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ABSTRACT

The author shows that a systematic application of thickness-weighted averaging to the Boussinesq equa-
tions of motion results in averaged equations of motion written entirely in terms of the thickness-weighted
velocity; that is, the unweighted average velocity and the eddy-induced velocity do not appear in the averaged
equations of motion. This thickness-weighted average (TWA) formulation is identical to the unaveraged
equations, apart from eddy forcing by the divergence of three-dimensional Eliassen–Palm (EP) vectors in the
two horizontal momentum equations. These EP vectors are second order in eddy amplitude and, moreover,
the EP divergences can be expressed in terms of the eddy flux of the Rossby–Ertel potential vorticity derived
from the TWA equations of motion. That is, there is a fully nonlinear and three-dimensional generalization of
the one- and two-dimensional identities found by Taylor and Bretherton. The only assumption required to
obtain this exact TWA formulation is that the buoyancy field is stacked vertically; that is, that the buoyancy
frequency is never zero. Thus, the TWA formulation applies to nonrotating stably stratified turbulent flows, as
well as to large-scale rapidly rotating flows. Though the TWA formulation is obtained by working on the
equations of motion in buoyancy coordinates, the averaged equations of motion can then be translated into
Cartesian coordinates, which is the most useful representation for many purposes.

1. Introduction

After averaging over 10-m scales, the stratification of
the ocean is strongly statically stable and the circulation
is nearly adiabatic. Physical oceanographers have there-
fore argued that mesoscale eddies mostly flux buoyancy
and passive scalars along (but not through) mean buoy-
ancy surfaces. This is equivalent to saying that the eddy
transport of buoyancy is represented as an eddy-induced
(or bolus) velocity (Rhines 1982; Gent and McWilliams
1990; Gent et al. 1995; McDougall and McIntosh 1996,
2001; Treguier et al. 1997; Griffies 1998; Greatbatch 1998;
Plumb and Ferrari 2005). The sum of the eddy-induced
velocity and the mean velocity is the residual velocity.
It is the residual velocity that effectively advects large-
scale tracers. A main preoccupation of ocean modelers
in the 20 years since Gent and McWilliams (1990) has
been devising and testing parameterizations expressing
the eddy-induced velocity in terms of the large-scale
density field (e.g., Killworth 1997; Visbeck et al. 1997;
Aiki et al. 2004; Cessi 2008; Ferrari et al. 2010).

An alternative to parameterization of the eddy-
induced velocity is to formulate the large-scale ocean-
circulation problem completely in terms of the residual
velocity: that is, by formulating a residual-mean mo-
mentum equation. If one can use the residual velocity
as a prognostic variable and abolish mention of the eddy-
induced velocity and the mean velocity, then parameter-
ization in the buoyancy equation is unnecessary. Instead,
the parameterization problem is moved to the momen-
tum equations, where it belongs.

This prospect motivated Ferreira and Marshall (2006)
to pursue a formulation of the large-scale averaged equa-
tions of motion using the residual-mean velocity instead
of the mean velocity and the eddy-induced velocity.
These authors work in Cartesian coordinates using the
transformed Eulerian mean (TEM) introduced by Andrews
and McIntyre (1976) and the vector streamfunction of
Treguier et al. (1997). To cast the equations of motion
entirely in terms of the residual velocity, Ferreira and
Marshall use a number of idealizations and approxima-
tions (such as small Rossby number) and parameterize
eddies in the momentum equation as vertical viscosity
(e.g., Rhines and Young 1982; Greatbatch and Lamb
1990; Greatbatch 1998). There are conceptual advantages
to divorcing the momentum-equation parameterization
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Why would I use this paper?

Whenever you do anything in buoyancy coordinates, 
for example:

• If you want to plot the residual overturning in z-
coordinates and overlay the buoyancy field 

• If you want to plot the divergence of the heat 
flux on a buoyancy surface

If you don’t, then you 
risk falling into traps that 

mean volume 
conservation is violated. 



TEM in Isentropic Coordinates

is the meridional thickness flux

More generally expressed as:

��� Chapter �. Waves, Mean Flows and their Interaction

�e quantity � is the thickness between two isentropic surfaces and � is a thickness source term.
(�e �eld � plays the same role as � in section ??.) With quasi-geostrophic scaling, so that variations
in Coriolis parameter and layer thickness are small, zonally averaging in a conventional way gives���� − �0� = ���� + �, ���� +����� = − ��� ���� + �. (�.��a,b)

�e overbars in these equations denote averages taken along isentropes— i.e., they are averages for
a given layer— but are otherwise conventional, and themeridional velocity is purely ageostrophic.
By analogy to (�.��), we de�ne the residual circulation by�∗ ≡ � + 1����� , (�.��)

where� is themean thickness of the layer. Using (�.��) in (�.��) gives���� − �0�∗ = ���� + �, ���� +���∗�� = �, (�.��a,b)

where ���� = ���� − �0����� , (�.��)

is themeridional potential vorticity �ux in a shallow water system. From (�.��) we see that the
residual velocity is ameasure of the total meridional thickness �ux, eddy plusmean, in an isentropic
layer. �is is o�en amore useful quantity than the Eulerian velocity � because it is generally the
former, not the latter, that is constrained by the external forcing. What we have done, of course, is
to e�ectively use a thickness-weightedmean in (�.��b); to see this, de�ne the thickness-weighted
mean by �∗ ≡ ��� . (�.��)

(We use �∗ to denote a thickness- ormass-weightedmean, and �∗ to denote a residual velocity; the
quantities are closely related, as we will see.) From (�.��) we have�∗ = � + 1����� , (�.��)

then the zonal average of (�.��b) is just ���� + ��� (��∗) = �, (�.��)

which is the same as (�.��b) if we take� = �. Similarly, if we use the thickness weighted velocity
(�.��) in themomentum equation (�.��a) we obtain (�.��a).

Evidently, if themass-weightedmeridional velocity is used in themomentum and thickness
equations then the eddymass �ux does not enter the equations explicitly: the only eddy �ux in
(�.��) is that of potential vorticity. �at is, in isentropic coordinates the equations in TEM form are
equivalent to the equations that arise from a particular form of averaging— thickness weighted
averaging— rather than the conventional Eulerian averaging. A similar correspondence occurs in
height coordinates, as we now see.

problem from the approximations employed by Ferreira
and Marshall to derive a residual-mean system. Finalizing
the divorce by systematically deriving a totally residual-
mean formulation of the Boussinesq primitive equations
is the goal of this article.

The key step is averaging the equations of motion
in buoyancy1 coordinates, using an average weighted
by the ‘‘isopycnal thickness.’’ We refer to this as the
thickness-weighted average (TWA) formulation. The re-
sulting exact description assumes neither small-isopycnal
slope, rapid rotation, weak eddies, nor small diabatic ef-
fects. For example, the TWA formulation applies equally
well to nonrotating fluids, provided only that the strati-
fication is stable.

With hindsight, some of the ingredients in the TWA
formulation (e.g., the definitions of bY and wY below) are
already contained in de Szoeke and Bennett (1993),
Smith (1999), and Greatbatch and McDougall (2003). A
main point of de Szoeke and Bennett is that the Osborn–
Cox relation between diabatic density flux and molec-
ular dissipation actually provides the diapycnal (rather
than vertical) flux of density (see also Winters and
D’Asaro 1996). This is a second potent reason for using
the TWA formulation.

In section 2, we review the kinematic problem of
transforming from Cartesian coordinates (x, y, z, t) to
buoyancy coordinates (~x, ~y, ~b, ~t ). In this framework the
depth of a buoyancy surface, z 5 z(~x, ~y, ~b, ~t ), is an in-
dependent variable and

s 5
def

z ~b (1)

is the isopycnal ‘‘thickness.’’ Some new formulas pro-
viding the b-coordinate representation of gradient,
divergence, and curl are obtained: (53) is particularly
useful. In section 3, we review the thickness-weighted
average, which is used to define the horizontal compo-
nents of the residual velocity as

(û, ŷ) 5
def

(su, sy)/s (2)

(Andrews 1983; de Szoeke and Bennett 1993). The over-
bar above denotes an ensemble average in buoyancy
coordinates over realizations of the eddies. The third
component of the three-dimensional incompressible re-
sidual velocity uY is not the thickness-weighted average ŵ:

instead, using the standard Cartesian basis vectors (i, j, k),
the nondivergent residual velocity is uY 5 ûi 1 ŷj 1 wYk;
the vertical component wY is defined in terms of the av-
erage depth of an isopycnal surface z(~x, ~y, ~b, ~t ) by (73).
The ‘‘averaging identities’’ (72), (80), and (83) are key
results in section 3.

Sections 5 and 6 turn to dynamics by starting with the
hydrostatic equations of motion, written in b coordi-
nates. After a thickness-weighted average, the equations
of motion are transformed into Cartesian coordinates,
(x, y, z, t). In the adiabatic case, this results in the Car-
tesian coordinate TWA system:

ût 1 ûûx 1 ŷûy 1 wYûz 2 f ŷ 1 pY
x 1 $ ! Eu 5 0, (3)

ŷt 1 ûŷx 1 ŷŷy 1 wYŷz 1 f û 1 pY
y 1 $ ! Ey 5 0, (4)

pY
z 5 bY, (5)

ûx 1 ŷy 1 wY
z 5 0, (6)

bY
t 1 ûbY

x 1 ŷbY
y 1 wYbY

z 5 0. (7)

The variables pY, bY, and wY are defined in terms of the
mean depth of buoyancy surface, z(~x, ~y, b, ~t ) [e.g., as in
(59) and (73)]. The field bY(x, y, z, t) is equal to the value
of the buoyancy surface whose average depth is z.

The eddy forcing of the TWA system above is con-
fined to the horizontal momentum equations and is via
the divergence of the three-dimensional Eliassen–Palm
(EP) vectors Eu and Ey, defined in (124) and (125). These
EP vectors are second-order in eddy amplitude and there
is a three-dimensional generalization of Andrews’s (1983)
finite-amplitude zonal-mean EP theorem.

If the superscripts ^ and Y are dropped, then, apart
from the EP divergences $ ! Eu and $ ! Ey, the TWA
system (3)–(7) is identical to the primitive equations.
Thus, the eddy parameterization problem devolves to
relating the EP divergences to residual-mean quantities
so that (3)–(7) is closed. Parameterization is not a main
focus of this article. However, an important clue is pro-
vided by the relation between the divergence of the EP
vectors and the eddy flux of the relevant form of Rossby–
Ertel potential vorticity (PV), which is

PY 5 ûzbY
y 2 ŷzbY

x 1 ( f 1 ŷx 2 ûy)bY
z. (8)

Specifically, in the adiabatic case

PY
t 1 ûPY

x 1 ŷPY
y 1 wYPY

z 1 $ ! FY 5 0, (9)

where the eddy PV flux is

1 We use the Boussinesq approximation with a linear equation
of state. The buoyancy b is defined in terms of the density r as
b 5

def
g(r0 2 r)/r0, where r0 is the constant bulk density of the

ocean. Thus, buoyancy coordinates are essentially the same as
isopycnal coordinates.
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Think of this like h, it’s just a continuous field
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z 5 0. (7)

The variables pY, bY, and wY are defined in terms of the
mean depth of buoyancy surface, z(~x, ~y, b, ~t ) [e.g., as in
(59) and (73)]. The field bY(x, y, z, t) is equal to the value
of the buoyancy surface whose average depth is z.

The eddy forcing of the TWA system above is con-
fined to the horizontal momentum equations and is via
the divergence of the three-dimensional Eliassen–Palm
(EP) vectors Eu and Ey, defined in (124) and (125). These
EP vectors are second-order in eddy amplitude and there
is a three-dimensional generalization of Andrews’s (1983)
finite-amplitude zonal-mean EP theorem.

If the superscripts ^ and Y are dropped, then, apart
from the EP divergences $ ! Eu and $ ! Ey, the TWA
system (3)–(7) is identical to the primitive equations.
Thus, the eddy parameterization problem devolves to
relating the EP divergences to residual-mean quantities
so that (3)–(7) is closed. Parameterization is not a main
focus of this article. However, an important clue is pro-
vided by the relation between the divergence of the EP
vectors and the eddy flux of the relevant form of Rossby–
Ertel potential vorticity (PV), which is
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x 1 ( f 1 ŷx 2 ûy)bY
z. (8)

Specifically, in the adiabatic case
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x 1 ŷPY
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where the eddy PV flux is

1 We use the Boussinesq approximation with a linear equation
of state. The buoyancy b is defined in terms of the density r as
b 5

def
g(r0 2 r)/r0, where r0 is the constant bulk density of the

ocean. Thus, buoyancy coordinates are essentially the same as
isopycnal coordinates.
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There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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Residual velocities

��� Chapter �. Waves, Mean Flows and their Interaction

�e quantity � is the thickness between two isentropic surfaces and � is a thickness source term.
(�e �eld � plays the same role as � in section ??.) With quasi-geostrophic scaling, so that variations
in Coriolis parameter and layer thickness are small, zonally averaging in a conventional way gives���� − �0� = ���� + �, ���� +����� = − ��� ���� + �. (�.��a,b)

�e overbars in these equations denote averages taken along isentropes— i.e., they are averages for
a given layer— but are otherwise conventional, and themeridional velocity is purely ageostrophic.
By analogy to (�.��), we de�ne the residual circulation by�∗ ≡ � + 1����� , (�.��)

where� is themean thickness of the layer. Using (�.��) in (�.��) gives���� − �0�∗ = ���� + �, ���� +���∗�� = �, (�.��a,b)

where ���� = ���� − �0����� , (�.��)

is themeridional potential vorticity �ux in a shallow water system. From (�.��) we see that the
residual velocity is ameasure of the total meridional thickness �ux, eddy plusmean, in an isentropic
layer. �is is o�en amore useful quantity than the Eulerian velocity � because it is generally the
former, not the latter, that is constrained by the external forcing. What we have done, of course, is
to e�ectively use a thickness-weightedmean in (�.��b); to see this, de�ne the thickness-weighted
mean by �∗ ≡ ��� . (�.��)

(We use �∗ to denote a thickness- ormass-weightedmean, and �∗ to denote a residual velocity; the
quantities are closely related, as we will see.) From (�.��) we have�∗ = � + 1����� , (�.��)

then the zonal average of (�.��b) is just ���� + ��� (��∗) = �, (�.��)

which is the same as (�.��b) if we take� = �. Similarly, if we use the thickness weighted velocity
(�.��) in themomentum equation (�.��a) we obtain (�.��a).

Evidently, if themass-weightedmeridional velocity is used in themomentum and thickness
equations then the eddymass �ux does not enter the equations explicitly: the only eddy �ux in
(�.��) is that of potential vorticity. �at is, in isentropic coordinates the equations in TEM form are
equivalent to the equations that arise from a particular form of averaging— thickness weighted
averaging— rather than the conventional Eulerian averaging. A similar correspondence occurs in
height coordinates, as we now see.



Thickness weighted average

FY 5 (bY
zi 2 bY

xk)$ ! Ey 2 (bY
zj 2 bY

yk)$ ! Eu. (10)

Notice that FY !$bY 5 0 so that the eddy PV flux FY lies in
a bY surface. Taking the dot product of FY with i and j
expresses the EP divergences as components of the PV
flux; thus one can write the horizontal momentum equa-
tions (3) and (4) as

ût 1 ûûx 1 ŷûy 1 wYûz 2 f ŷ 1 pY
x 2 FY!j/bY

z 5 0

(11)

and

ŷt 1 ûŷx 1 ŷ ŷy 1 wYŷz 1 f û 1 pY
y 1 FY ! i/bY

z 5 0.

(12)

The results in (10)–(12) provide a three-dimensional and
fully nonlinear generalization of the identities discov-
ered by Taylor (1915) and Bretherton (1966); for a his-
torical review,2 see Dritschel and McIntyre (2008).

Earlier three-dimensional generalizations of EP fluxes
also introduce two vectors analogous to Eu and Ey above.
These three-dimensional EP formulations include the
quasigeostrophic approach of Plumb (1986), the thickness-
weighted average approach of Lee and Leach (1996),
and the TEM-based approach of Gent and McWilliams
(1996). The system in (3)–(7) is simpler and more exact
than these antecedents—simpler because in the TWA
formulation there is only one velocity uY. The main thrust
of Gent and McWilliams (1996), Lee and Leach (1996),
and Plumb and Ferrari (2005) is to advect the unweighted
average velocity (i.e., u) by the residual velocity uY. By
contrast, in (3)–(7) the residual velocity is advected by
the residual velocity and the unweighted mean velocity
does not appear.

2. Buoyancy coordinates: Kinematics

The main results in this work are obtained by trans-
forming the equations of motion to buoyancy coordinates,
averaging in buoyancy coordinates, and then moving
back to Cartesian coordinates. An alternative formula-
tion, avoiding the intermediate introduction of buoyancy
coordinates, is provided by Jacobson and Aiki (2006).

Although the transformation of the equations of mo-
tion to buoyancy coordinates is standard (e.g., Starr 1945;
de Szoeke and Bennett 1993; Griffies 2004), the TWA

formulation in section 5 requires some results that go
beyond the isopycnic formalism used by earlier authors.
To systematically introduce this material, we begin by
reviewing the transition from Cartesian coordinates to
buoyancy coordinates. The key new result needed in
section 5 is contained in the material surrounding Eqs.
(52)–(54).

