D = 0), then 0u/dt— f,u* = 0. However, under these same conditions
the residual circulation will also be zero. This is because the residual meridional circulation (0", w")
arises via the necessity to keep the temperature and velocity fields in thermal wind balance, and is
thus determined by an elliptic equation, namely (4.63). If the waves are steady and adiabatic then,

since v'q' = 0, the right-hand side of the equation is zero and it becomes

0. (4.98)

Ify* = 0 at the boundaries, then the unique solution of thisis y* = 0 everywhere. At the meridional
boundaries we may certainly suppose that y* vanishes if these are quiescent latitudes, and at the
horizontal boundaries the buoyancy flux will vanish if the waves there are steady, because from
(4.14) we have B

—0b 10

V'Y — =—-=b"?=0. (4.99)

dy 20t
Under these circumstances, then, the residual meridional circulation vanishes in the interior and,
from (4.96), the mean flow is steady, thus reprising the non-acceleration result.
Compare (4.96) with the momentum equation in conventional Eulerian form, namely

ou _ =5
E — fOU = v’(’. (4.100)

There is no reason that the vorticity flux should vanish when waves are present, even if they are
steady. However, such a flux is (under non-acceleration conditions) precisely compensated by the
meridional circulation f,v, something that is hard to infer or intuit directly from (4.100); even
when non-acceleration conditions do not apply there will be a significant cancellation between the

Coriolis and eddy terms. The difficulty boils down to the fact that, in contrast to v'q’, v'{’ is not the
flux of a wave activity.

Unlike the proof of the non-acceleration result given in section 4.5.1, the above argument does
not use the invertibility property of potential vorticity directly, suggesting an extension to the
primitive equations, but we do not pursue that here.” Various results regarding the TEM and
non-acceleration are summarized in the shaded box on page 154.
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4.5.3 The EP flux and form drag

It may seem a little magical that the zonal flow is driven by the Eliassen-Palm flux via (4.96). The
poleward vorticity flux is clearly related to the momentum flux convergence, but why should a
poleward buoyancy flux affect the momentum? The TEM form of the momentum equation may be

written as
ou 0 fo— ,>
Frii <N2U b |+F,, (4.101)

where F,, = v/’ + f,0" represents forces from the momentum flux and Coriolis force. The first
term on the right-hand side certainly does not look like a force; however, it turns out to be directly
proportional to the form drag between isentropic layers. Recall from section ?? that the form drag,
7,4, at an interface between two layers of shallow water is

a !
T, = —;f%, (4.102)

where 7 is the interfacial displacement. But from (4.79) ' = —b'/N? and with this and geostrophic
balance we have

T, = Pl‘i]—{"ﬁ. (4.103)

Thus, the vertical component of the EP flux (i.e., the meridional buoyancy flux) is in fact a real
stress acting on a fluid layer and equal to the momentum flux caused by the wavy interface. The net
momentum convergence into an infinitesimal layer of mean thickness A is then [cf. (2?)],

_9t, - 0 (v

and a layer of mean thickness / is accelerated according to

du_ 3 (v
—=fox— | —= E,,. 4.105

ot foaz<azb>+ " (4105)
The appearance of the buoyancy flux is really a consequence of the way we have chosen to average
the equations: obtaining (4.105) involved averaging the forces over an isentropic layer, and given

this it can only be the residual circulation that contributes to the Coriolis force. One might say that
the vertical component of the EP flux is a force in drag, masquerading as a buoyancy flux.

4.6 ¢ INFLUENCE OF EDDIES ON THE MEAN FLOW IN THE EADY PROBLEM

We now consider the eddy fluxes in the Eady problem, and, in particular, how these might feed
back on to the mean flow. Because of the simplicity of the setting the problem can be fully solved
in both the Eulerian or residual frameworks and it is therefore a very instructive, albeit somewhat
algebraically complex, example.'

4.6.1 Formulation

Let us first distinguish between the basic flow, the zonal mean fields, and the perturbation. The
basic flow is the flow around which the equations of motion are linearized; this flow is unstable, and
the perturbations, assumed to be small, grow exponentially with time. Because the perturbations
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are formally always small they do not affect the basic flow, but they do produce changes in the zonal
mean velocity and buoyancy fields. In Eulerian form this is represented by,

au’v ob 2 Ob'Y
= —_, — =-Nw- , 4.106
and the TEM version of these equation is
ou ob 250
ou _ , - 41
o = f0" +0'q Frie Nw (4.107)

where in the Eady problem 0, (u'v') and v'q’ are both zero. We can calculate the perturbation
quantities from the solution to the Eady problem (e.g., calculate v'b') and thus infer the structure
of the mean flow tendencies 0u/0t and 0b/0t and the meridional circulation, (v, w) or (v*,w"). All
of these fields are perturbation quantities and all are exponentially growing, and so in reality they
will eventually have a finite effect on the pre-existing zonal flow, but in the Eady problem, or any
similar linear problem, such rectification is assumed to be small and is neglected.

