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Historical puzzle in meteorology

522 NOTES AND CORRESPONDENCE 

Figure 2. Meridional transport streamfunction in the atmosphere December-February : (a) calculated from analy- 
ses at the European Centre for Medium-Range Weather Forecasts for 1992-95, by averaging in density coordinates 
and remapping to height coordinates using the mean height of density surfaces; (h) residual mean circulation based 
on the atmospheric data used for Fig. 1; (c) as (b) but using data which have been averaged in time to remove 

transient eddies. 
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Figure 1. Eulerian zonal-mean meridional mass-transport streamfunction, in the atmosphere (derived from eight 
years (1986-93) of operational global analyses by the Meteorological Office) and in the Southern Ocean (derived 
from one year of output from the high-resolution FRAM numerical model of the ocean). Dashed lines indicate 
negative values of the streamfunction and dotted lines surfaces of zonally averaged density: (a) in the atmosphere 
averaged over the months December-February; (b) in the atmosphere averaged over the months June-August; (c) 

in the Southern Ocean averaged over a full year. 

Atmosphere Dec-Feb

Eulerian zonal-mean (averaged in longitude)  
meridional velocity at constant pressure:  
thermally indirect midlatitude Ferrel cells,  
increasing pole-to-equator temperature gradient

Zonal-mean meridional velocity at constant 
isentropes (potential temperature), remapped in 
pressure

The thermally indirect cells (Ferrel) disappear in isentropic coordinates 

Karoly, D.J., McIntosh, P.C., Berrisford, P., McDougall, T.J. and Hirst, A.C., 1997. Similarities of the Deacon cell in the Southern Ocean and Ferrel cells in the 
atmosphere. Quarterly Journal of the Royal Meteorological Society, 123(538), pp.519-526.



Two different measures of zonally averaged transport
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Volume transport
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Potential temperature transport

Temperature, salinity, humidity, CO2 transports are also interesting 
(Potential) temperature is special: it is stably stratified, a good vertical coordinate

r · v̄ = 0 @t⇢̄+r · ⇢v = Diabatic terms

The Eulerian flow indicates equatorward heat transport in mid-latitudes 
In isentropic coordinates there is poleward transport
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Look at the QGPV
In QG we have two variables, linearly related 
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We want to know the average, large-scale, slow-time evolution of  ̄ and q̄

+ boundary conditions:

We need to know  ̄, u0q0 and u0b0 on boundaries
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For a zonal average
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Eliassen-Palm fluxes

dashed colors: 

solid contours: ū
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In QG, momentum and buoyancy are: 

Where: is an incompressible velocity

Propagation and breaking of EP fluxes with momentum deposition and jet acceleration
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The transformed eulerian mean - TEM (QG) 
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The residual circulation - TEM (QG) 
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Summary so far

The apparent equatorward heat transport by the Ferrel cells is resolved by including
eddy-transport of (potential) temperature.

The momentum eddy-transport and form-stress maintain the Eulerian Ferrel cells.

TEM accounts for these processes in a simple QG framework: a breakthrough.

In QG, isentropes (potential density or potential temperature) are horizontal, so 
there is little difference between diabatic and vertical transport.

In general isentropes are not horizontal, so TEM needs to be generalized for usage in the 
primitive equations.



 Example 1: 2D Steady Flow
Horizontal convection is non-turbulent 209
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Figure 2. Numerical solutions of the two-dimensional Rossby problem obtained using the surface
temperature distribution (2.2); the plume is in the middle of the domain at y = 0, and R = 108.
The solid lines indicate the streamfunction and the shading shows the buoyancy (equivalently
temperature). Panel (a) shows a steady, stable circulation with Prandtl number ⇧ = 10 (close to
that of water). Panels (b, c) show that a transition to unsteady flow occurs as ⇧ is decreased at fixed
Rayleigh number, R � bmaxH

3/� .

that horizontal convection must be steady and stable even as R ⇤ ⇥ (e.g. Huang
1999; Wunsch 2000). This conclusion is also drawn in a recent textbook (chapter 1
of Houghton 1986), and considered as a relevant factor in determining the thermal
structure of the atmosphere of Venus.

Nevertheless, the conclusion that the flow is steady and stable as R ⇤ ⇥ is a far
stronger claim than can be expected from the anti-turbulence theorem. This result
states only that uneven surface heating cannot provide net energy to the fluid in
the inviscid limit. The gap between the steady assumption and the anti-turbulence
theorem led us to undertake a suite of numerical simulations of the two-dimensional,
non-rotating (f = 0) version of Rossby’s problem.

We used the surface forcing function in (2.2) and solved the equations of motion
using the vorticity–streamfunction formulation with stress-free boundary conditions.

Steady 2D nonhydrostatic convection—Paparella & Young (2002)
Reyleigh # = 108

bt + u ·rb = D

J( , b) = D

J( , b) =
@ ( , b)
@ (y, z)

=  ybz �  zby

Use buoyancy's vertical coordinate:

b is advected by ψ and dissipated by 

vby + wbz = D
For 2D steady flow:

Buoyancy equation:

vy + wz = 0

 z = �v  y = w

D:

where

@( , b)

@(y, z)
=
@( , b)

@(ỹ, b̃)

@(ỹ, b̃)

@(y, z)
= bz ỹ ỹ ! at constant b

 ỹ = �D � = b�1
z

The mean flow advects the mean buoyancy
and the diapycnal velocity balances diabatic
sources and sinks
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 Example 1I: 3D Steady Flow in oceanic box

• Idealized single basin +ACC, forced at surface

• Half-sized basin in a notched-box

• Coarse resolution (100 km), hydrostatic MITgcm

• No salt: buoyancy linearly related to temperature

• GM eddy parameterization

•  Explicit mixing only in surface layer ~50 m deep
Iterate 474500 (1299.1 years), kv = 0, N. temp = 9.2 25−Jan−2011
/export/home/cwolfe/docs/manuscripts/2010/MocNote/mixed/k00tauS1N085
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3D Steady Flow
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A thermally indirect cell in the periodic portion of the domain: Deacon cell equivalent to 
Ferrell cell in atmosphere.



