Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation

presented by Shantong Sun

ACC and MOC

Buoyancy

Streamwise-averaged buoyancy equation:

$$
\begin{gathered}
\bar{v} \frac{\partial \bar{b}}{\partial y}+\bar{w} \frac{\partial \bar{b}}{\partial z}+\frac{\partial}{\partial y}\left(\overline{v^{\prime} b^{\prime}}\right)+\frac{\partial}{\partial z}\left(\overline{w^{\prime} b^{\prime}}\right)=\frac{\partial B}{\partial z} \\
\downarrow \\
J_{y, z}\left(\Psi_{\mathrm{res}}, \bar{b}\right)=\frac{\partial B}{\partial z}-\frac{\partial}{\partial y}\left[(1-\mu) \overline{v^{\prime} b^{\prime}}\right]
\end{gathered}
$$

where,

$$
\Psi_{\mathrm{res}}=\bar{\Psi}+\Psi^{*}, \Psi^{*}=-\frac{\overline{w^{\prime} b^{\prime}}}{\overline{b_{y}}}, \text { and } \mu=\left(\frac{\overline{w^{\prime} b^{\prime}}}{\overline{v^{\prime} b^{\prime}}}\right)\left(\frac{1}{s_{\rho}}\right)=\left\{\begin{array}{l}
1, \text { adiabatic } \\
0 .
\end{array}\right.
$$

Buoyancy

Below the mixed layer:

$$
J\left(\Psi_{\mathrm{res}}, \bar{b}\right)=0 . \longrightarrow \Psi_{\mathrm{res}}=\Pi(\bar{b})
$$

Two assumptions: buoyancy forcing vanishes; eddy flux along isopycnal surfaces.
Within the mixed layer:

$$
-\frac{\partial \Psi_{\mathrm{res}}}{\partial z} \frac{\partial b_{o}}{\partial y}=\frac{\partial B}{\partial z}-\frac{\partial}{\partial y}\left[(1-\mu) \overline{v^{\prime} b^{\prime}}\right]
$$

At the base of mixed layer:

$$
\begin{aligned}
& \Psi_{\mathrm{res} \mid \mathrm{z}=-\mathrm{h}_{\mathrm{m}}} \frac{\partial b_{o}}{\partial y}=\tilde{B} \longrightarrow \Psi_{\mathrm{res} \mid \mathrm{z}=-\mathrm{h}_{\mathrm{m}}}=\frac{\tilde{B}}{\partial b_{o} / \partial y} \\
& \tilde{B}=B_{o}-(1-\mu) \int_{-h_{m}}^{0} \frac{\partial}{\partial y} \overline{v^{\prime} b^{\prime}} d z
\end{aligned}
$$

Closure for $\bar{\Psi}$ and Ψ^{*}

$$
\begin{aligned}
& f \frac{\partial \bar{\Psi}}{\partial z}=\frac{\partial \bar{\tau}}{\partial z}+\frac{\Delta \hat{p}}{\partial L_{x}}-\frac{\partial \frac{\hat{u^{\prime} / u^{\prime}}}{\partial y}}{} \longrightarrow f \bar{\Psi}=-\tau_{0} \\
& \downarrow \\
& \text { Interior region }
\end{aligned} \Psi_{\text {res }}=-\tau_{o} / f+\Psi^{*} .
$$

Eddies assumed to be adiabatic in the interior:

$$
\begin{gathered}
\Psi^{*}=-\frac{\overline{w^{\prime} b^{\prime}}}{\bar{b}_{y}}=\frac{\overline{v^{\prime} b^{\prime}}}{\bar{b}_{z}} \\
\overline{v^{\prime} b^{\prime}}=-K \bar{b}_{y} \longrightarrow \Psi^{*}=\frac{\overline{v^{\prime} b^{\prime}}}{\bar{b}_{z}}=-K \frac{\bar{b}_{y}}{\bar{b}_{z}}=K s_{\rho} .
\end{gathered}
$$

Visbeck et al. (1997): $\quad K=k\left|s_{\rho}\right| \quad \Psi^{*}=K s_{\rho}=k\left|s_{\rho}\right| s_{\rho}$

$$
\Psi_{\mathrm{res}}=-\tau_{o} / f+k\left|s_{\rho}\right| s_{\rho}
$$

Interior:

$$
\begin{aligned}
\Psi_{\mathrm{res}} & =\Pi(\bar{b}) \\
\Psi_{\mathrm{res}}(b) & =k\left|s_{\rho}\right| s_{\rho}-\tau_{o} / f \Rightarrow s_{\rho}(b, y)=-\left[-\frac{\tau_{0}(y)}{f k}-\frac{\Psi_{\mathrm{res}}(b)}{k}\right]^{1 / 2}
\end{aligned}
$$

