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ABSTRACT

The author shows that a systematic application of thickness-weighted averaging to the Boussinesq equa-

tions of motion results in averaged equations of motion written entirely in terms of the thickness-weighted

velocity; that is, the unweighted average velocity and the eddy-induced velocity do not appear in the averaged

equations of motion. This thickness-weighted average (TWA) formulation is identical to the unaveraged

equations, apart from eddy forcing by the divergence of three-dimensional Eliassen–Palm (EP) vectors in the

two horizontal momentum equations. These EP vectors are second order in eddy amplitude and, moreover,

the EP divergences can be expressed in terms of the eddy flux of the Rossby–Ertel potential vorticity derived

from the TWA equations of motion. That is, there is a fully nonlinear and three-dimensional generalization of

the one- and two-dimensional identities found by Taylor and Bretherton. The only assumption required to

obtain this exact TWA formulation is that the buoyancy field is stacked vertically; that is, that the buoyancy

frequency is never zero. Thus, the TWA formulation applies to nonrotating stably stratified turbulent flows, as

well as to large-scale rapidly rotating flows. Though the TWA formulation is obtained by working on the

equations of motion in buoyancy coordinates, the averaged equations of motion can then be translated into

Cartesian coordinates, which is the most useful representation for many purposes.

1. Introduction

After averaging over 10-m scales, the stratification of

the ocean is strongly statically stable and the circulation

is nearly adiabatic. Physical oceanographers have there-

fore argued that mesoscale eddies mostly flux buoyancy

and passive scalars along (but not through) mean buoy-

ancy surfaces. This is equivalent to saying that the eddy

transport of buoyancy is represented as an eddy-induced

(or bolus) velocity (Rhines 1982; Gent and McWilliams

1990; Gent et al. 1995; McDougall and McIntosh 1996,

2001; Treguier et al. 1997; Griffies 1998; Greatbatch 1998;

Plumb and Ferrari 2005). The sum of the eddy-induced

velocity and the mean velocity is the residual velocity.

It is the residual velocity that effectively advects large-

scale tracers. A main preoccupation of ocean modelers

in the 20 years since Gent and McWilliams (1990) has

been devising and testing parameterizations expressing

the eddy-induced velocity in terms of the large-scale

density field (e.g., Killworth 1997; Visbeck et al. 1997;

Aiki et al. 2004; Cessi 2008; Ferrari et al. 2010).

An alternative to parameterization of the eddy-

induced velocity is to formulate the large-scale ocean-

circulation problem completely in terms of the residual

velocity: that is, by formulating a residual-mean mo-

mentum equation. If one can use the residual velocity

as a prognostic variable and abolish mention of the eddy-

induced velocity and the mean velocity, then parameter-

ization in the buoyancy equation is unnecessary. Instead,

the parameterization problem is moved to the momen-

tum equations, where it belongs.

This prospect motivated Ferreira and Marshall (2006)

to pursue a formulation of the large-scale averaged equa-

tions of motion using the residual-mean velocity instead

of the mean velocity and the eddy-induced velocity.

These authors work in Cartesian coordinates using the

transformed Eulerian mean (TEM) introduced by Andrews

and McIntyre (1976) and the vector streamfunction of

Treguier et al. (1997). To cast the equations of motion

entirely in terms of the residual velocity, Ferreira and

Marshall use a number of idealizations and approxima-

tions (such as small Rossby number) and parameterize

eddies in the momentum equation as vertical viscosity

(e.g., Rhines and Young 1982; Greatbatch and Lamb

1990; Greatbatch 1998). There are conceptual advantages

to divorcing the momentum-equation parameterization
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problem from the approximations employed by Ferreira

and Marshall to derive a residual-mean system. Finalizing

the divorce by systematically deriving a totally residual-

mean formulation of the Boussinesq primitive equations

is the goal of this article.

The key step is averaging the equations of motion

in buoyancy1 coordinates, using an average weighted

by the ‘‘isopycnal thickness.’’ We refer to this as the

thickness-weighted average (TWA) formulation. The re-

sulting exact description assumes neither small-isopycnal

slope, rapid rotation, weak eddies, nor small diabatic ef-

fects. For example, the TWA formulation applies equally

well to nonrotating fluids, provided only that the strati-

fication is stable.

With hindsight, some of the ingredients in the TWA

formulation (e.g., the definitions of bY and wY below) are

already contained in de Szoeke and Bennett (1993),

Smith (1999), and Greatbatch and McDougall (2003). A

main point of de Szoeke and Bennett is that the Osborn–

Cox relation between diabatic density flux and molec-

ular dissipation actually provides the diapycnal (rather

than vertical) flux of density (see also Winters and

D’Asaro 1996). This is a second potent reason for using

the TWA formulation.

In section 2, we review the kinematic problem of

transforming from Cartesian coordinates (x, y, z, t) to

buoyancy coordinates (~x, ~y, ~b, ~t ). In this framework the

depth of a buoyancy surface, z 5 z(~x, ~y, ~b, ~t ), is an in-

dependent variable and

s 5
def

z ~b (1)

is the isopycnal ‘‘thickness.’’ Some new formulas pro-

viding the b-coordinate representation of gradient,

divergence, and curl are obtained: (53) is particularly

useful. In section 3, we review the thickness-weighted

average, which is used to define the horizontal compo-

nents of the residual velocity as

(û, ŷ) 5
def

(su, sy)/s (2)

(Andrews 1983; de Szoeke and Bennett 1993). The over-

bar above denotes an ensemble average in buoyancy

coordinates over realizations of the eddies. The third

component of the three-dimensional incompressible re-

sidual velocity uY is not the thickness-weighted average ŵ:

instead, using the standard Cartesian basis vectors (i, j, k),

the nondivergent residual velocity is uY 5 ûi 1 ŷj 1 wYk;

the vertical component wY is defined in terms of the av-

erage depth of an isopycnal surface z(~x, ~y, ~b, ~t ) by (73).

The ‘‘averaging identities’’ (72), (80), and (83) are key

results in section 3.

Sections 5 and 6 turn to dynamics by starting with the

hydrostatic equations of motion, written in b coordi-

nates. After a thickness-weighted average, the equations

of motion are transformed into Cartesian coordinates,

(x, y, z, t). In the adiabatic case, this results in the Car-

tesian coordinate TWA system:

ût 1 ûûx 1 ŷûy 1 wYûz 2 f ŷ 1 pY
x 1 $ � Eu 5 0, (3)

ŷt 1 ûŷx 1 ŷŷy 1 wYŷz 1 f û 1 pY
y 1 $ � Ey 5 0, (4)

pY
z 5 bY, (5)

ûx 1 ŷy 1 wY
z 5 0, (6)

bY
t 1 ûbY

x 1 ŷbY
y 1 wYbY

z 5 0. (7)

The variables pY, bY, and wY are defined in terms of the

mean depth of buoyancy surface, z(~x, ~y, b, ~t ) [e.g., as in

(59) and (73)]. The field bY(x, y, z, t) is equal to the value

of the buoyancy surface whose average depth is z.