Residual Streamfunction (3D steady)
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Begin in buoyancy coordinates: 3-D variation:

Zonally average at constant b:

Define the residual streamfunction:

Decompose into mean and eddy components:

 † =  +  ⇤

Mean isopycnal height:

(�u)
x̃

+ (�v)
ỹ

+ (�D)
b̃

= 0 � = b�1
z

(�v)ỹ + (�D)b̃ = 0

 †
b̃
= �(�v) = ��̄v̂  †

ỹ = (�D) = �̄$̂

 b̃ = ��̄v̄  ⇤
b̃
= ��0v0

zb̃ = �̄



Calculation in level coordinates (3D steady)

Easier to calculate in level coordinates:

Do the same with the mean streamfunction:

where ζ satisfies
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Thus, is not simply a remapping of

Definition of the Mean (3D steady)
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Example III: 3D unsteady flow

• Idealized single basin +ACC forced at surface

• Half-sized basin in a notched-box

• High resolution (5.4 km), hydrostatic MITgcm

• No salt: buoyancy linearly related to temperature

• No eddy or mixed layer parameterizations

• κ = 1.2 × 10-5 m2 s-1

Iterate 46125000 (730.8 years), kv = 1e−05, N. temp = −8.5, 16.0 year avg 21−Oct−2008
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3D unsteady flow
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Residual Overturning Streamfuncion with buoyancy contours
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Visualization for human consumption

Residual streamfunction and buoyancy 



TEM beyond QG:  Thickness Weighted Average

The stacked primitive equations:

bz 6= 0
Stacked: average in buoyancy coordinates 

over  quasi-adiabatic eddies

The TWA equations:
can be presented in any coordinate 
system (buoyancy or spatial)

The “thickness” is:

û =
�u

�

The transport velocity a.k.a. 
the  residual velocity  is:

� =
1
bz

The (unweighted) 
mean velocity is:

pz = b

u

ū

In section 1 we review the kinematic problem of transforming from Cartesian coordinates (x, y, z, t) to buoyancy
coordinates (x̃, ỹ, b̃, t̃). In this framework the depth of a buoyancy surface, z = ζ(x̃, ỹ, b̃, t̃), is an independent variable and

σ
def
= ζb̃ (1)

is the isopycnal “thickness”. Some new formulas providing the b-coordinate representation of grad, div and curl are
obtained: (54) is particularly useful. In section 2 we review the thickness-weighted average which is used to define the
horizontal components of the residual velocity as

(û, v̂)
def
= (σu, σv)/σ̄ , (2)

(Andrews 1983; de Szoeke & Bennett 1993). The overbar above denotes an ensemble average in buoyancy coordinates
over realizations of the eddies. The third component of the three-dimensional incompressible residual velocity u♯ is not
the thickness-weighted average ŵ: instead, using the standard Cartesian basis vectors (i, j, k), the non-divergent residual
velocity is u♯ = ûi + v̂j +w♯k; the vertical component w♯ is defined in terms of the average depth of an isopycnal surface
ζ̄(x̃, ỹ, b̃, t̃) by (74). The “averaging identities” (73), (81) and (84) are key results in section 2.

Sections 4 and 5 turn to dynamics by starting with the hydrostatic equations of motion, written in b-coordinates.
After a thickness-weighted average, the equations of motion are transformed into Cartesian coordinates, (x, y, z, t). In
the adiabatic case, this results in the Cartesian–coordinate TWA system

ût + ûûx + v̂ûy + w♯ûz − f v̂ + p♯
x + ∇ · Eu = 0 , (3)

v̂t + ûv̂x + v̂v̂y + w♯v̂z + fû + p♯
y + ∇ · Ev = 0 , (4)

p♯
z = b♯ , (5)

ûx + v̂y + w♯
z = 0 , (6)

b♯
t + ûb♯

x + v̂b♯
y + w♯b♯

z = 0 . (7)

The variables p♯, b♯ and w♯ are defined in terms of the mean depth of buoyancy surface, ζ̄(x̃, ỹ, b, t̃), e.g., as in (60) and
(74). The field b♯(x, y, z, t) is equal to the value of the buoyancy surface whose average depth is z.

The eddy forcing of the TWA system above is confined to the horizontal momentum equations and is via the divergence
of the three-dimensional Eliassen-Palm (EP) vectors Eu and Ev, defined in (125) and (126). These EP vectors are second-
order in eddy amplitude and there is a three-dimensional generalization of Andrews’ (1983) finite-amplitude zonal-mean
EP theorem.

If the superscriptsˆand ♯ are dropped then, apart from the EP divergences ∇·Eu and ∇·Ev, the TWA system (3)–(7)
is identical to the primitive equations. Thus the eddy parameterization problem devolves to relating the EP divergences
to residual-mean quantities so that (3)–(7) is closed. Parameterization is not a main focus of this article. However an
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Π♯ = ûzb
♯
y − v̂zb

♯
x + (f + v̂x − ûy) b♯

z . (8)

Specifically, in the adiabatic case
Π♯

t + ûΠ♯
x + v̂Π♯

y + w♯Π♯
z + ∇ · F ♯ = 0 , (9)

where the eddy PV flux is
F ♯ = (b♯

zi − b♯
xk)∇·Ev − (b♯

zj − b♯
yk)∇·Eu . (10)

1
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The TWA equations in buoyancy coordinates

(1) Only the residual velocity appears.

(2) All tracers - including momentum - 
are advected by the residual velocity.

(3) Eddy effects are confined to the 
momentum equations, and appear in 
EP vectors.

(4) EP vectors are quadratic in eddy 
amplitude.

(5) EP divergences are expressed in 
terms of the eddy-flux of PV.  There is 
a fully 3D and nonlinear generalization 
of Taylor’s identity connection EP to 
PV.

(6) This is not the most general 
formulation, but it is probably the 
most useful because buoyancy is the 
best stacked tracer. 

6. The TWA equations of motion

We now proceed with averaging the equations of mo-
tion in b coordinates. Following the discussion of kine-
matics in section 3, the average of the thickness equation
(110) is (68). The average of the hydrostatic relation (109)
is just z 5 2 m ~b, with s 5 z ~b 5 2 m ~b ~b.

