
Chapter 3 Basic Dynamics 

3.1 Introduction 

The atmosphere is a shallow envelope of compressible gas surrounding 
an approximately spherical, rotating planet. The equations of motion in a 
rotating frame for such a gas are well known, but in their most general 
form they are far more complicated than necessary or desirable for applica-
tion to the large- and medium-scale meteorological phenomena considered 
in this book. Scale analysis, involving an investigation of the relative orders 
of magnitude of the various terms in the relevant equations, shows that 
several simplifications to the equations can be made. In particular, the 
vertical momentum equation can be replaced by hydrostatic balance, the 
Coriolis force associated with the horizontal component of the earth's 
rotation vector can be neglected, and the distance r from any point in the 
atmosphere to the center of the earth can be replaced by a mean radius 
a. The resulting approximate set of equations is called the primitive equa-
tions. 

3.1.1 The Primitive Equations in Log-Pressure Coordinates on the Sphere 

Although the geometric height z* = r — a is the most obvious choice of 
vertical coordinate, the primitive equations take slightly simpler forms when 
other vertical coordinates are used, and throughout most of this book we 
shall use the "log-pressure" coordinate 

z = -H\n(p/ps) (3.1.1) 
113 
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introduced in Eq. (1.1.8). (The inverse relation 

P = Pse~z/", (3.1.2) 

should be noted.) Using z as the vertical coordinate and spherical coordi-
nates in the horizontal, the primitive equations take the following form: 

Du (n u tan � \ Φλ , 
— - ( / + ^ t> + — = X, (3.1.3a) 
Dt \ a J a cos �  

( / + ^ ) u + ^ = r , (3.1.3b) 
Dv — + 
Dt 

Φζ = Η _ 1Α0έΓκζ /Η , (3.1.3c) 

[uA + ( » c o s * ) , ] + ( j ^ = 0> ( 3 0 d ) 

a cos �  po 

^ = < ? , (3.1.30 

(e.g., Holton, 1975). These express, respectively, momentum balance in the 
zonal and meridional directions, hydrostatic balance in the vertical, con-
tinuity of mass, and the thermodynamic relation between diabatic heating 
and the material rate of change of potential temperature. 

In Eq. (3.1.3) Φ denotes the geopotential [see Eq. (1.1.3)], �  the potential 
temperature [see Eq. (1.1.9)], and the following new notation has been used: 

Horizontal coordinates: (λ, � ) = (longitude, latitude). 
"Velocity" components: 

x Γ, , ο λ � �  
(w, v, w) = \ (a cos </>)—, a——,-

L Dt Dt 

where D/ Dt is the material derivative, or time rate of change following the 
fluid motion, whose expression in the present coordinates is 

D d u d v d d 
— = —+ + + w — m 
Dt dt a cos �  d\ a � �  dz 

Note that w is not in general equal to the geometric vertical velocity Dz*/ Dt; 
however, the difference is generally insignificant except near the ground. 

Coriolis parameter (the vertical component of the earth's rotation vector): 
/ = 2Ω sin � , where Ω = 2�  (sidereal day)- 1 = 7.292 x 10"5 s"1 is the earth's 
rotation rate. 

Unspecified horizontal components of friction, or other nonconservative 
mechanical forcing: (X, Y). 
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Diabatic heating term: Q = (J/cp)e
KZ/H, where / is the diabatic heating 

rate per unit mass, which in the middle atmosphere equals the net radiative 
heating rate per unit mass, - p ö 1 dFn/dz (see Section 2.5), plus a small 
thermal conduction term; note that J/cp is often expressed in units of 
Kelvins per day. 

Basic density: p0(z) = pse~z/H where ps = pjRTS. Thus p0 = p/RTS by 
Eq. (3.1.2); some authors use p instead of p0 in Eq. (3.1.3d). 

Some partial derivatives with respect to λ, </>, and z are denoted by suffixes. 

The primitive equations are frequently written using the temperature T 
instead of potential temperature 0, in which case Eqs. (3.1.3c, e) are replaced 
by 

H~lRT 

and 

Φ, 

DT KTW 

Dt H 

(3.1.3c') 

(3.1.3e') 

respectively. 
A further quantity of considerable dynamical importance is Ertel's poten-

tial vorticity P (Rossby (1940), Ertel (1942)), defined in general as 
p_1o>a· V0 where � �  is the absolute vorticity. Under the approximations 
that lead to the primitive equations, it is given by 

PoP = *,[/- (u cos � )�  t Vi � ,� �  � � "�  

a cos �  a cos �  J a cos �  
(3.1.4) 

in log-pressure coordinates. A rather lengthy calculation, starting from Eq. 
(3.1.3), shows that 

DP 
Dt 

where 

and 

(p0a cos � )~ 
d(Xcos0 , � ) d(Y,0) 

� (� ,� ) 
a«?,t>) + d«?,m) 

� ( � , � ) � ( � , � ) � (� ,� ) ]· 
(3.1.5) 

d(x,y) 
dAdB 
dx dy 

dAdB 
dy dx 

m = ail cos2 �  + u cos �  

is a~l times the absolute zonal angular momentum per unit mass. Note that 
if the mechanical forcing (X, Y) and the diabatic heating Q both vanish, 
the right-hand side of Eq. (3.1.5) vanishes, and P is conserved following 
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the motion. This "conservable" property of P is one reason why it is of 
such interest to dynamical meteorologists (see Sections 5.2.3 and 6.2.4, for 
example). A physical interpretation of the conservation of P is given in 
Section 3.8.2. 

3.1.2 Boundary Conditions 

To solve the primitive equations of Eqs. (3.1.3), or any approximate set 
of equations derived from them, it is of course necessary to apply suitable 
boundary conditions. These depend on the particular physical problem 
under consideration; some typical examples will be discussed here. 

3.1.2.a Conditions at the Lower Boundary 

1. If the lower boundary is the ground, the shape of the topography 
should be specified in terms of the geometric height z*, rather than z (this 
is a slight inconvenience of log-pressure coordinates): for example, 

z* = h(x, y91) at the ground. 

(The ί-dependence is a mathematical device that is sometimes useful for 
idealized initial-value problems; for example, a mountain might be "grown" 
so as to set up a flow in an unambiguous manner.) Since the ground is a 
material surface, the kinematic boundary condition is 

Τ τ ( ζ * -Λ ) = 0 at z* = k 
Dt 

If viscosity is important, further conditions are required, but we shall not 
need them in this book. In terms of Φ, we have, from Eq. (1.1.3), 

£>Φ Dh [h 

-W = gWt at * = J0 ****** (3.1.6a) 
where the latter approximation relies on the fact that g is essentially constant 
over the altitude range of the earth's topography. 

2. Some models specify the geopotential or geometric height of a given 
log-pressure level, for example, 

<b(x9y9z0,t) = F(x9y9t)9 (3.1.6b) 

where z0= -H ln( p0/ps) = constant; p0 might be near the tropopause (say 
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Po = 100 mb). This is usually the easiest form of lower boundary condition 
to implement in log-pressure coordinates. 

3. It is sometimes convenient in simple mathematical models to specify 
the log-pressure at a lower material boundary. Thus z = � (� , y, t), say, at 
the boundary; by analogy with (1), the kinematic boundary condition is then 

Dz � �  
w^ — = -^ at �  = � (� ,� ,�). (3.1.6c) 

Dt Dt bV ' 7 ' ; v ' 
This condition is less suitable than Eq. (3.1.6a) or (3.1.6b) for use in detailed 
simulation of the atmosphere. 

3.1.2.b Conditions at the Upper Boundary 

Numerical general circulation models of the middle atmosphere, such 
as those to be discussed in Chapter 11, employ a finite number of levels in 
the vertical and usually have to include an effectively "rigid" upper bound-
ary. For example, a model formulated in z coordinates might take w = 0 
at some large but finite height zx. A rigid lid of this type will tend to lead 
to unrealistic reflections of wave disturbances that reach it, and large 
dissipative terms are usually introduced near the upper boundary in an 
attempt to damp such waves and minimize spurious reflections. These 
dissipation terms are primarily a numerical expedient and normally have 
little physical basis. 

Simpler linear models of wave disturbances in the middle atmosphere 
can often adopt more satisfactory dynamical upper boundary conditions, 
which fall into one of two categories: 

1. Disturbances are trapped or evanescent', that is, they tend to zero with 
increasing height (where a suitable measure of a disturbance might be its 
energy per unit volume). 

2. Vertically propagating disturbances obey a radiation condition: that 
is, they transfer "information" upward, and not downward, at great heights. 
This condition tacitly assumes that mean atmospheric conditions do not 
allow significant reflection of vertically travelling disturbances at great 
heights, so that a clear distinction can be made between upward and 
downward propagation. The radiation condition then states that only the 
upward-propagating disturbances—as identified perhaps by a "group veloc-
ity" argument—exist above some height z2. 

