Residual-mean theory in 3D

Veronica Tamsitt November 4th 2016

Radko and Marshall 2006

The Antarctic Circumpolar Current in Three Dimensions

John Marshall and Timour Radko

Radko and Marshall 2006

The Antarctic Circumpolar Current in Three Dimensions

John Marshall and Timour Radko

ACC buoyancy fluxes and wind stress are not zonally uniform, and have a large scale pattern

0⁰

-20

0

20

100

80

NCEP-NCAR reanalysis

Observations and data assimilation show the ACC along-stream air-sea flux variations are large, and robust

Q: What are the implications of large scale alongstream variations in buoyancy and wind forcing on the residual overturning of the ACC?

Goal

Take 2d residual overturning from MR2003

Perturbation expansion about zonal average to look at first order zonal variations in residual circulation

Observations of forcing

Observations of forcing

Observations of forcing

Starts out similar to MR 2003:

Starts out similar to MR 2003:

time-mean momentum

$$-f\boldsymbol{v} = -\frac{\partial P}{\partial x} + \frac{\partial \tau_x}{\partial z} \quad \text{and}$$
$$f\boldsymbol{u} = -\frac{\partial P}{\partial y} + \frac{\partial \tau_y}{\partial z},$$

Starts out similar to MR 2003:

time-mean momentum

$$-fv = -\frac{\partial P}{\partial x} + \frac{\partial \tau_x}{\partial z} \text{ and}$$
$$fu = -\frac{\partial P}{\partial y} + \frac{\partial \tau_y}{\partial z},$$

time-mean buoyancy

 $\mathbf{v} \cdot \nabla b = -\nabla \cdot (\overline{\mathbf{v}' b'}) + \frac{\partial B}{\partial z},$

Starts out similar to MR 2003:

time-mean momentum

$$-f\boldsymbol{v} = -\frac{\partial P}{\partial x} + \frac{\partial \tau_x}{\partial z} \quad \text{and}$$
$$f\boldsymbol{u} = -\frac{\partial P}{\partial y} + \frac{\partial \tau_y}{\partial z},$$

time-mean buoyancy

 $\mathbf{v} \cdot \nabla b = -\nabla \cdot (\overline{\mathbf{v}' b'}) + \frac{\partial B}{\partial z},$

residual velocity

$$\mathbf{v}_{\rm res} = \mathbf{v} + \mathbf{v}^*,$$

Starts out similar to MR 2003:

time-mean momentum

$$-f\boldsymbol{v} = -\frac{\partial P}{\partial x} + \frac{\partial \tau_x}{\partial z} \text{ and}$$
$$f\boldsymbol{u} = -\frac{\partial P}{\partial y} + \frac{\partial \tau_y}{\partial z},$$

time-mean buoyancy

 $\mathbf{v} \cdot \nabla b = -\nabla \cdot (\overline{\mathbf{v}' b'}) + \frac{\partial B}{\partial z},$

residual velocity $\mathbf{v}_{res} = \mathbf{v} + \mathbf{v}^*$,

streamfunction

$$(u^*, v^*) = -\frac{\partial}{\partial z} \Psi^*$$
 and $\Psi^* = (\Psi^*_u, \Psi^*_v)$
 $w^* = \nabla_h \cdot \Psi^*,$

Buoyancy
$$\mathbf{v}_{res} \cdot \nabla b = \frac{\partial \tilde{B}}{\partial z}$$
,

- Interior flow assumed fully adiabatic
- Assume diabatic eddy fluxes in the mixed layer are secondary to direct fluxes

Assume that departure of the solution from its alongstream average is asymptotically small

$$\varepsilon = \frac{\langle b_1 \rangle}{\langle b_0 \rangle} \ll 1$$
, along stream ~ 0 .

