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The equations for three-dimensional, hydrostatic, Boussinesq dynamics are equivalent to
a variational principle that is closely analogous to the variational principle for classi-
cal electrodynamics. Inertia-gravity waves are analogous to electromagnetic waves, and
available potential vorticity (i.e. the amount by which the potential vorticity exceeds the
potential vorticity of the rest state) is analogous to electric charge. The Lagrangian can
be expressed as the sum of three parts. The first part corresponds to quasigeostrophic
dynamics in the absence of inertia-gravity waves. The second part corresponds to inertia-
gravity waves in the absence of quasigeostrophic flow. The third part represents a cou-
pling between the inertial-gravity waves and quasigeostrophic motion. This formulation
provides the basis for a general theory of inertia-gravity waves interacting with a quasi-
geostrophic mean flow.

1. Introduction

This paper offers a new variational principle that seems especially useful for study-
ing the interactions between inertia-gravity waves and quasigeostrophic flow. The varia-
tional principle is developed for shallow water dynamics in Section 2 and for hydrostatic
Boussinesq dynamics in Section 3. The latter is of primary interest. The Lagrangian for
Boussinesq dynamics,

L = L1[ψ, γ] + L2[ψ, γ, α, β], (1.1)

depends on the four fields ψ, γ, α, and β. These have the following physical interpre-
tations: ψ is the streamfunction and γt is the velocity potential corresponding to the
‘thickness weighted’ velocity, i.e. the velocity times the local isopycnal separation. α and
β are particle labels that track and measure the available potential vorticity (APV),
defined as the difference between the potential vorticity and its value in the rest state.
Variations of ψ yield the equation that relates the velocity to the APV. Variations of γ
yield the divergence equation. Variations of α and β yield the equation for the advection
of APV. The importance of APV to wave-mean theory is strongly emphasized by Wagner
& Young (2015).

If the flow is initially at rest then the APV vanishes and L2 ≡ 0 does not contribute.
In Section 4 we use δL1 = 0 to calculate the O(a2) mean flow that arises when inertia-
gravity waves of amplitude a propagate into a region that is initially at rest. This is the
classic problem treated by Bretherton (1969). If the phase-averaged wave amplitude varies
slowly enough, we obtain (4.31), in which the curl of the pseudomomentum represents a
source of quasigeostrophic potential vorticity.
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Section 5 considers the case of nonvanishing APV. In this case L2 does not vanish, and
in Section 5 we develop approximations to L2 that are analogous to those developed for L1

in Section 4. Section 6 combines the results of Sections 4 and 5 to obtain a Lagrangian
(6.12) that depends on the streamfunction ψ̄ for the Lagrangian mean velocity, two
variables α̃ and β̃ that track and label the available potential vorticity Q̃ that would occur
if the APV were advected by the mean flow alone, and the fluid particle displacements
(ξ, η) caused by the waves. The Lagrangian (6.12) is our primary result. It consists of
three parts. The first part, (6.13), corresponds to quasigeostrophic motion in the absence
of inertia-gravity waves. The second part, (6.14), corresponds to inertia-gravity waves in
the absence of a mean flow. The third part, (6.15), represents a coupling between the
inertia-gravity waves and the quasigeostrophic mean flow.

The resulting dynamics always includes the equation (7.3) governing the advection
of Q̃ by the Lagrangian mean streamfunction ψ̄, but the equation (7.31) relating Q̃ to
ψ̄ contains a wave contribution qw whose precise form depends on the strength of our
assumptions about the wave field. The weakest such assumption is that the waves and
the mean flow are separated only by their timescales. This was the assumption made
by Wagner & Young (2015), and in Section 7 and Appendix B we show that our qw is
equivalent to theirs.

A somewhat stronger assumption is that the waves and the mean flow are separated
both in timescale and in vertical lengthscale. This is the case for near-inertial waves,
which oscillate rapidly in t and in z, but may have horizontal lengthscales comparable
to those of the quasigeostrophic mean flow. Near-inertial motion was analyzed by Young
& Ben Jelloul (1997) and Xie & Vanneste (2015), and in Section 7 we obtain wave-mean
equations closely related to theirs.

The strongest assumption is the ‘WKB’ assumption that the waves and the mean flow
have a scale separation with respect to all four of the independent variables x, y, z, t. In
this case we recover results similar to those of Bühler & McIntyre (1998).

Our ability to recover results such as these, which were obtained by powerful methods
that seem to have little in common, hints at the synthetic potential of our method.

Throughout the present paper we refer to an analogy between our formulation and
the standard Lagrangian formulation of classical electrodynamics. This analogy, noted
by Salmon (2014, hereafter S14), largely inspired the present work. S14 treated a sim-
plified shallow water dynamics (for which the analogy is stronger) and did not consider
coordinate-system rotation. In S14, the potential vorticity was assumed to be concen-
trated in point vortices, which are analogous to electrons. In the present paper we relax
all the unrealistic assumptions of S14. (However, we continue to assume that the Coriolis
parameter is a constant.) The electrodynamic analogy still seems quite useful, and it is
explained more fully in Appendix A. However, readers who find it unhelpful, or even an-
noying, are invited to ignore it completely. The present paper is entirely understandable
in its own terms.

2. Shallow water dynamics

The shallow water equations are

ut +∇(c2ĥ+
1

2
u · u) = (ζ + f0)(v,−u), (2.1)

ĥt +∇ · (ĥu) = 0, (2.2)

where u(x, t) = (u, v) is the fluid velocity at location x = (x, y) and time t, ĥ = h/h0
is the depth divided by its constant mean value h0, c2 = gh0 with gravity constant g,
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ζ = ∇×u ≡ vx−uy is the vertical component of vorticity, and f0 is the constant Coriolis
parameter. Subscripts denote partial derivatives and ∇ = (∂x, ∂y). For definiteness, we
suppose that the fluid is horizontally unbounded and quiescent at infinity. The vorticity
and divergence equations corresponding to (2.1)-(2.2) are

ζt = −∇ · ((ζ + f0)u) (2.3)

and
∂

∂t
∇ · u +∇2(c2ĥ+

1

2
u · u) = ∇× ((ζ + f0)u). (2.4)

The shallow water equations conserve energy in the form,

H =

∫∫
dx

1

2
(hu · u + gh2) = h0

∫∫
dx

1

2
(ĥu · u + c2ĥ2), (2.5)

and the potential vorticity,

q ≡ (ζ + f0)/ĥ, (2.6)

on fluid particles,

qt + u · ∇q = 0. (2.7)

In this section, we generalize the variational principle of S14 to full shallow water
dynamics (2.1)-(2.2) with continuously distributed vorticity and constant Coriolis pa-
rameter f0. We start by representing the physical variables

ĥ = 1−∇2γ, (2.8)

ĥu = −ψy + γxt, (2.9)

ĥv = ψx + γyt, (2.10)

in terms of the potentials ψ(x, t) and γ(x, t). Compared to the method followed in S14,
the representation (2.8)-(2.10) corresponds to the immediate adoption of the Coulomb
gauge, as explained in Appendix A. For present purposes, it is sufficient to note that (2.8)-
(2.10) is a general representation that automatically satisfies the shallow-water continuity
equation (2.2).

We motivate the derivation of the variational principle by first imposing—and then
gradually lifting—a strong constraint: We assume that the potential vorticity (2.6) is
uniform. If the potential vorticity is uniform, then

ζ + f0 = f0ĥ. (2.11)

By (2.8)-(2.10), (2.11) is equivalent to

∂

∂x

(
ψx + γyt
1−∇2γ

)
+

∂

∂y

(
ψy − γxt
1−∇2γ

)
= −f0∇2γ. (2.12)

Both (2.12) and the corresponding form of (2.4), namely,(
−ψy + γxt
1−∇2γ

)
xt

+

(
ψx + γyt
1−∇2γ

)
yt

+∇2
(
c2ĥ+

1

2
u · u

)
= f0∇2ψ, (2.13)

result from the variational principle δL1[ψ, γ] = 0 where

L1 =

∫∫∫
dxdt

(
1

2

(−ψy + γxt)
2

(1−∇2γ)
+

1

2

(ψx + γyt)
2

(1−∇2γ)
+ f0∇ψ · ∇γ − 1

2
c2(∇2γ)2

)
. (2.14)

Now we partly relax the constraint: We allow the potential vorticity to be non-uniform,
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but we assume that the departures from (2.11) are concentrated in delta functions. That
is, we assume that

ζ + f0 = f0ĥ+
∑
i

Γiδ(x− xi(t)). (2.15)

This is a consistent restriction on shallow water dynamics in the sense that (2.15) is
compatible with the conservation of total vorticity,

∫∫
dx hq. The sum in (2.15) is the

product of the fluid depth ĥ and what Wagner & Young (2015) call the ‘available potential
vorticity’—the difference between the potential vorticity defined by (2.6) and its uniform
value in the state of rest. This difference is, like the potential vorticity itself, conserved
on fluid particles. In a slight departure the terminology of Wagner & Young (2015), we
shall refer to the sum itself as the available potential vorticity (APV). This sum obeys
the flux-form conservation law (2.40).