The eddy forcing of the TWA system above is con-

fined to the horizontal momentum equations and is via

the divergence of the three-dimensional Eliassen–Palm

(EP) vectors Eu and Ey, defined in (124) and (125). These

EP vectors are second-order in eddy amplitude and there

is a three-dimensional generalization of Andrews’s (1983)

finite-amplitude zonal-mean EP theorem.

If the superscripts ^ and Y are dropped, then, apart

from the EP divergences $ � Eu and $ � Ey, the TWA

system (3)–(7) is identical to the primitive equations.

Thus, the eddy parameterization problem devolves to

relating the EP divergences to residual-mean quantities

so that (3)–(7) is closed. Parameterization is not a main

focus of this article. However, an important clue is pro-

vided by the relation between the divergence of the EP

vectors and the eddy flux of the relevant form of Rossby–

Ertel potential vorticity (PV), which is

PY 5 ûzbY
y 2 ŷzbY

x 1 ( f 1 ŷx 2 ûy)bY
z. (8)

Specifically, in the adiabatic case

PY
t 1 ûPY

x 1 ŷPY
y 1 wYPY

z 1 $ � FY 5 0, (9)

where the eddy PV flux is

1 We use the Boussinesq approximation with a linear equation

of state. The buoyancy b is defined in terms of the density r as

b 5
def

g(r
0

2 r)/r
0
, where r0 is the constant bulk density of the

ocean. Thus, buoyancy coordinates are essentially the same as

isopycnal coordinates.
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FY 5 (bY
zi 2 bY

xk)$ � Ey 2 (bY
zj 2 bY

yk)$ � Eu. (10)

Notice that FY �$bY 5 0 so that the eddy PV flux FY lies in

a bY surface. Taking the dot product of FY with i and j

expresses the EP divergences as components of the PV

flux; thus one can write the horizontal momentum equa-

tions (3) and (4) as

ût 1 ûûx 1 ŷûy 1 wYûz 2 f ŷ 1 pY
x 2 FY�j/bY

z 5 0

(11)

and

ŷt 1 ûŷx 1 ŷ ŷy 1 wYŷz 1 f û 1 pY
y 1 FY � i/bY

z 5 0.

(12)

The results in (10)–(12) provide a three-dimensional and

fully nonlinear generalization of the identities discov-

ered by Taylor (1915) and Bretherton (1966); for a his-

torical review,2 see Dritschel and McIntyre (2008).

Earlier three-dimensional generalizations of EP fluxes

also introduce two vectors analogous to Eu and Ey above.

These three-dimensional EP formulations include the

quasigeostrophic approach of Plumb (1986), the thickness-

weighted average approach of Lee and Leach (1996),

and the TEM-based approach of Gent and McWilliams

(1996). The system in (3)–(7) is simpler and more exact

than these antecedents—simpler because in the TWA

formulation there is only one velocity uY. The main thrust

of Gent and McWilliams (1996), Lee and Leach (1996),

and Plumb and Ferrari (2005) is to advect the unweighted

average velocity (i.e., u) by the residual velocity uY. By

contrast, in (3)–(7) the residual velocity is advected by

the residual velocity and the unweighted mean velocity

does not appear.

2. Buoyancy coordinates: Kinematics

The main results in this work are obtained by trans-

forming the equations of motion to buoyancy coordinates,

averaging in buoyancy coordinates, and then moving

back to Cartesian coordinates. An alternative formula-

tion, avoiding the intermediate introduction of buoyancy

coordinates, is provided by Jacobson and Aiki (2006).

Although the transformation of the equations of mo-

tion to buoyancy coordinates is standard (e.g., Starr 1945;

de Szoeke and Bennett 1993; Griffies 2004), the TWA

formulation in section 5 requires some results that go

beyond the isopycnic formalism used by earlier authors.

To systematically introduce this material, we begin by

reviewing the transition from Cartesian coordinates to

buoyancy coordinates. The key new result needed in

section 5 is contained in the material surrounding Eqs.

(52)–(54).

A point in space is located with x 5 xi 1 yj 1 zk where

i, j, and k are the usual unit vectors aligned with right-

handed Cartesian coordinates. Using this basis, the ve-

locity of a fluid can be represented as

u 5 ui 1 yj 1 wk. (13)

Within the Boussinesq approximation

$ � u 5 0, (14)

where $� is the three-dimensional coordinate-invariant

divergence operator.

It is convenient to write the density as r 5 r0(1 2 g21b),

where b(x, t) is the buoyancy. We suppose that b is al-

most materially conserved,

bt 1 ubx 1 yby 1 wbz 5 -. (15)

The right of (15) represents small diabatic effects: for

example, for diffusion, - 5 k=2b. It is instructive to

consider the coevolution of a passive scalar c(x, t) sat-

isfying

ct 1 ucx 1 ycy 1 wcz 5 g. (16)

On the right of (16), g denotes diabatic terms.

An essential assumption is that the buoyancy b(x, t)

remains statically stable and ‘‘stacked’’; that is, there is

a monotonic relation between b and z. This assumption

requires the ‘‘double averaging’’ procedure described

by de Szoeke and Bennett (1993): the stacked field

b(x, t) used here is obtained by first averaging the exact

buoyancy field over scales of a few meters so that tran-

sient small-scale inversions are eliminated. In section 5,

we further assume that after this averaging the dynamics

is hydrostatic.

If there is a monotonic relation between b and z, then

one can change coordinates from (x, y, z, t) to (~x, ~y, ~b, ~t ),

where

~x 5 x, (17)

~y 5 y, (18)

~b 5 b(x, y, z, t), (19)

~t 5 t. (20)

2 Dritschel and McIntyre (2008) refer to results like (10) as

‘‘Taylor identities.’’ In my opinion, Bretherton’s two-dimensional

quasigeostrophic generalization deserves recognition alongside the

one-dimensional identity of Taylor.
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The superscript tilde distinguishes the coordinate labels

(~x, ~y, ~b) from fields in physical space. In particular, (19)

identifies the particular buoyancy surface labeled by ~b.

In the partial derivatives ›~x, ›~y, and ›~t below, the tilde

reminds one that the derivative is ‘‘at constant b.’’

The notation ~b helps one recognize that the scalar

field b(x, t) is a physical quantity whose isopleths serve

as coordinate surfaces. We will be using a curvilinear,

nonorthogonal coordinate system (~x, ~y, ~b, ~t), and ~b sur-

faces happen to coincide with the physical isopycnals.

Buoyancy surfaces are geometric objects existing in-

dependently of any coordinate system and, therefore,
~b surfaces are quite different from surfaces of constant
~x and ~y. In fact, buoyancy is being described with two

different functional representations. One is the scalar

field b(x, t) whose arguments are tied to the Cartesian

coordinate system x 5 xi 1 yj 1 zk. The other is a cur-

vilinear representation, using a function B(~x, ~y, ~b, t) with

the ‘‘trivial’’ form B(~x, ~y, ~b, t) 5 ~b (trivial mathematically

though not conceptually).