A point in space is located with x 5 xi 1 yj 1 zk where
i, j, and k are the usual unit vectors aligned with right-
handed Cartesian coordinates. Using this basis, the ve-
locity of a fluid can be represented as

u 5 ui 1 yj 1 wk. (13)

Within the Boussinesq approximation

$ ! u 5 0, (14)

where $! is the three-dimensional coordinate-invariant
divergence operator.

It is convenient to write the density as r 5 r0(1 2 g21b),
where b(x, t) is the buoyancy. We suppose that b is al-
most materially conserved,

bt 1 ubx 1 yby 1 wbz 5 -. (15)

The right of (15) represents small diabatic effects: for
example, for diffusion, - 5 k=2b. It is instructive to
consider the coevolution of a passive scalar c(x, t) sat-
isfying

ct 1 ucx 1 ycy 1 wcz 5 g. (16)

On the right of (16), g denotes diabatic terms.

An essential assumption is that the buoyancy b(x, t)
remains statically stable and ‘‘stacked’’; that is, there is
a monotonic relation between b and z. This assumption
requires the ‘‘double averaging’’ procedure described
by de Szoeke and Bennett (1993): the stacked field
b(x, t) used here is obtained by first averaging the exact
buoyancy field over scales of a few meters so that tran-
sient small-scale inversions are eliminated. In section 5,
we further assume that after this averaging the dynamics
is hydrostatic.

If there is a monotonic relation between b and z, then
one can change coordinates from (x, y, z, t) to (~x, ~y, ~b, ~t ),
where

~x 5 x, (17)

~y 5 y, (18)

~b 5 b(x, y, z, t), (19)

~t 5 t. (20)

2 Dritschel and McIntyre (2008) refer to results like (10) as
‘‘Taylor identities.’’ In my opinion, Bretherton’s two-dimensional
quasigeostrophic generalization deserves recognition alongside the
one-dimensional identity of Taylor.
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diabatic effects

Buoyancy is chosen because if stability is assumed, there is a single-
valued value of z for every b 

FY 5 (bY
zi 2 bY

xk)$ ! Ey 2 (bY
zj 2 bY

yk)$ ! Eu. (10)

Notice that FY !$bY 5 0 so that the eddy PV flux FY lies in
a bY surface. Taking the dot product of FY with i and j
expresses the EP divergences as components of the PV
flux; thus one can write the horizontal momentum equa-
tions (3) and (4) as

ût 1 ûûx 1 ŷûy 1 wYûz 2 f ŷ 1 pY
x 2 FY!j/bY

z 5 0

(11)

and

ŷt 1 ûŷx 1 ŷ ŷy 1 wYŷz 1 f û 1 pY
y 1 FY ! i/bY

z 5 0.

(12)

The results in (10)–(12) provide a three-dimensional and
fully nonlinear generalization of the identities discov-
ered by Taylor (1915) and Bretherton (1966); for a his-
torical review,2 see Dritschel and McIntyre (2008).

Earlier three-dimensional generalizations of EP fluxes
also introduce two vectors analogous to Eu and Ey above.
These three-dimensional EP formulations include the
quasigeostrophic approach of Plumb (1986), the thickness-
weighted average approach of Lee and Leach (1996),
and the TEM-based approach of Gent and McWilliams
(1996). The system in (3)–(7) is simpler and more exact
than these antecedents—simpler because in the TWA
formulation there is only one velocity uY. The main thrust
of Gent and McWilliams (1996), Lee and Leach (1996),
and Plumb and Ferrari (2005) is to advect the unweighted
average velocity (i.e., u) by the residual velocity uY. By
contrast, in (3)–(7) the residual velocity is advected by
the residual velocity and the unweighted mean velocity
does not appear.

2. Buoyancy coordinates: Kinematics

The main results in this work are obtained by trans-
forming the equations of motion to buoyancy coordinates,
averaging in buoyancy coordinates, and then moving
back to Cartesian coordinates. An alternative formula-
tion, avoiding the intermediate introduction of buoyancy
coordinates, is provided by Jacobson and Aiki (2006).

Although the transformation of the equations of mo-
tion to buoyancy coordinates is standard (e.g., Starr 1945;
de Szoeke and Bennett 1993; Griffies 2004), the TWA

formulation in section 5 requires some results that go
beyond the isopycnic formalism used by earlier authors.
To systematically introduce this material, we begin by
reviewing the transition from Cartesian coordinates to
buoyancy coordinates. The key new result needed in
section 5 is contained in the material surrounding Eqs.
(52)–(54).

A point in space is located with x 5 xi 1 yj 1 zk where
i, j, and k are the usual unit vectors aligned with right-
handed Cartesian coordinates. Using this basis, the ve-
locity of a fluid can be represented as

u 5 ui 1 yj 1 wk. (13)

Within the Boussinesq approximation

$ ! u 5 0, (14)

where $! is the three-dimensional coordinate-invariant
divergence operator.

It is convenient to write the density as r 5 r0(1 2 g21b),
where b(x, t) is the buoyancy. We suppose that b is al-
most materially conserved,

bt 1 ubx 1 yby 1 wbz 5 -. (15)

The right of (15) represents small diabatic effects: for
example, for diffusion, - 5 k=2b. It is instructive to
consider the coevolution of a passive scalar c(x, t) sat-
isfying

ct 1 ucx 1 ycy 1 wcz 5 g. (16)

On the right of (16), g denotes diabatic terms.

An essential assumption is that the buoyancy b(x, t)
remains statically stable and ‘‘stacked’’; that is, there is
a monotonic relation between b and z. This assumption
requires the ‘‘double averaging’’ procedure described
by de Szoeke and Bennett (1993): the stacked field
b(x, t) used here is obtained by first averaging the exact
buoyancy field over scales of a few meters so that tran-
sient small-scale inversions are eliminated. In section 5,
we further assume that after this averaging the dynamics
is hydrostatic.

If there is a monotonic relation between b and z, then
one can change coordinates from (x, y, z, t) to (~x, ~y, ~b, ~t ),
where

~x 5 x, (17)

~y 5 y, (18)

~b 5 b(x, y, z, t), (19)

~t 5 t. (20)

2 Dritschel and McIntyre (2008) refer to results like (10) as
‘‘Taylor identities.’’ In my opinion, Bretherton’s two-dimensional
quasigeostrophic generalization deserves recognition alongside the
one-dimensional identity of Taylor.
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The superscript tilde distinguishes the coordinate labels
(~x, ~y, ~b) from fields in physical space. In particular, (19)
identifies the particular buoyancy surface labeled by ~b.
In the partial derivatives ›~x, ›~y, and ›~t below, the tilde
reminds one that the derivative is ‘‘at constant b.’’

The notation ~b helps one recognize that the scalar
field b(x, t) is a physical quantity whose isopleths serve
as coordinate surfaces. We will be using a curvilinear,
nonorthogonal coordinate system (~x, ~y, ~b, ~t), and ~b sur-
faces happen to coincide with the physical isopycnals.
Buoyancy surfaces are geometric objects existing in-
dependently of any coordinate system and, therefore,
~b surfaces are quite different from surfaces of constant
~x and ~y. In fact, buoyancy is being described with two
different functional representations. One is the scalar
field b(x, t) whose arguments are tied to the Cartesian
coordinate system x 5 xi 1 yj 1 zk. The other is a cur-
vilinear representation, using a function B(~x, ~y, ~b, t) with
the ‘‘trivial’’ form B(~x, ~y, ~b, t) 5 ~b (trivial mathematically
though not conceptually).

The equations of motion are rewritten in terms of
(~x, ~y, ~b, ~t) using the rules

›x 5 ›~x 1 bx›~b, (21)

›y 5 ›~y 1 by›~b, (22)

›z 5 bz›~b, (23)

›t 5 ›~t 1 bt› ~b. (24)

In buoyancy coordinates the depth of a buoyancy
surface, z(~x, ~y, ~b, ~t ), is an independent variable. The no-
tation z distinguishes the function z(~x, ~y, ~b, ~t ) from the
value of the function at a particular point in density co-
ordinates. Thus, we write

z 5 z(~x, ~y, ~b, ~t ) (25)

rather than z 5 z(~x, ~y, ~b, ~t ): in the latter expression one
must hold in mind that z has a different meaning on the
two sides of the equation and this is painful at around
(60).

The Jacobian of the transformation from (x, y, z) to
(~x, ~y, ~b) is

s(~x, ~y, ~b, ~t ) 5
def

z ~b (26)

5 1/bz, (27)

where (27) is obtained by applying the differential
operator in (23) to z. Thus, the element of volume is
d3x 5 dx dy dz 5 s d~x d~y d ~b. The assumption of a stacked

buoyancy field ensures that the Jacobian s is nonzero.
We refer to s as the thickness. The important relations,

z~x 5 2sbx, z~y 5 2sby, and z~t 5 2sbt, (28)

are obtained by applying the differential operators in
(21)–(24) to z. Using (28), one can alternatively write
the derivatives in (21)–(24) as

›x 5 ›~x 2 z~xs21›~b, (29)

›y 5 ›~y 2 z~ys21›~b, (30)

›z 5 s21› ~b, (31)

and

›t 5 ›~t 2 z~t s21› ~b. (32)

Isolating w from (15) and using (29)–(32), one has

w 5 z~t 1 uz~x 1 yz~y 1 -z ~b. (33)

Using (29)–(33), the convective derivative,

D

Dt
5
def

›t 1 u›x 1 y›y 1 w›z, (34)

is transformed to buoyancy coordinates as

D

Dt
5 ›~t 1 u›~x 1 y›~y 1 -› ~b. (35)

Thus, the passive scalar Eq. (16) becomes

c~t 1 uc~x 1 yc~y 1 -c ~b 5 g (36)

The diabatic term - is equivalent to a velocity through
buoyancy surfaces.

Taking a z derivative of (33), using $ ! u 5 0 and the
rules in (29)–(32), we deduce that

s~t 1 (su)~x 1 (sy)~y 1 (s-) ~b 5 0. (37)

The thickness equation (37) is equivalent to mass con-
servation in buoyancy coordinates.

a. Basis vectors

To this point, the development of buoyancy coordi-
nates is broadly familiar to physical oceanographers and
meteorologists (Starr 1945; de Szoeke and Bennett 1993;
Griffies 2004). However, the full power of the buoyancy
coordinates is not fully exploited unless one also under-
stands how vectors and coordinate-invariant differential
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The superscript tilde distinguishes the coordinate labels
(~x, ~y, ~b) from fields in physical space. In particular, (19)
identifies the particular buoyancy surface labeled by ~b.
In the partial derivatives ›~x, ›~y, and ›~t below, the tilde
reminds one that the derivative is ‘‘at constant b.’’
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different functional representations. One is the scalar
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vilinear representation, using a function B(~x, ~y, ~b, t) with
the ‘‘trivial’’ form B(~x, ~y, ~b, t) 5 ~b (trivial mathematically
though not conceptually).

The equations of motion are rewritten in terms of
(~x, ~y, ~b, ~t) using the rules

›x 5 ›~x 1 bx›~b, (21)

›y 5 ›~y 1 by›~b, (22)

›z 5 bz›~b, (23)

›t 5 ›~t 1 bt› ~b. (24)

In buoyancy coordinates the depth of a buoyancy
surface, z(~x, ~y, ~b, ~t ), is an independent variable. The no-
tation z distinguishes the function z(~x, ~y, ~b, ~t ) from the
value of the function at a particular point in density co-
ordinates. Thus, we write

z 5 z(~x, ~y, ~b, ~t ) (25)

rather than z 5 z(~x, ~y, ~b, ~t ): in the latter expression one
must hold in mind that z has a different meaning on the
two sides of the equation and this is painful at around
(60).

The Jacobian of the transformation from (x, y, z) to
(~x, ~y, ~b) is

s(~x, ~y, ~b, ~t ) 5
def

z ~b (26)

5 1/bz, (27)

where (27) is obtained by applying the differential
operator in (23) to z. Thus, the element of volume is
d3x 5 dx dy dz 5 s d~x d~y d ~b. The assumption of a stacked

buoyancy field ensures that the Jacobian s is nonzero.
We refer to s as the thickness. The important relations,

z~x 5 2sbx, z~y 5 2sby, and z~t 5 2sbt, (28)

are obtained by applying the differential operators in
(21)–(24) to z. Using (28), one can alternatively write
the derivatives in (21)–(24) as

›x 5 ›~x 2 z~xs21›~b, (29)

›y 5 ›~y 2 z~ys21›~b, (30)

›z 5 s21› ~b, (31)

and

›t 5 ›~t 2 z~t s21› ~b. (32)

Isolating w from (15) and using (29)–(32), one has

w 5 z~t 1 uz~x 1 yz~y 1 -z ~b. (33)

Using (29)–(33), the convective derivative,

D

Dt
5
def

›t 1 u›x 1 y›y 1 w›z, (34)

is transformed to buoyancy coordinates as

D

Dt
5 ›~t 1 u›~x 1 y›~y 1 -› ~b. (35)

Thus, the passive scalar Eq. (16) becomes

c~t 1 uc~x 1 yc~y 1 -c ~b 5 g (36)

The diabatic term - is equivalent to a velocity through
buoyancy surfaces.

Taking a z derivative of (33), using $ ! u 5 0 and the
rules in (29)–(32), we deduce that

s~t 1 (su)~x 1 (sy)~y 1 (s-) ~b 5 0. (37)

The thickness equation (37) is equivalent to mass con-
servation in buoyancy coordinates.

a. Basis vectors

To this point, the development of buoyancy coordi-
nates is broadly familiar to physical oceanographers and
meteorologists (Starr 1945; de Szoeke and Bennett 1993;
Griffies 2004). However, the full power of the buoyancy
coordinates is not fully exploited unless one also under-
stands how vectors and coordinate-invariant differential
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The superscript tilde distinguishes the coordinate labels
(~x, ~y, ~b) from fields in physical space. In particular, (19)
identifies the particular buoyancy surface labeled by ~b.
In the partial derivatives ›~x, ›~y, and ›~t below, the tilde
reminds one that the derivative is ‘‘at constant b.’’

The notation ~b helps one recognize that the scalar
field b(x, t) is a physical quantity whose isopleths serve
as coordinate surfaces. We will be using a curvilinear,
nonorthogonal coordinate system (~x, ~y, ~b, ~t), and ~b sur-
faces happen to coincide with the physical isopycnals.
Buoyancy surfaces are geometric objects existing in-
dependently of any coordinate system and, therefore,
~b surfaces are quite different from surfaces of constant
~x and ~y. In fact, buoyancy is being described with two
different functional representations. One is the scalar
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coordinate system x 5 xi 1 yj 1 zk. The other is a cur-
vilinear representation, using a function B(~x, ~y, ~b, t) with
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though not conceptually).
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The diabatic term - is equivalent to a velocity through
buoyancy surfaces.

Taking a z derivative of (33), using $ ! u 5 0 and the
rules in (29)–(32), we deduce that

s~t 1 (su)~x 1 (sy)~y 1 (s-) ~b 5 0. (37)

The thickness equation (37) is equivalent to mass con-
servation in buoyancy coordinates.

a. Basis vectors

To this point, the development of buoyancy coordi-
nates is broadly familiar to physical oceanographers and
meteorologists (Starr 1945; de Szoeke and Bennett 1993;
Griffies 2004). However, the full power of the buoyancy
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stands how vectors and coordinate-invariant differential
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The superscript tilde distinguishes the coordinate labels
(~x, ~y, ~b) from fields in physical space. In particular, (19)
identifies the particular buoyancy surface labeled by ~b.
In the partial derivatives ›~x, ›~y, and ›~t below, the tilde
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rules in (29)–(32), we deduce that
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surface, z(~x, ~y, ~b, ~t ), is an independent variable. The no-
tation z distinguishes the function z(~x, ~y, ~b, ~t ) from the
value of the function at a particular point in density co-
ordinates. Thus, we write

z 5 z(~x, ~y, ~b, ~t ) (25)

rather than z 5 z(~x, ~y, ~b, ~t ): in the latter expression one
must hold in mind that z has a different meaning on the
two sides of the equation and this is painful at around
(60).

The Jacobian of the transformation from (x, y, z) to
(~x, ~y, ~b) is

s(~x, ~y, ~b, ~t ) 5
def

z ~b (26)

5 1/bz, (27)

where (27) is obtained by applying the differential
operator in (23) to z. Thus, the element of volume is
d3x 5 dx dy dz 5 s d~x d~y d ~b. The assumption of a stacked

buoyancy field ensures that the Jacobian s is nonzero.
We refer to s as the thickness. The important relations,

z~x 5 2sbx, z~y 5 2sby, and z~t 5 2sbt, (28)

are obtained by applying the differential operators in
(21)–(24) to z. Using (28), one can alternatively write
the derivatives in (21)–(24) as

›x 5 ›~x 2 z~xs21›~b, (29)

›y 5 ›~y 2 z~ys21›~b, (30)

›z 5 s21› ~b, (31)

and

›t 5 ›~t 2 z~t s21› ~b. (32)

Isolating w from (15) and using (29)–(32), one has

w 5 z~t 1 uz~x 1 yz~y 1 -z ~b. (33)

Using (29)–(33), the convective derivative,

D

Dt
5
def

›t 1 u›x 1 y›y 1 w›z, (34)

is transformed to buoyancy coordinates as

D

Dt
5 ›~t 1 u›~x 1 y›~y 1 -› ~b. (35)

Thus, the passive scalar Eq. (16) becomes

c~t 1 uc~x 1 yc~y 1 -c ~b 5 g (36)

The diabatic term - is equivalent to a velocity through
buoyancy surfaces.