Using the thermal wind relation, f,0,u = —ayE to eliminate time derivatives in (4.106) gives an
equation for the meridional streamfunction 5, namely,

L? oy s Oyy 1
1% 922 9 N2 92

(4.108)

where (0, w) = (-0y/0z, 0yg/dy) and we have non-dimensionalized z with D and y with L. The
boundary conditions are that y; = 0 at y = 0, L and z = 0, D. Similarly, and analogously to to (4.63),
we obtain an equation for the residual streamfunction, y*, namely

L2 azw* .\ azw*
L% 0z 0y?

=0, (4.109)

where now the boundary conditions are that N*@"* = dv'b’ /dy at the upper and lower boundaries,

and v = 0 at the lateral boundaries. In terms of the residual streamfunction this is

v = %wb' atz =0, 1, vy =0,aty=0, L (4.110)
The residual and overturning circulations are related by (4.58a), and (4.108) and (4.109) are, at one
level, simply different representations of the same problem, connected by a simple mathematical
transformation. However, the residual streamfunction better represents the total transport of the
fluid. Equation (4.109) is particularly simple, because of the absence of potential vorticity fluxes in
the interior, and it is apparent that the residual circulation is driven by boundary sources. We care
only about the spatial structure of the right-hand sides of (4.108) and of the boundary conditions of
(4.110). The former is given by

277 2
- % o — aaz sin® Iy = —21* cos 2ly. (4.111)
The eddy heat fluxes in the Eady problem are independent of height, as may be calculated explicitly
from the solutions of chapter ??. In fact, the result follows without detailed calculation, by first
noting that the eddy potential vorticity flux is zero because the basic state has zero QG potential
vorticity and therefore none may be generated. Further, because the basic state does not vary in y
there can be no momentum flux convergence in the y-direction, and so the momentum flux itself
is zero if it is zero on the boundary. Thus [using for example (4.27) and (4.28)] the eddy heat flux is
independent of height and the EP vectors are directed purely vertically (Fig. 4.2).
The boundary conditions for the residual circulation are

v (5,0) = ¥ (y,1) o< sin’ Iy. (4.112)
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Fig. 4.2 TheEliassen—Palm vector in the Eady problem. Latitude (y/L)

4.6.2 Solution

The solutions to (4.108) and (4.109) may be obtained either analytically or numerically. In a domain
0 < y < 1and 0 < z < 1 the residual streamfunction for I = n is given by:

N A cosh[L m(2n - 1)(z - 0.5)/L]
v ,; Ansin[2n = Dly] cosh[L m(2n —1)/2L]

2 1 1
A - - .
" n2n-1) m(2n-1)-21 w(2n-1)+2I

>

(4.113)

The solution is obtained by first projecting the boundary conditions [proportional to sin® Iy, or
(1 —cos2ly)/2] on to the eigenfunctions of the horizontal part of the Laplacian (i.e., sine functions),
and this gives the coefficients of A,,. The vertical structure is then obtained by solving (L/L ;)*d>y* =
—85,1//*, which gives the cosh functions. The series converges very quickly, and the first term in the
series captures the dominant structure of the solution, essentially because, for I = m, sinly is not
unlike sin? Iy on the interval [0, 1].

The Eulerian circulation is obtained from the residual circulation using (4.58a) and so by the
addition of a field independent of z and proportional to sin ly. The resulting structure is dominated
by this and the first term of (4.113) (proportional to sinly) and, noting that the circulation is
symmetric about z = 0.5, we obtain a circulation dominated by a single cell, with equatorward
motion aloft and poleward motion near the surface (Fig. 4.3). The heat flux convergence in high
latitudes is leading to mean rising motion, with the precise shape of the streamfunction determined
by the boundary conditions. Although this is true, the heat flux arises because of the motion of fluid
parcels, so it may be a little misleading to infer, as one might from the Eulerian streamfunction, that
the heat flux causes the individual parcels to rise or sink in this fashion. The residual streamfunction
is a better indicator of the total mass transport and, perhaps as one might intuitively expect, these
show parcels rising in the low latitudes and sinking in high latitudes, providing a tendency to flatten
the isopycnals and to reduce the meridional temperature gradient.

The residual circulation also shows fluid entering or leaving the domain at the boundary — what
does this represent? Suppose that instead of solving the continuous problem we had posed the
problem in a finite number of layers (and we explicitly consider the two-layer problem below). As
the number of layers increases the solutions to the linear baroclinic instability problem approaches
that of the Eady problem (e.g., Fig. 22); however, as we saw in section 4.3 the residual circulation is
closed in the layered model, and the sum over all the layers of the meridional transport vanishes.
Now, in the layered model the vertical boundary conditions are built in to the representation by
way of a redefinition of the potential vorticity of the top and bottom layers, so that, in the layered
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Fig. 4.3 The Eulerian streamfunction (top) and the residual streamfunction for the Eady
problem, calculated using (4.108) and (4.109), with L*/L? = 9.

version of the Eady problem there appears to be a potential vorticity gradient in these two layers,
instead of a buoyancy gradient at the boundary. The residual circulation is then closed by a return
flow that occurs only in the top and bottom layers, and as the number of layers increases this flow is
confined to a thinner and thinner layer, and to a delta-function in the continuous limit. To indicate
this we have placed arrows just above and below the domain in Fig. 4.3. (This equivalence between
boundary conditions and delta-function sources is the same as that giving rise to the delta-function
boundary layer of section 22.)