Assume that departure of the solution from its alongstream average is asymptotically small

$$\varepsilon = \frac{\langle b_1 \rangle}{\langle b_0 \rangle} \ll 1,$$
 along stream ~ 0.1 cross stream

Asymptotic expansion, separate variables into 2d zonal average and weak fundamental harmonic

$$\mathbf{v} = \mathbf{v}_0(y, z) + \mathbf{v}_1(x, y, z) + \cdots, \quad \mathbf{v}_1 = \operatorname{Re}[\hat{\mathbf{v}}_1(y, z) \exp(ikx)],$$

$$\mathbf{v}^* = \mathbf{v}_0^*(y, z) + \mathbf{v}_1^*(x, y, z) + \cdots, \quad \mathbf{v}_1^* = \operatorname{Re}[\hat{\mathbf{v}}_1^*(y, z) \exp(ikx)], \quad \text{and}$$

$$b = b_0(y, z) + b_1(x, y, z) + \cdots, \quad b_1 = \operatorname{Re}[\hat{b}_1(y, z) \exp(ikx)],$$

(8)

Same thing for forcing (assuming ~ 2 1st harmonic??)

 $B = B_0(y, z) + B_1(x, y, z) + \cdots, \quad B_1 = \operatorname{Re}[\hat{B}_1(y, z) \exp(ikx)], \text{ and}$ $\tau_x = \tau_{0x}(y) + \tau_{1x}(x, y) + \cdots, \quad \tau_1 = \operatorname{Re}[\hat{\tau}_{1x}(y) \exp(ikx)],$

Same thing for forcing (assuming $\sim \varepsilon$ 1st harmonic??)

$$B = B_0(y, z) + B_1(x, y, z) + \cdots, \quad B_1 = \operatorname{Re}[\hat{B}_1(y, z) \exp(ikx)], \text{ and}$$

$$\tau_x = \tau_{0x}(y) + \tau_{1x}(x, y) + \cdots, \quad \tau_1 = \operatorname{Re}[\hat{\tau}_{1x}(y) \exp(ikx)],$$

Now rewrite buoyancv equation with these definitions

$$\mathbf{v}_{\text{res}} \cdot \nabla b = \frac{\partial \tilde{B}}{\partial z},$$
$$(\mathbf{v}_0 + \mathbf{v}_1 + \cdots) \cdot \nabla (b_0 + b_1 + \cdots) + (\mathbf{v}_0^* + \mathbf{v}_1^* + \cdots)$$
$$\cdot \nabla (b_0 + b_1 + \cdots) = \frac{\partial B_0}{\partial z} + \frac{\partial B_1}{\partial z} + \cdots.$$

Zero-order balance: $\mathbf{v}_{0 \text{ res}} \cdot \nabla b_0 = \frac{\partial B_0}{\partial z}$, Same as 2D MR 2003

Zero-order balance: $\mathbf{v}_{0 \text{ res}} \cdot \nabla b_0 = \frac{\partial B_0}{\partial z}$, **Same as 2D MR 2003**

First-order balance:
$$\boldsymbol{\varepsilon} = \mathbf{v}_{1 \text{ res}} \cdot \nabla b_0 + \mathbf{v}_{0 \text{ res}} \cdot \nabla b_1 = \frac{\partial B_1}{\partial z}$$
.

Zero-order balance: $\mathbf{v}_{0 \text{ res}} \cdot \nabla b_0 = \frac{\partial B_0}{\partial z}$, **Same as 2D MR 2003**

First-order balance:
$$\boldsymbol{\varepsilon} = \mathbf{v}_{1 \text{ res}} \cdot \nabla b_0 + \mathbf{v}_{0 \text{ res}} \cdot \nabla b_1 = \frac{\partial B_1}{\partial z}$$
.

Do the same for momentum, continuity and eddy closure.