Taking a z derivative of (33), using $ ! u 5 0 and the
rules in (29)–(32), we deduce that

s~t 1 (su)~x 1 (sy)~y 1 (s-) ~b 5 0. (37)

The thickness equation (37) is equivalent to mass con-
servation in buoyancy coordinates.

a. Basis vectors

To this point, the development of buoyancy coordi-
nates is broadly familiar to physical oceanographers and
meteorologists (Starr 1945; de Szoeke and Bennett 1993;
Griffies 2004). However, the full power of the buoyancy
coordinates is not fully exploited unless one also under-
stands how vectors and coordinate-invariant differential
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def
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The diabatic term - is equivalent to a velocity through
buoyancy surfaces.

Taking a z derivative of (33), using $ ! u 5 0 and the
rules in (29)–(32), we deduce that

s~t 1 (su)~x 1 (sy)~y 1 (s-) ~b 5 0. (37)

The thickness equation (37) is equivalent to mass con-
servation in buoyancy coordinates.
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To this point, the development of buoyancy coordi-
nates is broadly familiar to physical oceanographers and
meteorologists (Starr 1945; de Szoeke and Bennett 1993;
Griffies 2004). However, the full power of the buoyancy
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Taking a z derivative of (33), using $ ! u 5 0 and the
rules in (29)–(32), we deduce that
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FY 5 (bY
zi 2 bY

xk)$ ! Ey 2 (bY
zj 2 bY

yk)$ ! Eu. (10)

Notice that FY !$bY 5 0 so that the eddy PV flux FY lies in
a bY surface. Taking the dot product of FY with i and j
expresses the EP divergences as components of the PV
flux; thus one can write the horizontal momentum equa-
tions (3) and (4) as

ût 1 ûûx 1 ŷûy 1 wYûz 2 f ŷ 1 pY
x 2 FY!j/bY

z 5 0

(11)

and

ŷt 1 ûŷx 1 ŷ ŷy 1 wYŷz 1 f û 1 pY
y 1 FY ! i/bY

z 5 0.

(12)

The results in (10)–(12) provide a three-dimensional and
fully nonlinear generalization of the identities discov-
ered by Taylor (1915) and Bretherton (1966); for a his-
torical review,2 see Dritschel and McIntyre (2008).

Earlier three-dimensional generalizations of EP fluxes
also introduce two vectors analogous to Eu and Ey above.
These three-dimensional EP formulations include the
quasigeostrophic approach of Plumb (1986), the thickness-
weighted average approach of Lee and Leach (1996),
and the TEM-based approach of Gent and McWilliams
(1996). The system in (3)–(7) is simpler and more exact
than these antecedents—simpler because in the TWA
formulation there is only one velocity uY. The main thrust
of Gent and McWilliams (1996), Lee and Leach (1996),
and Plumb and Ferrari (2005) is to advect the unweighted
average velocity (i.e., u) by the residual velocity uY. By
contrast, in (3)–(7) the residual velocity is advected by
the residual velocity and the unweighted mean velocity
does not appear.

2. Buoyancy coordinates: Kinematics

The main results in this work are obtained by trans-
forming the equations of motion to buoyancy coordinates,
averaging in buoyancy coordinates, and then moving
back to Cartesian coordinates. An alternative formula-
tion, avoiding the intermediate introduction of buoyancy
coordinates, is provided by Jacobson and Aiki (2006).

Although the transformation of the equations of mo-
tion to buoyancy coordinates is standard (e.g., Starr 1945;
de Szoeke and Bennett 1993; Griffies 2004), the TWA

formulation in section 5 requires some results that go
beyond the isopycnic formalism used by earlier authors.
To systematically introduce this material, we begin by
reviewing the transition from Cartesian coordinates to
buoyancy coordinates. The key new result needed in
section 5 is contained in the material surrounding Eqs.
(52)–(54).

A point in space is located with x 5 xi 1 yj 1 zk where
i, j, and k are the usual unit vectors aligned with right-
handed Cartesian coordinates. Using this basis, the ve-
locity of a fluid can be represented as

u 5 ui 1 yj 1 wk. (13)

Within the Boussinesq approximation

$ ! u 5 0, (14)

where $! is the three-dimensional coordinate-invariant
divergence operator.

It is convenient to write the density as r 5 r0(1 2 g21b),
where b(x, t) is the buoyancy. We suppose that b is al-
most materially conserved,

bt 1 ubx 1 yby 1 wbz 5 -. (15)

The right of (15) represents small diabatic effects: for
example, for diffusion, - 5 k=2b. It is instructive to
consider the coevolution of a passive scalar c(x, t) sat-
isfying

ct 1 ucx 1 ycy 1 wcz 5 g. (16)

On the right of (16), g denotes diabatic terms.

An essential assumption is that the buoyancy b(x, t)
remains statically stable and ‘‘stacked’’; that is, there is
a monotonic relation between b and z. This assumption
requires the ‘‘double averaging’’ procedure described
by de Szoeke and Bennett (1993): the stacked field
b(x, t) used here is obtained by first averaging the exact
buoyancy field over scales of a few meters so that tran-
sient small-scale inversions are eliminated. In section 5,
we further assume that after this averaging the dynamics
is hydrostatic.

If there is a monotonic relation between b and z, then
one can change coordinates from (x, y, z, t) to (~x, ~y, ~b, ~t ),
where

~x 5 x, (17)

~y 5 y, (18)

~b 5 b(x, y, z, t), (19)

~t 5 t. (20)

2 Dritschel and McIntyre (2008) refer to results like (10) as
‘‘Taylor identities.’’ In my opinion, Bretherton’s two-dimensional
quasigeostrophic generalization deserves recognition alongside the
one-dimensional identity of Taylor.
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This allows us to recast all sorts of equations in buoyancy coordinates
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def
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5 1/bz, (27)

where (27) is obtained by applying the differential
operator in (23) to z. Thus, the element of volume is
d3x 5 dx dy dz 5 s d~x d~y d ~b. The assumption of a stacked
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Taking a z derivative of (33), using $ ! u 5 0 and the
rules in (29)–(32), we deduce that

s~t 1 (su)~x 1 (sy)~y 1 (s-) ~b 5 0. (37)

The thickness equation (37) is equivalent to mass con-
servation in buoyancy coordinates.

a. Basis vectors

To this point, the development of buoyancy coordi-
nates is broadly familiar to physical oceanographers and
meteorologists (Starr 1945; de Szoeke and Bennett 1993;
Griffies 2004). However, the full power of the buoyancy
coordinates is not fully exploited unless one also under-
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From the buoyancy equation



Non-orthogonal coordinate systems
operators $!, $3, and the Laplacian =2 are represented.
To accomplish this we use the most elementary aspects
of tensor analysis. Thus, we consider the nonorthogonal
set of basis vectors

e1 5
def

i, e2 5
def

j, e3 5
def

$b (38)

(e.g., Simmonds 1982). Above, e1 and e2 are the usual
Cartesian unit vectors, while e3 is normal to a buoyancy
surface. Notice that (e1 3 e2) ! e3 5 bz 5 s21.

In parallel with e j one can also introduce the dual
basis vectors

e1 5
def

se2 3 e3 5 i 1 z~xk, (39)

e2 5
def

se3 3 e1 5 j 1 z~yk, (40)

e3 5
def

se1 3 e2 5 sk. (41)

The vectors e1 and e2 are tangent to a buoyancy surface,
and thus a linear combination of e1 and e2 is a vector
‘‘lying in the buoyancy surface.’’ The triple product of
this basis set is (e1 3 e2) ! e3 5 s, which is the reciprocal
of the triple product (e1 3 e2) ! e3. The set (e1, e2, e3) is
‘‘bi-orthogonal’’ to (e1, e2, e3) in the sense that

ei ! e
j 5 d j

i , (42)

where di
j is the Kronecker d.

The differential operators ›~x, ›~y, and › ~b on the right of
(29)–(32) can be written as directional derivatives along
the ej-basis vectors:

›~x 5 e1 ! $, ›~y 5 e2 ! $, ›~b 5 e3 ! $. (43)

It turns out that the nonorthogonal set ej provides the
most useful b-coordinate basis for many purposes.

b. Three representations of a vector field

An arbitrary vector field, q(x, t) for example, can be
expanded in three different ways:

q 5 qi 1 rj 1 sk, (44)

5 q1e1 1 q2e2 1 q3e3, (45)

5 q1e1 1 q2e2 1 q3e3. (46)

In tensor analysis, qj are referred to as the contravariant
components of q and qj are the covariant components.
The component of q along a basis vector is extracted as

qj 5 ej ! q and qj 5 e j ! q. (47)

Thus, q can be written in terms of its Cartesian compo-
nents q, r, and s as

q 5 q
|{z}
5q1

e1 1 r
|{z}
5q2

e2 1 s21(s 2 z~xq 2 z~yr)e3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5q3

(48)

or as

q 5 (q 1 sz~x)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

5q
1

e1 1 (r 1 sz~y)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

5q
2

e2 1 ss
|{z}
5q

3

e3. (49)

An important result follows from the special case q 5 u:
using the thickness equation (37), the contravariant rep-
resentation of u is

u 5 ue1 1 ye2 1 s21(z~t 1 -z ~b)e3. (50)

The vectors e1 and e2, defined in (39) and (40), are tan-
gent to a buoyancy surface. Thus the first two terms on
the right of (50) provide the part of u that ‘‘lies in a
buoyancy surface.’’ The functions u and y do double
duty: u and y provide the components of u along the
horizontal Cartesian directions i and j and also along the
in-b-surface vectors e1 and e2. If the flow is steady
(z~t 5 0) and adiabatic (- 5 0), then the final term in (50)
is zero and u lies in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f (~x, ~y, ~b, ~t ). In Cartesian coordinates, the gradient is
$f 5 fxi 1 fyj 1 fzk. Using (38) and the definition of
the basis e j in (39)–(41), one has the natural covariant
representation of the gradient

$f (~x, ~y, ~b, ~t ) 5 f~x$~x 1 f~y$~y 1 f ~b$b,

5 f~xe1 1 f~ye2 1 f ~be3. (51)

Turning to the divergence, if a vector field q is pre-
sented in the ej basis as

q 5 q1e1 1 q2e2 1 q3e3, (52)

then the divergence is

$ ! q 5 s21(sq1)~x 1 s21(sq2)~y 1 s21(sq3)~b. (53)

This very handy formula can be verified by noting that
s$ ! ej 5 $s ! ej and applying standard vector identities
to (52). It is instructive to calculate the divergence of u
in (50) using (53) to recover (37).
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qj 5 ej ! q and qj 5 e j ! q. (47)

Thus, q can be written in terms of its Cartesian compo-
nents q, r, and s as
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An important result follows from the special case q 5 u:
using the thickness equation (37), the contravariant rep-
resentation of u is

u 5 ue1 1 ye2 1 s21(z~t 1 -z ~b)e3. (50)

The vectors e1 and e2, defined in (39) and (40), are tan-
gent to a buoyancy surface. Thus the first two terms on
the right of (50) provide the part of u that ‘‘lies in a
buoyancy surface.’’ The functions u and y do double
duty: u and y provide the components of u along the
horizontal Cartesian directions i and j and also along the
in-b-surface vectors e1 and e2. If the flow is steady
(z~t 5 0) and adiabatic (- 5 0), then the final term in (50)
is zero and u lies in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f (~x, ~y, ~b, ~t ). In Cartesian coordinates, the gradient is
$f 5 fxi 1 fyj 1 fzk. Using (38) and the definition of
the basis e j in (39)–(41), one has the natural covariant
representation of the gradient

$f (~x, ~y, ~b, ~t ) 5 f~x$~x 1 f~y$~y 1 f ~b$b,

5 f~xe1 1 f~ye2 1 f ~be3. (51)

Turning to the divergence, if a vector field q is pre-
sented in the ej basis as

q 5 q1e1 1 q2e2 1 q3e3, (52)

then the divergence is

$ ! q 5 s21(sq1)~x 1 s21(sq2)~y 1 s21(sq3)~b. (53)

This very handy formula can be verified by noting that
s$ ! ej 5 $s ! ej and applying standard vector identities
to (52). It is instructive to calculate the divergence of u
in (50) using (53) to recover (37).
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›~x 5 e1 ! $, ›~y 5 e2 ! $, ›~b 5 e3 ! $. (43)

It turns out that the nonorthogonal set ej provides the
most useful b-coordinate basis for many purposes.
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Turning to the divergence, if a vector field q is pre-
sented in the ej basis as

q 5 q1e1 1 q2e2 1 q3e3, (52)

then the divergence is

$ ! q 5 s21(sq1)~x 1 s21(sq2)~y 1 s21(sq3)~b. (53)

This very handy formula can be verified by noting that
s$ ! ej 5 $s ! ej and applying standard vector identities
to (52). It is instructive to calculate the divergence of u
in (50) using (53) to recover (37).
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For an arbitrary vector field

operators $!, $3, and the Laplacian =2 are represented.
To accomplish this we use the most elementary aspects
of tensor analysis. Thus, we consider the nonorthogonal
set of basis vectors

e1 5
def

i, e2 5
def

j, e3 5
def

$b (38)

(e.g., Simmonds 1982). Above, e1 and e2 are the usual
Cartesian unit vectors, while e3 is normal to a buoyancy
surface. Notice that (e1 3 e2) ! e3 5 bz 5 s21.

In parallel with e j one can also introduce the dual
basis vectors

e1 5
def

se2 3 e3 5 i 1 z~xk, (39)

e2 5
def

se3 3 e1 5 j 1 z~yk, (40)

e3 5
def

se1 3 e2 5 sk. (41)

The vectors e1 and e2 are tangent to a buoyancy surface,
and thus a linear combination of e1 and e2 is a vector
‘‘lying in the buoyancy surface.’’ The triple product of
this basis set is (e1 3 e2) ! e3 5 s, which is the reciprocal
of the triple product (e1 3 e2) ! e3. The set (e1, e2, e3) is
‘‘bi-orthogonal’’ to (e1, e2, e3) in the sense that

ei ! e
j 5 d j

i , (42)

where di
j is the Kronecker d.

The differential operators ›~x, ›~y, and › ~b on the right of
(29)–(32) can be written as directional derivatives along
the ej-basis vectors:

›~x 5 e1 ! $, ›~y 5 e2 ! $, ›~b 5 e3 ! $. (43)

It turns out that the nonorthogonal set ej provides the
most useful b-coordinate basis for many purposes.

b. Three representations of a vector field

An arbitrary vector field, q(x, t) for example, can be
expanded in three different ways:

q 5 qi 1 rj 1 sk, (44)

5 q1e1 1 q2e2 1 q3e3, (45)

5 q1e1 1 q2e2 1 q3e3. (46)

In tensor analysis, qj are referred to as the contravariant
components of q and qj are the covariant components.
The component of q along a basis vector is extracted as

qj 5 ej ! q and qj 5 e j ! q. (47)

Thus, q can be written in terms of its Cartesian compo-
nents q, r, and s as

q 5 q
|{z}
5q1

e1 1 r
|{z}
5q2

e2 1 s21(s 2 z~xq 2 z~yr)e3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5q3

(48)

or as

q 5 (q 1 sz~x)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

5q
1

e1 1 (r 1 sz~y)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

5q
2

e2 1 ss
|{z}
5q

3

e3. (49)

An important result follows from the special case q 5 u:
using the thickness equation (37), the contravariant rep-
resentation of u is

u 5 ue1 1 ye2 1 s21(z~t 1 -z ~b)e3. (50)

The vectors e1 and e2, defined in (39) and (40), are tan-
gent to a buoyancy surface. Thus the first two terms on
the right of (50) provide the part of u that ‘‘lies in a
buoyancy surface.’’ The functions u and y do double
duty: u and y provide the components of u along the
horizontal Cartesian directions i and j and also along the
in-b-surface vectors e1 and e2. If the flow is steady
(z~t 5 0) and adiabatic (- 5 0), then the final term in (50)
is zero and u lies in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f (~x, ~y, ~b, ~t ). In Cartesian coordinates, the gradient is
$f 5 fxi 1 fyj 1 fzk. Using (38) and the definition of
the basis e j in (39)–(41), one has the natural covariant
representation of the gradient

$f (~x, ~y, ~b, ~t ) 5 f~x$~x 1 f~y$~y 1 f ~b$b,

5 f~xe1 1 f~ye2 1 f ~be3. (51)

Turning to the divergence, if a vector field q is pre-
sented in the ej basis as

q 5 q1e1 1 q2e2 1 q3e3, (52)

then the divergence is

$ ! q 5 s21(sq1)~x 1 s21(sq2)~y 1 s21(sq3)~b. (53)

This very handy formula can be verified by noting that
s$ ! ej 5 $s ! ej and applying standard vector identities
to (52). It is instructive to calculate the divergence of u
in (50) using (53) to recover (37).
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def

j, e3 5
def

$b (38)

(e.g., Simmonds 1982). Above, e1 and e2 are the usual
Cartesian unit vectors, while e3 is normal to a buoyancy
surface. Notice that (e1 3 e2) ! e3 5 bz 5 s21.