The equations of motion are rewritten in terms of

(~x, ~y, ~b, ~t) using the rules

›x 5 ›~x 1 bx›~b, (21)

›y 5 ›~y 1 by›~b, (22)

›z 5 bz›~b, (23)

›t 5 ›~t 1 bt› ~b. (24)

In buoyancy coordinates the depth of a buoyancy

surface, z(~x, ~y, ~b, ~t ), is an independent variable. The no-

tation z distinguishes the function z(~x, ~y, ~b, ~t ) from the

value of the function at a particular point in density co-

ordinates. Thus, we write

z 5 z(~x, ~y, ~b, ~t ) (25)

rather than z 5 z(~x, ~y, ~b, ~t ): in the latter expression one

must hold in mind that z has a different meaning on the

two sides of the equation and this is painful at around

(60).

The Jacobian of the transformation from (x, y, z) to

(~x, ~y, ~b) is

s(~x, ~y, ~b, ~t ) 5
def

z ~b (26)

5 1/bz, (27)

where (27) is obtained by applying the differential

operator in (23) to z. Thus, the element of volume is

d3x 5 dx dy dz 5 s d~x d~y d ~b. The assumption of a stacked

buoyancy field ensures that the Jacobian s is nonzero.

We refer to s as the thickness. The important relations,

z~x 5 2sbx, z~y 5 2sby, and z~t 5 2sbt, (28)

are obtained by applying the differential operators in

(21)–(24) to z. Using (28), one can alternatively write

the derivatives in (21)–(24) as

›x 5 ›~x 2 z~xs21›~b, (29)

›y 5 ›~y 2 z~ys21›~b, (30)

›z 5 s21› ~b, (31)

and

›t 5 ›~t 2 z~t s21› ~b. (32)

Isolating w from (15) and using (29)–(32), one has

w 5 z~t 1 uz~x 1 yz~y 1 -z ~b. (33)

Using (29)–(33), the convective derivative,

D

Dt
5
def

›t 1 u›x 1 y›y 1 w›z, (34)

is transformed to buoyancy coordinates as

D

Dt
5 ›~t 1 u›~x 1 y›~y 1 -› ~b. (35)

Thus, the passive scalar Eq. (16) becomes

c~t 1 uc~x 1 yc~y 1 -c ~b 5 g (36)

The diabatic term - is equivalent to a velocity through

buoyancy surfaces.

Taking a z derivative of (33), using $ � u 5 0 and the

rules in (29)–(32), we deduce that

s~t 1 (su)~x 1 (sy)~y 1 (s-) ~b 5 0. (37)

The thickness equation (37) is equivalent to mass con-

servation in buoyancy coordinates.

a. Basis vectors

To this point, the development of buoyancy coordi-

nates is broadly familiar to physical oceanographers and

meteorologists (Starr 1945; de Szoeke and Bennett 1993;

Griffies 2004). However, the full power of the buoyancy

coordinates is not fully exploited unless one also under-

stands how vectors and coordinate-invariant differential

MAY 2012 Y O U N G 695



operators $�, $3, and the Laplacian =2 are represented.

To accomplish this we use the most elementary aspects

of tensor analysis. Thus, we consider the nonorthogonal

set of basis vectors

e1 5
def

i, e2 5
def

j, e3 5
def

$b (38)

(e.g., Simmonds 1982). Above, e1 and e2 are the usual

Cartesian unit vectors, while e3 is normal to a buoyancy

surface. Notice that (e1 3 e2) � e3 5 bz 5 s21.

In parallel with e j one can also introduce the dual

basis vectors

e1 5
def

se2 3 e3 5 i 1 z~xk, (39)

e2 5
def

se3 3 e1 5 j 1 z~yk, (40)

e3 5
def

se1 3 e2 5 sk. (41)

The vectors e1 and e2 are tangent to a buoyancy surface,

and thus a linear combination of e1 and e2 is a vector

‘‘lying in the buoyancy surface.’’ The triple product of

this basis set is (e1 3 e2) � e3 5 s, which is the reciprocal

of the triple product (e1 3 e2) � e3. The set (e1, e2, e3) is

‘‘bi-orthogonal’’ to (e1, e2, e3) in the sense that

ei � e
j 5 d

j
i , (42)

where di
j is the Kronecker d.

The differential operators ›~x, ›~y, and › ~b on the right of

(29)–(32) can be written as directional derivatives along

the ej-basis vectors:

›~x 5 e1 � $, ›~y 5 e2 � $, ›~b 5 e3 � $. (43)

It turns out that the nonorthogonal set ej provides the

most useful b-coordinate basis for many purposes.

b. Three representations of a vector field

An arbitrary vector field, q(x, t) for example, can be

expanded in three different ways:

q 5 qi 1 rj 1 sk, (44)

5 q1e1 1 q2e2 1 q3e3, (45)

5 q1e1 1 q2e2 1 q3e3. (46)

In tensor analysis, qj are referred to as the contravariant

components of q and qj are the covariant components.

The component of q along a basis vector is extracted as

qj 5 ej � q and qj 5 e j � q. (47)

Thus, q can be written in terms of its Cartesian compo-

nents q, r, and s as

q 5 q|{z}
5q1

e1 1 r|{z}
5q2

e2 1 s21(s 2 z~xq 2 z~yr)e3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5q3

(48)

or as

q 5 (q 1 sz~x)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
5q

1

e1 1 (r 1 sz~y)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
5q

2

e2 1 ss|{z}
5q

3

e3. (49)

An important result follows from the special case q 5 u:

using the thickness equation (37), the contravariant rep-

resentation of u is

u 5 ue1 1 ye2 1 s21(z~t 1 -z ~b)e3. (50)

The vectors e1 and e2, defined in (39) and (40), are tan-

gent to a buoyancy surface. Thus the first two terms on

the right of (50) provide the part of u that ‘‘lies in a

buoyancy surface.’’ The functions u and y do double

duty: u and y provide the components of u along the

horizontal Cartesian directions i and j and also along the

in-b-surface vectors e1 and e2. If the flow is steady

(z~t 5 0) and adiabatic (- 5 0), then the final term in (50)

is zero and u lies in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)

or f (~x, ~y, ~b, ~t ). In Cartesian coordinates, the gradient is

$f 5 fxi 1 fyj 1 fzk. Using (38) and the definition of

the basis e j in (39)–(41), one has the natural covariant

representation of the gradient

$f (~x, ~y, ~b, ~t ) 5 f~x$~x 1 f~y$~y 1 f ~b$b,

5 f~xe1 1 f~ye2 1 f ~be3. (51)

Turning to the divergence, if a vector field q is pre-

sented in the ej basis as

q 5 q1e1 1 q2e2 1 q3e3, (52)

then the divergence is

$ � q 5 s21(sq1)~x 1 s21(sq2)~y 1 s21(sq3)~b. (53)

This very handy formula can be verified by noting that

s$ � ej 5 $s � ej and applying standard vector identities

to (52). It is instructive to calculate the divergence of u

in (50) using (53) to recover (37).
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Later we will crucially need the inverse of (53): the

pattern l~x 1 m~y 1 n ~b signals the introduction3 of a vec-

tor field s21(le1 1 me2 1 ne3) so that

l~x 1 m~y 1 n ~b 5 s$ � s21(le1 1 me2 1 ne3). (54)

There are oversights in the oceanographic and meteo-

rological literature made by claiming that l~x 1 m~y 1 n ~b is

the divergence of a vector (l, m, n). This is dangerous

because the basis in which the vector (l, m, n) is ex-

pressed is not stated (the Cartesian basis is implied) and

because the various factors of s in the correct expression

(54) are easily overlooked. Further buoyancy coordinate

relations, such as expressions for the curl and Laplacian,

are in the appendix.