Base of Mixed layer:

$$
\begin{aligned}
& \Psi_{\mathrm{res} \mid \mathrm{z}=-\mathrm{h}_{\mathrm{m}}}(b)=\frac{\tilde{B}}{\partial b_{o} / \partial y}, \quad \tilde{B}=B_{o}-(1-\mu) \int_{-h_{m}}^{0} \frac{\partial}{\partial y} \overline{v^{\prime} b^{\prime}} d z \\
& b\left(y, z=-h_{m}\right)=b_{0}(y)
\end{aligned}
$$

Can be solved with b_{o}, \tilde{B}, and τ_{o} known.

Examples

Buoyancy structure when:

$$
\begin{aligned}
& \tau_{o}(y)=\tau_{s} y / L_{y} \\
& \tilde{B}=0 \Rightarrow \Psi_{\mathrm{res}}=0
\end{aligned} \longrightarrow s_{\rho}(b, y)=-\left[-\frac{\tau_{0}}{f k}\right]^{1 / 2}
$$

$b_{o}(y)=\Delta_{b_{0}} \frac{y}{L_{y}}$
Baroclinic transport $\sim \frac{\tau_{o} L^{2} \Delta b}{f^{2} k}$

Examples

$$
\begin{aligned}
\tilde{B} & =\tilde{B}_{o} \sin \left[(2 \pi y) / L_{y}\right] \\
\tau_{o}(y) & =\tau_{s}\left[0.3+\sin \left(\frac{\pi y}{L_{y}}\right)\right] \\
b_{o}(y) & =\Delta_{b_{0}} \frac{y}{L_{y}}
\end{aligned}
$$

$$
\Psi_{\mathrm{res}}=\frac{\tilde{B}_{o} L_{y} L_{x}}{\Delta b_{o}}=12 \mathrm{~Sv}
$$

Role of dyapycnal eddy buoyancy fluxes

Another example

Constructing the residual circulation of the ACC from observations

Richard H. Karsten and John Marshall

From Marshall and Radko (2003)

Base of Mixed layer:

$$
\begin{gathered}
\Psi_{\mathrm{res} \mid \mathrm{z}=-\mathrm{h}_{\mathrm{m}}}(b)=\frac{\tilde{B}}{\partial b_{o} / \partial y}, \quad \tilde{B}=B_{o}-(1-\mu) \int_{-h_{m}}^{0} \frac{\partial}{\partial y} \overline{v^{\prime} b^{\prime}} d z \\
\Psi_{\mathrm{res}}=\bar{\Psi}+\Psi^{*}
\end{gathered}
$$

Here, a different approach:
Base of Mixed layer: $\quad \bar{\Psi}=-\frac{\bar{\tau}}{\rho_{0} f}$

$$
\begin{aligned}
\Psi^{*} & =\frac{\overline{v^{\prime} b^{\prime}}}{\bar{b}_{z}}=-K \frac{\bar{b}_{y}}{\bar{b}_{z}} \\
K & =\alpha \frac{g}{|f|}\left(\overline{h^{\prime 2}}\right)^{1 / 2}
\end{aligned}
$$

b estimated from Levitus and Boyer (1994), sea surface height from satellite.

Base of Mixed layer:

Fig. 3. The Ekman transport, $\bar{\Psi}$, given by (2): dash-dot. The eddy induced transport, Ψ^{*}, given by (11): dashed. The residual transport, $\Psi_{\text {res }}$, given by (9): solid. The thin dash-dot and solid lines are based on the HR winds; the thick dash-dot and solid lines are based on SOC winds. The error bars on the eddy-induced transport and residual circulation are calculated from the errors in the eddy diffusivity.

Interior:

$$
J\left(\Psi_{\mathrm{res}}, \bar{b}\right)=\kappa \frac{\partial^{2} \bar{b}}{\partial z^{2}} \longrightarrow \frac{d \Psi_{\mathrm{res}}}{d s}=\kappa \frac{\bar{b}_{z z}}{\sqrt{\left(\bar{b}_{y}\right)^{2}+\left(\bar{b}_{z}\right)^{2}}}
$$

b known from observations; Residual-mean streamfunction at the base of the mixed layer also estimated from observations.

Residual-mean overturning circulation and salinity

Fig. 7. The thin lines are contours of mean salinity. The region of no shading marks fresh AASW and AAIW, salinity <34.4 psu; the darkest shading marks salty NADW, salinity >34.7 psu. The dark solid lines are contours of the residual circulation with the arrows showing the direction of flow.

Questions?