To average the horizontal momentum equations (107)
and (108), one first multiplies by s. The identity

sm~x 5 2m ~b ~bm~x (118)

5 (zm~x) ~b 1
1

2
z2

! "

~x
(119)

is key in dealing with the pressure gradient. Averaging
(119) and using the mean hydrostatic relation, one has

sm~x 5 sm~x 1 (z9m9~x)~b 1
1

2
z92

! "

~x
. (120)

Dividing (120) by s and using (53) to recognize a diver-
gence results in

s21sm~x 5 m~x 1 $ ! s21 1

2
z92e1 1 z9m9~xe3

! "
. (121)

The hydrostatic relation z 1 m ~b 5 0 is used at several
points in the manipulations above and is therefore es-
sential to TWA.

The identity (121) and application of (80) to sDu/Dt
and sDy/Dt results in the TWA momentum equations,

DYû

Dt
2 f ŷ 1 m~x 1 $ ! Eu 5 X̂ (122)

and

DYŷ

Dt
1 f û 1 m~y 1 $ ! Ey 5 Ŷ. (123)

The convective derivative DY/Dt above is defined in (76),
and the EP vectors Eu and Ey are

Eu 5
def

Ju 1 s21 1

2
z92e1 1 z9m9~xe3

! "
(124)

and

Ey 5
def

Jy 1 s21 1

2
z92e2 1 z9m9~ye3

! "
, (125)

where Ju and Jy are defined via (81). In the adiabatic
case (with - 5 0) the flux vectors Ju and Jy involve only
e1 and e2, and therefore Ju and Jy lie in a bY surface.

Thus, on the right of (124) and (125) only the terms
proportional to e3 5 sk transport momentum through bY

surfaces. This is the ‘‘inviscid pressure drag’’ identified
by Rhines and Holland (1979), or ‘‘form drag.’’

In de Szoeke and Bennett (1993) and Greatbatch and
McDougall (2003), the thickness-weighted velocity is
advected by the thickness-weighted velocity, and there-
fore these are probably the closest antecedents of the
thickness-weighted momentum equations (122) and
(123). An advantage of the form in (122) and (123) is
that the eddy forcing appears as the divergence of the
three-dimensional Eliassen–Palm flux vectors Eu and Ey.

a. The Rossby–Ertel PV equation

Following the same steps used to derive the unaver-
aged PV equation (115), one finds from the averaged mo-
mentum equations, (122) and (123), as well as from the
averaged thickness equation (68), that

DYPY

Dt
1 $ ! FY 1 $ ! GY 5 0, (126)

where

PY 5
def f 1 ŷ~x 2 û~y

s
(127)

is a form of the Rossby–Ertel potential vorticity. In (126)
the diabatic terms appear in

sGY 5
def

2[(Ŷ 2 ŷ ~b-̂)e1 2 (X̂ 2 û ~b-̂)e2] 2 s-̂PYe3;

(128)

GY is the analog of the unaveraged G in (117). Also in (126)

FY 5
def

s21($ ! Ey)e1 2 s21($ ! Eu)e2 (129)

is the eddy flux of PY.
Taking the dot product of (129) with e1 5 i and e2 5 j

expresses the EP divergences in terms of components
of the PV eddy flux FY. Thus, the TWA horizontal mo-
mentum equations can be written as

û~t 1 -̂û ~b 2 sŷPY 1 m 1
1

2
û2 1

1

2
ŷ2

! "

~x
5 X̂ 1 sj ! FY

(130)

and

ŷ~t 1 -̂ ŷ ~b 2 sûPY 1 m 1
1

2
û2 1

1

2
ŷ2

! "

~y 5 Ŷ 2 si ! FY.

(131)
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û2 1

1

2
ŷ2
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ŷ2

! "
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where the convective derivative D/Dt is defined in (34).
In the horizontal momentum equations,X and Y denote
adiabatic processes and body forces.

Now we write the equations of motion (101)–(105) in
buoyancy coordinates: for example, using the b-coordinate
representation of the convective derivative in (35). An
important step is introduction of the Montgomery po-
tential,

m(~x, ~y, ~b, ~t ) 5
def

p(x, y, z(~x, ~y, ~b, ~t ), t) 2 ~bz(~x, ~y, ~b, ~t ).

(106)

One can verify that px 5 m~x etc. Then in b coordinates
the equations of motion are

Du

Dt
2 f y 1 m~x 5 X , (107)

Dy

Dt
1 fu 1 m~y 5 Y, (108)

z 1 m ~b 5 0, (109)

s~t 1 (su)~x 1 (sy)~y 1 (-s) ~b 5 0, (110)

where s 5
def

z ~b 5 2m ~b ~b. The convective derivative in b co-
ordinates is given in (35).

a. Rossby–Ertel potential vorticity

One can write the horizontal momentum equations
above as

u~t 1 -u ~b 2 syP 1 m 1
1

2
u2 1

1

2
y2

! "

~x
5 X (111)

and

y~t 1 -y ~b 1 suP 1 m 1
1

2
u2 1

1

2
y2

! "

~y
5 Y, (112)

where the Rossby–Ertel PV is

P 5
def f 1 y~x 2 u~y

s
. (113)

Cross-differentiating to eliminate the Bernoulli terms,
one obtains

(sP)~t 1 (suP 1 -y ~b 2 Y)~x 1 (syP 2 -u ~b 1X)~y 5 0;

(114)

the conservation law above is analogous to the ‘‘ex-
panded’’ adiabatic passive scalar Eq. (92). The remarkable
point is that (114) applies to PV even if the flow is diabatic.

b. The PV impermeability theorem

Haynes and McIntyre (1987, 1990) emphasize that
a main advantage of (114) is that the PV impermeability
theorem is immediate: at fixed ~x and ~y one can integrate
(114) between ~b 5 ~b1 and ~b 5 ~b2 and obtain an expres-
sion for the rate of change of the total amount of PV
substance in the layer ~b1 , ~b , ~b2. Since there are no ~b
derivatives in (114), the amount of PV substance in this
buoyancy layer is not changed by flux through either
bounding b surface.

Combining the layer-thickness equation (110) with
(114) and using (53) to recognize a divergence, one ob-
tains the PV conservation equation in the form

DP
Dt

1 $ ! G 5 0, (115)

where the diabatic flux in (115) is

G 5
def

2(X i 1 Yj) 3 $b 2 -[$ 3 (ui 1 yj) 1 s21f e3]

(116)

(e.g., Haynes and McIntyre 1990); G can be expanded as

sG 5 2[(Y 2 y ~b-)e1 2 (X 2 u ~b-)e2] 2 s-Pe3.