In parallel with e j one can also introduce the dual
basis vectors

e1 5
def

se2 3 e3 5 i 1 z~xk, (39)

e2 5
def

se3 3 e1 5 j 1 z~yk, (40)

e3 5
def

se1 3 e2 5 sk. (41)

The vectors e1 and e2 are tangent to a buoyancy surface,
and thus a linear combination of e1 and e2 is a vector
‘‘lying in the buoyancy surface.’’ The triple product of
this basis set is (e1 3 e2) ! e3 5 s, which is the reciprocal
of the triple product (e1 3 e2) ! e3. The set (e1, e2, e3) is
‘‘bi-orthogonal’’ to (e1, e2, e3) in the sense that
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where di
j is the Kronecker d.

The differential operators ›~x, ›~y, and › ~b on the right of
(29)–(32) can be written as directional derivatives along
the ej-basis vectors:

›~x 5 e1 ! $, ›~y 5 e2 ! $, ›~b 5 e3 ! $. (43)

It turns out that the nonorthogonal set ej provides the
most useful b-coordinate basis for many purposes.

b. Three representations of a vector field

An arbitrary vector field, q(x, t) for example, can be
expanded in three different ways:

q 5 qi 1 rj 1 sk, (44)

5 q1e1 1 q2e2 1 q3e3, (45)

5 q1e1 1 q2e2 1 q3e3. (46)

In tensor analysis, qj are referred to as the contravariant
components of q and qj are the covariant components.
The component of q along a basis vector is extracted as

qj 5 ej ! q and qj 5 e j ! q. (47)

Thus, q can be written in terms of its Cartesian compo-
nents q, r, and s as

q 5 q
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|fflfflfflfflfflffl{zfflfflfflfflfflffl}

5q
1

e1 1 (r 1 sz~y)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
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An important result follows from the special case q 5 u:
using the thickness equation (37), the contravariant rep-
resentation of u is

u 5 ue1 1 ye2 1 s21(z~t 1 -z ~b)e3. (50)

The vectors e1 and e2, defined in (39) and (40), are tan-
gent to a buoyancy surface. Thus the first two terms on
the right of (50) provide the part of u that ‘‘lies in a
buoyancy surface.’’ The functions u and y do double
duty: u and y provide the components of u along the
horizontal Cartesian directions i and j and also along the
in-b-surface vectors e1 and e2. If the flow is steady
(z~t 5 0) and adiabatic (- 5 0), then the final term in (50)
is zero and u lies in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f (~x, ~y, ~b, ~t ). In Cartesian coordinates, the gradient is
$f 5 fxi 1 fyj 1 fzk. Using (38) and the definition of
the basis e j in (39)–(41), one has the natural covariant
representation of the gradient

$f (~x, ~y, ~b, ~t ) 5 f~x$~x 1 f~y$~y 1 f ~b$b,

5 f~xe1 1 f~ye2 1 f ~be3. (51)

Turning to the divergence, if a vector field q is pre-
sented in the ej basis as

q 5 q1e1 1 q2e2 1 q3e3, (52)

then the divergence is

$ ! q 5 s21(sq1)~x 1 s21(sq2)~y 1 s21(sq3)~b. (53)

This very handy formula can be verified by noting that
s$ ! ej 5 $s ! ej and applying standard vector identities
to (52). It is instructive to calculate the divergence of u
in (50) using (53) to recover (37).
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operators $!, $3, and the Laplacian =2 are represented.
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of tensor analysis. Thus, we consider the nonorthogonal
set of basis vectors

e1 5
def

i, e2 5
def

j, e3 5
def

$b (38)

(e.g., Simmonds 1982). Above, e1 and e2 are the usual
Cartesian unit vectors, while e3 is normal to a buoyancy
surface. Notice that (e1 3 e2) ! e3 5 bz 5 s21.

In parallel with e j one can also introduce the dual
basis vectors

e1 5
def

se2 3 e3 5 i 1 z~xk, (39)

e2 5
def

se3 3 e1 5 j 1 z~yk, (40)

e3 5
def

se1 3 e2 5 sk. (41)

The vectors e1 and e2 are tangent to a buoyancy surface,
and thus a linear combination of e1 and e2 is a vector
‘‘lying in the buoyancy surface.’’ The triple product of
this basis set is (e1 3 e2) ! e3 5 s, which is the reciprocal
of the triple product (e1 3 e2) ! e3. The set (e1, e2, e3) is
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where di
j is the Kronecker d.
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(29)–(32) can be written as directional derivatives along
the ej-basis vectors:

›~x 5 e1 ! $, ›~y 5 e2 ! $, ›~b 5 e3 ! $. (43)

It turns out that the nonorthogonal set ej provides the
most useful b-coordinate basis for many purposes.

b. Three representations of a vector field

An arbitrary vector field, q(x, t) for example, can be
expanded in three different ways:

q 5 qi 1 rj 1 sk, (44)

5 q1e1 1 q2e2 1 q3e3, (45)

5 q1e1 1 q2e2 1 q3e3. (46)

In tensor analysis, qj are referred to as the contravariant
components of q and qj are the covariant components.
The component of q along a basis vector is extracted as

qj 5 ej ! q and qj 5 e j ! q. (47)

Thus, q can be written in terms of its Cartesian compo-
nents q, r, and s as

q 5 q
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5q1
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or as
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|fflfflfflfflfflffl{zfflfflfflfflfflffl}
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An important result follows from the special case q 5 u:
using the thickness equation (37), the contravariant rep-
resentation of u is

u 5 ue1 1 ye2 1 s21(z~t 1 -z ~b)e3. (50)

The vectors e1 and e2, defined in (39) and (40), are tan-
gent to a buoyancy surface. Thus the first two terms on
the right of (50) provide the part of u that ‘‘lies in a
buoyancy surface.’’ The functions u and y do double
duty: u and y provide the components of u along the
horizontal Cartesian directions i and j and also along the
in-b-surface vectors e1 and e2. If the flow is steady
(z~t 5 0) and adiabatic (- 5 0), then the final term in (50)
is zero and u lies in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f (~x, ~y, ~b, ~t ). In Cartesian coordinates, the gradient is
$f 5 fxi 1 fyj 1 fzk. Using (38) and the definition of
the basis e j in (39)–(41), one has the natural covariant
representation of the gradient

$f (~x, ~y, ~b, ~t ) 5 f~x$~x 1 f~y$~y 1 f ~b$b,

5 f~xe1 1 f~ye2 1 f ~be3. (51)

Turning to the divergence, if a vector field q is pre-
sented in the ej basis as

q 5 q1e1 1 q2e2 1 q3e3, (52)

then the divergence is

$ ! q 5 s21(sq1)~x 1 s21(sq2)~y 1 s21(sq3)~b. (53)

This very handy formula can be verified by noting that
s$ ! ej 5 $s ! ej and applying standard vector identities
to (52). It is instructive to calculate the divergence of u
in (50) using (53) to recover (37).
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This is a feature of the non-orthogonal coordinate system

For velocity

u = ui+ vj+ wk

operators $!, $3, and the Laplacian =2 are represented.
To accomplish this we use the most elementary aspects
of tensor analysis. Thus, we consider the nonorthogonal
set of basis vectors

e1 5
def

i, e2 5
def

j, e3 5
def

$b (38)

(e.g., Simmonds 1982). Above, e1 and e2 are the usual
Cartesian unit vectors, while e3 is normal to a buoyancy
surface. Notice that (e1 3 e2) ! e3 5 bz 5 s21.

In parallel with e j one can also introduce the dual
basis vectors

e1 5
def

se2 3 e3 5 i 1 z~xk, (39)

e2 5
def

se3 3 e1 5 j 1 z~yk, (40)

e3 5
def

se1 3 e2 5 sk. (41)

The vectors e1 and e2 are tangent to a buoyancy surface,
and thus a linear combination of e1 and e2 is a vector
‘‘lying in the buoyancy surface.’’ The triple product of
this basis set is (e1 3 e2) ! e3 5 s, which is the reciprocal
of the triple product (e1 3 e2) ! e3. The set (e1, e2, e3) is
‘‘bi-orthogonal’’ to (e1, e2, e3) in the sense that

ei ! e
j 5 d j

i , (42)

where di
j is the Kronecker d.

The differential operators ›~x, ›~y, and › ~b on the right of
(29)–(32) can be written as directional derivatives along
the ej-basis vectors:

›~x 5 e1 ! $, ›~y 5 e2 ! $, ›~b 5 e3 ! $. (43)

It turns out that the nonorthogonal set ej provides the
most useful b-coordinate basis for many purposes.

b. Three representations of a vector field

An arbitrary vector field, q(x, t) for example, can be
expanded in three different ways:

q 5 qi 1 rj 1 sk, (44)

5 q1e1 1 q2e2 1 q3e3, (45)

5 q1e1 1 q2e2 1 q3e3. (46)

In tensor analysis, qj are referred to as the contravariant
components of q and qj are the covariant components.
The component of q along a basis vector is extracted as

qj 5 ej ! q and qj 5 e j ! q. (47)

Thus, q can be written in terms of its Cartesian compo-
nents q, r, and s as
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5q1
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|fflfflfflfflfflffl{zfflfflfflfflfflffl}
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An important result follows from the special case q 5 u:
using the thickness equation (37), the contravariant rep-
resentation of u is

u 5 ue1 1 ye2 1 s21(z~t 1 -z ~b)e3. (50)

The vectors e1 and e2, defined in (39) and (40), are tan-
gent to a buoyancy surface. Thus the first two terms on
the right of (50) provide the part of u that ‘‘lies in a
buoyancy surface.’’ The functions u and y do double
duty: u and y provide the components of u along the
horizontal Cartesian directions i and j and also along the
in-b-surface vectors e1 and e2. If the flow is steady
(z~t 5 0) and adiabatic (- 5 0), then the final term in (50)
is zero and u lies in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f (~x, ~y, ~b, ~t ). In Cartesian coordinates, the gradient is
$f 5 fxi 1 fyj 1 fzk. Using (38) and the definition of
the basis e j in (39)–(41), one has the natural covariant
representation of the gradient

$f (~x, ~y, ~b, ~t ) 5 f~x$~x 1 f~y$~y 1 f ~b$b,

5 f~xe1 1 f~ye2 1 f ~be3. (51)

Turning to the divergence, if a vector field q is pre-
sented in the ej basis as

q 5 q1e1 1 q2e2 1 q3e3, (52)

then the divergence is

$ ! q 5 s21(sq1)~x 1 s21(sq2)~y 1 s21(sq3)~b. (53)

This very handy formula can be verified by noting that
s$ ! ej 5 $s ! ej and applying standard vector identities
to (52). It is instructive to calculate the divergence of u
in (50) using (53) to recover (37).
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There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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The third component of residual velocity

There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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We define 

such that

and the flow is incompressible:

There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.

698 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 42

and     is the velocity used to advect 

There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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Zonally averaging the overturning

Latitude

Bu
oy

an
cy

 

 

−60 −40 −20 0 20 40 60

0.01

0.02

0.03

0.04

0.05

0.06

−20

−15

−10

−5

0

5

10

15

20

b]

Heaviside 
function is only 
nonzero above b̃

 (y, b̃) =

Z b
s

b̃(x,y,z)
v� db

0 =

Z L
x

0

Z 0

�H

v

†H
h
b(x, y, z)� b̃

i
dz dx

Residual Overturning Streamfunction v† = v + v0



Zonally averaging the buoyancy surfaces
People like to transform the ROC and display it in z-coordinates 
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Zonally averaging the buoyancy surfaces

There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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and     is the 
velocity used to 

advect 

There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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Boundary conditions/beyond the boundary

2006; Jacobson and Aiki 2006). The formulation in these
earlier papers is framed using the quasi-Stokes stream-
function, which is not a variable used in the TWA for-
mulation. However, the main conclusion is that the
residual velocity should satisfy the same nonpenetration
conditions as the unaveraged velocity7: namely,

uY ! n 5 0, (97)

where n is an outward normal to the boundary.
A subtlety is that the z-coordinate TWA equations

are in the same domain as the unaveraged equations,
even though the domain boundary is moving in b co-
ordinates. This is illustrated with a simple kinematic
example: consider the unaveraged velocity field (u, y, w) 5
(0, a cos(x 2 t), 0) and suppose that the domain is 0 ,
z , 1. The buoyancy field

b(x, y, z, t) 5 z 1 G[y 1 a sin(x 2 t)] (98)

is a solution of the adiabatic version (- 5 0) of the
buoyancy equation (15). It follows that the isopycnal
depth is

z(~x, ~y, ~b, ~t ) 5 ~b 2 G[ ~y 1 a sin(~x 2 ~t )], (99)

provided that

G[ ~y 1 a sin(~x 2 ~t )] , ~b , 1 1 G[ ~y 1 a sin(~x 2 ~t )].

(100)

The wavy contours in Fig. 1 show the isopycnal depth z
as a function of buoyancy and time at (x, y) 5 0.

To calculate the average depth z(~x, ~y, ~b, ~t ), one ex-
tends the definition of z beyond the range in (100) as
shown in Fig. 1. This extension is the same as the pre-
scription of Andrews (1983), based on the Lorenz con-
vention, that buoyancy surfaces intersecting the boundary
be continued ‘‘just under the surface.’’

From another perspective, one can imagine a ‘‘semi-
Lagrangian’’ observer (SL) who sits at fixed horizontal
position and moves vertically so as to remain on a target
isopycnal. If SL never reaches the top or the bottom of
the ocean, then SL collects an uninterrupted time series
of depth zSL(t); the time average of zSL(t) is the average
depth of the SL’s target isopycnal. However, if SL’s
vertical motion takes him to either the top or the bottom
of the ocean, then SL is stuck while the target iso-
pycnal is unavailable. This is the ‘‘outcropping problem’’

illustrated in Fig. 1. The Lorenz convention demands that
SL waits at the boundary and continues to record his
constant depth until the target isopycnal reappears at
SL’s horizontal location. The average depth of the target
isopycnal is computed using the entire time series zSL(t),
including the boundary waiting times during which zSL(t)
is constant.

Using the extended z, one can compute the time av-
erage of z(~x, ~y, ~b, ~t ), that is, as a horizontal average
through the field z( ~b, ~t ) in Fig. 1. In this simple example z
can be obtained analytically. However, the expression is
slightly complicated, and instead we show z obtained by
numerical integration in Fig. 2. Notice that 0 , z , 1;
that is, the mean depth is defined on the same interval as
the unaveraged equations.

5. Dynamics in buoyancy coordinates

The Boussinesq primitive equations in z coordinates are

Du

Dt
2 f y 1 px 5 X , (101)

Dy

Dt
1 fu 1 py 5 Y, (102)

pz 5 b, (103)

ux 1 yy 1 wz 5 0, (104)

Db

Dt
5 -, (105)

FIG. 1. The isopycnal depth z( ~b, ~t ) in (99) at (x, y) 5 0 as function
of ~b and ~t. In z coordinates the ocean depth is 0 , z , 1 and z is
extended with the constant value z 5 1 for isopycnals ‘‘above’’ the
sea surface and z 5 0 for isopycnals ‘‘below’’ the bottom.

7 We use the rigid-lid approximation so that the sea surface is z 5
zs, where zs is a constant. Thus, (97) is wY(x, y, zs, t) 5 0.
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Boundary conditions and beyond

2006; Jacobson and Aiki 2006). The formulation in these
earlier papers is framed using the quasi-Stokes stream-
function, which is not a variable used in the TWA for-
mulation. However, the main conclusion is that the
residual velocity should satisfy the same nonpenetration
conditions as the unaveraged velocity7: namely,

uY ! n 5 0, (97)

where n is an outward normal to the boundary.
A subtlety is that the z-coordinate TWA equations

are in the same domain as the unaveraged equations,
even though the domain boundary is moving in b co-
ordinates. This is illustrated with a simple kinematic
example: consider the unaveraged velocity field (u, y, w) 5
(0, a cos(x 2 t), 0) and suppose that the domain is 0 ,
z , 1. The buoyancy field

b(x, y, z, t) 5 z 1 G[y 1 a sin(x 2 t)] (98)

is a solution of the adiabatic version (- 5 0) of the
buoyancy equation (15). It follows that the isopycnal
depth is

z(~x, ~y, ~b, ~t ) 5 ~b 2 G[ ~y 1 a sin(~x 2 ~t )], (99)

provided that

G[ ~y 1 a sin(~x 2 ~t )] , ~b , 1 1 G[ ~y 1 a sin(~x 2 ~t )].

(100)

The wavy contours in Fig. 1 show the isopycnal depth z
as a function of buoyancy and time at (x, y) 5 0.

To calculate the average depth z(~x, ~y, ~b, ~t ), one ex-
tends the definition of z beyond the range in (100) as
shown in Fig. 1. This extension is the same as the pre-
scription of Andrews (1983), based on the Lorenz con-
vention, that buoyancy surfaces intersecting the boundary
be continued ‘‘just under the surface.’’

From another perspective, one can imagine a ‘‘semi-
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position and moves vertically so as to remain on a target
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numerical integration in Fig. 2. Notice that 0 , z , 1;
that is, the mean depth is defined on the same interval as
the unaveraged equations.