We shall examine cases (1) and (2) in detail in Chapter 4, when specific 
examples of wave motions are discussed. 

3.1.2.C Conditions at Side Boundaries 

The conditions here depend on the geometry of the atmospheric model 
under consideration. On the sphere, it is only necessary that all variables 
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be bounded at the poles. In idealized cases where attention is fixed on a 
"channel" with vertical walls parallel to latitude circles �  = � �9 � 2, say, 
v = 0 is taken on these walls. 

3.2. The Beta-Plane Approximation and Quasi-Geostrophic Theory 

The primitive equations (3.1.3) are still a complicated set, despite the 
simplifications that have been used in deriving them. Moreover, they are 
capable of describing a very wide range of atmospheric flows, from slow 
motions of global scale to quite rapid, medium-scale disturbances. To focus 
on the larger-scale, slower motions, at least in the extratropical regions, we 
can introduce further approximations to obtain the quasi-geostrophic 
equations. 

3.2.1 The Primitive Equations on a Beta-Plane 

Before making the dynamical approximations that result in the quasi-
geostrophic equations, it is first convenient to make a geometrical sim-
plification, by replacing the spherical coordinates (λ, � ) by eastward and 
northward cartesian coordinates (x, y)9 and restricting the flow domain to 
some neighborhood of the latitude � 0. This task can be carried out in a 
formally rigorous manner; however, since the resulting primitive equations 
are intuitively reasonable approximations to the full set of Eqs. (3.1.3), we 
shall only state them here. They are: 

DU-fv + <!>x = X, (3.2.1a) 
Dt 

Dv 
~Dt 

+ fu + <S>y = � 9 (3.2.1b) 

(3.2.1c) 

(3.2.1d) 

(3.2.1e) 

� �  = H-lReeKZ/H, 

ux + vy + pö\pow)z = � , 

with 

D d d d d 
= h U h V h W — . 

Dt dt dx dy dz 
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Here x is eastward distance and y northward distance from some origin 
(A0, � � ), subscripts x and y denote partial derivatives, and other symbols 
are as before, with the exception that now 

f = fo + ßy, (3.2.10 
where f0 = 2Ω sin � 0 and �  = 2Ωα_1 cos � 0. Note that Eq. (3.2.If) is a 
formally valid approximation t o / = 2Ω sin �  if \y\ « a cot </>0; the terms in 
tan �  in Eqs. (3.1.3a, b) are negligible if u and v are comparable in magni-
tude and their horizontal length scales are much less than a cot � 0. The 
linear variation of / with y captures the most important dynamical effect 
of the variation of 2Ω sin �  with latitude; this "beta-effect" was first pointed 
out by Rossby (1939). Equations (3.2.1) are called the "beta-plane" versions 
of the primitive equations. To simulate the periodicity around latitude circles 
on the sphere, it is often convenient to consider the beta-plane to be periodic 
in x with period lira cos � 0. 

3.2.2 Geostrophic Balance and the Thermal Wind Equations 

Having simplified the geometry in this way, we can next use the fact that 
for large-scale, low-frequency, extratropical flows, approximate geostrophic 
balance holds: that is, the Coriolis terms (~fv,fu) in Eqs. (3.2.1a, b) are 
roughly balanced by the horizontal gradients of geopotential. Thus the 
horizontal wind (M, V, 0) satisfies 

u ~ i/g, v ~ ug, (3.2.2) 

where the geostrophic wind ug = (wg, vg9 0) is defined in terms of the 
geopotential by 

(� *,� � ) = (-� � 9� � )9 (3.2.3) 
where 

<Α- /ο - 1 (Φ-Φο) (3.2.4) 

is called the geostrophic stream function and Φ0(ζ) is a suitable reference 
geopotential profile; note that the definition of �  involves f0 and not / 
From the hydrostatic balance of Eq. (3.2.1c), we have 

� ^ � - � 0(� ) = HR-lf0e
KZ/Hil,Z9 (3.2.5) 

where � 0(� ) = ΗΑ _ 1 ^ κ ζ /ΗΦ 0 ζ is a reference potential temperature. Likewise, 
using Eq. (3.1.3c'), 

T - T0(z) = � � �-�/0� � 9 (3.2.5') 

where T0(z) = e~KZ/H � 0(� ) is a reference temperature. [Possible choices for 
T0(z) might be the midlatitude profile sketched in Fig. 1.1, or a global mean 
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profile; � 0(� ) would then be obtained by vertical integration, subject to the 
boundary condition Φο(0) = 0.] Combining Eqs. (3.2.3) and (3.2.5) or 
(3.2.5') to eliminate �  by cross differentiation, we obtain the "thermal wind" 
equations 

dT (3.2.6a) 
awg = 

dz 

dvÄ = 

dz 

R 
e Hfo 
.-«/« 01 

dy 

_K -κΖ /Η^?_ 
Hfo dX 

R 

Hf0 

R 
Hfo 

dT 

dx' 
(3.2.6b) 

which relate the vertical shear of the geostrophic wind components to 
horizontal potential temperature (or temperature) gradients. Note also from 
Eq. (3.2.3) that dujdx + dvjdy = 0, so by the continuity equation [Eq. 
(3.2.1d)] the geostrophic wind is associated with a vertical "velocity" wg 

that satisfies (p0wg)z = 0. To ensure that vvg is bounded as z -> oo, we must 
therefore take vvg = 0. 

3.2.3 Quasi-Geostrophic Flow 

It will be observed that Eqs. (3.2.2)-(3.2.4) are first approximations to 
the horizontal momentum equations (3.2.1a, b), provided that the acceler-
ations Du/ Dt and Dv/ Dt and the nonconservative terms X and Y are 
ignored, and f0 + ßy is replaced by f0. To examine these approximations 
more closely, and to investigate the time development of the geostrophic 
flow [which is not predicted by Eqs. (3.2.2)-(3.2.4)], we define ageostrophic 
velocities, denoted by a subscript a, thus: 

wa = u - wg, va = v - ug, vva = w. (3.2.7) 

We suppose that U is a typical order of magnitude of the geostrophic wind 
speed |ug|, and that L is a typical horizontal length scale, so that d/dx and 
d/dy are 0(L~l). It can then be shown that Eqs. (3.2.2)-(3.2.4) are valid 
first approximations, with |wa| « |wg| ~ U, \va\ « \vg\ ~ U, if the following 
conditions are satisfied: 

(a) R o ^ U/f0L« 1. 

(b) d/dt«f0. 
(3.2.8) 

(c) ßL«f09 

(d) \X\,\Y\«f0U. 

Condition (a) states that the Rossby number Ro, which measures the ratio 
of the nonlinear terms u · V(u, v) to the Coriolis terms (-f0v,f0u) in Eqs. 
(3.2.1a,b), should be small. Likewise, condition (b) states that the ratio of 
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the time derivatives (du/dt, dv/dt) to the Coriolis terms should be small. 
Condition (c) allows the use of/0 rather t han / in Eq. (3.2.4), while condition 
(d) ensures that friction is small. These conditions make precise the restric-
tion to "large-scale, low-frequency motions" mentioned above. 

Given conditions (3.2.8), the next approximation to Eqs. (3.2.1a,b,d,e) 
beyond geostrophic balance is a set of equations describing "quasi-geo-
strophic flow": 

£>g Mg - fo va - ßyvg = X, (3.2.9a) 

Dgvg+fQua + ßyug = Y, (3.2.9b) 

"ax + vay + PÖl(poWa)z = 0 (3.2.9c) 

£>g0e+wa0O2 = <?, (3.2.9d) 

where 

^ d d d 
g dt Bdx gdy 

is the time derivative following the geostrophic wind. It is assumed that the 
departure 0e from the reference temperature � 0(� ) is always small, in the 
sense that |0βζ|<<: #οζ, so that wa0z can be replaced by wa0Oz, as in Eq. 
(3.2.9d). This is a fair approximation in the middle atmosphere. 

The quasi-geostrophic set of Eqs. (3.2.9) still appears quite complicated; 
however, we now combine the members to yield a single useful and 
illuminating equation, Eq. (3.2.14). First, we construct the vorticity equation 

D^g=foPö\po^)z-Xy+Yx (3.2.10) 

by taking (d/dx) [Eq. (3.2.9b)] -d/dy [Eq. (3.2.9a)] and using the identities 
Ugx'Vug = 0, ugy-VMg = 0, which follow from Eq. (3.2.3), and Dg(/0 + 
ßy) = ßvg, together with Eq. (3.2.9c). Here 

£g
 Ξ fo + ßy ~ ugy + V = fo + ßy + � � �  + � „ 

is the geostrophic approximation to the beta-plane form of the vertical 
component of the absolute vorticity, / - uy + vx. The first term on the right 
of Eq. (3.2.10) is called a "stretching" term, since it can generate vorticity 
by differential vertical motion. 