3. The kinematics of averaging

Although the thickness-weighted average is familiar,

earlier works have not exhaustively exploited this pro-

cedure (Andrews 1983; Gent et al. 1995; Lee and Leach

1996; Treguier et al. 1997; Greatbatch and McDougall

2003). Thus, in this section we review the thickness-

weighted average and obtain some new results needed in

section 5.

The average of a field u(~x, ~y, ~b, ~t ) is denoted by

u(~x, ~y, ~b, ~t ). We insist that the average is a linear pro-

jection operator. This means that

u 5 u (55)

and

uf 5 uf. (56)

We also require that the average commutes with de-

rivatives with respect to (~x, ~y, ~b, ~t ). For example,

›~xu 5 ›~xu and ›~t u 5 ›~t u, etc. (57)

It is safest to think of this overbar as an ensemble av-

erage: space and time filters will usually only approxi-

mately satisfy the three essential conditions in (55)–(57)

(Davis 1994).

The averaging operation introduced above is con-

ducted in buoyancy coordinates. For example, to calcu-

late the average of buoyancy b(x, t), we write buoyancy

in buoyancy coordinates, as in (19), and therefore

b(x, t) 5 ~b 5 ~b 5 b(x, t). (58)

Thus, buoyancy itself is unaffected by averaging. This

emphasizes that the average of a field represented in

buoyancy coordinates is not equal to the average of the

same field represented in Cartesian coordinates (Smith

1999; Jacobson and Aiki 2006). A most important mean

field in the TWA formulation is the mean depth of an

isopycnal, z(~x, ~y, ~b, ~t), and s 5 z ~b is the mean thickness.

a. Returning to Cartesian coordinates

Although the average of u is defined using the buoy-

ancy coordinate representation of u, given u(~x, ~y, ~b, t)

one can return to the Cartesian representation. de

Szoeke and Bennett (1993) make this transition by in-

verting the relation z 5 z(~x, ~y, ~b, ~t ) to obtain a field b 5

bY(x, y, z, t). In other words,

~b 5 bY(x, y, z(~x, ~y, ~b, ~t ), t) (59)

and

z 5 z(~x, ~y, bY(x, y, z, t), ~t ). (60)

It is bY that serves as the buoyancy variable in the TWA

formulation.

To understand bY, consider an Eulerian observer E at

a fixed position x 5 xi 1 yj 1 zk. Here E is always at the

mean depth of some buoyancy surface, and from (60)

that surface is ~b 5 bY(x, y, z, t).

The analog of (27) is

s 5 z ~b 5 1/bY
z. (61)

To prove (61), one simply takes the z derivative of (60).

Likewise, one can verify that results such as (28) apply

to averaged variables provided that z and s are replaced

by z and s and b is replaced by bY.

With the exception of the passive scalar equation (16),

all important results from section 2 can be averaged

simply by appropriately decorating the variables. That

is, we are not troubled by eddy correlations until we

consider the averaged passive-scalar equation in (89)

below.

For example, the vectors ej are defined by averaging ej

in (39)–(41),

e1 5 i 1 z~xk 5 i 2 bY
xk /bY

z, (62)

e2 5 j 1 z~yk 5 j 2 bY
yk /bY

z, (63)

e3 5 sk 5 k /bY
z. (64)

3 The solution of the inverse problem is not unique: one can add

an arbitrary solenoidal vector field to s21(le1 1 me2 1 ne3) without

changing the divergence. Thus, (54) involves a gauge choice.
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There are no eddy correlations introduced by averaging

the e1 basis vectors in b coordinates. Note too that the

vectors e
1

and e
2

in (62) and (63) are tangent to bY sur-

faces; that is, after averaging bY(x, t) plays the role of

b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted

average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity

components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the

residual velocities.

One must be sensitively aware that the thickness-

weighted average caret does not satisfy property (57):

that is, d›
x
u 6¼ ›

x
û. Because û

x
is ambiguous, we adopt

the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and

then the derivative.

The advantage of the thickness-weighted average is

immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-

composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for

all other variables the de Szoeke and Bennett (1993)

thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.

Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),

results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual

velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In

fact, wY is not the average of any field.5 Using wY, the

three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ � uY 5 0 using either $� in Car-

tesian coordinates or more readily with the buoyancy–

coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-

tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-

vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates

with u and b satisfying (14) and (15). One then transforms

to b coordinates, takes the thickness-weighted average,

and then moves back to z coordinates. When the dust

settles, the variables in z coordinates are uY(x, y, z, t)

and bY(x, y, z, t), satisfying the analogs of (14) and (15):

namely,

$ � uY 5 0 (78)

and

bY
t 1 uY � $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (z
t
5 0), then

from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that

play in the mean-field equations.
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Using the correct variables (û, ŷ, vY, bY, -̂, z, e
j
, and s),

the TWA equations are identical in form to the un-

averaged equations from section 2.

e. Residual-average identities

This identity,

s
Du

Dt
5 s

DYû

Dt
1 $ � Ju

 !
, (80)

with the eddy flux of u,

Ju 5
def du0u0e1 1 dy0u0e2 1 d-0u0e3, (81)

is key in the TWA formulation.

The first step in proving (80) is to use the unaveraged

thickness equation (37) to write

s
Du

Dt
5 (su)~t 1 (suu)~x 1 (syu)~y 1 (s-u)~b. (82)

Averaging the expression above results in (sû)~t 1 � � � on

the right. One uses (72) to handle the eddy correlations

such as suu and (53) to recognize the divergence of the

three-dimensional flux vector Ju in (81). Then, the av-

eraged thickness equation (68) is used to maneuver s

back outside of the derivatives to finally obtain (80).

A second TWA identity comes from considering the

divergence of a vector with contravariant expansion q 5

qjej. Using the divergence formula in (53), one has

s$ � q 5 s$ � bqjej: (83)

f. Comments on averaging vector fields
in buoyancy coordinates

An unaveraged vector field can be represented in

three equivalent forms, for example, as in the discussion

surrounding (44)–(49). One might compute the thickness-

weighted average of q using the representation (44) as

simply

q̂ 5 q̂i 1 r̂j 1 ŝk: (84)

But, then $ � q 5 0 does not guarantee that $ � q̂ 5 0. This

problem is acute when q is the velocity or a related field,

such as the bolus velocity (e.g., see the discussion in

section 10 of McDougall and McIntosh 2001).

In all respects, the contravariant representation

q 5 qjej (85)

is preferable. One cannot, of course, directly average (85)

because the basis vectors ej are fluctuating. However,

with the representation (85), the TWA identity (83)

shows that the vector

qY 5
def bqjej (86)

maintains the zero-divergence property of the unaver-

aged q.