The effect on the mean flow is inferred directly from the residual circulation: the mean flow
acceleration is proportional to v* and the buoyancy tendency is proportional to —w", and these
are plotted in Figs. 4.4 and 4.5. Because there is no momentum flux convergence in the problem
the zonal flow tendency is entirely baroclinic — its vertical integral is zero — and over most of
the domain is such as to reduce the mean shear. Consistently (using thermal wind) the buoyancy
tendency is such as to reduce the meridional temperature gradient; that is, the instabilities act to
transport heat polewards and so reduce the instability of the mean flow.

4.6.3 The two-level problem

The residual circulation and mean-flow tendencies can also be calculated for the two-level (Phillips)
problem, with the 3-effect. The potential vorticity fluxes in each layer are non-zero and the mean
flow equations are, fori = 1,2,

o, . . — ob -

a—t’ = fou’ +viq., Fri -N“w". (4.114)
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Fig. 4.4 The tendency of the zonal mean flow (9%/0t) and the buoyancy (9b/dt) for the
Eady problem. Lighter (darker) shading means a positive (negative) tendency, but the units
themselves are arbitrary.
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Fig. 4.5 (a) The tendency of the zonal mean flow (0%/0t) just below the upper lid (dashed)
and just above the surface (solid) in the Eady problem. The vertically integrated tendency is
zero. (b) The vertically averaged buoyancy tendency.
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The vertical velocity and buoyancy are evaluated at mid-depth, and the thermal wind equation is
u, —u, =—(D/ 2)ayb and, by mass conservation, 7" = -0, . If we define a residual streamfunction
y* such that

e . _. oy”
Uy =y =y, w = 3y (4.115)

then eliminating time derivatives in (4.114) gives an equation for the residual streamfunction,

aZW* ﬁ *_szLZ

5 2¥ T %D (v1q) — v4q5) (4.116)

where kf{ /2 =1[2f,/(NH )]? and D is the total depth of the fluid, and we have non-dimensionalized
vertical scales by D and horizontal scales by L. As in the Eady problem it is only the spatial structure
of the terms on the right-hand side that are relevant, and these may be calculated from the solutions
to the two-level instability problem. The main difference from the Eady problem is that the potential
vorticity fluxes are non-zero, even in the case with 8 = 0: effectively, the boundary fluxes of the Eady
problem are absorbed into the potential vorticity fluxes of the two layers. Solving for the residual
circulation and interpreting the mean-flow tendencies is left as an exercise for the reader (problem
4.2?).
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Quasi-Geostrophic Wave-mean flow Interaction

The inviscid and unforced Boussinesq quasi-geostrophic set of wave-mean-flow equations
is

— 1+ Uu +v— =0, (WMFIa)

ot 0x oy
0q 90—
— + — = 0. ME1
5 + ayv q =0 W b)

along with similar equations as needed for buoyancy at the boundary (see main text). The
eddy terms are

! 2, 0 (f3 0 ! 1o oy’ oy
_ 9 (Lo o], W)= (-2 ), ME2a,
4 [V +az(Nzaz v v oy Ox W 4
The mean flow terms are
_ ou 9 ( fo —)
B =By—-—+—|==5b). WME3
ay:t) = By ay+az<N2 ( )
and
0g u o ( f,ob u 0 [ f;ou
L_g_=_ (L) _g 2 _[JoZR] WME4
oy oy 0z <N2 oy oy 0z \ N?oz ( )
using thermal wind. To solve for the mean-flow we may define a streamfunction ¥ such
that
<a, il’a) = (—a—lp, a—l’v> (WMES5)
Jo oy 0z
whence

) <f02 aw) Y

q(y,t) - By = Pl Sl o (WME6)

Given g from (WME1b) we solve (WME6) to give % and b. Equivalently, we may derive a
single equation for the zonal wind by differentiating (WME1b) with respect to y and, using

(WMFE.4), we obtain
* o (fio\lou o —
a—yz + & (ﬁg g = Wv'q’. (WMF7)

The evolution of the mean flow may also usefully be written in TEM form as

ou

= fout +v'g =0, (WME.8a)
% + N*w* =0, (WME.8b)

where v* and w” are found by solving the elliptic equation (4.63), and the value of 0g/dy
[for use in (WMEla)] is obtained using (WME.4).
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Aspects of the TEM Formulation

Properties and features

« The residual mean circulation is equivalent to the total mass-weighted (eddy plus
Eulerian mean) circulation, and it is this circulation that is driven by the diabatic
forcing.

« There are no explicit eddy fluxes in the buoyancy budget; the only eddy term is the
flux of potential vorticity, and this is divergence of the Eliassen-Palm flux; that is
v'q =V, - F.