The next step is to eliminate vva between the thermodynamic equation 
[Eq. (3.2.9d)] and the vorticity equation [Eq. (3.2.10)]. We therefore multiply 
Eq. (3.2.9d) by � 0/� 0� ; this is a function of z alone, and can be taken 
through the Dg operator, giving 

ö g ( P o 0 e / 0 O z ) + PoH>a = Po<? /0Oz . ( 3 · 2 · � ) 
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Using Eq. (3.2.5), we can write 

ejeQz=MJN\ (3.2.12) 
where 

N\z) - H-lRe0z(z)e—/H = JJ(TO;+^). (3.2.13) 

The term JV is thus the log-pressure buoyancy frequency corresponding to 
the reference temperature profile T0(z) = � 0(� )� ~� � /�  [cf. Eq. (1.1.13)]. As 
indicated in Section 1.1.4, the atmosphere is statically stable if N 2 and � 0�  

are positive. 
On combining the z derivative of Eq. (3.2.11) with Eq. (3.2.10), using 

the identity ug z· ν(ρο06/0Οζ) Ξ ^ [which follows from Eq. (3.2.6) and the 
fact that � � /� � �  and 0O depend on z alone], and substituting Eq. (3.2.12), 
we obtain the quasi-geostrophic potential voracity equation 

Dgqg = -Xy + Yx +/oP01(Po<?/0oz)z, (3.2.14) 
where 

q^C^foPö\poejS0z)z (3.2.15a) 

= /o + ßy + � � �  + � „ + PÖ1(Po^z)z (3.2.15b) 

is the quasi-geostrophic potential vorticity and 

ε ( ζ ) - / 2 /Ν 2 ( ζ ) . (3.2.16) 

Equation (3.2.14) gives the time development of qg\ note that it does not 
involve ageostrophic velocities. Moreover, if the flow is frictionless (X = 
Y = 0) and adiabatic (Q = 0), then Dgqg = 0 and qg is conserved following 
the geostrophic wind. Given qg at any instant, and appropriate boundary 
conditions, the elliptic operator on the right of Eq. (3.2.15b) can in principle 
be inverted to obtain � , and hence wg, vg9 and �  or T9 using Eqs. (3.2.3) 
and (3.2.5). 

The quasi-geostrophic potential vorticity qg, defined by Eq. (3.2.15), 
should be contrasted with Ertel's potential vorticity P9 defined by Eq. (3.1.4). 
In particular, qg is not generally the quasi-geostrophic approximation to P. 
Furthermore, if X = Y = Q = 0, qg is conserved following the horizontal 
geostrophic flow under the quasi-geostrophic conditions (3.2.8), while P 
is conserved following the total flow, even when quasi-geostrophic scaling 
is not valid: see Eq. (3.1.5). For these reasons, some authors call qg the 
"pseudo-potential vorticity," although when there is no danger of confusion, 
we shall simply call qg the "potential vorticity" for short. (Note, however, 
that certain analogies exist between formulas involving qg in log-pressure 
coordinates and formulas involving P in isentropic coordinates: see Section 
3.8.3.) 
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Another useful equation that can be derived from Eq. (3.2.9) is the omega 
equation, obtained by eliminating the d/dt terms in Eqs. (3.2.9a,d). It is a 
diagnostic equation (that is, it involves no time derivatives) for obtaining 
the ageostrophic velocity vva from the geostrophic quantity �  and its deriva-
tives. Some special cases of the omega equation will be discussed in Sections 
3.3 and 3.5. 

We note finally that several versions of the quasi-geostrophic equations 
have been derived in spherical coordinates. Although none of these is 
entirely satisfactory in every respect, some examples are useful in modeling 
the middle atmosphere and are mentioned in Chapters 5 and 6. 

3.3 The Eulerian-Mean Equations 

Many of the middle atmosphere phenomena to be discussed in this book 
can be regarded as involving the interaction of a mean flow with disturbances 
("waves" or "eddies") that are superimposed upon it. This interaction is 
generally a two-way process, for the mean-flow configuration can strongly 
modify the propagation of the disturbances, while the disturbances them-
selves can bring about significant mean-flow changes, through rectified 
nonlinear effects. 

We shall mostly be concerned with cases where the mean is a zonal 
mean, to be denoted by an overbar: thus, for example, 

� 2� �  

«(ψ, Z, t) = (2ΤΓ)_1 M(A, </>, z, t) dk. (3.3.1a) 
Jo 

The departure from the zonal mean will be denoted by a prime: 

w'(A, </>, z, t)= u-ü. (3.3.1b) 

It should be emphasized that this separation into mean and disturbance 
quantities is primarily a mathematical device and may not be the most 
natural physical separation in all cases; for example, in many tropospheric 
applications a time mean may be more useful. However, the zonal average 
has proved a satisfactory tool for the investigation of most of the strato-
spheric and mesospheric phenomena to be discussed in this book. Moreover, 
the theory of the interaction of waves with the zonal-mean flow is more 
highly developed than that for the corresponding interaction of transient 
disturbances with the time-mean flow. 

The average defined by Eq. (3.3.1a) is an example of an Eulerian mean, 
since it is taken over λ at fixed values of the coordinates � , ζ, and t. Another 
type of average, to be discussed in Section 3.7, is the Lagrangian mean, 
which is taken over a specified set of moving fluid parcels. 
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Separating each variable into a zonal-mean part and a disturbance part, 
as in Eq. (3.3.1b), substituting into Eq. (3.1.3), taking the zonal average, 
and performing some straightforward manipulations, we obtain the follow-
ing set of primitive equations for the Eulerian-mean flow in spherical 
coordinates: 

w, + � [(�  cos � )~� (�  cos � )�  -f] + wüz - X 

= -(a cos2 � )~� {� '� ' cos2 � )�  - pö\pow'u')z, (3.3.2a) 

vt + � ~�� � �  + wvz + w(/ + üa~l tan � ) + � ~� � �  — �  

= -(a cos � )~�(� '2 cos � )�  - PQX(PQW'V')Z - u'2a~l tan � , (3.3.2b) 

Φζ - H~lReeKZ/H = 0, (3.3.2c) 

(a cos � )~\�  cos � )�  + pö1(PoH))z = 0, (3.3.2d) 

� , + � ~�� � �  + \� � � - Q 

= ~(a cos φ ) " 1 ^ c o s � )�  - � � \� ^� ')� . (3.3.2e) 

(The subscript t denotes a time derivative.) In these equations the terms 
involving mean quadratic functions of disturbance variables have been 
written on the right. Given these "rectified eddy-forcing" terms, together 
with suitable expressions for X, Ϋ, and Q and appropriate boundary and 
initial conditions, Eqs. (3.3.2) comprise a closed set of equations for predict-
ing the time development of the zonal-mean circulation. A similar set of 
primitive equations can be written down for the Eulerian-mean flow on a 
beta-plane, starting from Eq. (3.2.1) and replacing Eq. (3.3.1a) by 

u(y,z,t) = a0 u(x, y, z, t) dx, 
Jo 

where a0 = lira cos � 0 is the length of the latitude circle at �  = � 0. 
In the case of quasi-geostrophic flow on a beta-plane we first note that 

vg= a0 � �  dx = 0, 
Jo 

by periodicity, so the zonal-mean geostrophic wind (Mg,ug,0) is purely 
zonal. Dropping subscripts g on geostrophic quantities, but retaining sub-
scripts a on ageostrophic variables, we then obtain the set 

üt-f0ua-X = -(M)y9 (3.3.3a) 

0t + wa0Oz - Q = - 0 / 0 % , (3.3.3b) 

vay + PÖl(Po HÜZ = 0, (3.3.3c) 

/o Wz + H-lRe-Kz/HÖy = 0, (3.3.3d) 
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from Eqs. (3.2.9a,c,d) and (3.2.6a), after a little manipulation. These again 
form a closed set for the mean-flow variables (w, 0, öa, wa), given the rectified 
eddy-forcing terms on the right, X, Q, and suitable boundary conditions. 
[The zonal mean of the y-momentum equation, Eq. (3.2.9b), then supplies 
wa, if �  and further rectified eddy terms are given.] From Eqs. (3.2.14) and 
(3.2.3) it is easy to obtain the zonal-mean quasi-geostrophic potential 
voracity equation 

q< + Wq% = ~Xy +W(PoO/0 O 2 ) z . (3-3.4) 
The y derivative of this equation can also be obtained by elimination of 
(0„ � � , wa) from Eqs. (3.3.3), using Eqs. (3.2.3) and (3.2.15), provided that 
Eq. (3.5.10) is used to relate the mean northward eddy potential vorticity 
flux v'q' to v'u' and � '� '\ see the end of Section 3.5. One can also eliminate 
w, and 0, from Eqs. (3.3.3) to obtain diagnostic equations for üa and wa 

analogous to the omega equation mentioned above. A similar equation, Eq. 
(3.5.8), will be discussed. 