These considerations are illustrated by an example

drawn from McDougall and McIntosh (2001): the re-

sidual velocities defined in (66) can be broken apart as

(û, ŷ) 5 (u, y) 1 s21(u9s9 , y9s9 ),|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5
def

(u
B

,y
B

)

(87)

where uB and yB are the components of the vectorial

bolus velocity,

uB 5
def

uBe1 1 yBe2. (88)

Following the discussion of McDougall and McIntosh

(2001), uB defined above is divergent and tangent to a bY

surface (i.e., uB has no diapycnal component). However,

the main thrust of this article is that the decomposition of

the residual velocity uY into a mean part and a bolus term

is unnecessary and even confusing. For example, although

uY is nondivergent, uB and uY 2 uB are both divergent.

There is no clear advantage in using this decomposition of

uY: therefore we will have no more to do with uB.

g. The passive scalar

Applying (80) to the passive-scalar equation (16), one has

DYĉ

Dt
1 $ � Jc 5 ĝ, (89)

where Jc is defined via (81). If the flow is adiabatic

(- 5 0), then the passive-scalar eddy flux Jc is a linear

combination of e1 and e2, and therefore the eddy flux Jc

lies in a bY surface. The averaged passive-scalar equation

(89) is written in terms of the coordinate-independent

differential operators DY/Dt and $�, and (89) thus can

easily be interpreted in either z or b coordinates.

One can show using earlier formulas that the passive-

scalar variance cc02 satisfies

1

2

DYcc02

Dt
1 Jc � $ĉ 1 $ � Jc

3 5 dc0g0, (90)

where the third-order flux is

Jc
3 5

def
u0

1

2

b
c02e1 1 y0

1

2

b
c02e2 1 -0

1

2

b
c02e3. (91)

Osborn–Cox arguments, based on the assumption of a

balance between variance production by Jc � $ĉ and

dissipation by dc0g0, indicate that Jc tends to be down $ĉ.
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h. Comments on the TWA passive-scalar equation

The TWA passive-scalar equation in (89) is not in the

standard form found in earlier works (e.g., Gent et al.

1995; Treguier et al. 1997; Smith 1999; McDougall and

McIntosh 2001) and in textbooks (Griffies 2004). To

show the equivalence of (89) to the standard construc-

tion we limit attention to totally adiabatic flow (i.e.,

- 5 g 5 0) and use the averaged thickness equation (68)

to write (89) as

(sĉ)~t 1 (sûĉ)~x 1 (sŷĉ)~y 1 (sdu0c0)~x 1 (sdy0c0)~y 5 0.

(92)

The standard form introduces the horizontal velocity,

ûH 5
def

ûi 1 ŷj; (93)

the horizontal part of the eddy flux,

Jc
H 5

def du0c0i 1 dy0c0j; (94)

and a horizontal divergence operator, applied at con-

stant b,

$b 5
def

i›~x 1 j›~y. (95)

Using these ‘‘horizontal variables,’’ the averaged passive-

scalar equation (92) is written in the form

(sĉ)~t 1 $b � (sûHĉ 1 sJc
H) 5 0 (96)

(e.g., Griffies 2004). Averaged tracer conservation in the

form (96) has served as the basis of most previous papers

on thickness-weighted averaging. But, the less familiar

averaged conservation law in (89) proves to be crucial in

formulating the TWA momentum equations (where c 5

u and y). Thus, it is instructive to discuss the differences

between (96) and (89). On one level these differences

are notational, but notation is important.

Contemplating (96), Treguier et al. (1997) note the

‘‘curious point’’ that ‘‘vertical motion does not appear

explicitly in the isopycnal formulation,’’ yet advection by

the horizontal compressible velocity û
H

‘‘is equivalent to

three-dimensional advection by a nondivergent velocity

field in a z-coordinate model.’’ One response to this re-

mark is that, if one uses (89), then vertical advection

does appear in the isopycnal formulation via the three-

dimensional residual velocity uY and the three-dimensional

eddy flux Jc. Moreover, there are important advantages

that might lead one to prefer the three-dimensional form in

(89) over the equivalent horizontal form (96).

A main advantage is physical transparency: (96) en-

tices one to conclude that the thickness-weighted tracer

is advected by the horizontal velocity û
H

and that the eddy

flux of thickness-weighted passive scalar is the horizontal

vector Jc
H , which would pierce sloping mean buoyancy

surfaces. Both conclusions are, of course, incorrect for

adiabatic flow. On the other hand, (89) correctly indicates

that the TWA tracer is advected by the full three-

dimensional residual velocity uY and that the relevant

eddy flux is the three-dimensional in-bY-surface vector Jc.

Given the differences between the three-dimensional

vectors uY and Jc and the horizontal projections ûH and

Jc
H , one might wonder how can (96) and (89) be equiv-

alent? The point is that $b� is not a true divergence: there

is no analog of the Gauss theorem6 that associates a di-

vergence $b � J
c
H with the flux of the vector Jc

H through a

control volume. One should recall that the coordinate-

invariant differential operator $� in (89) is defined so that

flux of a vector field through the surface of an infinitesimal

control volume is equal to the product of the divergence

and the volume enclosed. The shape of the enclosing sur-

face is irrelevant (Morse and Feshbach 1953), and the def-

inition of $�makes no reference to any coordinate systems;

that is, $� in (89) is coordinate invariant. This is not the

case for $b� defined by (95). The utility of the divergence

theorem is the main advantage of (89).

In defense of (96), one can argue that two-dimensional

advection is simpler than three-dimensional advection

and that reduction to two dimensions was the point of

introducing b coordinates. But, in the TWA formulation

b coordinates are only a bridge to the ultimate Cartesian

coordinate version of the averaged equations. It is easier

to cross the bridge from (89) than from (96) because the

differential operators in (89) are coordinate invariant.

Finally, the TWA momentum equations in section 6

use the three-dimensional formalism in (89). In section

6, we construct three-dimensional Eliassen–Palm fluxes

that, like uY and Jc, are most naturally expanded in the

basis ej. Thus, a unified formulation encompassing both

passive-scalar and momentum conservation hinges on (89).

4. Boundary conditions

Several authors have discussed the boundary condi-

tions appropriate to TRM variables (Killworth 2001;

McDougall and McIntosh 2001; Aiki and Yamagata

6 In section 6.11.1, Griffies (2004) discusses the transformation of

flux components and differential operators such as $b� in general-

ized vertical coordinates. However, the transformations summa-

rized by Griffies are more simply obtained by working with the

basis ej from the outset.
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2006; Jacobson and Aiki 2006). The formulation in these

earlier papers is framed using the quasi-Stokes stream-

function, which is not a variable used in the TWA for-

mulation. However, the main conclusion is that the

residual velocity should satisfy the same nonpenetration

conditions as the unaveraged velocity7: namely,

uY � n 5 0, (97)

where n is an outward normal to the boundary.

A subtlety is that the z-coordinate TWA equations

are in the same domain as the unaveraged equations,

even though the domain boundary is moving in b co-

ordinates. This is illustrated with a simple kinematic

example: consider the unaveraged velocity field (u, y, w) 5

(0, a cos(x 2 t), 0) and suppose that the domain is 0 ,

z , 1. The buoyancy field

b(x, y, z, t) 5 z 1 G[y 1 a sin(x 2 t)] (98)

is a solution of the adiabatic version (- 5 0) of the

buoyancy equation (15). It follows that the isopycnal

depth is

z(~x, ~y, ~b, ~t ) 5 ~b 2 G[ ~y 1 a sin(~x 2 ~t )], (99)

provided that

G[ ~y 1 a sin(~x 2 ~t )] , ~b , 1 1 G[ ~y 1 a sin(~x 2 ~t )].