« The residual circulation, v*, becomes part of the solution, just as v is part of the
solution in an Eulerian mean formulation.

But note

« The TEM formulation does not solve the parameterization problem, and eddy fluxes
are still present in the equations.

« The theory and practice are well developed for a zonal average, but less so for three-
dimensional, non-zonal flow. This is because the geometry enforces simple boundary
conditions in the zonal mean case.”

« The boundary conditions on the residual circulation are neither necessarily simple
nor easily determined; for example, at a horizontal boundary w* is not zero if there
are horizontal buoyancy fluxes.

Examples of the use of the TEM and its relatives in the general circulation of the atmosphere
and ocean arise in sections 22, 22, 6.4, 6.8 and ?2.
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TEM, Residual Velocities, Non-acceleration, and All That

For a Boussinesq quasi-geostrophic system, the TEM form of the unforced momentum
equation and the thermodynamic equation are:

ou
ot

u ab 0—- =
- fu" =V-F, = —b S, T1
fot o " 5z (T
where aEO /0z = N2, S represents diabatic effects, F is the Eliassen-Palm (EP) flux and its
divergence is the potential vorticity flux; that is V, - F = v'q’. The residual velocities are

a*za—i(lﬁ), W =w+ a( 'b') (T.2)
0z oy

Spherical coordinate and ideal gas versions of these take a similar form. We may define a
meridional overturning streamfunction such that (v*,w") = (—9y"/0z,0y " /dy), and using
thermal wind to eliminate time-derivatives in (T.1) we obtain

= 2vg + 2. T.
f° 922 ay2 fozzVe * 5, (3)

The above manipulations may seem formal, in that they simply transform the momentum
and thermodynamic equation from one form to another. However, the resulting equations
have two potential advantages over the untransfomed ones.

(i) The residual meridional velocity is approximately equal to the average thickness-
weighted velocity between two neighbouring isentropic surfaces, and so is a measure
of the total (Eulerian mean plus eddy) meridional transport of thickness or buoyancy.

(ii) The EP flux is directly related to certain conservation properties of waves. The diver-
gence of the EP flux is the meridional flux of potential vorticity:

.’F=—(uv)]+<f° )k, V-F=14. (T.4)

Furthermore, the EP flux satisfies, to second order in wave amplitude,

12 ! !
a44+V.7-' D, where A=-1 __ D= lzq .
ot 20q/0y 0q/0y

(T.5)

The quantity A is a wave activity density, and D is its dissipation. For nearly plane
waves, A and F are connected by the group velocity property,

F=(F,F)=c A, (T6)

where ¢, is the group velocity of the waves. If the waves are steady (0.A4/0t = 0) and
dissipationless (D = 0) then V- F = 0 and using (T.1) and (T.3) there is no wave-
induced acceleration of the mean flow; this is the ‘non-acceleration’ result. Commonly
there is enstrophy dissipation, or wave-breaking, and V- F < 0; such wave drag leads
to flow deceleration and/or a poleward residual meridional velocity.



4.7 Necessary Conditions for Instability

155

4.7 ¢ NECESSARY CONDITIONS FOR INSTABILITY

Let’s take a taxi to the finish line.
Chris Garrett, Ocean Science Meeting, Hawaii 2002.

As we noted in chapter 22, necessary conditions for instability, or sufficient conditions for stability,
can be very useful because when satisfied they obviate the need to perform a detailed calculation.
In the remainder of this chapter we use the conservation of wave activities — pseudomomentum
and pseudoenergy — to derive such conditions. In sections ?? and 22 we derived such conditions
assuming the instability to be of normal-mode form. Here we give derivations that are both more
general and, in some ways, simpler; they utilize the fact that the potential vorticity flux may be
written as a divergence of a vector and therefore vanishes when integrated over a domain, aside
from possible boundary contributions.

4.7.1 Stability conditions from pseudomomentum conservation

Consider the perturbation enstrophy equation,
9= Yy . F (4.117)

where F is the Eliassen—Palm flux given by (4.27), the overbar is a zonal mean and the divergence
is in y-z plane. Dividing by 04/0dy and integrating over a domain A which is such that the Eliassen-
Palm flux vanishes at the boundaries gives the pseudomomentum conservation law,

12

J(4q
— | =— dz = 0. 4.11
Lar(aq)dy z=0 (4118)

y

Equation (4.118) implies that, in the norm [q'z /8}@], the perturbation cannot grow unless dg/dy
changes sign somewhere in the domain, or at the boundaries. This result does not depend upon the
instability being of normal-mode form. The simplest result of all occurs in a barotropic problem
with no vertical variation. Then 0g/dy = 0 /E)Z(Z y = B - 0*u/dy*, and demanding that this must
change sign for an instability reprises the inflection point (Rayleigh-Kuo) condition. In the more
general case, if 0g/dy changes sign along a vertical line then the instability is called a baroclinic
instability, and if it changes sign along a horizontal line the instability is barotropic — these may
be taken as the definitions of those terms. A mixed instability has a change of sign along both
horizontal and vertical lines.