(117)

With (117) one readily finds G ! $b 5 2-P so that G
penetrates b surfaces. In their section 4, Haynes and
McIntyre (1990) explain how this penetration is com-
patible with the PV impermeability theorem.

FIG. 2. The average isopycnal depth ~z( ~b) and the average
thickness s 5 z ~b at (x, y) 5 0 as function of ~b. The function bY is the
inverse of z( ~b) above and is defined on the original domain 0 , z , 1.
In the central part of the domain, aG , ~b , 1 2 aG, the average
depth is obtained from (99) as ~z 5 ~b, and therefore s 5 1.
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problem from the approximations employed by Ferreira
and Marshall to derive a residual-mean system. Finalizing
the divorce by systematically deriving a totally residual-
mean formulation of the Boussinesq primitive equations
is the goal of this article.

The key step is averaging the equations of motion
in buoyancy1 coordinates, using an average weighted
by the ‘‘isopycnal thickness.’’ We refer to this as the
thickness-weighted average (TWA) formulation. The re-
sulting exact description assumes neither small-isopycnal
slope, rapid rotation, weak eddies, nor small diabatic ef-
fects. For example, the TWA formulation applies equally
well to nonrotating fluids, provided only that the strati-
fication is stable.

With hindsight, some of the ingredients in the TWA
formulation (e.g., the definitions of bY and wY below) are
already contained in de Szoeke and Bennett (1993),
Smith (1999), and Greatbatch and McDougall (2003). A
main point of de Szoeke and Bennett is that the Osborn–
Cox relation between diabatic density flux and molec-
ular dissipation actually provides the diapycnal (rather
than vertical) flux of density (see also Winters and
D’Asaro 1996). This is a second potent reason for using
the TWA formulation.

In section 2, we review the kinematic problem of
transforming from Cartesian coordinates (x, y, z, t) to
buoyancy coordinates (~x, ~y, ~b, ~t ). In this framework the
depth of a buoyancy surface, z 5 z(~x, ~y, ~b, ~t ), is an in-
dependent variable and

s 5
def

z ~b (1)

is the isopycnal ‘‘thickness.’’ Some new formulas pro-
viding the b-coordinate representation of gradient,
divergence, and curl are obtained: (53) is particularly
useful. In section 3, we review the thickness-weighted
average, which is used to define the horizontal compo-
nents of the residual velocity as

(û, ŷ) 5
def

(su, sy)/s (2)

(Andrews 1983; de Szoeke and Bennett 1993). The over-
bar above denotes an ensemble average in buoyancy
coordinates over realizations of the eddies. The third
component of the three-dimensional incompressible re-
sidual velocity uY is not the thickness-weighted average ŵ:

instead, using the standard Cartesian basis vectors (i, j, k),
the nondivergent residual velocity is uY 5 ûi 1 ŷj 1 wYk;
the vertical component wY is defined in terms of the av-
erage depth of an isopycnal surface z(~x, ~y, ~b, ~t ) by (73).
The ‘‘averaging identities’’ (72), (80), and (83) are key
results in section 3.

Sections 5 and 6 turn to dynamics by starting with the
hydrostatic equations of motion, written in b coordi-
nates. After a thickness-weighted average, the equations
of motion are transformed into Cartesian coordinates,
(x, y, z, t). In the adiabatic case, this results in the Car-
tesian coordinate TWA system:

ût 1 ûûx 1 ŷûy 1 wYûz 2 f ŷ 1 pY
x 1 $ ! Eu 5 0, (3)

ŷt 1 ûŷx 1 ŷŷy 1 wYŷz 1 f û 1 pY
y 1 $ ! Ey 5 0, (4)

pY
z 5 bY, (5)

ûx 1 ŷy 1 wY
z 5 0, (6)

bY
t 1 ûbY

x 1 ŷbY
y 1 wYbY

z 5 0. (7)

The variables pY, bY, and wY are defined in terms of the
mean depth of buoyancy surface, z(~x, ~y, b, ~t ) [e.g., as in
(59) and (73)]. The field bY(x, y, z, t) is equal to the value
of the buoyancy surface whose average depth is z.

The eddy forcing of the TWA system above is con-
fined to the horizontal momentum equations and is via
the divergence of the three-dimensional Eliassen–Palm
(EP) vectors Eu and Ey, defined in (124) and (125). These
EP vectors are second-order in eddy amplitude and there
is a three-dimensional generalization of Andrews’s (1983)
finite-amplitude zonal-mean EP theorem.

If the superscripts ^ and Y are dropped, then, apart
from the EP divergences $ ! Eu and $ ! Ey, the TWA
system (3)–(7) is identical to the primitive equations.
Thus, the eddy parameterization problem devolves to
relating the EP divergences to residual-mean quantities
so that (3)–(7) is closed. Parameterization is not a main
focus of this article. However, an important clue is pro-
vided by the relation between the divergence of the EP
vectors and the eddy flux of the relevant form of Rossby–
Ertel potential vorticity (PV), which is

PY 5 ûzbY
y 2 ŷzbY

x 1 ( f 1 ŷx 2 ûy)bY
z. (8)

Specifically, in the adiabatic case

PY
t 1 ûPY

x 1 ŷPY
y 1 wYPY

z 1 $ ! FY 5 0, (9)

where the eddy PV flux is

1 We use the Boussinesq approximation with a linear equation
of state. The buoyancy b is defined in terms of the density r as
b 5

def
g(r0 2 r)/r0, where r0 is the constant bulk density of the

ocean. Thus, buoyancy coordinates are essentially the same as
isopycnal coordinates.
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or as

q = (q + sζx̃)︸ ︷︷ ︸
=q1

e1 + (r + sζỹ)
︸ ︷︷ ︸

=q2

e2 + σs︸︷︷︸
=q3

e3 . (49)

An important result follows from the special case q = u:
using the thickness equation (37) the contravariant repre-
sentation of u is

u = ue1 + ve2 + σ−1
(
ζt̃ + ϖζb̃

)
e3 . (50)

σ

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f(x̃, ỹ, b̃, t̃). In Cartesian coordinates the gradient is
∇f = fxi + fyj + fzk. Using (38), and the definition
of the basis ej in (39) through (41), one has the natural
covariant representation of the gradient