Since the delta functions in (2.15) represent singularities in potential vorticity, they
must, according to (2.7), move at the fluid velocity u. That is, the velocities of the point
vortices must be given by ẋi(t) = u(xi(t), t), or, using (2.8)-(2.10),

(1−∇2γ)ẋi(t) = (−ψy + γtx, ψx + γty), (2.16)

where the overdot denotes time differentiation. The Lagrangian corresponding to (2.16)
is

L2[xi(t)] =

∫
dt
∑
i

Γi (−xiẏi + ψ(xi, t)− γy(xi, t)ẋi + γx(xi, t)ẏi) (2.17)

That is, δL2/δxi = 0 implies (2.16).
We obtain the Lagrangian for shallow water dynamics by combining (2.14) and (2.17)

in the form

L[ψ(x, t), γ(x, t),xi(t)]

= L1[ψ(x, t), γ(x, t)] + L2[ψ(x, t), γ(x, t),xi(t)]

= L1[ψ(x, t), γ(x, t)]+∫∫∫
dtdx

∑
i

Γiδ(x− xi(t)) (−xẏi + ψ(x, t)− γy(x, t)ẋi + γx(x, t)ẏi) . (2.18)

As we shall show, shallow water dynamics with point vortices of APV is equivalent to the
requirement that (2.18) be stationary with respect to arbitrary independent variations
of the fields ψ(x, t) and γ(x, t) and the vortex locations xi(t). The last line of (2.18) is
an alternative way of writing (2.17) that is useful for performing the field variations. The
form (2.17) is preferable for performing the vortex-location variations. Before demon-
strating the equivalence between (2.18) and shallow water dynamics, we fully relax the
constraint on potential vorticity.

Suppose that the APV is not confined to delta functions but varies continuously in
space. It must still be advected at the fluid velocity u. We replace the ansatz (2.15) by

ζ + f0 = f0ĥ+
∂(α, β)

∂(x, y)
, (2.19)

where α(x, t) and β(x, t) are a set of fluid particle labels that measure APV and move
with the fluid. Thus,

(1−∇2γ)αt + (−ψy + γtx)αx + (ψx + γty)αy = 0, (2.20)

where α = (α, β). Compare (2.20) to (2.16). The labels α and β replace the subscript i
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on Γi in (2.15). Just as the last term in (2.15) integrates to
∑
i Γi, the last term in (2.19)

integrates to
∫∫

dαdβ; the total APV is a constant.
We obtain the general variational principle for shallow water dynamics by replacing∑

i

Γiδ(x− xi(t))→
∂(α, β)

∂(x, y)
(2.21)

and ẋi → ∂x/∂τ in (2.18), where x(α, β, τ) is the location at time τ of the fluid particle
labeled (α, β). Then

L2 =

∫∫∫
dtdx

∂(α, β)

∂(x, y)

(
−x∂y

∂τ
+ ψ(x, t)− γy(x, t)

∂x

∂τ
+ γx(x, t)

∂y

∂τ

)
. (2.22)

By the chain rule,

∂

∂τ
α(x, t) =

∂α

∂t
+

(
∂x

∂τ
· ∇
)
α = 0. (2.23)

Solving (2.23) for ∂x/∂τ we obtain

∂(α, β)

∂(x, y)

∂x

∂τ
=
∂(α, β)

∂(y, t)
, (2.24)

∂(α, β)

∂(x, y)

∂y

∂τ
=
∂(α, β)

∂(t, x)
. (2.25)

Then using (2.24)-(2.25) to eliminate ∂x/∂τ and ∂y/∂τ from (2.22), and noting that the
first term in (2.22) simplifies as∫∫∫

dtdx
∂(α, β)

∂(x, y)

(
−x∂y

∂τ

)
=

∫∫∫
dtdx

(
−x∂(α, β)

∂(t, x)

)
=

∫∫∫
dtdx

(
α
∂(x, β)

∂(t, x)

)
=

∫∫∫
dtdx (−αβt), (2.26)

we obtain the generalization of (2.18) to the case of continuously varying vorticity, namely

L[ψ(x, t), γ(x, t),α(x, t)] = L1[ψ(x, t), γ(x, t)] + L2[ψ(x, t), γ(x, t), α(x, t), β(x, t)]

=

∫∫∫
dxdt

(
1

2

(−ψy + γxt)
2

(1−∇2γ)
+

1

2

(ψx + γyt)
2

(1−∇2γ)
+ f0∇ψ · ∇γ − 1

2
c2(∇2γ)2

)
+

∫∫∫
dtdx

(
−αβt + ψ

∂(α, β)

∂(x, y)
− γy

∂(α, β)

∂(y, t)
+ γx

∂(α, β)

∂(t, x)

)
. (2.27)

We shall demonstrate that the requirement that (2.27) be stationary with respect to
arbitrary variations in its four fields is equivalent to shallow water dynamics.

The equations resulting from the requirement that (2.27) be stationary are:

δψ :
∂

∂x

(
ψx + γyt
1−∇2γ

)
+

∂

∂y

(
ψy − γxt
1−∇2γ

)
+ f0∇2γ = Q, (2.28)

δγ :

(
−ψy + γxt
1−∇2γ

)
xt

+

(
ψx + γyt
1−∇2γ

)
yt

+∇2
(
c2ĥ+

1

2
u · u

)
− f0∇2ψ = ∇× J,

(2.29)

δα : (1−∇2γ)αt + (−ψy + γtx)αx + (ψx + γty)αy = 0, (2.30)

where ĥ and u are given by (2.8)-(2.10),

Q ≡ ∂(α, β)

∂(x, y)
(2.31)
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is the APV, and

J ≡ (Jx, Jy) ≡
(
∂(α, β)

∂(y, t)
,
∂(α, β)

∂(t, x)

)
. (2.32)

From (2.24)-(2.25) and (2.31) it follows that

J =
∂x

∂τ
Q = uQ. (2.33)

Thus J is the flux of APV. In terms of the physical variables defined by (2.8)-(2.10),
(2.28) and (2.29) take the forms

ζ + f0 − f0ĥ = Q (2.34)

and

∇ · ut +∇2
(
c2ĥ+

1

2
u · u

)
− f0(ĥv)x + f0(ĥu)y = (vQ)x − (uQ)y. (2.35)

EliminatingQ between (2.34) and (2.35), we obtain the shallow water divergence equation
(2.4). To see that (2.28)-(2.30) imply the shallow water vorticity equation (2.3), we make
use of the identity

∂

∂t

∂(α, β)

∂(x, y)
+

∂

∂x

∂(α, β)

∂(y, t)
+

∂

∂y

∂(α, β)

∂(t, x)
= 0, (2.36)

which holds for any two functions α(x, y, t) and β(x, y, t). By (2.31)-(2.33), (2.36) is
equivalent to

Qt +∇ · (Qu) = 0. (2.37)

Substituting (2.34) into (2.37) and using (2.2), we obtain (2.3). This concludes the proof
that stationarity of (2.27) is equivalent to shallow water dynamics.

Before proceeding, we briefly return to the Lagrangian (2.18) for point vortices of APV.
The equations resulting from the requirement that (2.18) be stationary with respect to
variations of ψ(x, t), γ(x, t) and xi(t) are (2.28) with

Q =
∑
i

Γiδ(x− xi(t)), (2.38)

(2.29) with

J =
∑
i

Γiδ(x− xi(t))ẋi, (2.39)

and (2.16). The definitions (2.38) and (2.39) imply

Qt +∇ · J = 0. (2.40)

If the fluid depth is nearly constant, then we may replace the denominators 1−∇2γ in
(2.14) by unity, obtaining the quadratic approximation,

L0
1 =

∫∫∫
dxdt

(
1

2
∇ψ · ∇ψ +

1

2
∇γt · ∇γt + f0∇ψ · ∇γ − 1

2
c2(∇2γ)2

)
, (2.41)

to L1. If f0 = 0 then the Lagrangian L0
1+L2, where L2 is given by (2.17), is equivalent to

the Lagrangian given in S14, which was shown in that paper to be closely analogous to
the Lagrangian for classical electrodynamics. In this approximation the waves are linear
non-dispersive waves that interact with the point vortices but not with each other. The
point vortices are analogous to electrons. Q is analogous to electric charge density and J
is analogous to electric current density. Equation (2.16) is analogous to the Lorentz force
law. Further details of the electrodynamic analogy are given in Appendix A.
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In the present paper we have greater use for the continuous-vorticity Lagrangian (2.27)
than for its discrete-vorticity counterpart (2.18). The latter remains a valuable thinking
tool (as illustrated in Section 5) and may be useful for numerical studies. However, it
is worth pointing out that point-vortex dynamics corresponding to (2.18) cannot be
obtained as a special case of (2.27). This is obvious from the fact that, in applying point
vortex dynamics, we must omit the influence of each vortex on itself. Furthermore, any
attempt to derive the continuous-vorticity dynamics by averaging over point vortices
would introduce terms analogous to the molecular viscosity terms that arise when one
attempts to derive ideal fluid dynamics by averaging over molecular motions.

The continuous-vorticity Lagrangian (2.27) seems a good starting point for theories de-
scribing the interactions between inertia-gravity waves and quasi-geostrophic flow. Three
reasons for this are readily apparent. First, the Eulerian average of (2.9) and (2.10) cor-
responds to the Lagrangian mean velocity, often denoted ūL. Thus the average values of
ψ and γt represent the stream function and velocity potential for the Lagrangian mean
flow. The automatic satisfaction of (2.2) by the representation (2.8)-(2.10) corresponds
to the fact that, in the Lagrangian mean, no Reynolds fluxes occur in the average of
(2.2).