4.7.2 Inclusion of boundary terms

Suppose now the flow is contained between two flat boundaries, at z = 0 and z = H. The relevant
equations of motion are the potential vorticity evolution in the interior, supplemented by the
thermodynamic equation at the boundary. For unforced and inviscid flow these give [cf. (4.11) and
(4.14)]

) __
q
y
and
2 __
% <%§__> Sy 2=0, H. (4.120)
¥y
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The poleward flux of potential vorticity is
- d— 0 ( fo—
v'q = —@u’v’ + 5 (ﬁv’b’> , (4.121)
and integrating this expression with respect to both y and z gives
J v'q' dydz = [QW]H, (4.122)
A N? 0

assuming that the meridional boundaries are at quiescent latitudes. Integrating (4.119) over y and z,
and using (4.122) gives

o ([14” [ fo —]H
91 gy qz= | Loy 4.123
at”zayq YE=TINYT, (4123)
Using (4.120) to eliminate v'b’ finally gives
_ __qH
12 12
9 qu—_dydz—J 1o b° - 0. (4.124)
ot 20,9 2 N? 3,b
0

If this expression is positive or negative definite the perturbation cannot grow and therefore
the basic state is stable. Stability thus depends on the meridional gradient of potential vorticity
in the interior, and the meridional gradient of buoyancy at the boundary. If 0g/dy changes sign
in the interior, or db/dy changes sign at the boundary, we have the potential for instability. If
these are both one signed, then various possibilities exist, and using the thermal wind relation
(fyou/oz = -0b/ 0y) we obtain the following.

I. A stable case:

%9 <0 and a—u

0
M50 and & >0 = stability. (4.125)
ay oz z=0 Z |z=H
Stability also ensues if all inequalities are switched.
Il. Instability via interior-surface interactions:

0q 0 0

| >0 and au >0 or au <0 = potential instability. (4.126)

a;V aZ z=0 Z |z=H

The condition 0g/dy > 0 and (0u/0z),_, > 0 is the most common criterion for instability
that is met in the atmosphere. In the troposphere we can sometimes ignore contributions
of the buoyancy fluxes at the tropopause (z = H), and stability is then determined by the
interior potential vorticity gradient and the surface buoyancy gradient. Similarly, in the ocean
contributions from the ocean floor are normally very small.

lll. Instability via edge wave interaction:

u >0 and u >0 = potential instability. (4.127)
0z z=0 2 lz=H
(And similarly, with both inequalities switched.) Such an instability may occur where the
troposphere acts like a lid, as for example in the Eady problem. If 0g/dy = 0 and there is no
lid at z = H (e.g., the Eady problem with no lid) then the instability disappears.
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One consequence of the upper boundary condition is that it provides a condition on the depth
of the disturbance. In the Eady problem the evolution of the system is determined by temperature
evolution at the surface,

Db
— =0 at z=0, H, (4.128)
Dt

(where b = f,0y/0z) and zero potential vorticity in the interior, which implies that

2
V2 +k2HZa—V/—0 0<z<H (4.129)
v d azz - > .

where k; = f,/(HN). Assuming a solution of the form b ~ sin kx then the Poisson equation (4.129)
becomes
oy
szég =k, (4.130)
with solutions y = A exp(-az) + B exp(az), where o = k*N?/ f02 . The scale height of the disturbance
is thus
o Job

. 4131
2nN ( )

where L ~ 2m/k is the horizontal scale of the disturbance. If the upper boundary is higher than
this, it cannot interact strongly with the surface, because the disturbances at either boundary decay
before reaching the other. Put another way, if the structure of the disturbance is such that it is
shallower than H, the presence of the upper boundary is not felt. In the Eady problem, we know
that the upper boundary must be important, because it is only by its presence that the flow can
be unstable. Thus, all unstable modes in the Eady problem must be ‘deep’ in this sense, which
can be verified by direct calculation. This condition gives rise to a physical interpretation of the
high-wavenumber cut-off: if L is too small, the modes are too shallow to span the full depth of the
fluid, and from (4.131) the condition for stability is thus

L<L 2D of  Ks>K. = Jo _ L} (4.132)
c c NH d
0

where L, and K, are the critical length scales and wavenumbers. Wavenumbers larger than the
reciprocal of the deformation radius are stable in the Eady problem. If 8 is non-zero, this condition
does not apply, because the necessary condition for instability can be satisfied by a combination of
a surface temperature gradient and an interior gradient of potential vorticity provided by f3, as in
condition (/L) in section 4.7.2. Thus, we may expect that, if § # 0, higher wavenumbers (k > k;)
may be unstable but if so they will be shallow, and this may be confirmed by explicit calculation
(see Figs. ?? and ??). In the two-level model shallow modes are, by construction, not allowed so that
high wavenumbers will be stable, with or without beta.

