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Why would | use this paper?

Whenever you do anything in buoyancy coordinates,
for example:

* |f you want to plot the residual overturning in z-
coordinates and overlay the buoyancy field

* |t you want to plot the divergence of the heat
flux on a buoyancy surface

It you don't, then you
risk falling into traps that
mean volume
conservation is violated.




TEM in Isentropic Coordinates - 1

|
UV, =0+ EU'M IS the meridional thickness flux

More generally expressed as:
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Residual velocities
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(a,v) = (ou,ov)/a o = uo, and ov = vo.




Thickness weighted average

b, + ub, + vb, + wb_ = w.
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diabatic effects

Buoyancy is chosen because if stability is assumed, there is a single-
valued value of z for every b
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Thickness weighted average
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This allows us to recast all sorts of equations in buoyancy coordinates
Advection of a passive scalar Volume conservation

ct+ucx+vcy+wczzy. V.- u=0

c; t uc; + uC; ‘I' =Y o + (ou). + (O'v)y + (: 0.



Non-orthogonal coordinate systems

Covariant coordinates Contravariant coordinates

def . def . def def .
elzl, 92:,], e’ = Vb 91:0'92><33:l+§gk7

def 3 1 .
e, = oe Xe —J+§yk,
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e; = O'e1 X e2

ok.




U and v do double duty

For an arbitrary vector field
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For velocity
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This is a feature of the non-orthogonal coordinate system



The third component of residual velocity

We define

gdel 2 2 L o7 4 aT
AR §Z+”§f+v§y~+w5b

such that

def
u =

ai + vj + wik
_ = - 1,7 A7 \a
= ue, +ve, + o ({; + @l;)e;.
and the flow is incompressible:
V-ut =

and w*is the velocity used to advect b?

bf + uf - Vb* = @



/onally averaging the overturning

Residual Overturning Streamfunction

¥(y,b) = / vor dbf = / /
b(z,y,2)
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Zonally averaging the buoyancy surtaces
People like to transform the ROC and display it in z-coordinates

Residual Overturning Streamfuncion with buoyancy contours
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¥(y,b)  ((y,b)
So we can express 1)(y, ¢)

Then interpolate onto z-grid to get ) (y, 2)



Zonally averaging the buoyancy surtaces

To get
Take the full 3-D buoyancy field
0
Calculate ¢ using ((x,y,b) :/ H [b(x,y,z) — b} dz

—H
Zonally average for Z(y, bﬁ) and invert for bﬁ(y, Z)

(I do this by interpolation)

Residual Overturning Streamfuncion with buoyancy contours
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Boundary conditions/beyond the boundary

The actual boundary
condition is

uﬁ-n=0,

There are places where the
Isopycnals outcrop, and the
buoyancy surface does not
exist. How do we deal with this
when averaging?

I z Lorenz condition: particle
follows isopycnal. If isopycnal Buoyancy surfaces
disappears, particle must
remain at surface until the
Isopycnal reappears



Soundary conditions and beyonad

o — (0 at the boundaries
Naturally (u,v) = 0 beyond the boundaries, so — —0
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FIG. 1. The isopycnal depth £(b,7) in (99) at (x, y) = 0 as function FIG. 2. The average isopycnal depth [(b) and the average
of b and . In z coordinates the ocean depthis 0 < z < 1 and { is thickness & = {; at (x,y) = 0 as function of b. The function b* is the
extended with the constant value { = 1 for isopycnals “above” the inverse of {(b) above and is defined on the original domain 0 < z < 1.
sea surface and ¢ = 0 for isopycnals ‘“‘below’ the bottom. In the central part of the domain, «G < b < 1 — aG, the average

depth is obtained from (99) as { = b, and therefore & = 1.



Gradient and divergence

Make sure you take the gradient in the correct coordinate system:
VF(%,7,b,f) = f.VX + f;Vy + f;Vb,

- fx~e1 + fy~e2 + f5e3.
Divergence must be thickness weighted:

V-q=0'(0q"); + o (0q%); + o (0q);.



Decomposition D*

d7 —I—u& -|—v8 —I—w8~
Dt

We already know
_ — > - #
{-; — {;« 1+ {;«/ and o =0T + O_r — Bt + uax + Uay + w az.

But we can also define
0 =60+ 6 where ¢@" =

; det 00 theretfore
—.

adl = (P + ¢'0").

oV-q =aV-q'¢. You can move O outside the brackets, so

O'% = (00); + (oub), + (UUH) + (owb);.

Can be split into mean and eddy terms:

o— =0
Dt

P e e (%)
Dt



Ellassen-Palm Flux

Montgomery potential
def

m(x, 3, b, {) = p(x, y, {(X, §, b, T), 1) — b{(X, y, b, [).

We can re-express the equations of motion

Du
Ft - fU + mx — X, | |
Do, /Adlabatlc processes
D =Y,
g”—I—mI;:O, > ZZ: —ml;,
o; + (ou); + (ov); + (wo); = 0, Therefore

L,
om; = —mggm; = (Gmg); + (ig )x




Ellassen-Palm Flux Equations of motion
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Putting these together

DG ) Adiabatic processes
Ot m o+ VB = A
Dt x <\
D*9 —

E-P vectors

def 1175 — f i 1—5_ _
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form drag



Conclusions

Doing a thickness weighted average can become very
confusing - refer to Bill's paper whenever you do it!

This might mean you have to use a non-orthogonal
coordinate system:

. def . def def .
el =i, e =j e = Vb e1=0'e2><e3=1—|-§ik,

def

3 1 _
e, oe’ Xe —J+§yk,

def
ok.

()'e1 X e2
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Conclusions

Doing a thickness weighted average can become very
confusing - refer to Bill's paper whenever you do it!

\psi(y,\tilde{b})=\overline{\intA{b_s}_{\tilde{b}(x,y,z)}v \sigma
\, db'}=\int_0A{L_x}\int_{-H}"@ vA{\dagger} \mathcal{H}
\left[b(x,y,z)-\tilde{b} \right]\, dz \, dx



Velocities and buoyancy contours
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FIG. 6. The three components of au? at y = 3000 km are shown as a function of ¥ and 6. Here, (top row, rhs) @i, (middle row, rhs)
ov, and (bottom row, rhs) o@ +Z{ are shown. The lhs and central columns additionally show the contributions of the residual
transport from the time-mean and eddy components respectively. The definitions of the fields are given in the text. The CI are
300 m s,2000 m s, and 2 X 107> m s~ ! for the top, middle, and bottom rows, respectively; negative contours are dashed. The swash
is shaded gray.



Plotting mean and eddy parts
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FIG. 11. The terms (a) (EW/ ):i/f> (b) v4v_..._, and (c) their sum near the eastern boundary are shown as a function

of x and 6 at the nominal latitude y = 3005 km (all fields are also averaged in y over a 160-km swath). The Cl is 0.01 s;
negative contours are dashed and the zero contour is thin and gray. The swash is shaded gray.
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