Second, the Lagrangian L1, by itself, describes the fluid motion that results when waves
propagate into a region that is initially at rest, and in which the APV therefore vanishes.
That is, (2.14) is the Lagrangian for nonlinear inertia-gravity waves uncontaminated by
APV. If L1 is approximated as (2.41), then the equations resulting from δL0

1 = 0 combine
to yield the Klein-Gordon equation,

∇2γtt + f20∇2γ − c2∇2∇2γ = 0, (2.42)

for ∇2γ, which describes linear, shallow-water inertia-gravity waves. The fully nonlinear
form (2.14) will be used in Section 4 to determine the mean flow that arises when inertia-
gravity waves propagate into an initially quiescent region.

Third, there is an intimate connection between (2.27) and the Lagrangian for quasi-
geostrophic motion. To see this most directly, suppose that all the γ-terms except f0∇ψ ·
∇γ and c2(∇2γ)2 are simply dropped from (2.27). (This can be justified by scaling the
variables in the manner appropriate for geostrophic flow.) The resulting Lagrangian is∫∫∫

dtdx
(

1

2
∇ψ · ∇ψ + f0∇ψ · ∇γ − 1

2
c2(∇2γ)2 − αβt + ψJ(α, β)

)
, (2.43)

where J(α, β) ≡ αxβy − βxαy. If we use

δγ : ∇2
(
f0ψ + c2∇2γ

)
= 0, (2.44)

hence

ψ = −c2/f0∇2γ = g/f0 (h− h0), (2.45)

to eliminate γ from (2.43), we obtain the Lagrangian

LQG[ψ, α, β] =

∫∫∫
dtdx

(
1

2
∇ψ · ∇ψ +

1

2

f20
c2
ψ2 − αβt + ψJ(α, β)

)
(2.46)

for quasi-geostrophic dynamics. The condition (2.45) is a statement of geostrophic bal-
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ance. Stationarity of (2.46) implies

δψ : ∇2ψ − f20
c2
ψ = J(α, β), (2.47)

δβ : αt + J(ψ, α) = 0, (2.48)

δα : βt + J(ψ, β) = 0. (2.49)

Using the Jacobi identity,

J(J(α, β), ψ) + J(J(β, ψ), α) + J(J(ψ, α), β) = 0, (2.50)

we find that (2.47)-(2.49) imply the quasi-geostrophic potential vorticity equation,

(∇2ψ − ψ/rd2)t + J(ψ,∇2ψ − ψ/rd2) = 0, (2.51)

where rd = c/f0 is the deformation radius.
A more systematic treatment of (2.27) yields theories that describe the interactions

between motions that obey (2.51) at leading order and those that obey (2.42) at leading
order. The use of the Lagrangian formulation guarantees that all conservation laws will be
automatically maintained. However, instead of applying this strategy to shallow water
dynamics, we generalize our results to hydrostatic Boussinesq dynamics, which are of
much greater interest to meteorologists and oceanographers. That such a generalization
must exist is obvious from the close correspondence between the shallow water equations
and the hydrostatic Boussinesq equations in buoyancy coordinates.

3. Hydrostatic Boussinesq dynamics

In buoyancy coordinates, the hydrostatic Boussinesq equations take the form

ut +∇
(
B +

1

2
u · u

)
= (ζ + f0)(v,−u), (3.1)

z = −Bθ, (3.2)

zθt + (uzθ)x + (vzθ)y = 0. (3.3)

Here, u(x, y, θ, t) = u(x, θ, t) = (u, v) is the horizontal velocity, θ is the buoyancy,
z(x, θ, t) is the height of the iso-buoyancy surface corresponding to θ at the horizon-
tal location x, and B = p− zθ with p equal to the pressure divided by the constant mass
density. As before ζ = ∇ × u ≡ vx − uy but now all horizontal derivatives are taken
with θ fixed. For simplicity we consider a horizontally unbounded fluid with flat rigid
boundaries at z1 and z2 = z1 + h0. At these boundaries, the buoyancy is (and remains)
uniform at the values θ1 and θ2. Thus the boundary conditions on (3.1)-(3.3) are

Bθ(x, θ1, t) = −z1, Bθ(x, θ2, t) = −z2. (3.4)

The associated vorticity and divergence equations are

ζt = −∇ · ((ζ + f0)u) (3.5)

and
∂

∂t
∇ · u +∇2(B +

1

2
u · u) = ∇× ((ζ + f0)u), (3.6)

where now ∇ = (∂x, ∂y) is the horizontal gradient operator with θ held fixed. The po-
tential vorticity equation is

D

Dt

(
ζ + f0
zθ

)
= 0, (3.7)
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where
D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
. (3.8)

For derivations of these equations, see, for example, Salmon (1998, pp. 105-107).
We seek a variational principle analogous to that found for shallow water dynamics.

First, as in Section 2, we suppose that the fluid was, at some time, in the state of rest.
In this state the potential vorticity depends only on θ. But since the potential vorticity
and buoyancy are conserved on fluid particles, it must be true that

ζ + f0
zθ

= F (θ) (3.9)

at all times, for some function F . Evaluating (3.9) in the state of rest, we find that
F (θ) = f0N0

2(θ) where N0(θ) is the Vaisala frequency associated with the state of rest.
Thus

ζ + f0 = f0N0
2(θ)zθ. (3.10)

We introduce the potential representation

N0
2(θ) zθ = 1−∇2γ, (3.11)

N0
2(θ) zθu = −ψy + γxt, (3.12)

N0
2(θ) zθv = ψx + γyt. (3.13)

Just as (2.8)-(2.10) automatically satisfies (2.2), the representation (3.11)-(3.13) satisfies
(3.3). The prescribed function N0

2(θ) is analogous to h−10 in Section 2. In terms of ψ and
γ, the ansatz (3.10) takes the same form,

∂

∂x

(
ψx + γyt
1−∇2γ

)
+

∂

∂y

(
ψy − γxt
1−∇2γ

)
= −f0∇2γ, (3.14)

as in shallow water dynamics. The θ-derivative of (3.2) is

Bθθ = −N−20 (θ)(1−∇2γ). (3.15)

Let

B = B0(θ) + B̂(x, y, θ, t), (3.16)

where B0(θ) is associated with the state of rest. Then the hydrostatic equation (3.15)
becomes

B̂θθ = N−20 (θ)∇2γ, (3.17)

and the divergence equation (3.6) becomes(
−ψy + γxt
1−∇2γ

)
xt

+

(
ψx + γyt
1−∇2γ

)
yt

+∇2
(
B̂ +

1

2
u · u

)
= f0∇2ψ. (3.18)

Equations (3.14), (3.17), and (3.18) result from the variational principle δL1[ψ, γ, B̂] = 0,
where

L1 =

∫∫∫∫
dxdθdt

(
1

2
B̂2
θ +

1

N2
0

[
1

2

(−ψy + γxt)
2

(1−∇2γ)
+

1

2

(ψx + γyt)
2

(1−∇2γ)
+ f0∇ψ · ∇γ + B̂∇2γ

])
.

(3.19)
The Lagrangian (3.19) is analogous to (2.14).

Before proceeding we slightly adjust the vertical coordinate. We define a new buoyancy
coordinate Z(θ) by

dZ/dθ = N−20 (θ), Z(θ1) = z1. (3.20)
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Thus Z(θ) is the height of buoyancy surface θ in the state of rest. With this definition
(3.19) takes the form

L1 =

∫∫∫∫
dxdZdt

(
1

2
N−20 B̂2

Z +
1

2

(−ψy + γxt)
2

(1−∇2γ)
+

1

2

(ψx + γyt)
2

(1−∇2γ)
+ f0∇ψ · ∇γ + B̂∇2γ

)
.

(3.21)
The integration limits on Z are z1 and z2, and we henceforth regard N0 = N0(Z). From
now on we work in the (x, y, Z, t) system. Equation (3.10) takes the form

ζ + f0 = f0 dz/dZ, (3.22)

and (3.17) takes the form

(N−20 B̂Z)Z = ∇2γ. (3.23)

Following the same path as in Section 2 (but skipping the step corresponding to point
vortices), we generalize the ansatz (3.22) to

ζ + f0 = f0
dz

dZ
+
∂(α, β)

∂(x, y)
, (3.24)

where (α, β) are labels that measure APV and move along buoyancy surfaces at the
horizontal velocity u. Thus

(α, β)t + u · ∇(α, β) = 0. (3.25)

We define

L2[ψ, γ, α, β] =

∫∫∫∫
dxdZdt

(
−αβt + ψ

∂(α, β)

∂(x, y)
− γy

∂(α, β)

∂(y, t)
+ γx

∂(α, β)

∂(t, x)

)
. (3.26)

The Lagrangian (3.21) is analogous to (2.14), and (3.26) is analogous to the last line of
(2.27). As we now demonstrate, the variational principle δ(L1 +L2) = 0 is equivalent to
hydrostatic Boussinesq dynamics.