4.8 ¢ NECESSARY CONDITIONS FOR INSTABILITY: USE OF PSEUDOENERGY

In this section we derive another necessary condition for instability, sometimes called an ‘Arnold
condition, that is based on the conservation properties of energy and enstrophy. Such conditions
can be derived more generally by variational methods, and these lead to somewhat stronger results
(in particular, nonlinear results that do not require the perturbation to be small) but our derivations
will be elementary and direct."
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4.8.1 Two-dimensional flow

First consider inviscid, incompressible two-dimensional flow governed by the equation of motion

Jq _
3 +J(y,q) =0, (4.133)

where g = { + f = V?y + f is the absolute vorticity and v is the streamfunction. In a steady state,
the streamfunction and the potential vorticity are functions of each other so that

q=Q(¥) and v =Y¥(Q), (4.134)

where Q is a differentiable but otherwise arbitrary function of its argument, and ¥ its functional
inverse. Equation (4.133) is then

oq _ dQ

—=—-——J(",¥)=0 4.135
ot = dy J(?,¥) (4.135)
and all steady solutions are of the form (4.134). We shall prove that if d¥/dQ > 0 then the flow is
stable, in a sense to be made explicit below. Consider the evolution of perturbations about such a
steady state, so that

q=Q+q, y=¥+vy/, (4.136)

and we suppose that the perturbation vanishes at the domain boundary or that the boundary
conditions are periodic. The potential vorticity perturbation satisfies, in the linear approximation,

a ' ! !
a—qt+](1//>Q)+](‘f’,q)=0. (4.137)

Now, because potential vorticity is conserved on parcels, any function of potential vorticity is also
materially conserved, and in particular

D¥(g) _o¥ _
or " 3 +J(y,¥) =0. (4.138)

Linearizing this using (4.136) gives

d¥ oq' dy
o U 1(%, Eq’> - 0. (4.139)

We now form an energy equation from (4.137) by multiplying by —y' and integrating over the
domain. Integrating the first term by parts we find

% J %(vw’)2 dA = jq/ ¥, q') dA. (4.140)
Similarly, from (4.139) we obtain
ild_‘{’,z __J|:I ' I< d_llvl)]
dtjdeq an=-[ a1 »+di(w 55d )| aa (4.141)

The second term in square brackets vanishes. This follows using the property of Jacobians, obtained
by integrating by parts, that

(a](b,c)) = (b](c,a)) = (c](a,b)) = - (c](b,a)), (4.142)
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where the angle brackets denote horizontal integration. Using this we have

(05~ (i) -3 o)
()

Adding (4.140) and (4.141) the remaining nonlinear terms cancel and we obtain the conservation
law,

(4.143)

- ”(w) dg ’2] da,
(4.144)
s
dt

The quantity H is known as the pseudoenergy of the disturbance and because it is a conserved quantity,
quadratic in the wave amplitude, it is (like pseudomomentum) a wave activity. Its conservation
holds whether the disturbance is growing, decaying or neutral.

If d¥/dQ is positive everywhere the pseudoenergy is a positive-definite quantity, and the growth
of the disturbance is then largely prevented and the basic state is said to be stable in the sense of
Liapunov. This means that the magnitude of the perturbation, as measured by some norm, is
bounded by its initial magnitude. In the case here we define the norm

llyll* = J [(w)2 + j—g(vw)z dA, (4.145)

so that
Iy’ I = ly' )] (4.146)

If d¥/dQ > 0 then, although the energy of the disturbance can grow, its final amplitude is bounded
by the initial value of the pseudoenergy, because if perturbation energy is to grow perturbation
enstrophy must shrink but it cannot shrink past zero. Normal-mode instability, in which modes
grow exponentially, is completely precluded.

If the pseudoenergy is negative definite then stability is also assured, but this is a less common
situation for it demands that d¥/dQ be sufficiently negative so that the (negative of the) enstrophy
contribution is always larger than the energy contribution, and this can usually only be satisfied
in a sufficiently small domain. To see this, suppose that g’ = V?y/, and that in the domain under
consideration the Laplacian operator has eigenvalues —k* where

Ky (4.147)

and the smallest eigenvalue, by magnitude, is k. Then, using Poincarés inequality,
j(vzw’)2 dA > K j(w’)2 da, (4.148)

a sufficient condition to make H negative definite is that

ay 1
LA 4.149
a0 < @ (4.149)

As the domain gets bigger, k, diminishes and this condition becomes harder to satisfy.'?
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Parallel shear flow and Fjertoft’s condition
Consider the stability of a zonal flow (i.e., a flow in the x-direction), that varies only with y. The
flow stability condition is then
dy d¥/dy  U-U;
dQ dQ/dy  B-U,,

>0, (4.150)

where U, is a constant, representing an arbitrary, constant, zonal flow. The last equality follows
because the problem is Galilean invariant, and we are therefore at liberty to choose U arbitrarily. To
connect this with Fjertoft’s condition (chapter ?2) multiply the top and bottom by (8 - Uy whence
we see that a sufficient condition for stability is that (U — U,)(f - U,,) is everywhere negative. The
derivation here, unlike our earlier one in section ??, makes it clear that the condition does not only
apply to normal-mode instabilities.