5. Dynamics in buoyancy coordinates

The Boussinesq primitive equations in z coordinates are

Du

Dt
2 f y 1 px 5 X , (101)
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Dt
1 fu 1 py 5 Y, (102)

pz 5 b, (103)

ux 1 yy 1 wz 5 0, (104)
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FIG. 1. The isopycnal depth z( ~b, ~t ) in (99) at (x, y) 5 0 as function
of ~b and ~t. In z coordinates the ocean depth is 0 , z , 1 and z is
extended with the constant value z 5 1 for isopycnals ‘‘above’’ the
sea surface and z 5 0 for isopycnals ‘‘below’’ the bottom.

7 We use the rigid-lid approximation so that the sea surface is z 5
zs, where zs is a constant. Thus, (97) is wY(x, y, zs, t) 5 0.
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where the convective derivative D/Dt is defined in (34).
In the horizontal momentum equations,X and Y denote
adiabatic processes and body forces.

Now we write the equations of motion (101)–(105) in
buoyancy coordinates: for example, using the b-coordinate
representation of the convective derivative in (35). An
important step is introduction of the Montgomery po-
tential,

m(~x, ~y, ~b, ~t ) 5
def

p(x, y, z(~x, ~y, ~b, ~t ), t) 2 ~bz(~x, ~y, ~b, ~t ).

(106)

One can verify that px 5 m~x etc. Then in b coordinates
the equations of motion are

Du

Dt
2 f y 1 m~x 5 X , (107)

Dy

Dt
1 fu 1 m~y 5 Y, (108)

z 1 m ~b 5 0, (109)

s~t 1 (su)~x 1 (sy)~y 1 (-s) ~b 5 0, (110)

where s 5
def

z ~b 5 2m ~b ~b. The convective derivative in b co-
ordinates is given in (35).

a. Rossby–Ertel potential vorticity

One can write the horizontal momentum equations
above as

u~t 1 -u ~b 2 syP 1 m 1
1

2
u2 1

1

2
y2

! "

~x
5 X (111)

and

y~t 1 -y ~b 1 suP 1 m 1
1

2
u2 1

1

2
y2

! "

~y
5 Y, (112)

where the Rossby–Ertel PV is

P 5
def f 1 y~x 2 u~y

s
. (113)

Cross-differentiating to eliminate the Bernoulli terms,
one obtains

(sP)~t 1 (suP 1 -y ~b 2 Y)~x 1 (syP 2 -u ~b 1X)~y 5 0;

(114)

the conservation law above is analogous to the ‘‘ex-
panded’’ adiabatic passive scalar Eq. (92). The remarkable
point is that (114) applies to PV even if the flow is diabatic.

b. The PV impermeability theorem

Haynes and McIntyre (1987, 1990) emphasize that
a main advantage of (114) is that the PV impermeability
theorem is immediate: at fixed ~x and ~y one can integrate
(114) between ~b 5 ~b1 and ~b 5 ~b2 and obtain an expres-
sion for the rate of change of the total amount of PV
substance in the layer ~b1 , ~b , ~b2. Since there are no ~b
derivatives in (114), the amount of PV substance in this
buoyancy layer is not changed by flux through either
bounding b surface.

Combining the layer-thickness equation (110) with
(114) and using (53) to recognize a divergence, one ob-
tains the PV conservation equation in the form

DP
Dt

1 $ ! G 5 0, (115)

where the diabatic flux in (115) is

G 5
def

2(X i 1 Yj) 3 $b 2 -[$ 3 (ui 1 yj) 1 s21f e3]

(116)

(e.g., Haynes and McIntyre 1990); G can be expanded as

sG 5 2[(Y 2 y ~b-)e1 2 (X 2 u ~b-)e2] 2 s-Pe3.

(117)

With (117) one readily finds G ! $b 5 2-P so that G
penetrates b surfaces. In their section 4, Haynes and
McIntyre (1990) explain how this penetration is com-
patible with the PV impermeability theorem.

FIG. 2. The average isopycnal depth ~z( ~b) and the average
thickness s 5 z ~b at (x, y) 5 0 as function of ~b. The function bY is the
inverse of z( ~b) above and is defined on the original domain 0 , z , 1.
In the central part of the domain, aG , ~b , 1 2 aG, the average
depth is obtained from (99) as ~z 5 ~b, and therefore s 5 1.
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problem from the approximations employed by Ferreira
and Marshall to derive a residual-mean system. Finalizing
the divorce by systematically deriving a totally residual-
mean formulation of the Boussinesq primitive equations
is the goal of this article.

The key step is averaging the equations of motion
in buoyancy1 coordinates, using an average weighted
by the ‘‘isopycnal thickness.’’ We refer to this as the
thickness-weighted average (TWA) formulation. The re-
sulting exact description assumes neither small-isopycnal
slope, rapid rotation, weak eddies, nor small diabatic ef-
fects. For example, the TWA formulation applies equally
well to nonrotating fluids, provided only that the strati-
fication is stable.

With hindsight, some of the ingredients in the TWA
formulation (e.g., the definitions of bY and wY below) are
already contained in de Szoeke and Bennett (1993),
Smith (1999), and Greatbatch and McDougall (2003). A
main point of de Szoeke and Bennett is that the Osborn–
Cox relation between diabatic density flux and molec-
ular dissipation actually provides the diapycnal (rather
than vertical) flux of density (see also Winters and
D’Asaro 1996). This is a second potent reason for using
the TWA formulation.

In section 2, we review the kinematic problem of
transforming from Cartesian coordinates (x, y, z, t) to
buoyancy coordinates (~x, ~y, ~b, ~t ). In this framework the
depth of a buoyancy surface, z 5 z(~x, ~y, ~b, ~t ), is an in-
dependent variable and

s 5
def

z ~b (1)

is the isopycnal ‘‘thickness.’’ Some new formulas pro-
viding the b-coordinate representation of gradient,
divergence, and curl are obtained: (53) is particularly
useful. In section 3, we review the thickness-weighted
average, which is used to define the horizontal compo-
nents of the residual velocity as

(û, ŷ) 5
def

(su, sy)/s (2)

(Andrews 1983; de Szoeke and Bennett 1993). The over-
bar above denotes an ensemble average in buoyancy
coordinates over realizations of the eddies. The third
component of the three-dimensional incompressible re-
sidual velocity uY is not the thickness-weighted average ŵ:

instead, using the standard Cartesian basis vectors (i, j, k),
the nondivergent residual velocity is uY 5 ûi 1 ŷj 1 wYk;
the vertical component wY is defined in terms of the av-
erage depth of an isopycnal surface z(~x, ~y, ~b, ~t ) by (73).
The ‘‘averaging identities’’ (72), (80), and (83) are key
results in section 3.

Sections 5 and 6 turn to dynamics by starting with the
hydrostatic equations of motion, written in b coordi-
nates. After a thickness-weighted average, the equations
of motion are transformed into Cartesian coordinates,
(x, y, z, t). In the adiabatic case, this results in the Car-
tesian coordinate TWA system:

ût 1 ûûx 1 ŷûy 1 wYûz 2 f ŷ 1 pY
x 1 $ ! Eu 5 0, (3)

ŷt 1 ûŷx 1 ŷŷy 1 wYŷz 1 f û 1 pY
y 1 $ ! Ey 5 0, (4)

pY
z 5 bY, (5)

ûx 1 ŷy 1 wY
z 5 0, (6)

bY
t 1 ûbY

x 1 ŷbY
y 1 wYbY

z 5 0. (7)

The variables pY, bY, and wY are defined in terms of the
mean depth of buoyancy surface, z(~x, ~y, b, ~t ) [e.g., as in
(59) and (73)]. The field bY(x, y, z, t) is equal to the value
of the buoyancy surface whose average depth is z.

The eddy forcing of the TWA system above is con-
fined to the horizontal momentum equations and is via
the divergence of the three-dimensional Eliassen–Palm
(EP) vectors Eu and Ey, defined in (124) and (125). These
EP vectors are second-order in eddy amplitude and there
is a three-dimensional generalization of Andrews’s (1983)
finite-amplitude zonal-mean EP theorem.

If the superscripts ^ and Y are dropped, then, apart
from the EP divergences $ ! Eu and $ ! Ey, the TWA
system (3)–(7) is identical to the primitive equations.
Thus, the eddy parameterization problem devolves to
relating the EP divergences to residual-mean quantities
so that (3)–(7) is closed. Parameterization is not a main
focus of this article. However, an important clue is pro-
vided by the relation between the divergence of the EP
vectors and the eddy flux of the relevant form of Rossby–
Ertel potential vorticity (PV), which is

PY 5 ûzbY
y 2 ŷzbY

x 1 ( f 1 ŷx 2 ûy)bY
z. (8)

Specifically, in the adiabatic case

PY
t 1 ûPY

x 1 ŷPY
y 1 wYPY

z 1 $ ! FY 5 0, (9)

where the eddy PV flux is

1 We use the Boussinesq approximation with a linear equation
of state. The buoyancy b is defined in terms of the density r as
b 5

def
g(r0 2 r)/r0, where r0 is the constant bulk density of the

ocean. Thus, buoyancy coordinates are essentially the same as
isopycnal coordinates.
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Gradient and divergence

operators $!, $3, and the Laplacian =2 are represented.
To accomplish this we use the most elementary aspects
of tensor analysis. Thus, we consider the nonorthogonal
set of basis vectors

e1 5
def

i, e2 5
def

j, e3 5
def

$b (38)

(e.g., Simmonds 1982). Above, e1 and e2 are the usual
Cartesian unit vectors, while e3 is normal to a buoyancy
surface. Notice that (e1 3 e2) ! e3 5 bz 5 s21.

In parallel with e j one can also introduce the dual
basis vectors

e1 5
def

se2 3 e3 5 i 1 z~xk, (39)

e2 5
def

se3 3 e1 5 j 1 z~yk, (40)

e3 5
def

se1 3 e2 5 sk. (41)

The vectors e1 and e2 are tangent to a buoyancy surface,
and thus a linear combination of e1 and e2 is a vector
‘‘lying in the buoyancy surface.’’ The triple product of
this basis set is (e1 3 e2) ! e3 5 s, which is the reciprocal
of the triple product (e1 3 e2) ! e3. The set (e1, e2, e3) is
‘‘bi-orthogonal’’ to (e1, e2, e3) in the sense that

ei ! e
j 5 d j

i , (42)

where di
j is the Kronecker d.

The differential operators ›~x, ›~y, and › ~b on the right of
(29)–(32) can be written as directional derivatives along
the ej-basis vectors:

›~x 5 e1 ! $, ›~y 5 e2 ! $, ›~b 5 e3 ! $. (43)

It turns out that the nonorthogonal set ej provides the
most useful b-coordinate basis for many purposes.

b. Three representations of a vector field

An arbitrary vector field, q(x, t) for example, can be
expanded in three different ways:

q 5 qi 1 rj 1 sk, (44)

5 q1e1 1 q2e2 1 q3e3, (45)

5 q1e1 1 q2e2 1 q3e3. (46)

In tensor analysis, qj are referred to as the contravariant
components of q and qj are the covariant components.
The component of q along a basis vector is extracted as

qj 5 ej ! q and qj 5 e j ! q. (47)

Thus, q can be written in terms of its Cartesian compo-
nents q, r, and s as

q 5 q
|{z}
5q1

e1 1 r
|{z}
5q2

e2 1 s21(s 2 z~xq 2 z~yr)e3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5q3

(48)

or as

q 5 (q 1 sz~x)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

5q
1

e1 1 (r 1 sz~y)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

5q
2

e2 1 ss
|{z}
5q

3

e3. (49)

An important result follows from the special case q 5 u:
using the thickness equation (37), the contravariant rep-
resentation of u is

u 5 ue1 1 ye2 1 s21(z~t 1 -z ~b)e3. (50)

The vectors e1 and e2, defined in (39) and (40), are tan-
gent to a buoyancy surface. Thus the first two terms on
the right of (50) provide the part of u that ‘‘lies in a
buoyancy surface.’’ The functions u and y do double
duty: u and y provide the components of u along the
horizontal Cartesian directions i and j and also along the
in-b-surface vectors e1 and e2. If the flow is steady
(z~t 5 0) and adiabatic (- 5 0), then the final term in (50)
is zero and u lies in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f (~x, ~y, ~b, ~t ). In Cartesian coordinates, the gradient is
$f 5 fxi 1 fyj 1 fzk. Using (38) and the definition of
the basis e j in (39)–(41), one has the natural covariant
representation of the gradient

$f (~x, ~y, ~b, ~t ) 5 f~x$~x 1 f~y$~y 1 f ~b$b,

5 f~xe1 1 f~ye2 1 f ~be3. (51)

Turning to the divergence, if a vector field q is pre-
sented in the ej basis as

q 5 q1e1 1 q2e2 1 q3e3, (52)

then the divergence is

$ ! q 5 s21(sq1)~x 1 s21(sq2)~y 1 s21(sq3)~b. (53)

This very handy formula can be verified by noting that
s$ ! ej 5 $s ! ej and applying standard vector identities
to (52). It is instructive to calculate the divergence of u
in (50) using (53) to recover (37).
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using the thickness equation (37), the contravariant rep-
resentation of u is

u 5 ue1 1 ye2 1 s21(z~t 1 -z ~b)e3. (50)

The vectors e1 and e2, defined in (39) and (40), are tan-
gent to a buoyancy surface. Thus the first two terms on
the right of (50) provide the part of u that ‘‘lies in a
buoyancy surface.’’ The functions u and y do double
duty: u and y provide the components of u along the
horizontal Cartesian directions i and j and also along the
in-b-surface vectors e1 and e2. If the flow is steady
(z~t 5 0) and adiabatic (- 5 0), then the final term in (50)
is zero and u lies in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f (~x, ~y, ~b, ~t ). In Cartesian coordinates, the gradient is
$f 5 fxi 1 fyj 1 fzk. Using (38) and the definition of
the basis e j in (39)–(41), one has the natural covariant
representation of the gradient
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5 f~xe1 1 f~ye2 1 f ~be3. (51)

Turning to the divergence, if a vector field q is pre-
sented in the ej basis as

q 5 q1e1 1 q2e2 1 q3e3, (52)

then the divergence is

$ ! q 5 s21(sq1)~x 1 s21(sq2)~y 1 s21(sq3)~b. (53)

This very handy formula can be verified by noting that
s$ ! ej 5 $s ! ej and applying standard vector identities
to (52). It is instructive to calculate the divergence of u
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Divergence must be thickness weighted:

Make sure you take the gradient in the correct coordinate system:



Decomposition

Using the correct variables (û, ŷ, vY, bY, -̂, z, ej, and s),
the TWA equations are identical in form to the un-
averaged equations from section 2.

e. Residual-average identities

This identity,

s
Du

Dt
5 s

DYû

Dt
1 $ ! Ju

 !
, (80)

with the eddy flux of u,

Ju 5
def du0u0e1 1 dy0u0e2 1 d-0u0e3, (81)

is key in the TWA formulation.
The first step in proving (80) is to use the unaveraged

thickness equation (37) to write

s
Du

Dt
5 (su)~t 1 (suu)~x 1 (syu)~y 1 (s-u)~b. (82)

Averaging the expression above results in (sû)~t 1 ! ! ! on
the right. One uses (72) to handle the eddy correlations
such as suu and (53) to recognize the divergence of the
three-dimensional flux vector Ju in (81). Then, the av-
eraged thickness equation (68) is used to maneuver s
back outside of the derivatives to finally obtain (80).

A second TWA identity comes from considering the
divergence of a vector with contravariant expansion q 5
qjej. Using the divergence formula in (53), one has

s$ ! q 5 s$ ! bqjej: (83)

f. Comments on averaging vector fields
in buoyancy coordinates

An unaveraged vector field can be represented in
three equivalent forms, for example, as in the discussion
surrounding (44)–(49). One might compute the thickness-
weighted average of q using the representation (44) as
simply

q̂ 5 q̂i 1 r̂j 1 ŝk: (84)

But, then $ ! q 5 0 does not guarantee that $ ! q̂ 5 0. This
problem is acute when q is the velocity or a related field,
such as the bolus velocity (e.g., see the discussion in
section 10 of McDougall and McIntosh 2001).

In all respects, the contravariant representation

q 5 qjej (85)

is preferable. One cannot, of course, directly average (85)
because the basis vectors ej are fluctuating. However,

with the representation (85), the TWA identity (83)
shows that the vector

qY 5
def bqjej (86)

maintains the zero-divergence property of the unaver-
aged q.

These considerations are illustrated by an example
drawn from McDougall and McIntosh (2001): the re-
sidual velocities defined in (66) can be broken apart as

(û, ŷ) 5 (u, y) 1 s21(u9s9 , y9s9 ),|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5
def

(u
B

,y
B

)

(87)

where uB and yB are the components of the vectorial
bolus velocity,

uB 5
def

uBe1 1 yBe2. (88)

Following the discussion of McDougall and McIntosh
(2001), uB defined above is divergent and tangent to a bY

surface (i.e., uB has no diapycnal component). However,
the main thrust of this article is that the decomposition of
the residual velocity uY into a mean part and a bolus term
is unnecessary and even confusing. For example, although
uY is nondivergent, uB and uY 2 uB are both divergent.
There is no clear advantage in using this decomposition of
uY: therefore we will have no more to do with uB.

g. The passive scalar

Applying (80) to the passive-scalar equation (16), one has

DYĉ

Dt
1 $ ! Jc 5 ĝ, (89)

where Jc is defined via (81). If the flow is adiabatic
(- 5 0), then the passive-scalar eddy flux Jc is a linear
combination of e1 and e2, and therefore the eddy flux Jc

lies in a bY surface. The averaged passive-scalar equation
(89) is written in terms of the coordinate-independent
differential operators DY/Dt and $!, and (89) thus can
easily be interpreted in either z or b coordinates.