The variational principle δ(L1 + L2) = 0 implies

δψ :
∂

∂x

(
ψx + γyt
1−∇2γ

)
+

∂

∂y

(
ψy − γxt
1−∇2γ

)
+ f0∇2γ =

∂(α, β)

∂(x, y)
, (3.27)

δγ :

(
−ψy + γxt
1−∇2γ

)
xt

+

(
ψx + γyt
1−∇2γ

)
yt

+∇2
(
B̂ +

1

2
u · u

)
− f0∇2ψ

=
∂

∂x

∂(α, β)

∂(t, x)
− ∂

∂y

∂(α, β)

∂(y, t)
, (3.28)

δB̂ : (N−20 B̂Z)Z = ∇2γ, (3.29)

δβ : αt + uαx + vαy = 0, (3.30)

δα : βt + uβx + vβy = 0, (3.31)

and the boundary conditions B̂Z = 0 at Z = z1 and Z = z2, where, by (3.11)-(3.13),

u =
(−ψy + γtx, ψx + γty)

1−∇2γ
. (3.32)

Solving (3.30) and (3.31) for u and v we obtain

u =
1

Q

∂(α, β)

∂(y, t)
, v =

1

Q

∂(α, β)

∂(t, x)
, (3.33)
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where

Q =
∂(α, β)

∂(x, y)
(3.34)

is the APV. Then (3.27) may be rewritten as

ζ + f0∇2γ = Q, (3.35)

and (3.28) may be rewritten as

∂

∂t
∇ · u +∇2(B̂ +

1

2
u · u)− f0∇2ψ = ∇× (Qu). (3.36)

By (3.32) and (3.35), the rhs of (3.36) is

∇×
(
(ζ + f0)u− f0(1−∇2γ)u

)
= ∇× ((ζ + f0)u)− f0∇2ψ. (3.37)

Thus (3.36) is equivalent to the divergence equation (3.6). By (3.33) and (3.34), the
mathematical identity (2.36) takes the same form,

Qt +∇ · (Qu) = 0, (3.38)

as in Section 2. Substituting (3.32) and (3.35) into (3.38), we obtain the vorticity equation
(3.5). This concludes the proof that δ(L1+L2) = 0 is equivalent to hydrostatic Boussinesq
dynamics.

In the rest of this paper we replace Z by z to simplify notation, but it is important
to remember that z is a disguised buoyancy coordinate. It is in fact the same coordinate
introduced by Young (2012).

To further simplify matters, we adopt the standard field-theory convention that all
variations vanish at the extremities of the fluid, both in time and in space. That is, we
do not attempt to incorporate boundary conditions (which are in some sense arbitrary)
into the variational principle. Our focus is on the equations themselves.

4. Bretherton flow

As a first example of the use of the variational principle discovered in the previous
section, we consider the flow that develops when waves enter a region that is initially
at rest. Bühler & McIntyre (2005) call this ‘Bretherton flow’ after the pioneering work
of Bretherton (1969). If the fluid is initially at rest, then the APV vanishes, and the
dynamics is completely described by δL1[ψ, γ, B̂] = 0 where L1 is given by (3.21). If the
waves are sufficiently weak we may write

L1 = L0
1 + L1C , (4.1)

where

L0
1 =

∫∫∫∫
dxdzdt

(
1

2
N−20 B̂2

z +
1

2
∇ψ · ∇ψ +

1

2
∇γt · ∇γt + f0∇ψ · ∇γ + B̂∇2γ

)
(4.2)

contains the quadratic terms in L1, and

L1C =

∫∫∫∫
dxdzdt

(
1

2
∇ψ · ∇ψ + J(ψ, γt) +

1

2
∇γt · ∇γt

) (
∇2γ + (∇2γ)2 + · · ·

)
(4.3)

contains the higher order corrections. By (3.11), small ∇2γ corresponds to a nearly
undisturbed stratification.
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If the wave amplitude is small, then, to leading order, the waves are governed by
δL0

1 = 0, which implies

δψ : ∇2ψ + f0∇2γ = 0, (4.4)

δB̂ : (N−20 B̂z)z = ∇2γ, (4.5)

δγ : ∇2γtt − f0∇2ψ +∇2B̂ = 0. (4.6)

Using (4.4) and (4.5) to eliminate ψ and γ, we obtain a single equation for B̂,

(∂tt + f20 )(N−20 B̂z)z +∇2B̂ = 0. (4.7)

If N0(z) varies slowly, then (4.7) supports inertia-gravity waves of the form B̂ ∝ cos(kx+
ly +mz − ωt) with dispersion relation

ω2 = f20 +K2N2
0 /m

2 ≡ ωr(K,m, z)2, (4.8)

where K2 = k2+l2. The dispersion relation (4.8) is correct for hydrostatic inertia-gravity
waves, which have frequencies much smaller than N0.

If the wave amplitude a is small, then the waves, which are approximately governed
by (4.4)-(4.6), induce an O(a2) mean flow that may be computed from L1. Let

ψ = ψ̄ + ψ′, γ = γ̄ + γ′, B̂ = B̄ +B′, (4.9)

where bar denotes the mean flow, and prime denotes the wave. We assume that the wave
is slowly varying in the sense that its amplitude, wavenumbers and frequency all vary
on scales that are large compared to its wavelength and period. We follow Whitham’s
(1965, 1974) procedure. The averaged Lagrangian is

〈L1〉 = L0
1[B̄, ψ̄, γ̄] + 〈L0

1[B′, ψ′, γ′]〉+ 〈L1C [ψ̄ + ψ′, γ̄ + γ′]〉 (4.10)

where L0
1 and L1C are defined by (4.2) and (4.3). The angle brackets denote the average

over wave phase. Thus 〈ψ̄〉 = ψ̄ and 〈ψ′〉 = 0. We approximate the last term in (4.10) by
keeping only the cubic contributions to (4.3) that are quadratic in the primes. Then

〈L1C〉 =

∫∫∫∫
dxdzdt

(
Mψ̄ + Sγ̄

)
, (4.11)

where

M = 〈J(γ′t,∇2γ′)〉 − ∇ · 〈∇2γ′∇ψ′〉 (4.12)

and

S =∇2
(

1

2
〈∇ψ′ · ∇ψ′〉+ 〈J(ψ′, γ′t)〉+

1

2
〈∇γ′t · ∇γ′t〉

)
+ 〈J(ψ′,∇2γ′)〉t +∇ · 〈∇2γ′∇γ′t〉t. (4.13)

The enormous advantage of Whitham’s method is that terms in the Lagrangian may
be simplified before the variations are taken to determine the equations. It turns out that
all the wave-forcing terms on the rhs of (4.12) and (4.13) are negligible except the first
term in (4.12). Let

γ′ = A(x, y, z, t) cosφ(x, y, z, t), (4.14)

where A is the slowly varying amplitude and φ is the rapidly varying phase. The frequency
and wave numbers,

ω = −φt, k = φx, l = φy, m = φz, (4.15)
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all vary slowly. First we consider the two terms on the rhs of (4.12). At leading order,

〈J(γ′t,∇2γ′)〉 = 〈γ′tx∇2γ′〉y − 〈γ′ty∇2γ′〉x = ∇×
(

1

2
ωK2A2 k

)
, (4.16)

where K2 = k2 + l2. For the second term we have

−∇ · 〈∇2γ′∇ψ′〉 = f0∇ · 〈∇2γ′∇γ′〉, (4.17)

where we have used the fact ψ′ = −f0γ′ at leading order; see (4.4). The phase average
in (4.17) is over two factors, ∇2γ′ and ∇γ′, that are 90o out of phase. Thus (4.17) is
smaller than (4.16) by a factor ε, where ε << 1 is the ‘scale separation’ parameter—the
ratio of the wavelength to the length scale of slow variation. Similar remarks apply to
all of the terms in (4.13): In contrast to (4.16), all involve at least two derivatives of the
slowly varying wave amplitude, frequency and wavenumbers. Thus the approximation
(4.11) becomes

〈L1C〉 =

∫∫∫∫
dxdzdt ψ̄ ∇×

(
1

2
ωK2A2 k

)
, (4.18)

and the complete Lagrangian (4.10) becomes

〈L1〉[B̄, ψ̄, γ̄, A, φ] =∫∫∫∫
dxdzdt

[ 1
2
N−20 B̄2

z +
1

2
∇ψ̄ · ∇ψ̄ +

1

2
∇γ̄t · ∇γ̄t + f0∇ψ̄ · ∇γ̄ + B̄∇2γ̄

+
1

4
K2A2(ω2 − ω2

r) + ψ̄ ∇×
(

1

2
ωK2A2 k

) ]
, (4.19)

where the relative frequency ωr is defined by (4.8). The equations resulting from δ〈L1〉 =
0 are:

δB̄ : (N−20 B̄z)z −∇2γ̄ = 0, (4.20)

δψ̄ : ∇2ψ̄ + f0∇2γ̄ = ∇× (Ek/ω), (4.21)

δγ̄ : ∇2γ̄tt − f0∇2ψ̄ +∇2B̄ = 0, (4.22)

δA2 : ω2 = f20 +K2N2
0 /m

2 + 2ωŪ · k, (4.23)

δφ :

(
E

ω

(
1− Ū · k

ω

))
t

+∇3 ·
(
E

ω

(ωr
ω

cgr + Ū)
))

= 0, (4.24)

where E ≡ 1
2K

2ω2A2, Ū ≡ (−ψ̄y, ψ̄x), ∇3 ≡ (∂x, ∂y, ∂z), and

cgr =

(
∂ωr
∂k

,
∂ωr
∂l

,
∂ωr
∂m

)
=

1√
1 + f20m

2/K2N2
0

N0

m

(
k

K
,
l

K
,−K

m

)
(4.25)

is the relative group velocity. The only forcing term in the equations (4.20)-(4.22) deter-
mining the mean flow is the curl of the pseudomomentum

p ≡ Ek/ω. (4.26)

This O(a2) term induces an O(a2) mean flow that contributes the small final term to the
dispersion relation (4.23). Eqn. (4.23) differs from the expected Doppler-shifted result
ω = ωr+U·k by an even smaller O(a4) term, namely (U·k)2, because the approximation
(4.18) excludes terms that are quadratic in the mean flow. Similar remarks apply to (4.24).
If we keep only the largest terms in each equation, then (4.20)-(4.22) are unchanged,
(4.23) reduces to ω = ωr, and (4.24) takes the familiar form,

(E/ω)t +∇3 · (cgE/ω) = 0, (4.27)
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of action conservation. In this limit we may consider the slowly varying wave train to be
a prescribed solution of the linear equations (4.4)-(4.6). The only challenge is to deter-
mine the induced mean flow from (4.20)-(4.22). However, it is worth pointing out that
(4.20)-(4.24) are consistent with all conservation laws (including total energy conserva-
tion) because they have been obtained from a variational principle, whereas a posteriori
approximations like (4.27) generally destroy exact conservation.