3.4 Linearized Disturbances to Zonal-Mean Flows 

In the preceding section we briefly discussed the separation of atmo-
spheric flows into Eulerian zonal-mean and "wave" or "eddy" parts, and 
presented sets of equations governing the zonal-mean flow. Similar sets of 
equations also hold for the disturbances to the zonal mean: exact forms of 
such equations are given for example by Holton (1975), Eqs. (2.19)-(2.22). 
In practice, these disturbance equations are most useful in studies of 
small-amplitude departures from the zonal-mean state, when they can be 
linearized in the disturbance amplitude and perhaps solved numerically, or 
even analytically in simple idealized cases. A variety of solutions of this 
type will be described later in this book, and we shall present here the 
appropriate sets of linearized equations, for future reference. 

We first consider a steady, zonally symmetric basic flow, which is purely 
zonal and unforced. Denoting the basic state by an overbar and suffix zero, 
we thus have v0= w0 = 0, and, from Eq. (3.1.3b,c), 

( / + ^ ) ^ + β - % = 0 , (3 Ala) 

Φ0ζ = Η-1Αβ0*~κ ζ /Η , (3Alb) 
in the spherical, primitive equation case.1 [The presence of a basic diabatic 

1 Note that � 0(� 9 � ), � 0(� ,� ), and � 0(� , z) are not in general equal to the reference profiles 
0o(z), T0(z), and � 0(� ) introduced in Section 3.2.2. 
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heating Q0 would be associated with nonzero (� 0, w0) by Eq. (3.1.3e), and 
would introduce extra complications that will not concern us here.] Note 
that elimination of Φ0 from Eqs. (3.4.1a,b) gives the thermal wind equation 
for the basic state [cf. Eq. (3.2.6a)]: 

/ 2öotan0\ düo -Rd60 _KZ/H -RdT0 l /H = e = . (3.4.1c) 
V a ) dz aH 3�  � �  � �  

We now consider small disturbances to this basic state. Thus all primed 
quantities, as defined in Section 3.3, will be taken to be O(a), where a is 
a dimensionless amplitude parameter that is much less than 1. Furthermore, 
ü - M0, Φ - Φ0, �  - 0O, v, w, X, �  and Q must all be 0(a2) or smaller. 
The self-consistency of these conditions on the disturbances and the mean 
flow follows from Eqs. (3.3.2) and (3.4.1); for example, the eddy-forcing 
terms on the right of Eqs. (3.3.2a,b,e) can lead to 0(a2) departures of ü 
from Wo, a n d X = 0(a2) would do likewise. 

Substitution of 

u = M 0 + " ' + 0 (α 2 ) , �  = � '+0(� 2), etc. 
into the primitive equations of Eq. (3.1.3) and use of Eq. (3.4.1) then give 
the following set of linear equations for the disturbances: 

Du' + [(a cos � )~�(�  cos � )�  -f]v' 

+ üzw' + {a cos � )~�� '�  = X\ (3.4.2a) 

Dvf + {f+2üa~x tan </>)u' + � ~� � '�  = Υ', (3.4.2b) 

Φ ; - H-lRefe~Kz/H, (3.4.2c) 

(a cos � � \< + W cos � )� ] + pöl(p0w')z = 0, (3.4.2d) 

� � ' + � ~� � � � ' + � � \� ' = Q'. (3.4.2e) 
Here terms of 0(a2) have been neglected and (consistent with this approxi-
mation) w0 and 0O have been replaced by ü and 0, respectively, to simplify 
the notation. Moreover, 

Ö = - + -^r4 (3·4·3) 
dt a cos �  � �  

is the time derivative following the basic flow. The corresponding beta-plane 
versions can be obtained in a similar manner from Eqs. (3.2.1). 

An analogous linearization procedure can be performed for the full 
quasi-geostrophic set of Eq. (3.2.9). We just note here the equations for a 
steady basic geostrophic zonal flow, which follow from Eqs. (3.2.3)-(3.2.5): 

�  = -� �  = -/ο_ 1Φ„ (3.4.4a) 
0 - 0o(z) = HR-lf0e

KZ/HiPz, (3.4.4b) 



3.5 The Transformed Eulerian-Mean Equations 127 

and the linearized version of the quasi-geostrophic potential vorticity 
equation, Eq. (3.2.14): 

Dq'+O% = -X'y + Y'x+foPÖl(PoQ'/eo,),. (3.4.5) 

Here 

is the time derivative following the basic flow, 

q' s � '� �  + � �  + � 01(� � � � � )�  (3A7) 

is the disturbance potential vorticity, and 

9y = ß-üyy- pö\ Po � � � )�  (3.4.8) 

is the basic northward potential vorticity gradient (sometimes called 
"effective beta"). The subscript g on geostrophic quantities has again been 
omitted here, as has the subscript zero on ü, etc. Note that Eq. (3.4.8) 
follows from the y derivative of the zonal mean of Eq. (3.2.15), together 
with Eq. (3.4.4a). Versions of Eq. (3.4.5) in spherical coordinates can also 
be written down; an example is Eq. (5.3.1). 

The technique of expansion in the small-amplitude parameter a, 
described here, can be carried to higher orders. For example, on using O(a) 
wave solutions of Eq. (3.4.2) to calculate the rectified eddy terms on the 
right of the Eulerian-mean equations, Eqs. (3.3.2) [or, more conveniently, 
of the transformed set of Eqs. (3.5.2)], one can in principle calculate the 
0(a2) back-effect of the waves on the mean flow. Examples of this method 
will be discussed in Sections 6.3.1 and 8.3.2. Of course, such an asymptotic 
expansion in amplitude can only describe weakly nonlinear aspects of the 
interaction of waves and mean flows. Apart from some rather exceptional 
circumstances under which exact analytical solutions for finite-amplitude 
disturbances can be constructed, the behavior of large-amplitude waves 
must be investigated by numerical solution of the full nonlinear equations. 

3.5 The Transformed Eulerian-Mean Equations 

The Eulerian-mean sets of equations presented in Section 3.3 were 
obtained by a straightforward separation of the atmospheric variables into 
mean and disturbance parts, and averaging and manipulation of the basic 
equations. However, it is less easy to anticipate how the zonal-mean flow 
will respond, for example, to a specified "eddy momentum flux'Vw' or 
"eddy heat flux" � '� ' in the quasi-geostrophic set of Eqs. (3.3.3), or in turn 
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to anticipate what physical properties of the waves control these eddy fluxes. 
To investigate questions like these, it is convenient to transform the mean-
flow equations to an alternative form. In the spherical case, the approach 
is first to define a residual mean meridional circulation (0, ü*, w*) by 

i J * - 0 - p ö 1 ( P o ^ / Ö z ) z , (3.5.1a) 

w* ^ w + (a cos <t>y\cos � � � '/� � )� . (3.5.1b) 
(Other definitions of the residual circulation are also possible.) On substitut-
ing for (ϋ, w) in Eqs. (3.3.2), using Eqs. (3.5.1) and rearranging, the following 
transformed Eulerian-mean (TEM) set is obtained: 

üt + ϋ*[(α cos � )~�(�  cos � )�  -f] + w*üz - X 

= (p0a cos � )~��  · F, (3.5.2a) 

ü(f+ üa~x tan � ) + � ~�� �  = G, (3.5.2b) 

Φζ - H-lRÖeKZ/H = 0, (3.5.2c) 

(a cos � )~\� * cos � )�  + pö1(PoH)*)z = 0, (3.5.2d) 

0, + α" 1 «*^ + w*6z -Q = -pZ\p0We' � � /� � �  + VF')]Z. (3.5.2e) 

The vector F = (0, F(</>), F(z)) is known as the Eliassen-Palm flux (EP flux); 
its components are given by 

F w ^ p0a cos � (� � � � '/� �  - tJV), (3.5.3a) 

F( z ) = P o a cos φ { [ / - (a cos � )~\�  cos � )� ]� � /� �  - wV}; (3.5.3b) 
note that 

θ dF( z ) 

V · F s (a cos </>)-1 — (F(</,) cos � ) + 

in spherical, log-pressure coordinates. In Eq. (3.5.2b) G represents all the 
terms that lead to a departure from gradient-wind balance between ü and 
Φ; it can readily be calculated from Eqs. (3.3.2b) and (3.5.1). In most 
meteorological applications G is small and only produces slight deviations 
from gradient wind balance; its dynamical effects are usually only of 
secondary importance. 