One can show using earlier formulas that the passive-
scalar variance cc02 satisfies

1

2

DYcc02

Dt
1 Jc ! $ĉ 1 $ ! Jc

3 5 dc0g0, (90)

where the third-order flux is
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Osborn–Cox arguments, based on the assumption of a
balance between variance production by Jc ! $ĉ and
dissipation by dc0g0, indicate that Jc tends to be down $ĉ.
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Using the correct variables (û, ŷ, vY, bY, -̂, z, ej, and s),
the TWA equations are identical in form to the un-
averaged equations from section 2.

e. Residual-average identities

This identity,

s
Du

Dt
5 s

DYû

Dt
1 $ ! Ju

 !
, (80)

with the eddy flux of u,

Ju 5
def du0u0e1 1 dy0u0e2 1 d-0u0e3, (81)

is key in the TWA formulation.
The first step in proving (80) is to use the unaveraged

thickness equation (37) to write

s
Du

Dt
5 (su)~t 1 (suu)~x 1 (syu)~y 1 (s-u)~b. (82)

Averaging the expression above results in (sû)~t 1 ! ! ! on
the right. One uses (72) to handle the eddy correlations
such as suu and (53) to recognize the divergence of the
three-dimensional flux vector Ju in (81). Then, the av-
eraged thickness equation (68) is used to maneuver s
back outside of the derivatives to finally obtain (80).

A second TWA identity comes from considering the
divergence of a vector with contravariant expansion q 5
qjej. Using the divergence formula in (53), one has

s$ ! q 5 s$ ! bqjej: (83)

f. Comments on averaging vector fields
in buoyancy coordinates

An unaveraged vector field can be represented in
three equivalent forms, for example, as in the discussion
surrounding (44)–(49). One might compute the thickness-
weighted average of q using the representation (44) as
simply

q̂ 5 q̂i 1 r̂j 1 ŝk: (84)

But, then $ ! q 5 0 does not guarantee that $ ! q̂ 5 0. This
problem is acute when q is the velocity or a related field,
such as the bolus velocity (e.g., see the discussion in
section 10 of McDougall and McIntosh 2001).

In all respects, the contravariant representation

q 5 qjej (85)

is preferable. One cannot, of course, directly average (85)
because the basis vectors ej are fluctuating. However,

with the representation (85), the TWA identity (83)
shows that the vector

qY 5
def bqjej (86)

maintains the zero-divergence property of the unaver-
aged q.

These considerations are illustrated by an example
drawn from McDougall and McIntosh (2001): the re-
sidual velocities defined in (66) can be broken apart as

(û, ŷ) 5 (u, y) 1 s21(u9s9 , y9s9 ),|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5
def

(u
B

,y
B

)

(87)

where uB and yB are the components of the vectorial
bolus velocity,

uB 5
def

uBe1 1 yBe2. (88)

Following the discussion of McDougall and McIntosh
(2001), uB defined above is divergent and tangent to a bY

surface (i.e., uB has no diapycnal component). However,
the main thrust of this article is that the decomposition of
the residual velocity uY into a mean part and a bolus term
is unnecessary and even confusing. For example, although
uY is nondivergent, uB and uY 2 uB are both divergent.
There is no clear advantage in using this decomposition of
uY: therefore we will have no more to do with uB.

g. The passive scalar

Applying (80) to the passive-scalar equation (16), one has

DYĉ

Dt
1 $ ! Jc 5 ĝ, (89)

where Jc is defined via (81). If the flow is adiabatic
(- 5 0), then the passive-scalar eddy flux Jc is a linear
combination of e1 and e2, and therefore the eddy flux Jc

lies in a bY surface. The averaged passive-scalar equation
(89) is written in terms of the coordinate-independent
differential operators DY/Dt and $!, and (89) thus can
easily be interpreted in either z or b coordinates.

One can show using earlier formulas that the passive-
scalar variance cc02 satisfies
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where the third-order flux is
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Osborn–Cox arguments, based on the assumption of a
balance between variance production by Jc ! $ĉ and
dissipation by dc0g0, indicate that Jc tends to be down $ĉ.
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Using the correct variables (û, ŷ, vY, bY, -̂, z, ej, and s),
the TWA equations are identical in form to the un-
averaged equations from section 2.

e. Residual-average identities

This identity,
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with the eddy flux of u,

Ju 5
def du0u0e1 1 dy0u0e2 1 d-0u0e3, (81)

is key in the TWA formulation.
The first step in proving (80) is to use the unaveraged

thickness equation (37) to write

s
Du

Dt
5 (su)~t 1 (suu)~x 1 (syu)~y 1 (s-u)~b. (82)

Averaging the expression above results in (sû)~t 1 ! ! ! on
the right. One uses (72) to handle the eddy correlations
such as suu and (53) to recognize the divergence of the
three-dimensional flux vector Ju in (81). Then, the av-
eraged thickness equation (68) is used to maneuver s
back outside of the derivatives to finally obtain (80).

A second TWA identity comes from considering the
divergence of a vector with contravariant expansion q 5
qjej. Using the divergence formula in (53), one has

s$ ! q 5 s$ ! bqjej: (83)

f. Comments on averaging vector fields
in buoyancy coordinates

An unaveraged vector field can be represented in
three equivalent forms, for example, as in the discussion
surrounding (44)–(49). One might compute the thickness-
weighted average of q using the representation (44) as
simply

q̂ 5 q̂i 1 r̂j 1 ŝk: (84)

But, then $ ! q 5 0 does not guarantee that $ ! q̂ 5 0. This
problem is acute when q is the velocity or a related field,
such as the bolus velocity (e.g., see the discussion in
section 10 of McDougall and McIntosh 2001).

In all respects, the contravariant representation

q 5 qjej (85)

is preferable. One cannot, of course, directly average (85)
because the basis vectors ej are fluctuating. However,

with the representation (85), the TWA identity (83)
shows that the vector

qY 5
def bqjej (86)

maintains the zero-divergence property of the unaver-
aged q.

These considerations are illustrated by an example
drawn from McDougall and McIntosh (2001): the re-
sidual velocities defined in (66) can be broken apart as

(û, ŷ) 5 (u, y) 1 s21(u9s9 , y9s9 ),|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5
def

(u
B

,y
B

)

(87)

where uB and yB are the components of the vectorial
bolus velocity,

uB 5
def

uBe1 1 yBe2. (88)

Following the discussion of McDougall and McIntosh
(2001), uB defined above is divergent and tangent to a bY

surface (i.e., uB has no diapycnal component). However,
the main thrust of this article is that the decomposition of
the residual velocity uY into a mean part and a bolus term
is unnecessary and even confusing. For example, although
uY is nondivergent, uB and uY 2 uB are both divergent.
There is no clear advantage in using this decomposition of
uY: therefore we will have no more to do with uB.

g. The passive scalar

Applying (80) to the passive-scalar equation (16), one has

DYĉ

Dt
1 $ ! Jc 5 ĝ, (89)

where Jc is defined via (81). If the flow is adiabatic
(- 5 0), then the passive-scalar eddy flux Jc is a linear
combination of e1 and e2, and therefore the eddy flux Jc

lies in a bY surface. The averaged passive-scalar equation
(89) is written in terms of the coordinate-independent
differential operators DY/Dt and $!, and (89) thus can
easily be interpreted in either z or b coordinates.

One can show using earlier formulas that the passive-
scalar variance cc02 satisfies
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Osborn–Cox arguments, based on the assumption of a
balance between variance production by Jc ! $ĉ and
dissipation by dc0g0, indicate that Jc tends to be down $ĉ.

MAY 2012 Y O U N G 699

Can be split into mean and eddy terms:

There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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Using the correct variables (û, ŷ, vY, bY, -̂, z, ej, and s),
the TWA equations are identical in form to the un-
averaged equations from section 2.
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with the eddy flux of u,

Ju 5
def du0u0e1 1 dy0u0e2 1 d-0u0e3, (81)

is key in the TWA formulation.
The first step in proving (80) is to use the unaveraged

thickness equation (37) to write
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Du

Dt
5 (su)~t 1 (suu)~x 1 (syu)~y 1 (s-u)~b. (82)

Averaging the expression above results in (sû)~t 1 ! ! ! on
the right. One uses (72) to handle the eddy correlations
such as suu and (53) to recognize the divergence of the
three-dimensional flux vector Ju in (81). Then, the av-
eraged thickness equation (68) is used to maneuver s
back outside of the derivatives to finally obtain (80).

A second TWA identity comes from considering the
divergence of a vector with contravariant expansion q 5
qjej. Using the divergence formula in (53), one has

s$ ! q 5 s$ ! bqjej: (83)

f. Comments on averaging vector fields
in buoyancy coordinates

An unaveraged vector field can be represented in
three equivalent forms, for example, as in the discussion
surrounding (44)–(49). One might compute the thickness-
weighted average of q using the representation (44) as
simply

q̂ 5 q̂i 1 r̂j 1 ŝk: (84)

But, then $ ! q 5 0 does not guarantee that $ ! q̂ 5 0. This
problem is acute when q is the velocity or a related field,
such as the bolus velocity (e.g., see the discussion in
section 10 of McDougall and McIntosh 2001).

In all respects, the contravariant representation

q 5 qjej (85)

is preferable. One cannot, of course, directly average (85)
because the basis vectors ej are fluctuating. However,

with the representation (85), the TWA identity (83)
shows that the vector

qY 5
def bqjej (86)

maintains the zero-divergence property of the unaver-
aged q.

These considerations are illustrated by an example
drawn from McDougall and McIntosh (2001): the re-
sidual velocities defined in (66) can be broken apart as

(û, ŷ) 5 (u, y) 1 s21(u9s9 , y9s9 ),|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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def

(u
B

,y
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(87)

where uB and yB are the components of the vectorial
bolus velocity,

uB 5
def

uBe1 1 yBe2. (88)

Following the discussion of McDougall and McIntosh
(2001), uB defined above is divergent and tangent to a bY

surface (i.e., uB has no diapycnal component). However,
the main thrust of this article is that the decomposition of
the residual velocity uY into a mean part and a bolus term
is unnecessary and even confusing. For example, although
uY is nondivergent, uB and uY 2 uB are both divergent.
There is no clear advantage in using this decomposition of
uY: therefore we will have no more to do with uB.

g. The passive scalar

Applying (80) to the passive-scalar equation (16), one has

DYĉ

Dt
1 $ ! Jc 5 ĝ, (89)

where Jc is defined via (81). If the flow is adiabatic
(- 5 0), then the passive-scalar eddy flux Jc is a linear
combination of e1 and e2, and therefore the eddy flux Jc

lies in a bY surface. The averaged passive-scalar equation
(89) is written in terms of the coordinate-independent
differential operators DY/Dt and $!, and (89) thus can
easily be interpreted in either z or b coordinates.

One can show using earlier formulas that the passive-
scalar variance cc02 satisfies
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1 Jc ! $ĉ 1 $ ! Jc

3 5 dc0g0, (90)

where the third-order flux is
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Osborn–Cox arguments, based on the assumption of a
balance between variance production by Jc ! $ĉ and
dissipation by dc0g0, indicate that Jc tends to be down $ĉ.
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You can move       outside the brackets, so�

There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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We already know

There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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But we can also define
There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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ûx 5
def
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where the convective derivative D/Dt is defined in (34).
In the horizontal momentum equations,X and Y denote
adiabatic processes and body forces.

Now we write the equations of motion (101)–(105) in
buoyancy coordinates: for example, using the b-coordinate
representation of the convective derivative in (35). An
important step is introduction of the Montgomery po-
tential,

m(~x, ~y, ~b, ~t ) 5
def

p(x, y, z(~x, ~y, ~b, ~t ), t) 2 ~bz(~x, ~y, ~b, ~t ).

(106)

One can verify that px 5 m~x etc. Then in b coordinates
the equations of motion are

Du

Dt
2 f y 1 m~x 5 X , (107)

Dy

Dt
1 fu 1 m~y 5 Y, (108)

z 1 m ~b 5 0, (109)

s~t 1 (su)~x 1 (sy)~y 1 (-s) ~b 5 0, (110)

where s 5
def

z ~b 5 2m ~b ~b. The convective derivative in b co-
ordinates is given in (35).

a. Rossby–Ertel potential vorticity

One can write the horizontal momentum equations
above as

u~t 1 -u ~b 2 syP 1 m 1
1

2
u2 1

1

2
y2

! "

~x
5 X (111)

and

y~t 1 -y ~b 1 suP 1 m 1
1

2
u2 1

1

2
y2

! "

~y
5 Y, (112)

where the Rossby–Ertel PV is

P 5
def f 1 y~x 2 u~y

s
. (113)

Cross-differentiating to eliminate the Bernoulli terms,
one obtains

(sP)~t 1 (suP 1 -y ~b 2 Y)~x 1 (syP 2 -u ~b 1X)~y 5 0;

(114)

the conservation law above is analogous to the ‘‘ex-
panded’’ adiabatic passive scalar Eq. (92). The remarkable
point is that (114) applies to PV even if the flow is diabatic.

b. The PV impermeability theorem

Haynes and McIntyre (1987, 1990) emphasize that
a main advantage of (114) is that the PV impermeability
theorem is immediate: at fixed ~x and ~y one can integrate
(114) between ~b 5 ~b1 and ~b 5 ~b2 and obtain an expres-
sion for the rate of change of the total amount of PV
substance in the layer ~b1 , ~b , ~b2. Since there are no ~b
derivatives in (114), the amount of PV substance in this
buoyancy layer is not changed by flux through either
bounding b surface.

Combining the layer-thickness equation (110) with
(114) and using (53) to recognize a divergence, one ob-
tains the PV conservation equation in the form

DP
Dt

1 $ ! G 5 0, (115)

where the diabatic flux in (115) is

G 5
def

2(X i 1 Yj) 3 $b 2 -[$ 3 (ui 1 yj) 1 s21f e3]

(116)

(e.g., Haynes and McIntyre 1990); G can be expanded as

sG 5 2[(Y 2 y ~b-)e1 2 (X 2 u ~b-)e2] 2 s-Pe3.

(117)

With (117) one readily finds G ! $b 5 2-P so that G
penetrates b surfaces. In their section 4, Haynes and
McIntyre (1990) explain how this penetration is com-
patible with the PV impermeability theorem.

FIG. 2. The average isopycnal depth ~z( ~b) and the average
thickness s 5 z ~b at (x, y) 5 0 as function of ~b. The function bY is the
inverse of z( ~b) above and is defined on the original domain 0 , z , 1.
In the central part of the domain, aG , ~b , 1 2 aG, the average
depth is obtained from (99) as ~z 5 ~b, and therefore s 5 1.
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Montgomery potential

6. The TWA equations of motion

We now proceed with averaging the equations of mo-
tion in b coordinates. Following the discussion of kine-
matics in section 3, the average of the thickness equation
(110) is (68). The average of the hydrostatic relation (109)
is just z 5 2 m ~b, with s 5 z ~b 5 2 m ~b ~b.

To average the horizontal momentum equations (107)
and (108), one first multiplies by s. The identity

sm~x 5 2m ~b ~bm~x (118)

5 (zm~x) ~b 1
1

2
z2

! "

~x
(119)

is key in dealing with the pressure gradient. Averaging
(119) and using the mean hydrostatic relation, one has

sm~x 5 sm~x 1 (z9m9~x)~b 1
1

2
z92

! "

~x
. (120)

Dividing (120) by s and using (53) to recognize a diver-
gence results in

s21sm~x 5 m~x 1 $ ! s21 1

2
z92e1 1 z9m9~xe3

! "
. (121)

The hydrostatic relation z 1 m ~b 5 0 is used at several
points in the manipulations above and is therefore es-
sential to TWA.

The identity (121) and application of (80) to sDu/Dt
and sDy/Dt results in the TWA momentum equations,

DYû

Dt
2 f ŷ 1 m~x 1 $ ! Eu 5 X̂ (122)

and

DYŷ

Dt
1 f û 1 m~y 1 $ ! Ey 5 Ŷ. (123)

The convective derivative DY/Dt above is defined in (76),
and the EP vectors Eu and Ey are

Eu 5
def

Ju 1 s21 1

2
z92e1 1 z9m9~xe3

! "
(124)

and

Ey 5
def

Jy 1 s21 1

2
z92e2 1 z9m9~ye3

! "
, (125)

where Ju and Jy are defined via (81). In the adiabatic
case (with - 5 0) the flux vectors Ju and Jy involve only
e1 and e2, and therefore Ju and Jy lie in a bY surface.

Thus, on the right of (124) and (125) only the terms
proportional to e3 5 sk transport momentum through bY

surfaces. This is the ‘‘inviscid pressure drag’’ identified
by Rhines and Holland (1979), or ‘‘form drag.’’