The general solution of the mean flow equations (4.20)-(4.22) includes free inertia-
gravity waves, but to include them would be redundant: We are solely interested in the
forced response to ∇× p. If f0 = 0, then γ̄ and B̄ vanish, and

∇2ψ̄ = ∇× p (4.28)

determines the Lagrangian mean vorticity. If f0 6= 0 then (4.20)-(4.22) may be combined
to give

(∂tt + f20 )(N−20 B̄z)z +∇2B̄ = f0∇× p. (4.29)

Suppose that the pseudomomentum p corresponds to a wavepacket. The wavepacket
propagates at the group velocity corresponding to its ‘carrier wavenumber’ k. The forced
solution of (4.29) propagates at this same group velocity. Hence we may solve (4.29) in
the reference frame moving with the packet by replacing ∂t → −cgr · ∇3 in (4.29). If the
group velocity is sufficiently small, then the ∂tt-term in (4.29) is negligible, and (4.29)
reduces to

∇2B̄ +
∂

∂z

(
f20
N2

0

∂B̄

∂z

)
= f0∇× p. (4.30)

In this same limit, (4.22) implies B̄ = f0ψ̄ so that (4.30) is equivalent to

∇2ψ̄ +
∂

∂z

(
f20
N2

0

∂ψ̄

∂z

)
= ∇× p. (4.31)

The lhs of (4.31) is the quasigeostrophic potential vorticity. Thus, if the inertia-gravity
wavepacket propagates slowly enough, the mean flow response is quasigeostrophic.

The WKB ansatz (4.14), which assumes a scale separation in all four of the dependent
variables (x, y, z, t), is overly restrictive, because inertia-gravity waves with frequencies
near f0 correspond to large horizontal length scales. If we assume that only the time
scale separates the mean flow from the waves, then only the last two terms in (4.13) may
be neglected; all the other terms in (4.12) and (4.13) must be retained. However, before
proceeding with less restrictive assumptions we generalize the dynamics to the case of
nonvanishing APV.

5. Nonvanishing available potential vorticity

If the APV does not vanish then the full Lagrangian includes L2, which couples the
inertia-gravity waves to the APV. The introduction of APV is analogous to the intro-
duction of electric charge. In this section we develop approximations to L2 analogous to
those developed for L1 in the previous section. We start by considering the form (2.17)
of L2 corresponding to shallow-water dynamics with point vortices of APV. Let

xi(t) = x̄i(t) + ξi(t), (5.1)

where x̄i(t) = 〈xi(t)〉 is the average location of the i-th point vortex and ξi(t) =
(ξi(t), ηi(t)) is the departure therefrom. Thus ξi(t) and ηi(t) are rapidly fluctuating vari-
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ables like γ′(x, t) and ψ′(x, t). Substituting (5.1) into (2.17) and averaging we obtain

〈L2〉 = 〈
∫
dt
∑
i

Γi
(
− x̄i ˙̄yi − ξiη̇i + ψ(x̄i + ξi, t)

− γy(x̄i + ξi, t)( ˙̄xi + ξ̇i) + γx(x̄i + ξi, t)( ˙̄yi + η̇i)
)
〉. (5.2)

We proceed by Taylor expansion of the functions ψ, γy, and γx about the argument x̄i.
Consider the single term

〈
∫
dt
∑
i

Γiψ(x̄i + ξi, t)〉 = 〈
∫
dt
∑
i

Γi
(
ψ̄(x̄i + ξi, t) + ψ′(x̄i + ξi, t)

)
〉. (5.3)

The function ψ̄ depends slowly on its argument no matter what the character of the
argument itself. Similarly, the function ψ′ depends rapidly on its argument. Proceeding
with the Taylor expansion, and keeping only the quadratic terms in the fast variables,
we obtain

〈
∫
dt
∑
i

Γiψ(x̄i + ξi, t)〉 ≈ 〈
∫
dt
∑
i

Γi

(
ψ̄(x̄i, t) +

1

2
(ξi · ∇)2ψ̄(x̄i, t) + ξi · ∇ψ′(x̄i, t)

)
〉.

(5.4)
In the preceding section we approximated L1 by keeping only the cubic terms of the form
bar-prime-prime. Since the constant Γi counts a ‘bar’ variable, the middle term on the
rhs of (5.4) is of the order bar-bar-prime-prime. Thus if we treat L2 in the same manner
as we treated L1 in the previous section, we can consistently neglect this middle term.
(We come back to this point in Section 8.) Our approximation becomes

〈
∫
dt
∑
i

Γiψ(x̄i + ξi, t)〉 ≈
∫
dt
∑
i

Γi
(
ψ̄(x̄i, t) + 〈ξi · ∇ψ′(x̄i, t)〉

)
. (5.5)

The last two terms in (5.2) may be approximated in a similar manner, and the result is

〈L2〉 =

∫
dt
∑
i

Γi
(
− x̄i ˙̄yi + ψ̄(x̄i, t)− γ̄y(x̄i, t) ˙̄xi + γ̄x(x̄i, t) ˙̄yi

− 〈ξiη̇i〉+ 〈ξi · ∇ψ′(x̄i, t)〉 − 〈γ′y(x̄i, t)ξ̇i〉+ 〈γ′x(x̄i, t)η̇i〉
)
. (5.6)

The γ̄-terms in (5.6) involve only the mean flow and represent higher-order corrections
to quasigeostrophy. Neglecting these terms, and defining ξ(x, t) to be the fluctuating
displacement of the fluid particle currently located at x (whether or not there is any
APV there), we rewrite (5.6) as

〈L2〉 =

∫∫∫
dtdx

∑
i

Γiδ(x− x̄i(t))
(
−x ˙̄yi+ψ̄−〈ξηt〉+〈ξ ·∇ψ′〉−〈γ′yξt〉+〈γ′xηt〉

)
. (5.7)

Because of the delta function, all of the terms in the integrand of (5.7) can be considered
functions of (x, t). We define

Q̃(x, y, t) ≡
∑
i

Γiδ(x− x̄i(t)). (5.8)

In contrast to the Q defined by (2.38), Q̃ depends slowly on time; it evolves with the
average locations of the point vortices. However Q̃ is not the average of Q; in that way
it resembles the quantity ρ̃ introduced by Bühler & McIntyre (1998). Just as their ρ̃
represents the mass density that would occur if the fluid moved at the average velocity,
Q̃ represents the APV that would be present if the point vortices move at their average
velocity ˙̄xi.
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We pass to the limit of continuous APV by replacing∑
i

Γiδ(x− x̄i(t))→
∂(α̃, β̃)

∂(x, y)
, (5.9)

where (α̃, β̃) are labeling variables for Q̃. Compare (5.9) to (2.21). Then, following steps
similar to those between (2.21) and (2.27), we arrive at

〈L2〉 =

∫∫∫
dtdx

(
−α̃β̃t +

∂(α̃, β̃)

∂(x, y)

(
ψ̄ − 〈ξηt〉+ 〈ξ · ∇ψ′〉 − 〈γ′yξt〉+ 〈γ′xηt〉

))
(5.10)

for the shallow-water case. The 〈L2〉 for hydrostatic Boussinesq dynamics requires only
an additional integration with respect to z and the re-interpretation of all the derivatives
in (5.10) as derivatives with z held fixed.

The Lagrangian (5.10) depends on the four fast variables ψ′, γ′, ξ and η. However, we
may use the equations

δξ : ηt = ψ′x + γ′ty, (5.11)

δη : ξt = −ψ′y + γ′tx, (5.12)

to eliminate ψ′ and γ′ in favor of ξ and η. Note that the variations δξ are performed inside
the averaging symbol in (5.10), and that the time-integrations by parts needed to establish
(5.11)-(5.12) ignore the slow time variations of the Jacobian in (5.10). Eqns (5.11)-(5.12)
equate the time derivatives of ξ to the fluctuating velocity. Substituting (5.11)-(5.12)
back into (5.10) (and adding the z-integration required for three-dimensional Boussinesq
dynamics) we obtain

〈L2〉 =

∫∫∫∫
dtdxdz

(
−α̃β̃t +

∂(α̃, β̃)

∂(x, y)

(
ψ̄ + 〈ξηt〉

))
(5.13)

for hydrostatic Boussinesq dynamics.

6. The complete Lagrangian

Now we combine the results of Sections 4 and 5 to obtain the complete Lagrangian.
To obtain a form of 〈L1〉 that is compatible with (5.13), we must eliminate the variables
ψ′ and γ′ from (4.10)-(4.13). Using (5.11)-(5.12) we obtain

〈L1〉 =

∫∫∫∫
dxdzdt

( 1
2
N−20 (B̄z)

2 +
1

2
∇ψ̄ · ∇ψ̄ +

1

2
∇γ̄t · ∇γ̄t + f0∇ψ̄ · ∇γ̄ + B̄∇2γ̄

〈 1
2
N−20 (B′z)

2 +
1

2
ξt · ξt + f0ξηt +B′(ξx + ηy)〉+ ψ̄M + γ̄∇2T

)
, (6.1)

where

M = −∇× 〈(ξx + ηy)ξt〉 (6.2)

and

T = 〈 1
2
ξt · ξt〉. (6.3)

In writing (6.1), we have dropped the last two terms in (4.13): Since the average is an
average over the fast time dependence of the waves, we have ∂t〈〉 = 0.