At first sight, the transformed set of Eqs. (3.5.2) appears to have no 
particular advantage over the Eulerian-mean equations of Eqs. (3.3.2). 
However, a more detailed investigation, to be described in Section 3.6, 
shows that the rectified eddy-forcing terms on the right of Eqs. (3.5.2a,e) 
depend on certain basic physical properties of the wave or eddy disturbances. 
For example, Eq. (3.6.1) will show that V · F = 0 if the disturbances are 
steady, linear, frictionless, and adiabatic and if the mean flow is conservative 
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to 0{a)\ a similar result holds for the expression on the right of Eq. (3.5.2e). 
By contrast, under the same linear, steady, conservative conditions, the 
forcings on the right of Eqs. (3.3.2a,e) are nonzero in general. Further 
discussion of these results, and some important consequences, will be 
presented in the next section. 

Similar sets of transformed equations can be derived for beta-plane 
geometry. We shall just discuss the quasi-geostrophic case, for which a 
residual circulation can be defined by 

v* = va - � � �(� � � '� '/� � � )� 9 M>* = wa + (� '� '/� � ,)/, (3.5.4) 

from Eqs. (3.3.3) the following quasi-geostrophic TEM set can readily be 
obtained: 

fif-/0ü*-X = pö1V-F, (3.5.5a) 

St + w*eOz-Q = 09 (3.5.5b) 

v* + pö\po**)z = 0, (3.5.5c) 

f0üz + H-xRe-KZ/HÖy = 0. (3.5.5d) 

In this quasi-geostrophic beta-plane case, 

F - (0, - p o ^ V , Po/o W e0x). (3.5.6) 

Note that the only explicit appearance of eddy-forcing terms here is in 
pö*V · F in the transformed mean zonal momentum equation, Eq. (3.5.5a); 
in particular, the eddy forcing of the quasi-geostrophic transformed mean 
thermodynamic equation, Eq. (3.5.5b), is negligible. Thus, as far as their 
effects on the mean tendencies w, and 0, and on the residual circulation 
(ü*, vP*) are concerned, the eddy momentum flux v'u' and eddy heat flux 
� '� ' do not act separately [as might have been expected from the untrans-
formed Eqs. (3.3.3)] but in the combination 

V · F s -(PoM)y + (po/o^V0οζ)ζ · 

This latter point can be emphasized by solving Eqs. (3.5.5) [or Eqs. 
(3.3.3)] to find the mean tendencies and the residual circulation. For 
example, it can be shown that 

� � \^ + — � \� °� � �  \üt = (y-v + PoX)yy-(PofoQ/Ooz)yz (3.5.7) Idy p0dz\ dz/j 

and 

= - [ p o ^ p o ' V · F + X)z]z - (p0foQ/e0z)yz. (3.5.8) 
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(The second of these is related to the omega equation.) Here the rectified 
effects of the eddies are expressed by the terms in V · F on the right, while 
friction and diabatic heating are given by X and Q, respectively. Note that 
these forcing terms generally produce nonlocal responses in üt and � *, since 
the operator in square brackets on the left of Eqs. (3.5.7) and (3.5.8) is 
elliptic. To solve for üu � *9 etc., given the right-hand sides, boundary 
conditions must be imposed. (See Appendix 3B.) 

We conclude this section by mentioning a useful alternative form for 
Po*V · F, valid under quasi-geostrophic scaling. It can be derived by simple 
manipulations using the following identities, which stem from Eqs. (3.2.3), 
(3.2.12), and (3.4.7): 

ti' = - ^ , � ' = � '� 9 � '/� 0�=/0� '� /� \ 
(3.5.9) 

q' = � � �  + � '�  + Po (� � � � '� )� . 

Some integrations by parts, and use of the fact that the x derivatives of 
zonal-mean quantities vanish, then yield 

v'q' = -(v'u')y + pö\pofov'e'/e0z)z, 

= pö 1 V.F. (3.5.10) 

This important quasi-geostrophic relationship between the northward eddy 
flux of potential vorticity and the divergence of the Eliassen-Palm flux can 
be used, together with Eq. (3.4.8), to show that Eq. (3.5.7) is equivalent to 
the y derivative of the quasi-geostrophic potential vorticity equation, Eq. 
(3.3.4): see the end of Section 3.3. 

3.6 The Generalized Eliassen-Palm Theorem and the Charney-Drazin 
Nonacceleration Theorem 

It was mentioned in the previous section that the divergence of the EP 
flux V · F, unlike the convergence of the eddy momentum flux in Eq. (3.3.2a), 
depends on certain basic physical properties of the flow. This was given as 
the main reason for using the TEM set of Eqs. (3.5.2) in preference to the 
Eulerian-mean equations, Eqs. (3.3.2); we now discuss this point in more 
detail. 

The foundations for the theory to be described were laid in a pioneering 
paper by Eliassen and Palm (1961). They considered steady, linear waves 
on a basic zonal flow � (� , z), with no frictional or diabatic effects (X = Y = 
Q = 0). Using a set of linear disturbance equations essentially equivalent 
to Eqs. (3.4.2) (but in pressure, rather than log-pressure, coordinates and 
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beta-plane, rather than spherical, geometry), with d/dt = 0 and X' = Y' = 
Q' = 0, they proved the identity 

V - F = 0. (3.6.1) 

Thus the divergence of the Eliassen-Palm flux (as it has come to be called) 
vanishes for linear, steady, conservative waves on a purely zonal basic flow. 
This result was extended to include nonzero X\ Y\ Q' and to allow for 
spherical geometry by Boyd (1976), and to include time-varying wave 
amplitudes (i.e., "wave transience") as well by Andrews and Mclntyre 
(1976a, 1978a). The latter's generalized Eliassen-Palm theorem takes the 
form 

dA 
— + V - F = D + 0 ( a 3 ) , (3.6.2) 
dt 

where A and D, like F, are mean quadratic functions of disturbance 
quantities; however, unlike F, their explicit primitive-equation forms gen-
erally involve parcel displacements and are quite complicated. [The simpler 
quasi-geostrophic versions are given in Eqs. (3.6.6), (3.6.7), and (3.6.10).] 
The "density" A appearing in Eq. (3.6.2) is called the "wave-activity 
density"; its time derivative represents wave-transience effects, vanishing 
for steady waves. The quantity D contains the frictional and diabatic effects 
X\ Y\ and Q\ and thus vanishes for conservative waves. The 0(a3) term, 
where a is the wave amplitude as before, represents nonlinear wave effects, 
and vanishes for purely linear waves. [Note that Eq. (3.6.2), like the 
linearized Eqs. (3.4.2) from which it is derived, requires that X, Ϋ, and Q 
are no larger than 0(a2), so that the basic flow is essentially zonal.] 

The generalized EP theorem [Eq. (3.6.2)] makes explicit the dependence 
of V · F on the physical properties of wave transience and nonconservative 
wave effects. (Investigation of its detailed dependence on nonlinear wave 
processes generally involves going to higher orders in a.) More funda-
mentally, when the terms on the right of Eq. (3.6.2) are zero, it takes the 
form of a conservation law for wave properties: such laws are of considerable 
interest in many branches of physics. Note that it is simpler in structure 
than the wave-energy equation, which takes the form 

Z ÜPoÖS + V2 + Φ?/Ν2)] + V · (0, pol/� ', � 0^� ') 
dt 

= -� � � ~\� �  + ü tan (f)~\v'u' - p0üz w'u' - � 0� ~�� �  � '� '� /� �  (3.6.3) 

for linear, conservative waves. This equation can be derived by taking 
uf x Eq. (3.4.2a) + v' x Eq. (3.4.2b) + (� '� /� � ) x Eq. (3.4.2e), averaging, set-
ting X' = Y' =>Q' = 0, and using Eqs. (3.4.2c,d) and (3.2.13). The terms on 
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the right of Eq. (3.6.3) are generally nonzero in the presence of a mean 
shear flow and represent an exchange of energy between the mean flow and 
the disturbances: no such exchange terms appear in the generalized EP 
theorem [Eq. (3.6.2)]. (In this respect the latter theorem is similar to the 
law of conservation of wave action: see Section 3.7.1 and Appendix 4A.) 
For these reasons Eq. (3.6.2) has certain advantages as a diagnostic of wave 
propagation in complicated mean flows, and will be used for such a purpose 
later in this book: see, for example, Sections 4.5.5, 5.2.2, 6.2.3, and 6.3.2. 

We can now return to the TEM equations [Eqs. (3.5.2)], and use Eq. 
(3.6.2) to substitute for V · F on the right of Eq. (3.5.2a). By Eq. (3.6.1) that 
term vanishes if the disturbances are steady and linear, and the flow is 
conservative; a similar result can be shown to hold for the expression on 
the right of Eq. (3.5.2e). It then follows that under such hypotheses, and 
with appropriate boundary conditions (Appendix 3B), a possible mean flow 
satisfying Eq. (3.5.2) is given by 

üt = 6t = v* = u>* = 0. 