∇f(x̃, ỹ, b̃, t̃) = fx̃ ∇x̃ + fỹ ∇ỹ + fb̃ ∇b ,

= fx̃ e1 + fỹ e2 + fb̃ e3 . (51)

q = q1e
1 + q2e

2 + q3e
3

Turning to the divergence, if a vector field q is presented
in the ej-basis as

q = q1e1 + q2e2 + q3e3 , (52)

then the divergence is

∇ · q = σ−1
(
σq1
)
x̃

+ σ−1
(
σq2
)
ỹ

+ σ−1
(
σq3
)
b̃

. (53)

σ∇ · q =
(
σq1
)
x̃

+
(
σq2
)
ỹ

+
(
σq3
)
b̃

Later we will crucially need the inverse of (53): the
pattern lx̃ + mỹ + nb̃ signals the introduction3 of a vector
field σ−1(le1 + me2 + ne3) so that

lx̃ + mỹ + nb̃ = σ∇ · σ−1 (le1 + me2 + ne3) . (54)

There are oversights in the oceanographic and meteorolog-
ical literature made by claiming that lx̃ + mỹ + nb̃ is the
divergence of a “vector” (l, m, n). This is dangerous be-
cause the basis in which the “vector” (l, m, n) is expressed
is not stated (the Cartesian basis is implied), and because
the various factors of σ in the correct expression (54) are
easily overlooked.

σt + σ∇ · (ue1 + ve2) = 0

3The solution of the inverse problem is not unique: one can add
an arbitrary solenoidal vector field to σ−1(le1 + me2 +ne3) without
changing the divergence. Thus (54) involves a gauge choice.

3. The kinematics of averaging

Although the thickness-weighted average is familiar, ear-
lier works have not exhaustively exploited this procedure
(Andrews 1983; Gent et al. 1995; Lee & Leach 1996;
Treguier et al. 1997; Greatbatch & McDougall 2003). Thus
in this section we review the thickness-weighted average
and obtain some new results needed in section 5.

The average of a field θ(x̃, ỹ, b̃, t̃) is denoted by θ̄(x̃, ỹ, b̃, t̃).
We insist that the average is a linear projection operator.
This means that

θ̄ = θ̄ , (55)

and
θ̄φ = θ̄ φ̄ . (56)

We also require that the average commutes with derivatives
with respect to (x̃, ỹ, b̃, t̃). For example,

∂x̃θ = ∂x̃θ̄ , and ∂t̃θ = ∂t̃θ̄ , etc. (57)

It is safest to think of this overbar as an ensemble aver-
age: space and time filters will usually only approximately
satisfy the three essential conditions in (55) through (57)
(Davis 1994).

The averaging operation introduced above is conducted
in buoyancy coordinates. For example, to calculate the
average of buoyancy b(x, t), we write buoyancy in buoyancy
coordinates, as in (19), and therefore

b(x, t) = b̃ = b̃ = b(x, t) . (58)

Thus buoyancy itself is unaffected by averaging. This em-
phasizes that the average of a field represented in buoyancy
coordinates is not equal to the average of the same field rep-
resented in Cartesian coordinates (Smith 1999; Jacobson &
Aiki 2006).

A most important mean field in the TWA formulation
is the mean depth of an isopycnal, ζ̄(x̃, ỹ, b̃, t̃), and σ̄ = ζ̄b̃

is the mean thickness.

a. Returning to Cartesian coordinates

b♯(x, y, z, t)

(x, y, z, t)

Although the average of θ is defined using the buoy-
ancy coordinate representation of θ, given θ̄(x̃, ỹ, b̃, t) one
can return to the Cartesian representation. de Szoeke &
Bennett (1993) make this transition by inverting the rela-
tion z = ζ̄(x̃, ỹ, b̃, t̃) to obtain a field b = b♯(x, y, z, t). In
other words

b̃ = b♯
(
x, y, ζ̄(x̃, ỹ, b̃, t̃), t

)
, (59)

5

(x̃, ỹ, b̃) is

σ
(
x̃, ỹ, b̃, t̃

)
def
= ζb̃ , (26)

= 1/bz , (27)

where (27) is obtained by applying the differential opera-
tor in (23) to ζ. Thus, the element of volume is d3x =
dxdy dz = σ dx̃ dỹ db̃. The assumption of a stacked buoy-
ancy field ensures that the Jacobian σ is non-zero. We refer
to σ as the “thickness”. The important relations,

ζx̃ = −σbx , and ζỹ = −σby , and ζt̃ = −σbt , (28)

are obtained by applying the differential operators in (21)
through (24) to ζ. Using (28), one can alternatively write
the derivatives in (21) through (24) as

∂x = ∂x̃ − ζx̃ σ−1∂b̃ , (29)

∂y = ∂ỹ − ζỹ σ−1∂b̃ , (30)

∂z = σ−1∂b̃ , (31)

∂t = ∂t̃ − ζt̃ σ−1∂b̃ . (32)

Isolating w from (15), and using (29) through (32), one has

w = ζt̃ + uζx̃ + vζỹ + ϖζb̃ . (33)

Using (29) through (33), the convective derivative,

D

Dt
def
= ∂t + u∂x + v∂y + w∂z , (34)

is transformed to buoyancy coordinates as

D

Dt
= ∂t̃ + u∂x̃ + v∂ỹ + ϖ∂b̃ . (35)

Thus the passive scalar equation (16) becomes

ct̃ + ucx̃ + vcỹ + ϖcb̃ = κ . (36)

The diabatic term ϖ is equivalent to a velocity through
buoyancy surfaces.