Now we embark on a series of simplifications. First, assuming that the mean flow
response will be slow, we drop the 1

2∇γ̄t ·∇γ̄t term from (6.1). This neglect is equivalent
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to the neglect of B̄tt in (4.29), which led to (4.31). By a priori neglect of 1
2∇γ̄t · ∇γ̄t, we

prevent the mean flow from developing its own inertia-gravity waves.
Next, noting that the slow variables B̄ and γ̄, appear only in 〈L1〉, we use the equation

δγ̄ : −f0∇2ψ̄ +∇2B̄ +∇2T = 0 (6.4)

to remove B̄ and γ̄ from (6.1). That is, substituting

B̄ = f0ψ̄ − T (6.5)

into the terms∫∫∫∫
dxdzdt

(
1

2
N−20 (B̄z)

2 + f0∇ψ̄ · ∇γ̄ + B̄∇2γ̄ + γ̄∇2T
)

=

∫∫∫∫
dxdzdt

(
1

2
N−20 (B̄z)

2 +∇2γ̄(−f0ψ̄ + B̄ + T )
)
, (6.6)

we obtain∫∫∫∫
dxdzdt

(
1

2
N−20 (B̄z)

2 + 0
)
≈
∫∫∫∫

dxdzdt

(
1

2

f20
N2

0

(ψ̄z)
2 − f0

N2
0

ψ̄zTz

)
(6.7)

after neglecting terms that are quartic in the wave amplitudes. With these simplifications
(6.1) takes the form

〈L1〉 =

∫∫∫∫
dxdzdt

( 1
2
∇ψ̄ · ∇ψ̄ +

1

2

f20
N2

0

(ψ̄z)
2 − f0

N2
0

ψ̄zTz

+ 〈 1
2
N−20 (B′z)

2 +
1

2
ξt · ξt + f0ξηt +B′∇2(ξx + ηy)〉+ ψ̄M

)
. (6.8)

Finally, we note that δ(〈L1〉+ 〈L2〉) = 0 implies

δψ̄ : ∇2ψ̄ +

(
f20
N2

0

ψ̄z

)
z

−M −
(
f0
N2

0

Tz

)
z

=
∂(α̃, β̃)

∂(x, y)
. (6.9)

To consistent order we may use (6.9) to eliminate the Jacobian on the rhs of (5.13) from
its product with 〈ξηt〉. Neglecting terms quartic in the wave amplitudes, we obtain

〈L2〉[α̃, β̃, ψ̄, ξ, η] =

∫∫∫∫
dtdxdz

(
−α̃β̃t + ψ̄

∂(α̃, β̃)

∂(x, y)
+ 〈ξηt〉Lψ̄

)
, (6.10)

where

L ≡ ∇2 + ∂z
f20
N2

0

∂z (6.11)

is the familiar potential vorticity operator.
Combining (6.8) and (6.10) we obtain the averaged Lagrangian for the complete system

as

〈L1 + L2〉 = LQG[ψ̄, α̃, β̃] + LIG[ξ, η,B′] + LC [ψ̄, ξ, η], (6.12)

where

LQG =

∫∫∫∫
dxdzdt

(
1

2
∇ψ̄ · ∇ψ̄ +

1

2

f20
N2

0

(ψ̄z)
2 − α̃β̃t + ψ̄

∂(α̃, β̃)

∂(x, y)

)
(6.13)

is the Lagrangian for quasigeostrophic dynamics in the absence of inertia-gravity waves,

LIG =

∫∫∫∫
dxdzdt 〈 1

2
N−20 (B′z)

2 +
1

2
ξt · ξt + f0ξηt +B′(ξx + ηy)〉 (6.14)
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is the Lagrangian for inertia-gravity waves in the absence of a quasigeostrophic mean
flow, and

LC =

∫∫∫∫
dxdzdt ψ̄

(
M + (

f0
N2

0

Tz)z + L〈ξηt〉
)

(6.15)

is the Lagrangian that couples the inertia-gravity waves to the quasigeostrophic motion.
The quadratic wave averages M and T are defined by (6.2) and (6.3). The terms involving
M and T occur in (6.1) and would be present even if there were no APV. The last term
in (6.15) represents the coupling between the waves and the APV.

The Lagrangian (6.12)-(6.15) is our fundamental result. To derive it, we have assumed
that the quasigeostrophic motion, now represented by (ψ̄, α̃, β̃), evolves slowly in com-
parison to the inertia-gravity waves, now represented by (ξ, η,B′), and we have identified
the average with an average over fast time. This assumption of a timescale separation
between the mean flow and the waves would seem to be the weakest assumption on which
to base any wave-mean theory: The waves cannot have frequencies less than f0, and the
quasigeostrophic flow evolves on a timescale longer than 1/f0. Stronger assumptions lead
to simplifications of (6.15) that yield simpler equations. In the next section we explore a
spectrum of possibilities.

7. Wave-mean equations

We work with the Lagrangian (6.12)-(6.15), which assumes that the waves and the
mean flow are separated only by their timescales. We obtain the equations for the mean
flow by varying ψ̄, α̃, and β̃. By the Jacobi identity (2.50) and the definition

Q̃ =
∂(α̃, β̃)

∂(x, y)
, (7.1)

the equations

δα̃ : α̃t + J(ψ̄, α̃) = 0 (7.2)

imply

Q̃t + J(ψ̄, Q̃) = 0. (7.3)

The δψ̄-variation yields the defining equation for Q̃. The variations of ξ, η, and B′ yield
the equations for the waves. The precise form of these equations will depend on additional
assumptions that we may wish to make. At leading order, δLIG = 0 implies the linear
dynamics

δξ : ξtt − f0ηt = −B′x, (7.4)

δη : ηtt + f0ξt = −B′y, (7.5)

δB′ : ∂z(N
−2
0 B′z) = ξx + ηy, (7.6)

which are equivalent to (4.4)-(4.6). We may consistently use (7.4)-(7.6) to simplify the
coupling Lagrangian (6.15).

The strongest possible assumption appears to be the WKB assumption of a separation
in scale with respect to all four of the independent variables x, y, z, t. Then the averag-
ing operator corresponds to an average over wave phase. Let ε be the scale-separation
parameter, as in Section 4. Then the last two terms in (6.15) are O(ε2) because they
involve two spatial derivatives of phase averages, whereas the ψ̄M -term in (6.15) is O(ε),
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as already noted in Section 4. Thus, under WKB scaling,

LC ≈
∫∫∫∫

dxdzdt
(
−ψ̄∇× 〈ξt(ξx + ηy)〉

)
≈
∫∫∫∫

dxdzdt
(
−ψ̄∇× 〈(ξxξt, ηyηt)〉

)
=

∫∫∫∫
dxdzdt

(
ψ̄∇× p〉

)
, (7.7)

where

p = −(〈ξxξt〉, 〈ηyηt〉). (7.8)

The second approximation in (7.7) uses the fact that the variables ξ and η are 90o out
of phase, as may be shown from (7.4)-(7.6). Using (7.4)-(7.6) and ∂x〈〉 = 0, etc., we can
rewrite the rhs of (7.8) in several ways, including the one preferred by Bühler & McIntyre
(1998). In the case of a slowly varying wavetrain we find that p = Ek/ω as in Section 4.
The variational principle generalises the results obtained in Section 4. The equation

δψ̄ : ∇2ψ̄ +
∂

∂z

(
f20
N2

0

∂ψ̄

∂z

)
−∇× p = Q̃ (7.9)

replaces (4.31), and we now have the equation (7.3) for advection of APV. The dispersion
relation (4.23) and the action equation (4.24) are unchanged. These results are consistent
with Bühler & McIntyre (1998). They obtain (7.3) and (7.9), but their wave equations
differ from (4.23) and (4.24) because they assume that mean flow is O(1). For reasons
that are further explained in Section 8, we have assumed that the mean flow is O(a2).

A weaker assumption than the WKB assumption is that the waves have frequencies
near the inertial frequency f0. Such waves vary rapidly in t and z, but not in x or y.
Assuming that the average corresponds to an average over fast time and fast z, we can
consistently neglect the z-derivatives of averages in the coupling Lagrangian (6.15). Then

LC =

∫∫∫∫
dxdzdt ψ̄

(
∇2〈ξηt〉 − ∇ × 〈(ξx + ηy)ξt〉

)
. (7.10)

We use the equation (7.6) to eliminate B′ from (6.14). Then (6.14) takes the form

LIG =

∫∫∫∫
dxdzdt

(
1

2
〈ξt · ξt〉+ f0〈ξηt〉 − 1

2
N2

0 〈
(∫

dz(ξx + ηy)

)2

〉

)
. (7.11)

In near-inertial motion the last term in (7.11) is small. With this in mind we rewrite the
complete Lagrangian as

〈L1 + L2〉 = LQG[ψ̄, α̃, β̃] + LI [ξ, η] + LCN [ψ̄, ξ, η], (7.12)

where LQG is given by (6.13),

LI =

∫∫∫∫
dxdzdt

(
1

2
〈ξt · ξt〉+ f0〈ξηt〉

)
(7.13)

is the Lagrangian for inertia waves, and

LCN =

∫∫∫∫
dxdzdt

(
ψ̄∇2〈ξηt〉 − ψ̄∇× 〈(ξx + ηy)ξt〉 −

1

2
N2

0 〈
(∫

dz(ξx + ηy)

)2

〉

)
(7.14)

is the sum of (7.10) and the last term in (7.11). We shall treat all the terms in (7.14) as
small terms.