(100)

The wavy contours in Fig. 1 show the isopycnal depth z

as a function of buoyancy and time at (x, y) 5 0.

To calculate the average depth z(~x, ~y, ~b, ~t ), one ex-

tends the definition of z beyond the range in (100) as

shown in Fig. 1. This extension is the same as the pre-

scription of Andrews (1983), based on the Lorenz con-

vention, that buoyancy surfaces intersecting the boundary

be continued ‘‘just under the surface.’’

From another perspective, one can imagine a ‘‘semi-

Lagrangian’’ observer (SL) who sits at fixed horizontal

position and moves vertically so as to remain on a target

isopycnal. If SL never reaches the top or the bottom of

the ocean, then SL collects an uninterrupted time series

of depth zSL(t); the time average of zSL(t) is the average

depth of the SL’s target isopycnal. However, if SL’s

vertical motion takes him to either the top or the bottom

of the ocean, then SL is stuck while the target iso-

pycnal is unavailable. This is the ‘‘outcropping problem’’

illustrated in Fig. 1. The Lorenz convention demands that

SL waits at the boundary and continues to record his

constant depth until the target isopycnal reappears at

SL’s horizontal location. The average depth of the target

isopycnal is computed using the entire time series zSL(t),

including the boundary waiting times during which zSL(t)

is constant.

Using the extended z, one can compute the time av-

erage of z(~x, ~y, ~b, ~t ), that is, as a horizontal average

through the field z( ~b, ~t ) in Fig. 1. In this simple example z

can be obtained analytically. However, the expression is

slightly complicated, and instead we show z obtained by

numerical integration in Fig. 2. Notice that 0 , z , 1;

that is, the mean depth is defined on the same interval as

the unaveraged equations.

5. Dynamics in buoyancy coordinates

The Boussinesq primitive equations in z coordinates are

Du

Dt
2 f y 1 px 5 X , (101)

Dy

Dt
1 fu 1 py 5 Y, (102)

pz 5 b, (103)

ux 1 yy 1 wz 5 0, (104)

Db

Dt
5 -, (105)

FIG. 1. The isopycnal depth z( ~b, ~t ) in (99) at (x, y) 5 0 as function

of ~b and ~t. In z coordinates the ocean depth is 0 , z , 1 and z is

extended with the constant value z 5 1 for isopycnals ‘‘above’’ the

sea surface and z 5 0 for isopycnals ‘‘below’’ the bottom.

7 We use the rigid-lid approximation so that the sea surface is z 5

zs, where zs is a constant. Thus, (97) is wY(x, y, zs, t) 5 0.
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where the convective derivative D/Dt is defined in (34).

In the horizontal momentum equations,X and Y denote

adiabatic processes and body forces.

Now we write the equations of motion (101)–(105) in

buoyancy coordinates: for example, using the b-coordinate

representation of the convective derivative in (35). An

important step is introduction of the Montgomery po-

tential,

m(~x, ~y, ~b, ~t ) 5
def

p(x, y, z(~x, ~y, ~b, ~t ), t) 2 ~bz(~x, ~y, ~b, ~t ).

(106)

One can verify that px 5 m~x etc. Then in b coordinates

the equations of motion are

Du

Dt
2 f y 1 m~x 5 X , (107)

Dy

Dt
1 fu 1 m~y 5 Y, (108)

z 1 m ~b 5 0, (109)

s~t 1 (su)~x 1 (sy)~y 1 (-s) ~b 5 0, (110)

where s 5
def

z ~b 5 2m ~b ~b. The convective derivative in b co-

ordinates is given in (35).

a. Rossby–Ertel potential vorticity

One can write the horizontal momentum equations

above as

u~t 1 -u ~b 2 syP 1 m 1
1

2
u2 1

1

2
y2

� �
~x

5 X (111)

and

y~t 1 -y ~b 1 suP 1 m 1
1

2
u2 1

1

2
y2

� �
~y

5 Y, (112)

where the Rossby–Ertel PV is

P 5
def f 1 y~x 2 u~y

s
. (113)

Cross-differentiating to eliminate the Bernoulli terms,

one obtains

(sP)~t 1 (suP 1 -y ~b 2 Y)~x 1 (syP 2 -u ~b 1X)~y 5 0;

(114)

the conservation law above is analogous to the ‘‘ex-

panded’’ adiabatic passive scalar Eq. (92). The remarkable

point is that (114) applies to PV even if the flow is diabatic.

b. The PV impermeability theorem

Haynes and McIntyre (1987, 1990) emphasize that

a main advantage of (114) is that the PV impermeability

theorem is immediate: at fixed ~x and ~y one can integrate

(114) between ~b 5 ~b
1

and ~b 5 ~b
2

and obtain an expres-

sion for the rate of change of the total amount of PV

substance in the layer ~b
1

, ~b , ~b
2
. Since there are no ~b

derivatives in (114), the amount of PV substance in this

buoyancy layer is not changed by flux through either

bounding b surface.

Combining the layer-thickness equation (110) with

(114) and using (53) to recognize a divergence, one ob-

tains the PV conservation equation in the form

DP

Dt
1 $ � G 5 0, (115)

where the diabatic flux in (115) is

G 5
def

2(X i 1 Yj) 3 $b 2 -[$ 3 (ui 1 yj) 1 s21f e3]

(116)

(e.g., Haynes and McIntyre 1990); G can be expanded as

sG 5 2[(Y 2 y ~b-)e1 2 (X 2 u ~b-)e2] 2 s-Pe3.

(117)

With (117) one readily finds G � $b 5 2-P so that G

penetrates b surfaces. In their section 4, Haynes and

McIntyre (1990) explain how this penetration is com-

patible with the PV impermeability theorem.

FIG. 2. The average isopycnal depth ~z( ~b) and the average

thickness s 5 z ~b at (x, y) 5 0 as function of ~b. The function bY is the

inverse of z( ~b) above and is defined on the original domain 0 , z , 1.

In the central part of the domain, aG , ~b , 1 2 aG, the average

depth is obtained from (99) as ~z 5 ~b, and therefore s 5 1.
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6. The TWA equations of motion

We now proceed with averaging the equations of mo-

tion in b coordinates. Following the discussion of kine-

matics in section 3, the average of the thickness equation

(110) is (68). The average of the hydrostatic relation (109)

is just z 5 2 m ~b, with s 5 z ~b 5 2 m ~b ~b.

To average the horizontal momentum equations (107)

and (108), one first multiplies by s. The identity

sm~x 5 2m ~b ~bm~x (118)

5 (zm~x) ~b 1
1

2
z2

� �
~x

(119)

is key in dealing with the pressure gradient. Averaging

(119) and using the mean hydrostatic relation, one has

sm~x 5 sm~x 1 (z9m9~x)~b 1
1

2
z92

� �
~x
. (120)

Dividing (120) by s and using (53) to recognize a diver-

gence results in

s21sm~x 5 m~x 1 $ � s21 1

2
z92e1 1 z9m9~xe3

� �
. (121)

The hydrostatic relation z 1 m ~b 5 0 is used at several

points in the manipulations above and is therefore es-

sential to TWA.