First-order correction (3D)

$$\mathbf{v}_{1 \text{ res}} \cdot \nabla b_{0} + \mathbf{v}_{0 \text{ res}} \cdot \nabla b_{1} = \frac{\partial B_{1}}{\partial z}.$$

$$\hat{\mathbf{v}}_{1 \text{ res}} \frac{\partial b_{0}}{\partial y} + \hat{w}_{1 \text{ res}} \frac{\partial b_{0}}{\partial z} + u_{0} i k \hat{b}_{1} + v_{0 \text{ res}} \frac{\partial \hat{b}_{1}}{\partial y}$$

$$+ w_{0 \text{ res}} \frac{\partial \hat{b}_{1}}{\partial z} = \frac{\partial \hat{B}_{1}}{\partial z}.$$
(17)

Transform equations to variable I = distance along zero-order isopycnals

 ψ_1

$$\begin{aligned} \frac{dy}{dl} &= v_c = 1 \quad \text{and} \\ \frac{dz}{dl} &= w_c = s_0 = -\frac{b_{0y}}{b_{0z}} = -\sqrt{-\frac{\tau_0}{fk_0} - \frac{\Psi_{0\,\text{res}}}{k_0}} \,. \end{aligned}$$
$$\begin{aligned} \frac{d\hat{b}_1}{dl} &- \frac{(\Psi_{1\,\text{res}} + \hat{\tau}_{1x}/f)b_{0z}}{2k_0s_0} = ik\frac{b_{0z}\int_0^z \hat{P}_1 \, dz}{2k_0s_0f} \quad \text{and} \\ \frac{d\Psi_{1\,\text{res}}}{dl} &- \left(\frac{d\Psi_{0\,\text{res}}}{db_0}\right)\frac{d\hat{b}_1}{dl} + ik\frac{u_0\hat{b}_1}{b_{0z}} = ik\int_0^z \hat{u}_1 \, dz, \end{aligned}$$
$$\begin{aligned} &\text{res}(-h_m) = \frac{\hat{B}_1 - \Psi_{0\,\text{res}}(-h_m)\frac{\partial}{\partial y}\hat{b}_{1m} - iku_0\hat{b}_{1m}h_m}{\frac{\partial}{\partial y}b_{0m}} \,. \end{aligned}$$
Base of ML

2 model solutions

4. Diagnostic model (buoyancy and air-sea fluxes prescribed)

5. Prognostic model (solve for buoyancy and air-sea fluxes, with northern boundary condition and relaxation to buoyancy distribution)

Solution

Zero-order (2D)

= same as MR2003

Diagnostic solution

First-order (3D)

Overturning is enhanced in the Atlantic-Indian sector and reduced in the Pacific sector

Relax mixed layer buoyancy to target distribution

Prescribe stratification at northern boundary (No x variation!)

Buoyancy flux parameterization: $B = -\lambda(b_m - b^*)$.

Relax mixed layer buoyancy to target distribution

Prescribe stratification at northern boundary (No x variation!)

amplitude of fundamental harmonic of buoyancy, weak relative to mean

Implied buoyancy and buoyancy flux

Decreased isopycnal PV gradient in Pacific reduces downgradient PV flux -> weaker residual circulation RM2006 Fig. 12

Physical interpretation

Current approaches

Focus on 3-dimensionality through looking at differences between Atlantic and Indo-Pacific basins

-Only sinking in one basin

-width of basins differ

Thompson, Stewart and Bischoff

A Multibasin Residual-Mean Model for the Global Overturning Circulation

Different overturning circulation and stratification in Atlantic vs Pacific

Thompson et al. Fig. 1

Observed isopycnal depth differences

Goal: bridge gap between idealized two-dimensional, residual-mean overturning and complex, fully three-dimensional models

Approach: Two separate two-dimensional basins that can exchange properties through the AC or ITF.

Model

1.Apply coarse discretization in the ACC, with diabatic processes (buoyancy forcing and diffusive upwelling in basins).

2. Prescribe high latitude dense water formation

3. Consider case with 2 sectors only, and look at exchanges between Atlantic and "Pacific"

4-layer model

Thompson et al. Fig. 4

Model vs observations

Questions?