This is an example of a nonacceleration theorem, of which a first case was 
noted by Charney and Drazin (1961). It shows how the waves induce no 
mean-flow changes under the stated conditions; such a result is not at all 
obvious from the untransformed Eulerian-mean equations, for which the 
eddy-forcing terms on the right of Eqs. (3.3.2a,e) do not generally vanish 
when V · F = 0, but induce a nonzero Eulerian-mean circulation (ϋ, w) that 
precisely cancels their effect. [Note incidentally that zonally symmetric 
oscillations, involving a significant contribution -dv*/dt to G in Eq. 
(3.5.2b), are possible in principle; however, these are not forced by the 
waves.] 

As a result of the theory described above, there has been a recent emphasis 
on the physical processes that violate the nonacceleration theorem. 
Examples of such processes in wave, mean-flow interaction phenomena in 
the middle atmosphere will occur several times in this book. 

We note finally the explicit quasi-geostrophic form of the generalized 
EP theorem. This can be derived most readily from the linearized potential 
vorticity equation, Eq. (3.4.5), which can be written 

Dq' + v'qy = Z'+ 0 ( a 2 ) , (3.6.4) 

where Z' = -X'y + Y'x +/0Po1(PoQ7^oz)z and the 0(a2) term is the error 
incurred by linearization. On multiplying by p0q'/qy, taking p0(qy)~

l 

through the D operator with 0(a3) error [since qt — 0(a2) by Eq. (3.3.4) 
under the present hypotheses that X = Q = 0 ( a 2 ) ] , and averaging, we 
obtain 

- (\poq'2/qy) + V · F = p0Z'q'/qy + 0 ( a 3 ) , (3.6.5) 
ot 
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using Eq. (3.5.10). This is of the form of Eq. (3.6.2) with quasi-geostrophic 
wave-activity density 

A = hoq"/qy, (3.6.6) 

proportional to the "wave potential enstrophy," \q'2, and nonconservative 
term 

D = Porf/qy· (3.6.7) 

Note that A is positive definite if qy > 0 and is then a natural measure of 
wave amplitude. A useful alternative form for A is in terms of the northward 
parcel displacement � \ defined by 

� � ' = � ' + 0(a2). (3.6.8) 

From Eqs. (3.6.4) and (3.6.8) it follows that if Z ' = 0, 

q'=-v'qy + 0(a2), (3.6.9) 

given suitable initial conditions, say � ' = q' = 0 at t = 0. From Eqs. (3.6.6) 
and (3.6.9), 

A = \PoV2qy (3.6.10) 

if Z' = 0. When Z ' τ̂  0 we can retain Eq. (3.6.10) as the wave-activity 
density, but the corresponding nonconservative term D differs from that 
given in Eq. (3.6.7). 

3.7 The Lagrangian Approach 

3.7.1 Finite-Amplitude Theory 

The generalized EP theorem and its corollary, the nonacceleration 
theorem, were derived in the previous section for disturbances of small 
amplitude a. However, many wave-like phenomena in the middle atmo-
sphere are of large amplitude, and it is natural to inquire whether similar 
results apply to such waves. As yet, the only finite-amplitude results using 
the formalism adopted above have been rather restricted in character, 
although a promising approach has been developed by Killworth and 
Mclntyre (1985). 

Further progress along these lines has come from a rather different 
procedure, using a generalized Lagrangian-mean (GLM) theory, rather than 
the Eulerian-mean formalism discussed above. The GLM approach is quite 
technical in nature, and only a brief descriptive outline will be given here. 

As its name implies, the GLM formalism involves taking averages follow-
ing fluid parcels, rather than averaging over a set of coordinates fixed in 



134 3 Basic Dynamics 

(λ, � , ζ, O-space, as with the Eulerian mean [Eq. (3.3.1a)]. The simplest 
Lagrangian mean to visualize is a time average following a single parcel; 
that this can differ significantly from the Eulerian mean is demonstrated by 
the trajectory in Fig. 3.1, which traces the motion of a single parcel in a 
hypothetical oscillatory flow whose Eulerian time mean is zero. By contrast, 
as shown by the mean drift of the parcel towards increasing x and y, the 
time-mean velocity following the parcel is nonzero for this flow. 

For many meteorological purposes, however, a Lagrangian zonal av-
erage is required, and this can be described as follows. Consider an initially 
undisturbed, purely zonal basic flow (on a beta-plane, for simplicity), and 
fix attention on a thin, infinitely long tube of fluid, lying along the x axis 
(Fig. 3.2a). Suppose that some waves are excited: the tube will distort in a 
wavy manner (Fig. 3.2b) and its mean motion in the yz plane can be defined 
as the motion of a line R, which is parallel to the x axis and passes through 
the tube's center of mass as viewed in the yz plane. This construction gives 
the y and z components (üL, wL) of the Lagrangian-mean motion at the 
current position of R. A more general approach, associating each fluid 
parcel (PT, say) in the tube with a suitably defined reference point PR on 
R, allows the definition of a parcel displacement vector �  = PRPT, and also 
enables the Lagrangian means of other variables (wL, �  L, etc.) to be defined. 

A mathematical theory can be constructed using ideas like these; it 
provides in principle an exact finite-amplitude conservation law of the form 

5.0 

y 

2.5 

///////////////////̂ ^^^^^ 

Fig. 3.1. Path of a single fluid parcel in the two-dimensional velocity field u = 
0.011 cos(x - 0 , v = O.Olyt sin(x - r), satisfying the incompressibility condition ux + vy = 0. 
The path [X(t)y Y(t)] was calculated numerically by solving the equations dX/dt = u(X, t), 
dY/dt = v(X, Y, t), starting at the initial position X = 0, Y = 2.5. Part of the path is marked 
at equal time intervals Δί = 0.5. In addition to the clear mean drift to the right, the marks 
show that the parcel spends more time further from the wall as t increases so that its time-mean 
position (averaged over several cycles) also drifts away from the wall. On the other hand, a 
parcel starting on the wall y = 0 must remain on the wall since v = 0 there; the Lagrangian-mean 
motion is therefore divergent, even though (w, v) is nondivergent and the Eulerian-mean motion 
is zero. [After Mclntyre (1980b).] 
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(a) V N \ \ \ \ \ \ \ \ \ \ \ \ \V^^r - �  X 

(b) 

Fig. 3.2. Schematic illustration of the definitions of the Lagrangian-mean velocity uL and 
the parcel displacement � . The material tube is shown hatched. See text for details. 

of Eq. (3.6.2) (but with no error term), which generalizes the wave-action 
law of Bretherton and Garrett (1968). The theory also gives a set of equations 
for the Lagrangian-mean flow, which leads to a finite-amplitude nonacceler-
ation theorem. These equations bear some formal similarity to the TEM set 
of Eqs. (3.5.2); however, it should be emphasized that the residual circulation 
(0, £>*, vP*) is generally not the same as the Lagrangian mean meridional 
circulation (0, üL, wL). These two velocities differ by terms representing 
transience, nonconservative effects, and nonlinearity in the waves. An impor-
tant consequence of this difference is that, while the residual circulation 
has zero mass flux divergence, that is, V · (0, p0^*, PoW*) = 0 [see Eq. 
(3.5.2d)], the Lagrangian-mean flow is generally divergent, owing to the 
dispersion of parcels about their reference positions when waves are 
transient: see Eq. (9.4.16). (The same effect is also evident in the example 
shown in Fig. 3.1.) 

Direct application of finite-amplitude GLM theory to atmospheric data, 
or even to numerical models of the atmosphere, encounters serious practical 
difficulties (see Section 6.3.2), although the theory has an obvious conceptual 
value for discussion of the transport of quasi-conservative tracers (see 
Section 9.4.2). A modified version of the theory, based on the use of the 
quasi-conservative tracers �  and P, may perhaps turn out to be of more 
practical meteorological benefit. 
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3.7.2 Small-Amplitude Theory 

In the case of small-amplitude disturbances to a basic zonal flow 
[ü(y9 z), 0,0], explicit but approximate calculations can be made of the 
Lagrangian quantities mentioned above, and these can provide helpful 
insights into atmospheric behavior. We shall illustrate this approach, using 
beta-plane geometry for simplicity. 