The identity (121) and application of (80) to sDu/Dt

and sDy/Dt results in the TWA momentum equations,

DYû

Dt
2 f ŷ 1 m~x 1 $ � Eu 5 X̂ (122)

and

DYŷ

Dt
1 f û 1 m~y 1 $ � Ey 5 Ŷ. (123)

The convective derivative DY/Dt above is defined in (76),

and the EP vectors Eu and Ey are

Eu 5
def

Ju 1 s21 1

2
z92e1 1 z9m9~xe3

� �
(124)

and

Ey 5
def

Jy 1 s21 1

2
z92e2 1 z9m9~ye3

� �
, (125)

where Ju and Jy are defined via (81). In the adiabatic

case (with - 5 0) the flux vectors Ju and Jy involve only

e
1

and e
2
, and therefore Ju and Jy lie in a bY surface.

Thus, on the right of (124) and (125) only the terms

proportional to e
3

5 sk transport momentum through bY

surfaces. This is the ‘‘inviscid pressure drag’’ identified

by Rhines and Holland (1979), or ‘‘form drag.’’

In de Szoeke and Bennett (1993) and Greatbatch and

McDougall (2003), the thickness-weighted velocity is

advected by the thickness-weighted velocity, and there-

fore these are probably the closest antecedents of the

thickness-weighted momentum equations (122) and

(123). An advantage of the form in (122) and (123) is

that the eddy forcing appears as the divergence of the

three-dimensional Eliassen–Palm flux vectors Eu and Ey.

a. The Rossby–Ertel PV equation

Following the same steps used to derive the unaver-

aged PV equation (115), one finds from the averaged mo-

mentum equations, (122) and (123), as well as from the

averaged thickness equation (68), that

DYPY

Dt
1 $ � FY 1 $ � GY 5 0, (126)

where

PY 5
def f 1 ŷ~x 2 û~y

s
(127)

is a form of the Rossby–Ertel potential vorticity. In (126)

the diabatic terms appear in

sGY 5
def

2[(Ŷ 2 ŷ ~b-̂)e1 2 (X̂ 2 û ~b-̂)e2] 2 s-̂PYe3;

(128)

GY is the analog of the unaveraged G in (117). Also in (126)

FY 5
def

s21($ � Ey)e1 2 s21($ � Eu)e2 (129)

is the eddy flux of PY.

Taking the dot product of (129) with e1 5 i and e2 5 j

expresses the EP divergences in terms of components

of the PV eddy flux FY. Thus, the TWA horizontal mo-

mentum equations can be written as

û~t 1 -̂û ~b 2 sŷPY 1 m 1
1

2
û2 1

1

2
ŷ2

� �
~x
5 X̂ 1 sj � FY

(130)

and

ŷ~t 1 -̂ ŷ ~b 2 sûPY 1 m 1
1

2
û2 1

1

2
ŷ2

� �
~y 5 Ŷ 2 si � FY.

(131)
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b. Comments on the thickness-weighted
Rossby–Ertel PV P̂

Rather than PY, Greatbatch (1998) and Smith (1999)

use the thickness-weighted PV

P̂ 5
f 1 y~x 2 u~y

s
; (132)

P̂ differs in the numerator from PY in (127). Using (80)

and (83) to take the thickness-weighted average of the

Rossby–Ertel PV equation (115), one obtains

DYP̂

Dt
1 $ � JP 1 $ � Y 5 0, (133)

where the eddy flux JP is defined via (81) and the dia-

batic flux is

sY 5
def

2[(Y 2 y ~b-)e1 2 (X 2 u ~b-)e2] 2 sd-Pe3.

(134)

Greatbatch (1998) and Smith (1999) show that P̂ and

the fluctuation P0 are involved in simple conservation

laws. However, in the TWA formulation PY in (126) is

the most useful expression of averaged PV conservation

because the eddy flux FY in (129) is directly related to the

Eliassen–Palm eddy forcing in the TWA momentum

equations and PY contains the residual-mean velocities

rather than the unweighted mean velocities in (132).

c. The TWA formulation in z coordinates

The TWA momentum equations (122) and (123) are

written using the coordinate-invariant differential op-

erators DY/Dt and $�. Thus, with the residual convective

derivative DY/Dt given by (77), it is easy to rewrite (122)

and (123) in Cartesian coordinates. An important step is

taking the inverse of the definition of the Montgomery

potential in (106) using variables appropriate to the

averaged equations. This introduces the field pY defined

by

pY(x, y, z, t) 5
def

m(~x, ~y, bY(x, y, z, t), ~t ) 1 zbY(x, y, z, t).

(135)

One can verify that m~x 5 pY
x, pY

z 5 bY, etc. To translate

(122) and (123) into z coordinates one replaces m~x and

m~y by pY
x and pY

y. The TWA equations of motion, written

in Cartesian coordinates, are then

DYû

Dt
2 f ŷ 1 pY

x 1 $ � Eu 5 X̂ , (136)

DYŷ

Dt
1 f û 1 pY

y 1 $ � Ey 5 Ŷ, (137)

pY
z 5 bY, (138)

ûx 1 ŷy 1 wY
z 5 0, (139)

DYbY

Dt
5 -̂. (140)

The eddy forcing via $ � Eu and $ � Ey is confined to

the horizontal components of the momentum balance in

(136) and (137). Apart from these EP divergences, the

TWA equations in (136)–(140) are identical in form to

the unaveraged equations in (101)–(105).

7. Nonacceleration conditions

We now consider ‘‘nonacceleration conditions,’’ de-

fined as (i) the system is adiabatic (- 5X 5Y5 0); (ii)

the flow is steady; and (iii) the EP divergences are zero,

$ � Eu 5 0 and $ � Ey 5 0. (141)

With conditions (i) and (ii), the TWA thickness equa-

tion (68) is satisfied by the introduction of a ‘‘thickness

streamfunction’’ C(~x, ~y, ~b) so that the in-bY-surface TWA

velocity can be written as

suY 5 2C~ye1 1 C~xe2. (142)

Assumption (iii) implies that the horizontal momentum

equations in (130) and (131) reduce to

2C~xPY 1 m 1
1

2
û2 1

1

2
ŷ2

� �
~x

5 0 (143)

and

2C~yPY 1 m 1
1

2
û2 1

1

2
ŷ2

� �
~y

5 0. (144)

That is, the TWA flow is balanced. It follows from the

Taylor–Bretherton identity in (129) that under non-

acceleration conditions FY 5 0 and PY 5 A(C, ~b), where

A is some function. The latter conclusion is obtained by

cross-differentiating (143) and (144) to eliminate the

Bernoulli function or from the nonacceleration version

of the PV equation in (126).