4.8.2 ¢ Stratified quasi-geostrophic flow

The extension of the pseudoenergy arguments to quasi-geostrophic flow is mostly straightforward,
but with a complication from the vertical boundary conditions at the surface and at an upper
boundary, and the trusting reader may wish to skip straight to the results, (4.155)-(4.157)."> For
definiteness, we consider Boussinesq, -plane quasi-geostrophic flow confined between flat rigid
surfaces at z = 0 and z = H. The interior flow is governed by the familiar potential vorticity equation
Dgq/Dt = 0 and the buoyancy equation Db/Dt = 0 at the two boundaries, where

Py L (s02).  be 2
q—Vw+ﬁy+aZ S(z)aZ , b—foaz, (4.151)

and S(z) = fOZ/N2 is positive. The basic state (y = ¥,q = Q,b = By, B,) satisfies

v=Y¥Y(Q), 0<z<H,

4.152
y=Y(B,), z=0 and v =Y,(B,), z=H. ( )

Analogous to the barotropic case, we obtain the equations of motion for the interior perturbation

o4’

; +J', Q) +J(¥,q) =0, (4.153a)
d‘Paq dy ,\ _
aQ o +Jy', ‘P)+I< Q )—0, (4.153b)
and at the two boundaries

ov' ,

—+I(t// B)+J(¥,b) =0, (4.154a)
dv, av' av,
dB > + ] ) + J( s de) (4.154Db)

for i = 1,2. (By d¥;/dB, we mean the derivative of \¥; with respect to its argument, evaluated at B;.)
From these equations, we form the pseudoenergy by multiplying (4.153a) by -y, (4.153b) by ¢, and
(4.154a) by ¢/, (4.154b) by b’. After some manipulation we obtain the pseudoenergy conservation
law:

H=E+Z+B,+B,,
i (4.155)

— =0,
dt
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where
1{ 81// 1 (d¥Y 7
= - (W)+S( )} Z=—{—q},
2 8(0) d¥ N 2 dQS( ) d¥. (4.156)
0) d¥, 1 /S(H) AP,
B, = - de(0)> B, = 2< 7 —deb(H)>.

where the curly brackets denote a three-dimensional integration over the fluid interior, and the angle
brackets denote a horizontal integration over the boundary surfaces at 0 and H. The pseudoenergy
H is positive-definite, and therefore stability is assured in that norm, if all of the following conditions

are satisfied:
d¥ 1 d¥, 1 dY¥,

-— 0, O’
Q" J,d8, " f,dB,

If the flow is compressible, the potential vorticity is g = V> + By + pg' 0, (pprS0,¥), where pp = pi(2),
but the final stability conditions are unaltered. If the upper boundary is then removed to infinity
where pr(z) = 0 then only the lower boundary condition contributes to (4.157). In the layered form
of the quasi-geostrophic equations the vertical boundary conditions are built in to the definitions of
potential vorticity in the top and bottom layers. In this case, a sufficient condition for stability is that
d¥/dQ > 0in each layer. Indeed, an alternate derivation of (4.155)-(4.157) would be to incorporate
the boundary conditions on buoyancy into the definition of potential vorticity by the delta-function
construction of section ?2.

<0. (4.157)

Zonal shear flow

Consider now zonally uniform zonal flows, such as might give rise to baroclinic instability in a
channel. The fields are then functions of y and z only, and the sufficient conditions for stability are:

dy _o¥joy U
dQ aQ/oy  dQ/dy
% _ d¥,/dy _ U(0) S
dB, dB,/dy dU(0)/dz
dy, d¥,/dy  U(H)

o2 = 0.
dB,  dB,jdy  dU(H)/dz

>0,

(4.158)

using the thermal wind relation, and setting f; = 1 (its value is irrelevant). These results generalize
Fjortoft’s condition to the stratified case,'* and as in that case we are at liberty to add a uniform
zonal flow to all the velocities.

4.8.3 ¢ Applications to baroclinic instability

We may use the stability conditions derived above to provide a few more results about baroclinic
instability, including an alternate derivation of the minimum shear criterion in two-layer flow, and a
derivation of the high-wavenumber cut-oft to instability. In what follows we do not derive any new
criteria; rather, the derivations make it apparent that the criteria are not restricted to perturbations
of normal-mode form.

Minimum shear in two-layer flow
We consider two layers of equal depth, on a flat-bottomed f-plane with basic state
v, = -U,y, ¥, =-U,y (4.159)

K K
=By- S U -U)y,  Q=Py-SU -y (4.159b)
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This state is characterized by Q; = y,¥; where
__(B+k0) __(B-Kk0)
o +0)] w-0)’
withU = (U,+U,)/2and U = (U, -U,)/2. The barotropic flow does not affect the stability properties,

so without loss of generality we may choose U < —U, and this makes y, > 0. Then y, is also positive
if B > k2U/2. Thus, a sufficient condition for stability is that

~ P
U< —,
k3

(4.160)

(4.161)

as obtained in chapter ??2. However, we now see that the stability condition does not apply only to
normal-mode instabilities."