Taking a z-derivative of (33), using ∇ · u = 0, and the
rules in (29) through (32), we deduce that

σt̃ + (σu)x̃ + (σv)ỹ + (σϖ)b̃ = 0 . (37)

The thickness equation (37) is equivalent to mass conser-
vation in buoyancy coordinates.

a. Basis vectors

To this point the development of buoyancy coordinates
is broadly familiar to physical oceanographers and meteo-
rologists (Starr 1945; De Szoeke & Bennett 1993; Griffies
2004). However the full power of the buoyancy coordi-
nates is not fully exploited unless one also understands how

vectors and coordinate-invariant differential operators ∇·,
∇× and the Laplacian ∇2 are represented. To accomplish
this we use the most elementary aspects of tensor analysis.
Thus we consider the nonorthogonal set of basis vectors

e1 def
= i e2 def

= j , e3 def
= ∇b , (38)

e1 e2 e3

In parallel with ej one can also introduce the dual basis
vectors

e1
def
= σe2 × e3 = i + ζx̃k , (39)

e2
def
= σe3 × e1 = j + ζỹk , (40)

e3
def
= σe1 × e2 = σk . (41)

The vectors e1 and e2 are tangent to a buoyancy surface,
and thus a linear combination of e1 and e2 is a vector
“lying in the buoyancy surface”. The triple product of this
basis set is (e1 × e2) · e3 = σ, which is the reciprocal of
the triple product (e1 × e2) · e3. The set (e1, e2, e3) is
“bi-orthogonal” to (e1, e2, e3) in the sense that

ei · ej = δj
i , (42)

where δi
j is the Kronecker δ.

The differential operators ∂x̃, ∂ỹ and ∂b̃ on the right of
(29) through (32) can be written as directional derivatives
along the ej-basis vectors:

∂x̃ = e1 ·∇ , ∂ỹ = e2 ·∇ , ∂b̃ = e3 ·∇ . (43)

It turns out that the non-orthogonal set ej provides the
most useful b-coordinate basis for many purposes.

b. Three representations of a vector field

An arbitrary vector field, q(x, t) for example, can be
expanded in three different ways:

q = qi + rj + sk , (44)

= q1e1 + q2e2 + q3e3 , (45)

= q1e
1 + q2e

2 + q3e
3 . (46)

In tensor analysis, qj are referred to as the contravariant
components of q and qj are the covariant components. The
component of q along a basis vector are extracted as:

qj = ej · q , and qj = ej · q . (47)

Thus q can be written in terms of its Cartesian components
q, r and s as

q = q︸︷︷︸
=q1

e1 + r︸︷︷︸
=q2

e2 + σ−1 (s − ζx̃q − ζỹr)
︸ ︷︷ ︸

=q3

e3 , (48)
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e3
def
= σe1 × e2 = σk . (41)

The vectors e1 and e2 are tangent to a buoyancy surface,
and thus a linear combination of e1 and e2 is a vector
“lying in the buoyancy surface”. The triple product of this
basis set is (e1 × e2) · e3 = σ, which is the reciprocal of
the triple product (e1 × e2) · e3. The set (e1, e2, e3) is
“bi-orthogonal” to (e1, e2, e3) in the sense that

ei · ej = δj
i , (42)

where δi
j is the Kronecker δ.

The differential operators ∂x̃, ∂ỹ and ∂b̃ on the right of
(29) through (32) can be written as directional derivatives
along the ej-basis vectors:
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︸ ︷︷ ︸

=q3

e3 , (48)

4
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Buoyancy coordinates are so close to 
cartesian coordinates that one is 
tempted to wing it.  But buoyancy 
coordinates are not orthogonal...

or as

q = (q + sζx̃)︸ ︷︷ ︸
=q1

e1 + (r + sζỹ)
︸ ︷︷ ︸

=q2

e2 + σs︸︷︷︸
=q3

e3 . (49)

An important result follows from the special case q = u:
using the thickness equation (37) the contravariant repre-
sentation of u is

u = ue1 + ve2 + σ−1
(
ζt̃ + ϖζb̃

)
e3 . (50)

The vectors e1 and e2, defined in (39) and (40), are tan-
gent to a buoyancy surface. Thus the first two terms on the
right of (50) provide the part of u that “lies in a buoyancy
surface”. The scalar functions u and v do double duty:
u and v provide the components of u along the horizontal
Cartesian directions i and j and also along the in-b-surface
vectors e1 and e2. If the flow is steady (ζt̃ = 0) and adia-
batic (ϖ = 0) then the final term in (50) is zero and u lies
in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f(x̃, ỹ, b̃, t̃). In Cartesian coordinates the gradient is
∇f = fxi + fyj + fzk. Using (38), and the definition
of the basis ej in (39) through (41), one has the natural
covariant representation of the gradient

∇f(x̃, ỹ, b̃, t̃) = fx̃ ∇x̃ + fỹ ∇ỹ + fb̃ ∇b ,

= fx̃ e1 + fỹ e2 + fb̃ e3 . (51)

Turning to the divergence, if a vector field q is presented
in the ej-basis as

q = q1e1 + q2e2 + q3e3 , (52)

then the divergence is

∇ · q = σ−1
(
σq1
)
x̃

+ σ−1
(
σq2
)
ỹ

+ σ−1
(
σq3
)
b̃

. (53)

This very handy formula can be verified by noting that
σ∇ · ej = ∇σ · ej , and applying standard vector identities
to (52). It is instructive to calculate the divergence of u in
(50) using (53) to recover (37).

Later we will crucially need the inverse of (53): the
pattern lx̃ + mỹ + nb̃ signals the introduction3 of a vector
field σ−1(le1 + me2 + ne3) so that

lx̃ + mỹ + nb̃ = σ∇ · σ−1 (le1 + me2 + ne3) . (54)

There are oversights in the oceanographic and meteorolog-
ical literature made by claiming that lx̃ + mỹ + nb̃ is the

3The solution of the inverse problem is not unique: one can add
an arbitrary solenoidal vector field to σ−1(le1 + me2 +ne3) without
changing the divergence. Thus (54) involves a gauge choice.

divergence of a “vector” (l, m, n). This is dangerous be-
cause the basis in which the “vector” (l, m, n) is expressed
is not stated (the Cartesian basis is implied), and because
the various factors of σ in the correct expression (54) are
easily overlooked.

Further buoyancy coordinate relations, such as expres-
sions for the curl and Laplacian, are in Appendix A.

3. The kinematics of averaging

Although the thickness-weighted average is familiar, ear-
lier works have not exhaustively exploited this procedure
(Andrews 1983; Gent et al. 1995; Lee & Leach 1996;
Treguier et al. 1997; Greatbatch & McDougall 2003). Thus
in this section we review the thickness-weighted average
and obtain some new results needed in section 5.