Following Young & Ben Jelloul (1997) and Xie & Vanneste (2015, hereafter XV), we
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set

ξ + iη = χze
−if0t. (7.15)

The exponential factor in (7.15) represents the fast time dependence of inertial motion.
The complex coefficient χ(x, y, z, t) varies slowly in x, y, t but rapidly in z. From (7.15)
we have

ξt + iηt = −if0χze−if0t + χzte
−if0t (7.16)

and ∫
dz(ξx + ηy) =

1

2
(χx − iχy) e−if0t + cc, (7.17)

where cc denotes the complex conjugate. We substitute (7.16) and (7.17) back into (7.13)
and (7.14), computing the averages as averages over the fast time dependence of the
exponential factors. In (7.13) we must keep terms of the first and second order. In (7.14)
we keep only the leading order terms. The Coriolis parameter f0 serves as a convenient
ordering parameter. Thus in (7.13) we set

1

2
〈ξt · ξt〉 =

1

2
f20 〈χzχ∗z〉+ if0〈χztχ∗z〉 (7.18)

and

〈ξηt〉 = − 1

2
f0〈χzχ∗z〉 − i

1

2
〈χztχ∗z〉, (7.19)

and in (7.14) we set

〈ξηt〉 = − 1

2
f0〈χzχ∗z〉, (7.20)

∇× 〈ξt(ξx + ηy)〉 =
1

2
if0〈J(χ∗z, χz)〉 −

1

4
f0∇2〈χzχ∗z〉, (7.21)

and

〈
(∫

dz(ξx + ηy)

)2

〉 =
1

2
〈∇χ · ∇χ∗〉. (7.22)

Here ∗ denotes complex conjugation and the averaging symbols enclose the rapid z-
dependence of χ. In simplifying the terms we have freely used integrations by parts with
respect to the rapid variations in z and t, and the fact that the averages are averages
over these rapid variations. With these substitutions (7.13) takes the form

LI =

∫∫∫∫
dxdzdt

1

2
if0〈χztχ∗z〉, (7.23)

and (7.14) takes the form

LCN =

∫∫∫∫
dxdzdt

(
1

2
if0ψ̄〈J(χz, χ

∗
z)〉 −

1

4
f0ψ̄∇2〈χzχ∗z〉 −

1

4
N2

0 〈∇χ · ∇χ∗〉
)
.

(7.24)
The complete Lagrangian for near-inertial motion is

LQG[ψ̄, α̃, β̃] + LI [χ] + LCN [ψ̄, χ]

=

∫∫∫∫
dxdzdt

(
− 1

2
ψ̄Lψ̄ − α̃β̃t + ψ̄J(α̃, β̃) +

if0
2
〈χztχ∗z〉 −

N2
0

4
〈∇χ · ∇χ∗〉

+
if0
2
ψ̄〈J(χz, χ

∗
z)〉 −

f0
4
ψ̄∇2〈χzχ∗z〉

)
. (7.25)
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The variations of α̃ and β̃ lead to (7.3), as in general. The variations of ψ̄ and χ yield

δψ̄ : Lψ̄ +
if0
2
〈J(χ∗z, χz)〉+

f0
4
∇2〈χzχ∗z〉 = Q̃ (7.26)

and

δχ∗ : χzzt +
iN2

0

2f0
∇2χ+ J(ψ̄, χz)z +

i

2

(
χz∇2ψ̄

)
z

= 0. (7.27)

(The variations δχ and δχ∗ may be taken independently, but they lead to the same
result.) Note that the terms in (7.27) vary rapidly in z. The equations (7.3), (7.26) and
(7.27) are very close to the equations derived by XV. In our notation the XV equations
comprise (7.3),

Lψ̄ +
if0
2
〈J(χ∗z, χz)〉+

f0
4
〈2∇χz · ∇χ∗z − χzz∇2χ∗ − χ∗zz∇2χ〉 = Q̃ (7.28)

and

χzzt +
iN2

0

2f0
∇2χ+ J(ψ̄, χz)z +

i

2

(
ψ̄zz∇2χ+ χzz∇2ψ̄ − 2∇ψ̄z · ∇χz

)
= 0. (7.29)

The equation (7.29) was previously derived by Young & Ben Jelloul (1997), who did not
consider the effect of the waves on the mean flow. The XV equations correspond to a
Lagrangian, namely

LXV =

∫∫∫∫
dxdzdt

(
− 1

2
ψ̄Lψ̄ − α̃β̃t + ψ̄J(α̃, β̃) +

if0
2
〈χztχ∗z〉 −

N2
0

4
〈∇χ · ∇χ∗〉

+
if0
2
ψ̄ 〈J(χz, χ

∗
z)〉 −

f0
4
ψ̄ ∇2〈χzχ∗z〉+

f0
4
ψ̄ 〈χz∇2χ∗ + χ∗z∇2χ〉z

)
, (7.30)

that differs from (7.25) by a term with a factor of the form ∂z〈〉. This term is negligible
if, as we have assumed, there is a vertical scale separation between the quasigeostrophic
mean flow and the near-inertial waves. Similarly, the differences between (7.26) and
(7.28), and between (7.27) and (7.29), are insignificant under this assumption. The im-
portant point is that both sets of equations—ours and those of XV—being equivalent to
variational principles, correspond to a consistent set of conservation laws. This fact was
used to great advantage by XV.

Finally, we consider the case in which we make no additional assumptions beyond
the separation in timescales used to derive (6.12)-(6.15). Then all of the terms in (6.15)
must be kept. If we keep all of the terms in (6.15), then the requirement that (6.12) be
stationary with respect to variations in ψ̄ yields the generalization,

Lψ̄ + qw = Q̃, (7.31)

of (7.9) and (7.26), where

qw = −M − ∂z
f0
N2

0

Tz − L〈ξηt〉

= ∇× 〈(ξx + ηy)ξt〉 − ∇2〈ξηt〉 − ∂z
f0
N2

0

∂z

(
f0〈ξηt〉+

1

2
〈ξt · ξt〉

)
. (7.32)

Using (7.4)-(7.6) and ∂t〈〉 = 0 we find that

1

2
〈ξt · ξt〉 = − 1

2
〈ξ · ξtt〉 = −f0〈ξηt〉+

1

2
〈ξ · ∇B′〉. (7.33)

By similar manipulations,

∇× 〈(ξx + ηy)ξt〉 − ∇2〈ξηt〉 = 〈J(ξt, ξ)〉+ 〈J(ηt, η)〉+∇ · 〈(ηx − ξy)ξt〉. (7.34)
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Thus (7.32) may be written

qw = 〈J(ξt, ξ)〉+ 〈J(ηt, η)〉+∇ · 〈(ηx − ξy)ξt〉 −
(

f0
2N2

0

〈ξ · ∇B′〉z
)
z

(7.35)

Assuming only the separation in timescales, Wagner & Young (2015, hereafter WY)
derive (7.31) with

qw = 〈J(ξt, ξ)〉+ 〈J(ηt, η)〉+ f0〈J(ξ, η)〉+
f0
2
〈ξiξj〉,i,j . (7.36)

We must show that our (7.35) agrees with their (7.36). WY work in Cartesian coordi-
nates with fluid particle displacements (ξ1, ξ2, ξ3) = (ξ, η, ζ). (The vertical displacement
ζ must not be confused with the relative vorticity denoted by the same symbol earlier
in the paper.) Although the first three terms on the rhs of (7.36) involve only x- and
y-derivatives, the last term in (7.36) contains index summations from 1 to 3. Thus the
connection between (7.35) and (7.36) is not obvious. In Appendix B we show that (7.35)
and (7.36) are in fact equivalent.

8. Discussion

This paper extends the familiar analogy between electric charge and quasigeostrophic
potential vorticity to include the effects of inertia-gravity waves. In this analogy quasi-
geostrophic dynamics corresponds to a kind of Coulomb dynamics in which slowly moving
charges interact via action-at-a-distance forces. The introduction of inertia-gravity waves
alters this picture in two ways. First, nonlinear interactions between the waves—a fea-
ture not present in electrodynamics—can temporarily create a virtual electric charge,
i.e. Bretherton flow. This charge is captured by the mean flow if dissipation removes the
waves, but even if no dissipation occurs the virtual charge interacts with other charges
in the fluid, as beautifully illustrated in the examples analyzed by Bühler & McIntyre
(2003). Second, the Stokes drift of the waves contributes to the advection of the charges.
It is remarkable that both of these effects, here computed separately as coupling contri-
butions to L1 and L2, appear as contributions to qw in (7.31).

One could extend our theory by including more of the terms that occur in the expan-
sion (4.3) of L1 and the Taylor expansion of L2 as given by (5.2). In these expansions
we have kept only cubic terms of the form ‘bar-prime-prime’. This approximation, also
introduced via scaling assumptions by WY and XV, assumes that the quasigeostrophic
flow is weak compared to the inertia-gravity waves. Although this is certainly correct
for Bretherton flow, oceanographers would be happy to see terms of the form ‘bar-bar-
prime-prime’. Unfortunately the number of such terms is daunting. Besides the desire to
avoid complexity, our choice of coupling terms was made in the hope of recovering the
results of WY and XV. In the WKB limit, we recover results very similar to those of
Bühler & McIntyre (1998) despite their scaling assumption of a stronger mean flow. All
three of these papers are challenging papers whose precise methods seem to have little in
common. Our ability to recover similar results suggests that the present paper represents
a valid synthesis.