In de Szoeke and Bennett (1993) and Greatbatch and
McDougall (2003), the thickness-weighted velocity is
advected by the thickness-weighted velocity, and there-
fore these are probably the closest antecedents of the
thickness-weighted momentum equations (122) and
(123). An advantage of the form in (122) and (123) is
that the eddy forcing appears as the divergence of the
three-dimensional Eliassen–Palm flux vectors Eu and Ey.

a. The Rossby–Ertel PV equation

Following the same steps used to derive the unaver-
aged PV equation (115), one finds from the averaged mo-
mentum equations, (122) and (123), as well as from the
averaged thickness equation (68), that

DYPY

Dt
1 $ ! FY 1 $ ! GY 5 0, (126)

where

PY 5
def f 1 ŷ~x 2 û~y

s
(127)

is a form of the Rossby–Ertel potential vorticity. In (126)
the diabatic terms appear in

sGY 5
def

2[(Ŷ 2 ŷ ~b-̂)e1 2 (X̂ 2 û ~b-̂)e2] 2 s-̂PYe3;

(128)

GY is the analog of the unaveraged G in (117). Also in (126)

FY 5
def

s21($ ! Ey)e1 2 s21($ ! Eu)e2 (129)

is the eddy flux of PY.
Taking the dot product of (129) with e1 5 i and e2 5 j

expresses the EP divergences in terms of components
of the PV eddy flux FY. Thus, the TWA horizontal mo-
mentum equations can be written as

û~t 1 -̂û ~b 2 sŷPY 1 m 1
1

2
û2 1

1

2
ŷ2

! "

~x
5 X̂ 1 sj ! FY

(130)

and

ŷ~t 1 -̂ ŷ ~b 2 sûPY 1 m 1
1

2
û2 1

1

2
ŷ2

! "

~y 5 Ŷ 2 si ! FY.

(131)
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s
(127)

is a form of the Rossby–Ertel potential vorticity. In (126)
the diabatic terms appear in

sGY 5
def
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ŷ2

! "

~x
5 X̂ 1 sj ! FY

(130)

and
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û2 1

1

2
ŷ2
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Therefore 

Eliassen-Palm Flux

where the convective derivative D/Dt is defined in (34).
In the horizontal momentum equations,X and Y denote
adiabatic processes and body forces.

Now we write the equations of motion (101)–(105) in
buoyancy coordinates: for example, using the b-coordinate
representation of the convective derivative in (35). An
important step is introduction of the Montgomery po-
tential,

m(~x, ~y, ~b, ~t ) 5
def

p(x, y, z(~x, ~y, ~b, ~t ), t) 2 ~bz(~x, ~y, ~b, ~t ).

(106)

One can verify that px 5 m~x etc. Then in b coordinates
the equations of motion are

Du

Dt
2 f y 1 m~x 5 X , (107)

Dy

Dt
1 fu 1 m~y 5 Y, (108)

z 1 m ~b 5 0, (109)

s~t 1 (su)~x 1 (sy)~y 1 (-s) ~b 5 0, (110)

where s 5
def

z ~b 5 2m ~b ~b. The convective derivative in b co-
ordinates is given in (35).

a. Rossby–Ertel potential vorticity

One can write the horizontal momentum equations
above as

u~t 1 -u ~b 2 syP 1 m 1
1

2
u2 1

1

2
y2

! "

~x
5 X (111)

and

y~t 1 -y ~b 1 suP 1 m 1
1

2
u2 1

1

2
y2

! "

~y
5 Y, (112)

where the Rossby–Ertel PV is

P 5
def f 1 y~x 2 u~y

s
. (113)

Cross-differentiating to eliminate the Bernoulli terms,
one obtains

(sP)~t 1 (suP 1 -y ~b 2 Y)~x 1 (syP 2 -u ~b 1X)~y 5 0;

(114)

the conservation law above is analogous to the ‘‘ex-
panded’’ adiabatic passive scalar Eq. (92). The remarkable
point is that (114) applies to PV even if the flow is diabatic.

b. The PV impermeability theorem

Haynes and McIntyre (1987, 1990) emphasize that
a main advantage of (114) is that the PV impermeability
theorem is immediate: at fixed ~x and ~y one can integrate
(114) between ~b 5 ~b1 and ~b 5 ~b2 and obtain an expres-
sion for the rate of change of the total amount of PV
substance in the layer ~b1 , ~b , ~b2. Since there are no ~b
derivatives in (114), the amount of PV substance in this
buoyancy layer is not changed by flux through either
bounding b surface.

Combining the layer-thickness equation (110) with
(114) and using (53) to recognize a divergence, one ob-
tains the PV conservation equation in the form

DP
Dt

1 $ ! G 5 0, (115)

where the diabatic flux in (115) is

G 5
def

2(X i 1 Yj) 3 $b 2 -[$ 3 (ui 1 yj) 1 s21f e3]

(116)

(e.g., Haynes and McIntyre 1990); G can be expanded as

sG 5 2[(Y 2 y ~b-)e1 2 (X 2 u ~b-)e2] 2 s-Pe3.

(117)

With (117) one readily finds G ! $b 5 2-P so that G
penetrates b surfaces. In their section 4, Haynes and
McIntyre (1990) explain how this penetration is com-
patible with the PV impermeability theorem.

FIG. 2. The average isopycnal depth ~z( ~b) and the average
thickness s 5 z ~b at (x, y) 5 0 as function of ~b. The function bY is the
inverse of z( ~b) above and is defined on the original domain 0 , z , 1.
In the central part of the domain, aG , ~b , 1 2 aG, the average
depth is obtained from (99) as ~z 5 ~b, and therefore s 5 1.

702 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 42

We can re-express the equations of motion6. The TWA equations of motion

We now proceed with averaging the equations of mo-
tion in b coordinates. Following the discussion of kine-
matics in section 3, the average of the thickness equation
(110) is (68). The average of the hydrostatic relation (109)
is just z 5 2 m ~b, with s 5 z ~b 5 2 m ~b ~b.

To average the horizontal momentum equations (107)
and (108), one first multiplies by s. The identity

sm~x 5 2m ~b ~bm~x (118)

5 (zm~x) ~b 1
1

2
z2

! "

~x
(119)

is key in dealing with the pressure gradient. Averaging
(119) and using the mean hydrostatic relation, one has

sm~x 5 sm~x 1 (z9m9~x)~b 1
1

2
z92

! "

~x
. (120)

Dividing (120) by s and using (53) to recognize a diver-
gence results in

s21sm~x 5 m~x 1 $ ! s21 1

2
z92e1 1 z9m9~xe3

! "
. (121)

The hydrostatic relation z 1 m ~b 5 0 is used at several
points in the manipulations above and is therefore es-
sential to TWA.

The identity (121) and application of (80) to sDu/Dt
and sDy/Dt results in the TWA momentum equations,

DYû

Dt
2 f ŷ 1 m~x 1 $ ! Eu 5 X̂ (122)

and

DYŷ

Dt
1 f û 1 m~y 1 $ ! Ey 5 Ŷ. (123)

The convective derivative DY/Dt above is defined in (76),
and the EP vectors Eu and Ey are

Eu 5
def

Ju 1 s21 1

2
z92e1 1 z9m9~xe3

! "
(124)

and

Ey 5
def

Jy 1 s21 1

2
z92e2 1 z9m9~ye3

! "
, (125)

where Ju and Jy are defined via (81). In the adiabatic
case (with - 5 0) the flux vectors Ju and Jy involve only
e1 and e2, and therefore Ju and Jy lie in a bY surface.

Thus, on the right of (124) and (125) only the terms
proportional to e3 5 sk transport momentum through bY

surfaces. This is the ‘‘inviscid pressure drag’’ identified
by Rhines and Holland (1979), or ‘‘form drag.’’

In de Szoeke and Bennett (1993) and Greatbatch and
McDougall (2003), the thickness-weighted velocity is
advected by the thickness-weighted velocity, and there-
fore these are probably the closest antecedents of the
thickness-weighted momentum equations (122) and
(123). An advantage of the form in (122) and (123) is
that the eddy forcing appears as the divergence of the
three-dimensional Eliassen–Palm flux vectors Eu and Ey.

a. The Rossby–Ertel PV equation

Following the same steps used to derive the unaver-
aged PV equation (115), one finds from the averaged mo-
mentum equations, (122) and (123), as well as from the
averaged thickness equation (68), that

DYPY

Dt
1 $ ! FY 1 $ ! GY 5 0, (126)

where

PY 5
def f 1 ŷ~x 2 û~y

s
(127)

is a form of the Rossby–Ertel potential vorticity. In (126)
the diabatic terms appear in

sGY 5
def

2[(Ŷ 2 ŷ ~b-̂)e1 2 (X̂ 2 û ~b-̂)e2] 2 s-̂PYe3;

(128)

GY is the analog of the unaveraged G in (117). Also in (126)

FY 5
def

s21($ ! Ey)e1 2 s21($ ! Eu)e2 (129)

is the eddy flux of PY.
Taking the dot product of (129) with e1 5 i and e2 5 j

expresses the EP divergences in terms of components
of the PV eddy flux FY. Thus, the TWA horizontal mo-
mentum equations can be written as

û~t 1 -̂û ~b 2 sŷPY 1 m 1
1

2
û2 1

1

2
ŷ2

! "

~x
5 X̂ 1 sj ! FY

(130)

and

ŷ~t 1 -̂ ŷ ~b 2 sûPY 1 m 1
1

2
û2 1

1

2
ŷ2

! "

~y 5 Ŷ 2 si ! FY.

(131)
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Adiabatic processes
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and (108), one first multiplies by s. The identity
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is key in dealing with the pressure gradient. Averaging
(119) and using the mean hydrostatic relation, one has
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The hydrostatic relation z 1 m ~b 5 0 is used at several
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and sDy/Dt results in the TWA momentum equations,

DYû
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2 f ŷ 1 m~x 1 $ ! Eu 5 X̂ (122)

and

DYŷ
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where Ju and Jy are defined via (81). In the adiabatic
case (with - 5 0) the flux vectors Ju and Jy involve only
e1 and e2, and therefore Ju and Jy lie in a bY surface.

Thus, on the right of (124) and (125) only the terms
proportional to e3 5 sk transport momentum through bY

surfaces. This is the ‘‘inviscid pressure drag’’ identified
by Rhines and Holland (1979), or ‘‘form drag.’’

In de Szoeke and Bennett (1993) and Greatbatch and
McDougall (2003), the thickness-weighted velocity is
advected by the thickness-weighted velocity, and there-
fore these are probably the closest antecedents of the
thickness-weighted momentum equations (122) and
(123). An advantage of the form in (122) and (123) is
that the eddy forcing appears as the divergence of the
three-dimensional Eliassen–Palm flux vectors Eu and Ey.

a. The Rossby–Ertel PV equation

Following the same steps used to derive the unaver-
aged PV equation (115), one finds from the averaged mo-
mentum equations, (122) and (123), as well as from the
averaged thickness equation (68), that

DYPY

Dt
1 $ ! FY 1 $ ! GY 5 0, (126)

where

PY 5
def f 1 ŷ~x 2 û~y
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(127)

is a form of the Rossby–Ertel potential vorticity. In (126)
the diabatic terms appear in

sGY 5
def

2[(Ŷ 2 ŷ ~b-̂)e1 2 (X̂ 2 û ~b-̂)e2] 2 s-̂PYe3;

(128)

GY is the analog of the unaveraged G in (117). Also in (126)

FY 5
def

s21($ ! Ey)e1 2 s21($ ! Eu)e2 (129)

is the eddy flux of PY.
Taking the dot product of (129) with e1 5 i and e2 5 j

expresses the EP divergences in terms of components
of the PV eddy flux FY. Thus, the TWA horizontal mo-
mentum equations can be written as
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û2 1

1

2
ŷ2
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and
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2
ŷ2
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case (with - 5 0) the flux vectors Ju and Jy involve only
e1 and e2, and therefore Ju and Jy lie in a bY surface.

Thus, on the right of (124) and (125) only the terms
proportional to e3 5 sk transport momentum through bY

surfaces. This is the ‘‘inviscid pressure drag’’ identified
by Rhines and Holland (1979), or ‘‘form drag.’’

In de Szoeke and Bennett (1993) and Greatbatch and
McDougall (2003), the thickness-weighted velocity is
advected by the thickness-weighted velocity, and there-
fore these are probably the closest antecedents of the
thickness-weighted momentum equations (122) and
(123). An advantage of the form in (122) and (123) is
that the eddy forcing appears as the divergence of the
three-dimensional Eliassen–Palm flux vectors Eu and Ey.

a. The Rossby–Ertel PV equation

Following the same steps used to derive the unaver-
aged PV equation (115), one finds from the averaged mo-
mentum equations, (122) and (123), as well as from the
averaged thickness equation (68), that
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1 $ ! FY 1 $ ! GY 5 0, (126)

where
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def
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GY is the analog of the unaveraged G in (117). Also in (126)
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def
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is the eddy flux of PY.
Taking the dot product of (129) with e1 5 i and e2 5 j
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case (with - 5 0) the flux vectors Ju and Jy involve only
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1

2
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Using the correct variables (û, ŷ, vY, bY, -̂, z, ej, and s),
the TWA equations are identical in form to the un-
averaged equations from section 2.

e. Residual-average identities

This identity,

s
Du

Dt
5 s

DYû

Dt
1 $ ! Ju

 !
, (80)

with the eddy flux of u,

Ju 5
def du0u0e1 1 dy0u0e2 1 d-0u0e3, (81)

is key in the TWA formulation.
The first step in proving (80) is to use the unaveraged

thickness equation (37) to write

s
Du

Dt
5 (su)~t 1 (suu)~x 1 (syu)~y 1 (s-u)~b. (82)

Averaging the expression above results in (sû)~t 1 ! ! ! on
the right. One uses (72) to handle the eddy correlations
such as suu and (53) to recognize the divergence of the
three-dimensional flux vector Ju in (81). Then, the av-
eraged thickness equation (68) is used to maneuver s
back outside of the derivatives to finally obtain (80).

A second TWA identity comes from considering the
divergence of a vector with contravariant expansion q 5
qjej. Using the divergence formula in (53), one has

s$ ! q 5 s$ ! bqjej: (83)

f. Comments on averaging vector fields
in buoyancy coordinates

An unaveraged vector field can be represented in
three equivalent forms, for example, as in the discussion
surrounding (44)–(49). One might compute the thickness-
weighted average of q using the representation (44) as
simply

q̂ 5 q̂i 1 r̂j 1 ŝk: (84)

But, then $ ! q 5 0 does not guarantee that $ ! q̂ 5 0. This
problem is acute when q is the velocity or a related field,
such as the bolus velocity (e.g., see the discussion in
section 10 of McDougall and McIntosh 2001).

In all respects, the contravariant representation

q 5 qjej (85)

is preferable. One cannot, of course, directly average (85)
because the basis vectors ej are fluctuating. However,

with the representation (85), the TWA identity (83)
shows that the vector

qY 5
def bqjej (86)

maintains the zero-divergence property of the unaver-
aged q.

These considerations are illustrated by an example
drawn from McDougall and McIntosh (2001): the re-
sidual velocities defined in (66) can be broken apart as

(û, ŷ) 5 (u, y) 1 s21(u9s9 , y9s9 ),|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5
def

(u
B

,y
B

)

(87)

where uB and yB are the components of the vectorial
bolus velocity,

uB 5
def

uBe1 1 yBe2. (88)

Following the discussion of McDougall and McIntosh
(2001), uB defined above is divergent and tangent to a bY

surface (i.e., uB has no diapycnal component). However,
the main thrust of this article is that the decomposition of
the residual velocity uY into a mean part and a bolus term
is unnecessary and even confusing. For example, although
uY is nondivergent, uB and uY 2 uB are both divergent.
There is no clear advantage in using this decomposition of
uY: therefore we will have no more to do with uB.

g. The passive scalar

Applying (80) to the passive-scalar equation (16), one has

DYĉ

Dt
1 $ ! Jc 5 ĝ, (89)

where Jc is defined via (81). If the flow is adiabatic
(- 5 0), then the passive-scalar eddy flux Jc is a linear
combination of e1 and e2, and therefore the eddy flux Jc

lies in a bY surface. The averaged passive-scalar equation
(89) is written in terms of the coordinate-independent
differential operators DY/Dt and $!, and (89) thus can
easily be interpreted in either z or b coordinates.

One can show using earlier formulas that the passive-
scalar variance cc02 satisfies

1

2

DYcc02

Dt
1 Jc ! $ĉ 1 $ ! Jc

3 5 dc0g0, (90)

where the third-order flux is

Jc
3 5

def
u0

1

2

b
c02e1 1 y0

1

2

b
c02e2 1 -0

1

2

b
c02e3. (91)

Osborn–Cox arguments, based on the assumption of a
balance between variance production by Jc ! $ĉ and
dissipation by dc0g0, indicate that Jc tends to be down $ĉ.
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In de Szoeke and Bennett (1993) and Greatbatch and
McDougall (2003), the thickness-weighted velocity is
advected by the thickness-weighted velocity, and there-
fore these are probably the closest antecedents of the
thickness-weighted momentum equations (122) and
(123). An advantage of the form in (122) and (123) is
that the eddy forcing appears as the divergence of the
three-dimensional Eliassen–Palm flux vectors Eu and Ey.

a. The Rossby–Ertel PV equation

Following the same steps used to derive the unaver-
aged PV equation (115), one finds from the averaged mo-
mentum equations, (122) and (123), as well as from the
averaged thickness equation (68), that

DYPY

Dt
1 $ ! FY 1 $ ! GY 5 0, (126)

where

PY 5
def f 1 ŷ~x 2 û~y

s
(127)

is a form of the Rossby–Ertel potential vorticity. In (126)
the diabatic terms appear in

sGY 5
def

2[(Ŷ 2 ŷ ~b-̂)e1 2 (X̂ 2 û ~b-̂)e2] 2 s-̂PYe3;

(128)

GY is the analog of the unaveraged G in (117). Also in (126)

FY 5
def

s21($ ! Ey)e1 2 s21($ ! Eu)e2 (129)

is the eddy flux of PY.
Taking the dot product of (129) with e1 5 i and e2 5 j

expresses the EP divergences in terms of components
of the PV eddy flux FY. Thus, the TWA horizontal mo-
mentum equations can be written as

û~t 1 -̂û ~b 2 sŷPY 1 m 1
1

2
û2 1

1

2
ŷ2

! "

~x
5 X̂ 1 sj ! FY

(130)

and

ŷ~t 1 -̂ ŷ ~b 2 sûPY 1 m 1
1

2
û2 1

1

2
ŷ2

! "

~y 5 Ŷ 2 si ! FY.