A partial converse is true: if FY 5 0, then condition (iii)

in (141) follows from the Taylor–Bretherton identity

(129), and the residual velocity uY is balanced. In other

words, if FY 5 0, then nonacceleration conditions prevail

and a steady adiabatic balanced residual flow uY coexists

with a statistically stationary adiabatic eddy field.
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A. Plumb (personal communication, 2011) has noted

that the converse is not true: suppose that the PV flux is

solenoidal with the form

FY 5 $ 3 (f$bY) (145)

5 s21(f~ye1 2 f~xe2). (146)

The PV flux above is in a bY surface and has zero di-

vergence. From the Taylor–Bretherton identity (129),

the EP divergences are

$ � Eu 5 f~x and $ � Ey 5 f~y. (147)

However, this nonzero EP eddy force can be absorbed

into the gradient of the Bernoulli function, so a slightly

modified version of the balance condition in (143) and

(144) prevails:

2C~xPY 1 m 1 f 1
1

2
û2 1

1

2
ŷ2

� �
~x

5 0 (148)

and

2C~yPY 1 m 1 f 1
1

2
û2 1

1

2
ŷ2

� �
~y

5 0: (149)

The Plumb example8 shows that, although the EP di-

vergences are nonzero, the residual velocity in (142)

remains in balance. Thus condition (iii) in (141) is suf-

ficient but not necessary for balance.

The three-dimensional finite amplitude Eliassen–Palm

relation developed here is also subject to a further caveat

emphasized by Andrews (1983); unfortunately, we do not

have here a nonacceleration theorem, analogous to small

amplitude zonal-mean results that a steady adiabatic

wave field must have FY 5 0 (e.g., Andrews and McIntyre

1976; Boyd 1976; Charney and Drazin 1961; Plumb 1986;

Young and Rhines 1980).

8. Conclusions and discussion

The TWA formulation developed in this paper is a

general and exact rewriting of the Boussinesq equations

after averaging in buoyancy coordinates. In addition to

hydrostatic balance, the TWA formulation requires

nonzero bz and the existence of an averaging operation

with the three properties in (55)–(57). These are mild

assumptions, and one might argue that TWA formulation

does not take full advantage of additional simplifications

that are appropriate in large-scale oceanography (e.g.,

geostrophic balance). Nonetheless, it is interesting to see

how far one can proceed without making approximations.

The TWA formulation provides a unified theoretical

framework in which to diagnose eddy–mean flow in-

teractions in ocean models and in which to pose the eddy

parameterization problem. The main strength of TWA is

that only the residual velocity uY features; that is, it is not

necessary to separately consider the mean velocity and

the eddy-induced velocity. This makes the TWA frame-

work an attractive alternative to earlier formulations that

use both mean and eddy-induced velocities as prognostic

variables. In TWA, all tracers—including horizontal

momentum—are subject to the thickness-weighted av-

erage and all tracers are advected by uY.

In the TWA framework, the eddy parameterization

problem is shifted to the horizontal momentum equa-

tions and devolves to expressing the EP divergences in

terms of TWA fields. On large scales the dominant effect

of eddies is vertical transmission of momentum by form

drag, and vertical viscosity is the most obvious param-

eterization (e.g., Rhines and Young 1982; Greatbatch

and Lamb 1990; Greatbatch 1998; Ferreira and Marshall

2006).

One might criticize the TWA formulation on the

grounds that tracers other than buoyancy might be used

to define a quasi-Lagrangian coordinate and a thickness-

weighted average: for example, conservative tempera-

ture, salinity, or oxygen might serve instead. Different

choices of vertical coordinate would lead to a quite dif-

ferent eddy-mean decomposition. Thus, it seems that the

TWA formulation is not unique.

There are several responses to this criticism. First,

buoyancy is the unique tracer that comes closest to satis-

fying the essential requirement that the Jacobian is non-

zero: buoyancy is special because vertical inversions are

dynamically eliminated and are never observed over dis-

tances more than a few meters. On the other hand, tracers

such as salinity and oxygen have large-scale vertical in-

versions that are persistent features of the general circu-

lation of the ocean. These inversions prohibit the use of

these other tracers as generalized vertical coordinates.

Buoyancy is special again because one can argue that

the small level of mechanical energy dissipation in the

ocean implies that interior diapycnal diffusion is weak:

below the mixed layer buoyancy surfaces are almost

impermeable barriers or at least more impermeable

than salinity or oxygen surfaces. This is the basis of the

8 Plumb notes that a specific example of a PV flux with the

structure in (146) is provided by a quasigeostrophic barotropic

Rossby wave propagating along a zonal channel with stream-

function c9 5 siny cos(kx 2 vt). The cross-channel PV flux is zero,

y9q9 5 0, but the along-channel flux is nonzero, u9q9 } sin2y. This

zonal PV flux corresponds to an eddy force in the y-momentum

equation, which can be absorbed into the pressure.
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classical physical oceanographic argument that there is

little or no mixing across buoyancy surfaces, coupled

with significant tracer transport on buoyancy surfaces.

The TWA formulation is a formal expression of this old

intuition.
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APPENDIX

Further Buoyancy–Coordinate Relations

In this appendix we collect some formulas related to

buoyancy coordinates. For example, the basis e j is ex-

pressed in terms of ej by

e1 5 e1 2 z~xs21e3, (A1)

e2 5 e2 2 z~ys21e3, (A2)

e3 5 2z~xs21e1 2 z~ys21e2 1 s22(1 1 z2
~x 1 z2

~y)e3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5$b

.

(A3)

The inverse relation is

e1 5 (1 1 z2
~x)e1 1 z~xz~ye2 1 z~xse3, (A4)

e2 5 z~xz~ye1 1 (1 1 z2
~y)e2 1 z~yse3, (A5)

e3 5 sz~xe1 1 sz~ye2 1 s2e3. (A6)

a. The curl of a vector field

To express the curl of a vector field q in buoyancy

coordinates, one starts with the covariant representation

q 5 q1 e1|{z}
5i

1 q2 e2|{z}
5j

1 q3 e3|{z}
5$b

. (A7)

Then, since $ 3 e j 5 0, the curl of q is

$ 3 q 5 $q1 3 e1 1 $q2 3 e2 1 $q3 3 e3. (A8)

Using (51), the gradients $qj above are written in terms

of the basis e j, resulting in the cross products ei 3 e j.

According to the definitions in (39)–(41), these cross

products result in the dual basis ej so that

s$3q 5 (q3~y 2 q2 ~b)e1 1 (q1 ~b 2 q3~x)e2 1 (q2~x 2 q1~y)e3.

(A9)

Using the expression for the divergence in (53), it is easy

to verify from (A9) that $ � $ 3 q 5 0.

An important application of (A9) is calculation of the

vectorial vorticity featuring in the Rossby–Ertel PV.

This one requires the curl of the horizontal velocity uH 5

ue1 1 ye2, and from (A9) the curl is

$ 3 uH 5 s21[2y ~be1 1 u ~be2 1 (y~x 2 u~y)e3] (A10)

5 2yzi 1 uzj 1 (yx 2 uy)k. (A11)

b. The Laplacian

We express the Laplacian of c(x) in buoyancy co-

ordinates by first writing =2c 5 $ � $c and then using the

earlier results for gradient and divergence and (A1)–(A3).

One finds

s=2c 5 (z ~bc~x 2 z~xc ~b)~x 1 (z ~bc~y 2 z~yc ~b)~y

1 [s21(1 1 z2
~x 1 z2

~y)c ~b 2 z~xc~x 2 z~yc~y] ~b. (A12)

A simple check is that =2z 5 0.
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