Use of pseudomomentum conservation provides an alternative derivation of the same result.
The flow will also be stable if in both layers 0Q/dy > 0, for then the conserved pseudomomentum
will be positive definite. If U; > U, then, from (4.159) dQ,/dy > 0. The flow will be stable if
dQ,/dy > 0, and this gives

~ 1
U=-(U,-U,)< ﬁz, (4.162)
2 k;
as in (4.161).

The high-wavenumber cut-off in two-layer baroclinic instability

We can use a pseudoenergy argument to show that there is a high-wavenumber cut-off to two-layer
baroclinic instability, with the basic state (4.159). The conserved pseudoenergy analogous to (4.155)
and (4.156) is readily found to be

noon
H= <(V1//{)2 + (V) + lk;(l//{ -y + 4y q_2> =0. (4.163)

2 SR )
Let us choose (without loss of generality) the barotropic flow to be U = B/k%. We then have
Y1 = ¥, = —1/k7, and the pseudoenergy is then just the actual energy minus k;* times the total

enstrophy. If we define v = (y] + y;)/2 and 7 = (| — v,)/2 then, using (??) and (??), (4.163) may
be expressed as

H={(vy) + (V0 + K - k2 {(V) + [V - K] ] (4.164)
Now, let us express the fields as Fourier sums,

) = Y Fep Tip)e . (4.165)
k1

(This expression assumes a doubly-periodic domain; essentially the same end-result is obtained in
a channel.) The pseudoenergy may then be written as

H=Y) [K;,(k; - K*) + K% (k5 - K] (4.166)
k,l

where K* = k* + I and K'? = K* + k. If the deformation radius is sufficiently large (or the domain
sufficiently small) that K> > kJ, then the pseudoenergy is negative-definite, so the flow is stable,
no matter what the shear may be. Such a situation might arise on a planet whose circumference
was less than the deformation radius, or in a small ocean basin. In the linear problem, in which
perturbation modes do not interact, horizontal wavenumbers with k* > k7 are stable and there is
thus a high-wavenumber cut-off to instability, as was found in chapter 22 by direct calculation.
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After Eliassen & Palm (1961).
Andrews & Mclintyre (1976), Ripa (1981) and Held (1985). See also problem 4.22.

These restrictions on the basic state are not necessary to prove orthogonality, but they make the
algebra simpler. Also, we pay no attention here to the nature of the eigenvalues of (4.45), which, in
general, consist of both a discrete and a continuous spectrum. See Farrell (1984) and McIntyre &
Shepherd (1987).

The TEM was introduced by Andrews & Mclntyre (1976, 1978) and Boyd (1976b). A precursor is the
paper of Riehl & Fultz (1957), who noted the shortcomings of zonal averaging in uncovering the
meaning of indirect cells in laboratory experiments, and by extension the atmosphere.

This problem can be worked around in some cases (Plumb 1990, Greatbatch 1998).

The main result of this subsection was originally obtained by Mclntosh & McDougall (1996). | thank
A. Plumb for a discussion about the derivation given here. See also de Szoeke & Bennett (1993) for
related earlier work, and Juckes (2001) and Nurser & Lee (2004) for generalizations.

Non-acceleration arguments have a long history, with contributions from Charney & Drazin (1961),
Eliassen & Palm (1961), Holton (1974) and Boyd (1976b). Andrews & Mclntyre (1978) put these
results in the context of the EP flux and the TEM formalism, and Dunkerton (1980) reviews and
provides examples.

Conservation laws of this ilk, their connection to the underlying symmetries of the basic state
and (relatedly) their finite-amplitude extension, are discussed by Mclntyre & Shepherd (1987) and
Shepherd (1990). Conservation of momentum is related to the translational invariance of the
medium whereas conservation of A is related to the translational invariance of the basic state, and
hence the appellation ‘pseudomomentum’.

See Andrews & Mclntyre (1978).
Steve Garner and Raffaele Ferrari both provided very helpful input to this section.

The original papers are Arnold (1965, 1966), with a number of results being subsequently developed
by Holm et al. (1985). See Shepherd (1990) for a review.

The stability criterion is sometimes referred to as ‘Arnold’s second condition’. More discussion,
especially with regard to boundary conditions, is given in McIntyre & Shepherd (1987).

Blumen (1968), but the method we use is more direct.
Pedlosky (1964) derived these conditions by a normal-mode approach.
Pierini & Vulpiani (1981) and Vallis (1985) further consider the finite-amplitude case.

Further reading

And

Bubhl

rews, D. G, Holton, J. R. & Leovy, C.B., 1987. Middle Atmosphere Dynamics.

Provides a discussion of a number of topics in wave dynamics and wave—mean-flow interaction,
including the TEM, mainly in the context of stratospheric dynamics.

er, 0. 2009. Waves and Mean Flows.

This book provides a comprehensive and readable discussion of waves, mean flows and their interac-
tion, including the Transformed Eulerian Mean, the Generalized Lagrangian Mean, and more.