First, the Cartesian components (� ', � ', � ') of the parcel displacement 
vector �  are defined by 

� � ' =ul = u'+ v'üy + � '� � 9 (3.7.1a) 

� � ' = � ', (3.7.1b) 

DC = w\ (3.7.1c) 

with 0(a2) error [note that Eq. (3.7.1b) is the same as Eq. (3.6.8)]; fur-
thermore, _ _ 

� >=� ' = � > = 0. (3.7.2) 

Using the linearized continuity equation 

w; + ü; + pi1(pow')z = 0 (3.7.3) 

[cf. Eqs. (3.2.Id) and (3.4.2d)] together with Eqs. (3.7.1), it can be shown 
that 0[� '�  + r)'y + P Ö H P O D Z ] = 0, and thus 

& + i?; + Pi W ) z = 0, (3.7.4) 

given suitable initial conditions. 
An example of the calculation of � ' and thus the approximate orbits of 

fluid particles, given the disturbance velocity («', v\ w'), will be presented 
in Section 4.5.3 for the case of planetary waves. A knowledge of particle 
orbits for small-amplitude wave disturbances is useful, for example, in the 
interpretation of tracer transport in the presence of such waves: see 
Chapter 9. 

The theory given here provides a useful physical interpretation of the 
Eliassen-Palm flux (Section 3.5) for waves of small amplitude a. Consider 
a material surface, initially at pressure � �  and zx = —H\n(p1/ps), that is 
distorted by the waves. The zonal pressure force exerted by the fluid above 
the surface on that below is 

dX 
per unit horizontal area, 

surface 

since z* = g ��  is the geometric altitude of the surface. Linearizing about 
zl we have 

Fx = g"1 / /Φ ; |Ζ ι + 0(a3), because Φχ = 0. 
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Further, since zx + � ' = -H \n[(pl + p')/ps] from Eq. (3.1.1), we have p' = 
-� �� '/� +0(� 2). Then F1 = -ρ 0 (* ι )ΓΦί , since p0{zx) = pj RTs = 
pJgH: see Section 3.1.1. For quasi-geostrophic flow, Φ* = f0v\ from the 
linearized versions of Eqs. (3.2.3) and (3.2.4), and � ' = -� '/� 0�  from Eq. 
(3.7.1c) and the linearized form of Eq. (3.2.9d) if the flow is adiabatic 
(ζ)' = 0). Hence, F\ = po/oi /0 ' /0O z: this equals the quasi-geostrophic 
expression for F( z ) , by Eq. (3.5.6). 

This result, that F ( z ) equals the "form drag" per unit horizontal area 
across an initially isobaric material surface disturbed by small-amplitude 
adiabatic waves, also holds for flow described by the primitive equations 
if the waves are steady and frictionless as well. A similar interpretation 
holds for F(y) in terms of the force across a distorted material surface 
initially given by y = constant. It follows that V · F equals the net zonal 
pressure force, per unit volume in xyz space, on a small, initially zonal 
material tube of fluid that is distorted by the waves; pö*V · F is the corre-
sponding force per unit mass. A finite-amplitude analog of the result for 
F ( z ) holds in isentropic coordinates: see Section 3.9. 

Small-amplitude theory can also be used to derive an approximation to 
the Lagrangian mean of any quantity � . The general definition of the 
Lagrangian mean of �  is 

* L ( x , 0 = * [ x + £ ' ( * , ' ) , ' ] , (3.7.5) 

where x + � '(χ, t) is the current position of the particle whose mean position 
is x. Application of the identity �  = �  + � ' together with a Taylor expansion 
of Eq. (3.7.5) gives 

* L ( x , 0 = * ( x , 0 + * S ( x , 0 (3.7.6) 

where the Stokes correction \ s is defined by 

*S = I7^' + ��  rf*- + 0(a\ (3.7.7) 
aXj oXfc 

and summation over all values of the indices j , k is implied. If �  is a velocity 
component, say w, MS is known as the Stokes drift, and represents the 
difference between the Lagrangian-mean velocity wL and the Eulerian-mean 
velocity w. The fact that this quantity can be nonzero was pointed out in 
1847 by Stokes, who applied a time average to water waves (see also Fig. 
3.1). A calculation of the Stokes drift and Lagrangian-mean flow for 
planetary waves will be given in Section 4.5.3. 



138 3 Basic Dynamics 

3.8 Isentropic Coordinates 

3.8.1 The Primitive Equations in Isentropic Coordinates 

In this chapter we have up to now been using the log-pressure variable 
z as a vertical coordinate in the equations of motion. We conclude, however, 
with a brief discussion of the primitive equations in isentropic coordinates 
(also called �  coordinates), where the potential temperature (a function of 
the entropy per unit mass) is used as the vertical coordinate. 

The first, and most obvious, reason for the use of isentropic coordinates 
is that the isentropic "vertical velocity," D6/ Dt, equals the diabatic heating 
term Q[seeEq. (3.1.3e)]. Thus in adiabatic flow, when Q = 0, this "velocity" 
vanishes, and there is no motion across the isentropic surfaces �  = 
constant; isentropic coordinates are therefore partly Lagrangian in 
character. 

In spherical geometry, the primitive equations in �  coordinates are 

Du - ( / + U t a n � ) v + (a cos � )'�� �  = X - Que, (3.8.1a) 

/ utan � \ 
Dv + ( / + — - ^ ) u + � ~�� �  =� - Qve, (3.8.1b) 

at + (a cos φ)"1{(σ-Μ)λ + (� �  cos � )� ] = -(<rQ)e (3.8.1c) 
� �  = U(p) - cp(p/ps)

K = cpe~KZ/H (3.8.1d) 
� ^-g~� p� . (3.8.1e) 

Here 
~ d u B �  d , 

D s - + — + - — (3.8.2) 
dt a cos �  � �  a 3�  

is the time derivative following the components of the flow on an isentrope, 
and has been used in preference to D/ Dt = D + Q � /� � , so that the noncon-
servative cross-isentropic advection terms involving Qd/� �  can be written 
with the other nonconservative terms on the right of Eqs. (3.8.1a,b). The 
quantity �  is the "density" in (λ, � , � ) space, as can be shown by considering 
the mass contained within a volume element lying between isentropes at 
potential temperatures �  and �  + � � : see Fig. 3.3. The quantity M is called 
the Montgomery stream function, and is defined by 

M ^ CpT + Φ ^ (9Π(/?) + Φ (3.8.3a,b) 
where Eq. (3.8.3b) uses Eqs. (1.1.9a) and (3.8.Id); U(p) is known as the 
Exner function. Subscripts �  denote partial derivatives, and other derivatives 
here are of course taken at constant 0, not at constant z. The remaining 
variables are as defined in Section 3.1.1; a brief discussion of the derivation 
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of Eqs. (3.8.1) is given in Appendix 3A. Note incidentally that difficulties 
arise in regions where � � /dz* is zero or negative corresponding to neutral 
or unstable stratification: in such regions �  does not increase monotonically 
with the geometric height z*, and �  becomes infinite or negative. 

3.8.2 ErteVs Potential Vorticity in Isentropic Coordinates 

As mentioned at the end of Section 3.7.1, and elsewhere in this book 
(e.g., Sections 5.2.3, 6.2.4, and 9.1), there are advantages in using �  and 
Ertel's potential vorticity P as tracers of atmospheric motion. The most 
convenient way of doing this is by plotting contours of P on isentropic 
surfaces. In �  coordinates, Ertel's potential vorticity is given by 

�  = � /�  (3.8.4a) 

where 

- = / _ («cos^ + ^ 
a cos �  a cos �  

is the vertical component of absolute isentropic vorticity. Using Eqs. (3.8.1) 
it can be shown that P satisfies 

DP = (� �  cos � � \-(�  cos � )�  + � �  - Qx � �  

+ 0� � �  cos � ] + PQe - QPe. (3.8.5) 

Details of the derivation of this equation are given in Appendix 3 A, together 
with a method of verifying that Eq. (3.8.5) reduces to Eq. (3.1.5) on 
transformation to z coordinates. 