Despite the agreement with other work, our methods of approximating the Lagrangian
will strike many readers as ad hoc. The development of a more rigorous approach faces
two fundamental difficulties. First, there seem to be no dependable rules determining
when it is legal to substitute the results of a variational principle back into the varia-
tional principle itself. Second, it is useless to apply formal scaling theory to the terms in
the Lagrangian because each such term typically contributes to several equations. The
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importance of this contribution varies from equation to equation and thus cannot be
gauged from the size of the term in the Lagrangian.

The most accepted method in our field is asymptotic expansion applied directly to the
fluid equations, but there is a sense in which that method too is ad hoc. Virtually all
interesting solutions of the fluid equations share the property of turbulence that small
differences in initial conditions lead to completely different solutions after a finite time. It
must equally be true that the small changes introduced by even the best approximations
lead to solutions that eventually differ significantly from the exact solution. The most
that can be hoped for is that the approximate solutions resemble the exact solution in
a statistical sense. And this is likely to be true only if the approximation maintains
conservation laws. Thus we should distinguish between an approximation that exactly
conserves an approximate form of energy and an approximation that only approximately
conserves anything. The energy of the latter is likely to increase indefinitely, leading to an
enormous statistical divergence from the exact solution. As ad hoc as they may appear to
be, Lagrangian approximation methods are the champions at maintaining conservation
laws. So long as the corresponding symmetry property is not disturbed, the conservation
law survives.

Finally, it should be emphasized that all theories of the general type discussed in this
paper are ‘low-energy’ theories in the sense that only at low energy can the flow even
approximately be considered to consist of quasigeostrophic dynamics weakly coupled
to free inertia-gravity waves. At higher system energy the two interact in ways that
change the fundamental character of the flow. Typically the free inertia-gravity waves
are replaced by a balanced dynamics much more complicated than quasigeostrophy, in
which much of the flow field is slaved to the potential vorticity; see especially McIntyre
& Norton (2000).
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Appendix A. Analogy with electrodynamics
This appendix clarifies the connection between S14 and the present work. S14 consid-

ered a simplified shallow-water dynamics with continuity equation

ĥt +∇ · u = 0. (A1)

However, the same strategy applies to the exact continuity equation (2.2). If we rewrite
(2.2) as a statement of vanishing spacetime divergence,

(∂t, ∂x, ∂y) ·
(
ĥ, ĥu, ĥv

)
= 0, (A2)

then it follows from (A2) that(
ĥ, ĥu, ĥv

)
= (∂t, ∂x, ∂y)× (−ψ,A,B) (A3)

for some vector (−ψ,A,B). That is,

ĥ = Bx −Ay, (A4)

ĥu = −ψy −Bt, (A5)

ĥv = ψx +At. (A6)
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Following steps similar to those in S14, it is straightforward to show that the non-rotating
shallow water equations, with vorticity confined to delta functions located at xi(t), are
equivalent to the requirement that

L =

∫∫∫
dxdt

(
1

2

(At + ψx)2

(Bx −Ay)
+

1

2

(Bt + ψy)2

(Bx −Ay)
− 1

2
c2(Bx −Ay)2

)
+
∑
i

Γi

∫
dt (ψ(xi(t), t)−A(xi(t), t)ẋi(t)−B(xi(t), t)ẏi(t)) (A7)

be stationary with respect to variations in ψ,A,B, and xi.
If we set Bx −Ay = 1 (i.e. h = h0) in the denominators of (A7), then the resulting

L =

∫∫∫
dxdt

(
1

2
(At + ψx)2 +

1

2
(Bt + ψy)2 − 1

2
c2(Bx −Ay)2

)
+
∑
i

Γi

∫
dt (ψ(xi(t), t)−A(xi(t), t)ẋi(t)−B(xi(t), t)ẏi(t)) (A8)

is equivalent to the Lagrangian given in S14. The dynamics corresponding to (A8) were
called ‘wave-vortex dynamics’ in S14. Because the first line in (A7) is non-quadratic in
the potentials ψ,A, and B, gravity waves interact nonlinearly in exact shallow-water
dynamics, even in the absence of vorticity. However, because the first line in (A8) is
quadratic, the gravity waves in wave-vortex dynamics are linear waves that never interact.
In that respect they resemble electrodynamic waves, and, as noted in S14, the Lagrangian
(A8) is in fact closely analogous to the Lagrangian for classical electrodynamics. See, for
example, Landau & Lifshitz (1975, pp. 67-69). In this analogy, Γi corresponds to the
charge on the particle located at xi(t). In fact, the only difference between (A8) and the
Lagrangian for classical electrodynamics in two space dimensions is that (A8) contains
no term analogous to ∫

mc ds, (A9)

where m is the mass of the electron, c is the speed of light, and ds is the differential of
proper time.

The vector (−ψ,A,B) is not unique; to it we may add a vector (∂t, ∂x, ∂y)λ(x, t)
without affecting (A3). Thus we are free to add a gauge condition. S14 adopted the
Lorentz gauge. In the present paper, we choose the Coulomb gauge,

Ax +By = 0. (A10)

Then

(A,B) = (γy, x− γx) (A11)

for some γ. The x-term in (A11) just separates out the mean depth. Substituting (A11)
into (A4)-(A6), we obtain (2.8)-(2.10). Substituting (A11) into (A7) we obtain (2.18)
with f0 = 0. The choice of the Coulomb gauge shifts the emphasis from the momentum
equations to the vorticity and divergence equations.

The introduction of nonvanishing coordinate system rotation is easy at any stage of
the development. However, f0 6= 0 precipitates a choice between physically equivalent
formulations of the dynamics. S14 introduced charges as lumps of potential vorticity. In
the present paper the charges represent lumps of APV. These two approaches are equally
valid, but if the former is chosen, then coordinate system rotation enters as a background
medium with a uniform electric charge. The inertia-gravity waves become gravity waves
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that continually interact with the background charge. This proves to be a clumsy way of
looking at inertia-gravity waves.

Because no term like (A9) appears in (A7), (2.16), which is analogous to the Lorenz
force law for the i-th charged particle,

miẍi = qi (E + ẋi ×B) , (A12)

reduces to the analogue of

0 = E + ẋi ×B, (A13)

in which the electric force cancels the magnetic force. That is, (2.16) lacks the acceleration
term ẍi because point vortices, unlike electrons, are massless.

In overall summary, fluid dynamics is more complicated than electrodynamics in that
the fluid waves interact with each other, even in the absence of charge (i.e. vorticity).
However, electrodynamics is more complicated than fluid dynamics in that electrons,
unlike point vortices, have mass.

The Lagrangians given in the present paper are believed to be new. They differ from
the more conventional Lagrangians for a perfect fluid, which typically depend upon la-
beled fluid particles or upon a set of Clebsch potentials. See, for example, Salmon (1998,
Chapter 7). Given the analogy between fluid dynamics and classical electrodynamics de-
veloped in the present paper, one could ask whether electrodynamics has a variational
principle like the conventional variational principle of fluid dynamics, that is, solely in
terms of the labeled locations of charged particles, and not involving the electromagnetic
potentials at all. The answer, of course, is yes. It is the Fokker action principle discussed
in the famous paper by Wheeler & Feynman (1949).

Appendix B. Agreement with the result of Wagner and Young
In this appendix we show that our (7.35) agrees with WY’s (7.36). WY work in Carte-

sian coordinates. In Cartesian coordinates, the linear wave dynamics are

ξtt − f0ηt = −px, (B1)

ηtt + f0ξt = −py, (B2)

pz = b, (A3)

bt +N2
0 ζt = 0, (B4)

ξx + ηy + ζz = 0, (B5)

where p is the pressure and b is the buoyancy. If we define

p = B′, (B6)

ζ = −N−20 B′z, (B7)

b = B′z, (B8)

then (7.4)-(7.6) are formally identical to (B1)-(B5). (We can ignore the difference between
the derivatives in the two coordinate systems; this difference is negligible at the order of
qw.) Directly from (B1)-(B5), WY demonstrate that

〈ξ3 · ∇3p〉z = −2N2
0 〈ξ3 · ∇3ζ +

1

2
ζ2∂z lnN2

0 〉, (B9)

where ξ3 = (ξ, η, ζ) and ∇3 = (∂x, ∂y, ∂z). (This is their equation (A10).) It follows from
(B7) and (B9) that

〈ξ · ∇B′〉z = −2N2
0 〈ξ · ∇ζ〉. (B10)
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The linear dynamics (7.4)-(7.6) or (B1)-(B5) imply

(ηx − ξy)t = −f0(ξx + ηy). (B11)

It follows from (B11) that

∇ · 〈(ηx − ξy)ξt〉 = f0∇ · 〈(ξx + ηy)ξ〉. (B12)

Substituting (B10) and (B12) into (7.35) we obtain

qw = 〈J(ξt, ξ)〉+ 〈J(ηt, η)〉+ f0∇ · 〈(ξx + ηy)ξ〉+ f0〈ξ · ∇ζ〉z. (B13)

Using (B5) it is straightforward to show that (B13) is equivalent to WY’s result (7.36).
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