The average of a field θ(x̃, ỹ, b̃, t̃) is denoted by θ̄(x̃, ỹ, b̃, t̃).
We insist that the average is a linear projection operator.
This means that

θ̄ = θ̄ , (55)

and
θ̄φ = θ̄ φ̄ . (56)

We also require that the average commutes with derivatives
with respect to (x̃, ỹ, b̃, t̃). For example,

∂x̃θ = ∂x̃θ̄ , and ∂t̃θ = ∂t̃θ̄ , etc. (57)

It is safest to think of this overbar as an ensemble aver-
age: space and time filters will usually only approximately
satisfy the three essential conditions in (55) through (57)
(Davis 1994).

The averaging operation introduced above is conducted
in buoyancy coordinates. For example, to calculate the
average of buoyancy b(x, t), we write buoyancy in buoyancy
coordinates, as in (19), and therefore

b(x, t) = b̃ = b̃ = b(x, t) . (58)

Thus buoyancy itself is unaffected by averaging. This em-
phasizes that the average of a field represented in buoyancy
coordinates is not equal to the average of the same field rep-
resented in Cartesian coordinates (Smith 1999; Jacobson &
Aiki 2006).

A most important mean field in the TWA formulation
is the mean depth of an isopycnal, ζ̄(x̃, ỹ, b̃, t̃), and σ̄ = ζ̄b̃

is the mean thickness.

a. Returning to Cartesian coordinates

Although the average of θ is defined using the buoy-
ancy coordinate representation of θ, given θ̄(x̃, ỹ, b̃, t) one
can return to the Cartesian representation. de Szoeke &
Bennett (1993) make this transition by inverting the rela-
tion z = ζ̄(x̃, ỹ, b̃, t̃) to obtain a field b = b♯(x, y, z, t). In
other words

b̃ = b♯
(
x, y, ζ̄(x̃, ỹ, b̃, t̃), t

)
, (59)
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vectors e1 and e2. If the flow is steady (ζt̃ = 0) and adia-
batic (ϖ = 0) then the final term in (??) is zero and u lies
in a buoyancy surface.

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f(x̃, ỹ, b̃, t̃). In Cartesian coordinates the gradient is
∇f = fxi + fyj + fzk. Using (??), and the definition
of the basis ej in (??) through (??), one has the natural
covariant representation of the gradient

∇f(x̃, ỹ, b̃, t̃) = fx̃ ∇x̃ + fỹ ∇ỹ + fb̃ ∇b ,

= fx̃ e1 + fỹ e2 + fb̃ e3 . (51)

q = q1e
1 + q2e

2 + q3e
3

Turning to the divergence, if a vector field q is presented
in the ej-basis as

q = q1e1 + q2e2 + q3e3 , (52)

then the divergence is

∇ · q = σ−1
(
σq1
)
x̃

+ σ−1
(
σq2
)
ỹ

+ σ−1
(
σq3
)
b̃

. (53)

σ∇ · q =
(
σq1
)
x̃

+
(
σq2
)
ỹ

+
(
σq3
)
b̃

Later we will crucially need the inverse of (??): the
pattern lx̃ + mỹ + nb̃ signals the introduction3 of a vector
field σ−1(le1 + me2 + ne3) so that

lx̃ + mỹ + nb̃ = σ∇ · σ−1 (le1 + me2 + ne3) . (54)

There are oversights in the oceanographic and meteorolog-
ical literature made by claiming that lx̃ + mỹ + nb̃ is the

3The solution of the inverse problem is not unique: one can add
an arbitrary solenoidal vector field to σ−1(le1 + me2 +ne3) without
changing the divergence. Thus (??) involves a gauge choice.

divergence of a “vector” (l, m, n). This is dangerous be-
cause the basis in which the “vector” (l, m, n) is expressed
is not stated (the Cartesian basis is implied), and because
the various factors of σ in the correct expression (??) are
easily overlooked.

Further buoyancy coordinate relations, such as expres-
sions for the curl and Laplacian, are in Appendix A.

3. The kinematics of averaging

Although the thickness-weighted average is familiar, ear-
lier works have not exhaustively exploited this procedure
(Andrews 1983; Gent et al. 1995; Lee & Leach 1996;
Treguier et al. 1997; Greatbatch & McDougall 2003). Thus
in this section we review the thickness-weighted average
and obtain some new results needed in section ??.

The average of a field θ(x̃, ỹ, b̃, t̃) is denoted by θ̄(x̃, ỹ, b̃, t̃).
We insist that the average is a linear projection operator.
This means that

θ̄ = θ̄ , (55)

and
θ̄φ = θ̄ φ̄ . (56)

We also require that the average commutes with derivatives
with respect to (x̃, ỹ, b̃, t̃). For example,

∂x̃θ = ∂x̃θ̄ , and ∂t̃θ = ∂t̃θ̄ , etc. (57)

It is safest to think of this overbar as an ensemble aver-
age: space and time filters will usually only approximately
satisfy the three essential conditions in (??) through (??)
(Davis 1994).

The averaging operation introduced above is conducted
in buoyancy coordinates. For example, to calculate the
average of buoyancy b(x, t), we write buoyancy in buoyancy
coordinates, as in (??), and therefore

b(x, t) = b̃ = b̃ = b(x, t) . (58)

Thus buoyancy itself is unaffected by averaging. This em-
phasizes that the average of a field represented in buoyancy
coordinates is not equal to the average of the same field rep-
resented in Cartesian coordinates (Smith 1999; Jacobson &
Aiki 2006).

A most important mean field in the TWA formulation
is the mean depth of an isopycnal, ζ̄(x̃, ỹ, b̃, t̃), and σ̄ = ζ̄b̃

is the mean thickness.

a. Returning to Cartesian coordinates

Although the average of θ is defined using the buoy-
ancy coordinate representation of θ, given θ̄(x̃, ỹ, b̃, t) one
can return to the Cartesian representation. de Szoeke &
Bennett (1993) make this transition by inverting the rela-
tion z = ζ̄(x̃, ỹ, b̃, t̃) to obtain a field b = b♯(x, y, z, t). In
other words

b̃ = b♯
(
x, y, ζ̄(x̃, ỹ, b̃, t̃), t

)
, (59)
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∇f(x̃, ỹ, b̃, t̃) = fx̃ ∇x̃ + fỹ ∇ỹ + fb̃ ∇b ,
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phasizes that the average of a field represented in buoyancy
coordinates is not equal to the average of the same field rep-
resented in Cartesian coordinates (Smith 1999; Jacobson &
Aiki 2006).