(131)
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6. The TWA equations of motion

We now proceed with averaging the equations of mo-
tion in b coordinates. Following the discussion of kine-
matics in section 3, the average of the thickness equation
(110) is (68). The average of the hydrostatic relation (109)
is just z 5 2 m ~b, with s 5 z ~b 5 2 m ~b ~b.

To average the horizontal momentum equations (107)
and (108), one first multiplies by s. The identity
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5 (zm~x) ~b 1
1

2
z2

! "

~x
(119)

is key in dealing with the pressure gradient. Averaging
(119) and using the mean hydrostatic relation, one has

sm~x 5 sm~x 1 (z9m9~x)~b 1
1

2
z92

! "

~x
. (120)

Dividing (120) by s and using (53) to recognize a diver-
gence results in

s21sm~x 5 m~x 1 $ ! s21 1

2
z92e1 1 z9m9~xe3

! "
. (121)

The hydrostatic relation z 1 m ~b 5 0 is used at several
points in the manipulations above and is therefore es-
sential to TWA.
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2
z92e1 1 z9m9~xe3

! "
(124)

and
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Jy 1 s21 1

2
z92e2 1 z9m9~ye3

! "
, (125)

where Ju and Jy are defined via (81). In the adiabatic
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~y 5 Ŷ 2 si ! FY.

(131)

MAY 2012 Y O U N G 703

Equations of motion

Putting these together

E-P vectors

Adiabatic processes

where the convective derivative D/Dt is defined in (34).
In the horizontal momentum equations,X and Y denote
adiabatic processes and body forces.

Now we write the equations of motion (101)–(105) in
buoyancy coordinates: for example, using the b-coordinate
representation of the convective derivative in (35). An
important step is introduction of the Montgomery po-
tential,

m(~x, ~y, ~b, ~t ) 5
def

p(x, y, z(~x, ~y, ~b, ~t ), t) 2 ~bz(~x, ~y, ~b, ~t ).

(106)

One can verify that px 5 m~x etc. Then in b coordinates
the equations of motion are

Du

Dt
2 f y 1 m~x 5 X , (107)

Dy

Dt
1 fu 1 m~y 5 Y, (108)

z 1 m ~b 5 0, (109)

s~t 1 (su)~x 1 (sy)~y 1 (-s) ~b 5 0, (110)

where s 5
def

z ~b 5 2m ~b ~b. The convective derivative in b co-
ordinates is given in (35).

a. Rossby–Ertel potential vorticity

One can write the horizontal momentum equations
above as

u~t 1 -u ~b 2 syP 1 m 1
1

2
u2 1

1

2
y2

! "

~x
5 X (111)

and

y~t 1 -y ~b 1 suP 1 m 1
1

2
u2 1

1

2
y2

! "

~y
5 Y, (112)

where the Rossby–Ertel PV is

P 5
def f 1 y~x 2 u~y

s
. (113)

Cross-differentiating to eliminate the Bernoulli terms,
one obtains

(sP)~t 1 (suP 1 -y ~b 2 Y)~x 1 (syP 2 -u ~b 1X)~y 5 0;

(114)

the conservation law above is analogous to the ‘‘ex-
panded’’ adiabatic passive scalar Eq. (92). The remarkable
point is that (114) applies to PV even if the flow is diabatic.

b. The PV impermeability theorem

Haynes and McIntyre (1987, 1990) emphasize that
a main advantage of (114) is that the PV impermeability
theorem is immediate: at fixed ~x and ~y one can integrate
(114) between ~b 5 ~b1 and ~b 5 ~b2 and obtain an expres-
sion for the rate of change of the total amount of PV
substance in the layer ~b1 , ~b , ~b2. Since there are no ~b
derivatives in (114), the amount of PV substance in this
buoyancy layer is not changed by flux through either
bounding b surface.

Combining the layer-thickness equation (110) with
(114) and using (53) to recognize a divergence, one ob-
tains the PV conservation equation in the form

DP
Dt

1 $ ! G 5 0, (115)

where the diabatic flux in (115) is

G 5
def

2(X i 1 Yj) 3 $b 2 -[$ 3 (ui 1 yj) 1 s21f e3]

(116)

(e.g., Haynes and McIntyre 1990); G can be expanded as

sG 5 2[(Y 2 y ~b-)e1 2 (X 2 u ~b-)e2] 2 s-Pe3.

(117)

With (117) one readily finds G ! $b 5 2-P so that G
penetrates b surfaces. In their section 4, Haynes and
McIntyre (1990) explain how this penetration is com-
patible with the PV impermeability theorem.

FIG. 2. The average isopycnal depth ~z( ~b) and the average
thickness s 5 z ~b at (x, y) 5 0 as function of ~b. The function bY is the
inverse of z( ~b) above and is defined on the original domain 0 , z , 1.
In the central part of the domain, aG , ~b , 1 2 aG, the average
depth is obtained from (99) as ~z 5 ~b, and therefore s 5 1.
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Conclusions
Doing a thickness weighted average can become very 
confusing - refer to Bill’s paper whenever you do it! 

This might mean you have to use a non-orthogonal 
coordinate system:

operators $!, $3, and the Laplacian =2 are represented.
To accomplish this we use the most elementary aspects
of tensor analysis. Thus, we consider the nonorthogonal
set of basis vectors

e1 5
def

i, e2 5
def

j, e3 5
def

$b (38)

(e.g., Simmonds 1982). Above, e1 and e2 are the usual
Cartesian unit vectors, while e3 is normal to a buoyancy
surface. Notice that (e1 3 e2) ! e3 5 bz 5 s21.

In parallel with e j one can also introduce the dual
basis vectors

e1 5
def

se2 3 e3 5 i 1 z~xk, (39)

e2 5
def

se3 3 e1 5 j 1 z~yk, (40)

e3 5
def

se1 3 e2 5 sk. (41)

The vectors e1 and e2 are tangent to a buoyancy surface,
and thus a linear combination of e1 and e2 is a vector
‘‘lying in the buoyancy surface.’’ The triple product of
this basis set is (e1 3 e2) ! e3 5 s, which is the reciprocal
of the triple product (e1 3 e2) ! e3. The set (e1, e2, e3) is
‘‘bi-orthogonal’’ to (e1, e2, e3) in the sense that

ei ! e
j 5 d j

i , (42)

where di
j is the Kronecker d.

The differential operators ›~x, ›~y, and › ~b on the right of
(29)–(32) can be written as directional derivatives along
the ej-basis vectors:

›~x 5 e1 ! $, ›~y 5 e2 ! $, ›~b 5 e3 ! $. (43)

It turns out that the nonorthogonal set ej provides the
most useful b-coordinate basis for many purposes.

b. Three representations of a vector field

An arbitrary vector field, q(x, t) for example, can be
expanded in three different ways:

q 5 qi 1 rj 1 sk, (44)

5 q1e1 1 q2e2 1 q3e3, (45)

5 q1e1 1 q2e2 1 q3e3. (46)

In tensor analysis, qj are referred to as the contravariant
components of q and qj are the covariant components.
The component of q along a basis vector is extracted as

qj 5 ej ! q and qj 5 e j ! q. (47)

Thus, q can be written in terms of its Cartesian compo-
nents q, r, and s as

q 5 q
|{z}
5q1

e1 1 r
|{z}
5q2

e2 1 s21(s 2 z~xq 2 z~yr)e3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5q3

(48)

or as

q 5 (q 1 sz~x)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

5q
1

e1 1 (r 1 sz~y)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

5q
2

e2 1 ss
|{z}
5q

3

e3. (49)

An important result follows from the special case q 5 u:
using the thickness equation (37), the contravariant rep-
resentation of u is

u 5 ue1 1 ye2 1 s21(z~t 1 -z ~b)e3. (50)

The vectors e1 and e2, defined in (39) and (40), are tan-
gent to a buoyancy surface. Thus the first two terms on
the right of (50) provide the part of u that ‘‘lies in a
buoyancy surface.’’ The functions u and y do double
duty: u and y provide the components of u along the
horizontal Cartesian directions i and j and also along the
in-b-surface vectors e1 and e2. If the flow is steady
(z~t 5 0) and adiabatic (- 5 0), then the final term in (50)
is zero and u lies in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f (~x, ~y, ~b, ~t ). In Cartesian coordinates, the gradient is
$f 5 fxi 1 fyj 1 fzk. Using (38) and the definition of
the basis e j in (39)–(41), one has the natural covariant
representation of the gradient

$f (~x, ~y, ~b, ~t ) 5 f~x$~x 1 f~y$~y 1 f ~b$b,

5 f~xe1 1 f~ye2 1 f ~be3. (51)

Turning to the divergence, if a vector field q is pre-
sented in the ej basis as

q 5 q1e1 1 q2e2 1 q3e3, (52)

then the divergence is

$ ! q 5 s21(sq1)~x 1 s21(sq2)~y 1 s21(sq3)~b. (53)

This very handy formula can be verified by noting that
s$ ! ej 5 $s ! ej and applying standard vector identities
to (52). It is instructive to calculate the divergence of u
in (50) using (53) to recover (37).
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Conclusions
Doing a thickness weighted average can become very 
confusing - refer to Bill’s paper whenever you do it! 

\psi(y,\tilde{b})=\overline{\int^{b_s}_{\tilde{b}(x,y,z)}v \sigma 
\, db'}=\int_0^{L_x}\int_{-H}^0 v^{\dagger} \mathcal{H}
\left[b(x,y,z)-\tilde{b} \right]\, dz \, dx



Velocities and buoyancy contours

Figure 6 shows that there is a substantial cancellation
betweenmean and eddy components in the zonal velocity
û and an almost complete cancellation in the diapycnal
component -̂, indicating that the flow is adiabatic except
for the near-surface region. In contrast, there is no ap-
preciable eddy contribution in the meridional velocity ŷ,
which is almost entirely determined by the mean com-
ponent. Notice that there is a qualitative difference be-
tween u8 and û : u8 changes sign below the diabatic layer
(shaded in gray in Fig. 6), suggesting an overturning cell
in the x–z plane, while û is of a single sign in this region.

The striking cancellation between mean and eddy
components in the diapycnal velocity can be understood
in terms of more familiar quantities in level coordinates
by observing that

c1~x8 1c2~y8 5
ð0

2H
uz ! $bzd(bz2 ~b) dz5

uz ! $bz

b
z
z

, (22)

where the second equality is only valid if b
z

z is mono-
tonic. For the eddy-component, in the limit b02

z
/0,

we can make the approximation

FIG. 6. The three components of suY at y5 3000 km are shown as a function of ~x and ~u. Here, (top row, rhs) sû, (middle row, rhs)
sŷ, and (bottom row, rhs) s-̂1 z~t are shown. The lhs and central columns additionally show the contributions of the residual
transport from the time-mean and eddy components respectively. The definitions of the fields are given in the text. The CI are
300 m s, 2000 m s, and 23 1025 m s21 for the top, middle, and bottom rows, respectively; negative contours are dashed. The swash
is shaded gray.
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Plotting mean and eddy parts

magnitude as the terms on the rhs, but they add up to
a small residual (cf. Fig. 12c with Figs. 11c and 13) so the
dominant PV balance is

s0m~y
0

f

 !

~x

1
(sdu00y00)~x1 n4sy~x~x~x~x

f

" #

~x

’ 0. (38)

To make further progress, it is necessary to relate the
eddy fluxes of buoyancy and momentum to the mean

quantities. Figure 14 shows the term (sdu00y00)~x, which
should be compared with the middle row, rhs of Fig. 6,
which shows sŷ at the same location. The two quantities
are remarkably related and we can thus make the ap-
proximation

(sdu00y00)~x5m2sŷ , (39)

where m2 is a positive quantity. The point is that the
divergence of the eddy flux acts like a drag on the

FIG. 11. The terms (a) (sdu00y00)~x~x/f , (b) n4ŷ~x~x~x~x~x, and (c) their sum near the eastern boundary are shown as a function
of x and u at the nominal latitude y5 3005 km (all fields are also averaged in y over a 160-km swath). The CI is 0.01 s;
negative contours are dashed and the zero contour is thin and gray. The swash is shaded gray.
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2f ŷ1m~x1$ ! Eu 5 X̂ and (27)

f û1m~y1$ ! Ey 5 Ŷ2 n4=
4y . (28)

Here, (X ,Y) is the mechanical forcing and friction,m5
p 2 bz is the Montgomery potential, and the Eliassen–
Palm (EP) vectors Eu and Ey are given by

Eu [ Ju 1s21 (1/2)z02e11 z0m~x
0 e3

h i
and (29)

Ey [ Jy 1s21 (1/2)z02e21 z0m~y
0 e3

h i
. (30)

The fluxes Ju and Jy are given by

Jc [ du00c00e11 dy00c00e2 1 d-00c00e3 , (31)

where c00 [ c2 ĉ represents departures from the TWA,
while the departures from the unweighted average are
given by c0 [ c2 c. Notice, that if the EP vectors are
given on the ej basis, for example, E5E1e1 1E2e2 1
E3e3, then the divergence is given by

$ ! E5s21(sE1)~x 1s21(sE2)~y1s21(sE3)~b . (32)

Given this definition, it is convenient to multiply the
momentum equations by s and cross differentiate to get
the following form of the large-scale PV balance:

f [(sû)~x1 (sŷ)~y]1bsŷ1s~xm~y2s~ym~x

5 (s$ ! Eu 2sX̂)~y2 (s$ ! Ey 2sŶ1 n4s=
4y)~x .

(33)

Using (13) to eliminate the first term on the lhs of (33),
(27) to eliminate the second term on the lhs, and dividing
by f, we obtain

2s~t 2 (s-̂) ~b1m~y(s/f )~x2m~x(s/f )~y

5

!
s$ ! Eu

f
2sX̂

"

~y
2

s$ ! Ey 2sŶ1 n4s=
4y

f

 !

~x

.

(34)

It is clear that even in statistical steady state, for adia-
batic and inviscid conditions, and below the directly
wind-forced layer (so that X̂ 5 Ŷ5 0), the large-scale
PV is not conserved following the average Montgomery
potential m because of the eddy fluxes contained in the
divergence of the EP vectors Eu and Ey.
Near the eastern boundary, we can ignore the wind

stress curl and we can neglect (s$ ! Eu/f )~y relative to

(s$ ! Ey/f )~x. Furthermore, we notice that $ ! (Ev 2 Jy)5
s0m~y

0, where the hydrostatic approximation, m ~b 52z,
and the definition s[ z ~b have been used. Finally, making
the boundary layer simplification Jv ’ du00y00 e1, we can ap-
proximate the rhs of (34) with

!
s$ ! Eu

f

"

~y
2

!
s$ ! Ey

f
1 n4s$

4y

"

~x

’2
s0m~y

0

f

 !

~x

2
(sdu00y00)~x1 n4sy~x~x~x~x

f

" #

~x

. (35)

The approximation (35) leads to the following domi-
nant balance in the PV (34):

m~y(s/f )~x2m~x(s/f )~y

’2
s0m~y

0

f

 !

~x

2
(sdu00y00)~x1 n4sy~x~x~x~x

f

" #

~x

. (36)

In (36) we have included the viscous term, although it
becomes important only in a subregion of the EBC very
close to the solid wall. The terms in the dominant bal-
ance (36) are shown in Figs. 11, 12, and 13 at a section
located at y5 3005 km, which is representative of other
latitudes in the subtropical and subpolar regions. The
dominant balance (36) should be compared with that
proposed by Cessi and Wolfe (2009a) and Cessi et al.
(2010). In those references, the eddies are parameter-
ized and the quasigeostrophic approximation is made,
resulting in the PV balance5

by5

"
2(u0b0)x1

kybzz
bz

#

z

. (37)

The PV balance (36) differs from (37) in several sub-
stantial respects: first, the advection of PV by the mean
flow is important in (36), while the advection of the
planetary component, retained in (37), is not; second,
the eddy momentum flux is as important as the eddy flux
of thickness (or buoyancy); and finally, diapycnal dif-
fusion is negligible. The only common term between
(36) and (37) is the eddy flux of buoyancy. The next
section details how these differences lead to qualita-
tively different horizontal and vertical scales of the
EBC.
The two terms on the lhs of (36) (the mean advection

of mean PV) are individually of the same order of

5 In the quasigeostrophic approximation used by Cessi and
Wolfe (2009a) and Cessi et al. (2010), the average at constant z ( !z)
and the TWA (̂!) coincide, so there is only one time average ( ! ).
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