Isentropic coordinates provide an enlightening physical explanation of 
potential vorticity conservation. Consider for simplicity a frictionless (X = 
Y = 0), adiabatic (Q = 0) flow, and focus attention on a small material 
circuit C lying initially on an isentrope (Fig. 3.3). This circuit moves with 
the fluid but always remains on the same isentrope, since the flow is adiabatic. 
Its horizontally projected area 8A changes according to 

- ^ S A = (SA)A, (3.8.6a) 

where Δ = (a cos </>)_1[wA + (v cos � )� ] is the isentropic divergence [equal 
to ux + vy in (x9y, � ) coordinates]. Equation (3.8.6a) can be proved most 
easily for a rectangular circuit 8A = 8x 8y, using D 8x/ Dt = 8u ~ ux 8x, etc. 
From Eq. (3.8.1c) with Q = 0 (so that D = D/Dt) we also have 

Da 
= -σ-Δ, (3.8.6b) 

Dt 
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6z*=-6p/g = a60 

Fig. 3.3. An elementary volume in (x, y, � ) space or (λ, � , � ) space. This has horizontally 
projected cross-sectional area � �  and geometric height � � *\ its mass is therefore � � �  = � � �  δζ*, 
where p is the physical density. By the hydrostatic relation of Eq. (1.1.2), � � * = -g~l � � , 
where � �  is the pressure difference between the top and bottom of the element. But 

-g - 1 � �  ~g � '(2) � �  = � � �  by Eq. (3.8.1e) 

and so � � �  = � � �  � � . The quantity �  is therefore the "density" in (λ, � , � ) space. The circuit 
C is discussed in Section 3.8.2. 

while the vorticity equation, obtained by taking the horizontal curl of Eqs. 
(3.8.1a,b), is 

Dt 
= -� �  (3.8.6c) 

[see Eq. (3A.5)]. On eliminating Δ between Eqs. (3.8.6a,b) we obtain 
D 

Dt 
(� � � ) = 0, (3.8.7a) 

which expresses conservation of mass per unit �  for the volume depicted 
in Fig. 3.3. Likewise, Eqs. (3.8.6a,c) give 

§t(£8A) = 0: (3.8.7b) 

this is the Kelvin-Bjerknes circulation theorem for the circuit C and can 
be thought of as a fluid-dynamical generalization of angular momentum 
conservation for a rigid body. Since � � �  and � � �  are both conserved 
following the motion when X = Y = Q = 0, their ratio P = � /�  is similarly 
conserved [this also follows from Eqs. (3.8.6b,c)]. Thus conservation of 
Ertel's potential vorticity is a consequence of the circulation theorem and 
mass conservation. 

A useful alternative version of Eq. (3.8.5) is 
{� � \ + {a cos � )~�(� � �� -Y+ Qve)x 

+ (a cos � � \(� � �  + X - Que) cos � ]�  = 0, (3.8.8) 
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which follows from Eqs. (3A.5) and (3.8.2). This can be regarded either 
as a vorticity equation [in view of Eq. (3.8.4a)] or as an equation for the 
mass-weighted potential vorticity � � . The second and third terms in Eq. 
(3.8.8) form the divergence of a vector flux L, which has components 

L = (aPu -Y+ Qve, � � �  + X - Que, 0) (3.8.9) 

in (λ, � , � ) space. Integration of Eq. (3.8.8) over the whole atmosphere and 
use of the divergence theorem then shows that sources and sinks for the 
mass integrated potential vorticity \\\ � � � 2 cos �  � �  � �  � �  can only occur 
at the ground, and not within the atmosphere itself; frictional and diabatic 
terms can only help redistribute potential vorticity. [This result can also be 
demonstrated using the z-coordinate equation, Eq. (3.1.5).] Even more 
remarkably, the fact that L has an identically zero �  component implies 
that there can be no net transport of potential vorticity across any isentrope, 
even in the presence of friction and diabatic heating. 

3.8.3 Relationships between �  Coordinates and z Coordinates 

The primitive equations in �  coordinates bear some formal resemblances 
to the quasi-geostrophic equations in z coordinates: note for instance the 
partial analogy between the quasi-geostrophic potential vorticity equation, 
Eq. (3.2.14), and the Eitel potential vorticity equation, Eq. (3.8.5). However, 
in several respects the analogy is not complete; for example, Dg involves 
advection by the geostrophic wind, while D involves advection by the 
divergent flow (u, v). Another important difference is that the 0-coordinate 
primitive equations do not require that the potential temperature be always 
close to the reference profile � 0(� ) (cf. Section 3.2.3). 

A more precise relationship, involving derivatives of qg and P, was derived 
by Charney and Stern (1962), who showed that when quasi-geostrophic 
scaling holds, 

(*J) . « * ( * & ) (3.8.10) 
\dS / e = const. Ρθ \ ÖS / z = const. 

where s = t, λ, or �  (or x or y on a beta-plane); a proof is given in Appendix 
3A. In studies of planetary waves (Sections 4.5 and 5.3) and barotropic or 
baroclinic instability (Section 5.5), the isobaric gradient of qg plays a central 
role, and one important use of Eq. (3.8.10) is to suggest interpretations of 
these phenomena in terms of the distribution of Ertel's potential vorticity 
on isentropic surfaces. 

A major drawback to the use of �  coordinates for prognostic purposes 
in the troposphere is that the lower boundary condition is generally compli-
cated: the "ground" is not usually an isentrope, and its position in (λ, � , � ) 
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space is one of the unknowns. (The same difficulty arises in p or z coordi-
nates, but is somewhat less acute unless large-amplitude topography is 
present.) For modeling the middle atmosphere it may often be sufficient to 
choose as a lower boundary an isentrope that never intersects the ground 
(say, the 0 = 350 K surface, near the tropopause) and specify suitable 
conditions there from observations or in idealized form. This parallels the 
use of a constant-pressure surface as a lower boundary in z coordinates, 
as mentioned in Section 3.1.2. 

3.9 The Zonal-Mean Equations in Isentropic Coordinates 

The Eulerian zonal-mean equations in isentropic coordinates have a 
number of useful features: among other things they bear a close formal 
resemblance to the transformed Eulerian-mean equations in log-pressure 
coordinates and share the advantages ofthat set (see Sections 3.5 and 3.6). 
Moreover, some of the similarities between the primitive equations in 0 
coordinates and the quasi-geostrophic equations in z coordinates, men-
tioned in the previous section, carry over to the zonal-mean case, and these 
can be useful for extending certain quasi-geostrophic results to the primitive 
equations: an example is given in Section 7.5. 

We consider first the zonal momentum equation. This can be derived in 
"flux form" from Eqs. (3.8.1a,c): 

(au)t + (a cos φ)_1[(σι/2)λ + (auv cos � )� ] - σ ( / + ua~l tan � )�  

+ (a cos � )~� � � �  = � �  - (aQu)e. (3.9.1) 

Using Eqs. (3.8.le) and (3.8.Id), the term � � �  can be rewritten as follows: 

� � �  = -g~xpeMK = -g~\pMk)e + %~� � � � �  

= ~g {pMk)e + g PP*Y~ 

= -g-\pMx)e + [g-1 JP
 Pl ̂ ^ 4>� ] � · (3.9.2) 

We define an average around a latitude circle on an isentropic surface: 
� 2� �  

� (� , 0, r) = (2ΤΓ)_1 Λ(λ, � , 0, t) dk 
Jo 

for any field A [contrast the z-coordinate version of Eq. (3.3.1a)] and a 
deviation A = A - Ä. Substituting from Eq. (3.9.2) into Eq. (3.9.1) and 
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averaging, we obtain 

(au)t + (a cos2 � )~\� � �  cos2 � )�  - fav 

-(ga cos � )-\� '� '� )�  =^� - (^QU)e, (3.9.3) 

where the two terms in Eq. (3.9.1) involving auv have been combined and 
the result pMK = � � '�  = p'M'K has been used. Likewise, the zonal average 
of Eq. (3.8.1c) is 

(jt + {a cos � )~1(� �  cos � )�  = -(crQ)0. (3.9.4) 

We now introduce a mass-weighted zonal mean for any field A, 

Λ*ΞΕ ( ^Λ ) / < 7 , (3.9.5) 
and put 

� �  = � �  + (� � )' = � � * + (στ)', 

� (? = ^ + ( � ( ? ) ' = � � � ( � � ) ' , 
so that 

avu = � � *�  + (� � )'��\ (3.9.6a) 

~^QU = äQ* ü + (aQ)'u'. (3.9.6b) 

On substituting σΰ = äü + a'u' in Eq. (3.9.3), subtracting ü x Eq. (3.9.4), 
using Eqs. (3.9.5) and (3.9.6), and dividing by σ, we obtain 

wt + ϋ*[(α cos � )~\�  cos φ ) φ - / ] + Q* "β - * * 

= - σ _ 1 ( σ νΧ + (<™ cos � )~� V · F (3.9.7a) 

where F = (0, F(4>\ F(0)) is the Eliassen-Palm flux in isentropic coordinates; 
its components are 

p^ = -a cos � (� � )'��\ (3.9.8a) 

� (� ) = g~lp'M'x - a cos ψ(σ(?)'Μ', (3.9.8b) 

and its isentropic divergence is 

V . F = (a cos ψΓ> £-(#<*> cos * ) + ^ · 
dip d(7 

The analogy with the z-coordinate TEM equation [Eq. (3.5.2a)] and the 
definitions in Eq. (3.5.3) should be noted. For small-amplitude disturbances 
a generalized Eliassen-Palm theorem can be derived, relating V · F to wave 
transience, nonconservative effects, and nonlinearity^(cf. Section 3.6). Under 
nonacceleration conditions it can be shown that V · F = 0 at finite amplitude 
as well. Incidentally, the contribution g~'p'M!

k to F ( 0 ) equals the zonal 
component of the "pressure torque" (or a cos �  times the "form drag" 