A most important mean field in the TWA formulation
is the mean depth of an isopycnal, ζ̄(x̃, ỹ, b̃, t̃), and σ̄ = ζ̄b̃

is the mean thickness.

a. Returning to Cartesian coordinates

Although the average of θ is defined using the buoy-
ancy coordinate representation of θ, given θ̄(x̃, ỹ, b̃, t) one
can return to the Cartesian representation. de Szoeke &
Bennett (1993) make this transition by inverting the rela-
tion z = ζ̄(x̃, ỹ, b̃, t̃) to obtain a field b = b♯(x, y, z, t). In
other words

b̃ = b♯
(
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It is b♯ that serves as the buoyancy variable in the TWA
formulation.
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(x̃, ỹ, b̃) is

σ
(
x̃, ỹ, b̃, t̃

)
def
= ζb̃ , (26)

= 1/bz , (27)

where (27) is obtained by applying the differential opera-
tor in (23) to ζ. Thus, the element of volume is d3x =
dxdy dz = σ dx̃ dỹ db̃. The assumption of a stacked buoy-
ancy field ensures that the Jacobian σ is non-zero. We refer
to σ as the “thickness”. The important relations,

ζx̃ = −σbx , and ζỹ = −σby , and ζt̃ = −σbt , (28)

are obtained by applying the differential operators in (21)
through (24) to ζ. Using (28), one can alternatively write
the derivatives in (21) through (24) as

∂x = ∂x̃ − ζx̃ σ−1∂b̃ , (29)

∂y = ∂ỹ − ζỹ σ−1∂b̃ , (30)

∂z = σ−1∂b̃ , (31)

∂t = ∂t̃ − ζt̃ σ−1∂b̃ . (32)

Isolating w from (15), and using (29) through (32), one has

w = ζt̃ + uζx̃ + vζỹ + ϖζb̃ . (33)

Using (29) through (33), the convective derivative,

D

Dt
def
= ∂t + u∂x + v∂y + w∂z , (34)

is transformed to buoyancy coordinates as

D

Dt
= ∂t̃ + u∂x̃ + v∂ỹ + ϖ∂b̃ . (35)

Thus the passive scalar equation (16) becomes

ct̃ + ucx̃ + vcỹ + ϖcb̃ = κ . (36)

The diabatic term ϖ is equivalent to a velocity through
buoyancy surfaces.

Taking a z-derivative of (33), using ∇ · u = 0, and the
rules in (29) through (32), we deduce that

σt̃ + (σu)x̃ + (σv)ỹ + (σϖ)b̃ = 0 . (37)

The thickness equation (37) is equivalent to mass conser-
vation in buoyancy coordinates.

a. Basis vectors

To this point the development of buoyancy coordinates
is broadly familiar to physical oceanographers and meteo-
rologists (Starr 1945; De Szoeke & Bennett 1993; Griffies
2004). However the full power of the buoyancy coordi-
nates is not fully exploited unless one also understands how

vectors and coordinate-invariant differential operators ∇·,
∇× and the Laplacian ∇2 are represented. To accomplish
this we use the most elementary aspects of tensor analysis.
Thus we consider the nonorthogonal set of basis vectors

e1 def
= i e2 def

= j , e3 def
= ∇b , (38)

e1 = i e2 = j , e3 = ∇b , (39)

e1 e2 e3

e1 e2 e3

In parallel with ej one can also introduce the dual basis
vectors

e1
def
= σe2 × e3 = i + ζx̃k , (40)

e2
def
= σe3 × e1 = j + ζỹk , (41)

e3
def
= σe1 × e2 = σk . (42)

The vectors e1 and e2 are tangent to a buoyancy surface,
and thus a linear combination of e1 and e2 is a vector
“lying in the buoyancy surface”. The triple product of this
basis set is (e1 × e2) · e3 = σ, which is the reciprocal of
the triple product (e1 × e2) · e3. The set (e1, e2, e3) is
“bi-orthogonal” to (e1, e2, e3) in the sense that

ei · ej = δj
i , (43)

where δi
j is the Kronecker δ.

The differential operators ∂x̃, ∂ỹ and ∂b̃ on the right of
(29) through (32) can be written as directional derivatives
along the ej-basis vectors:

∂x̃ = e1 ·∇ , ∂ỹ = e2 ·∇ , ∂b̃ = e3 ·∇ . (44)

It turns out that the non-orthogonal set ej provides the
most useful b-coordinate basis for many purposes.

b. Three representations of a vector field

An arbitrary vector field, q(x, t) for example, can be
expanded in three different ways:

q = qi + rj + sk , (45)

= q1e1 + q2e2 + q3e3 , (46)

= q1e
1 + q2e

2 + q3e
3 . (47)

In tensor analysis, qj are referred to as the contravariant
components of q and qj are the covariant components. The
component of q along a basis vector are extracted as:

qj = ej · q , and qj = ej · q . (48)
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(x̃, ỹ, b̃) is

σ
(
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ct̃ + ucx̃ + vcỹ + ϖcb̃ = κ . (36)

The diabatic term ϖ is equivalent to a velocity through
buoyancy surfaces.

Taking a z-derivative of (33), using ∇ · u = 0, and the
rules in (29) through (32), we deduce that

σt̃ + (σu)x̃ + (σv)ỹ + (σϖ)b̃ = 0 . (37)
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σt̃ + (σu)x̃ + (σv)ỹ + (σϖ)b̃ = 0 . (37)

The thickness equation (37) is equivalent to mass conser-
vation in buoyancy coordinates.

a. Basis vectors

To this point the development of buoyancy coordinates
is broadly familiar to physical oceanographers and meteo-
rologists (Starr 1945; De Szoeke & Bennett 1993; Griffies
2004). However the full power of the buoyancy coordi-
nates is not fully exploited unless one also understands how

vectors and coordinate-invariant differential operators ∇·,
∇× and the Laplacian ∇2 are represented. To accomplish
this we use the most elementary aspects of tensor analysis.
Thus we consider the nonorthogonal set of basis vectors

e1 def
= i e2 def

= j , e3 def
= ∇b , (38)

e1 = i e2 = j , e3 = ∇b , (39)

e1 e2 e3

e1 e2 e3

In parallel with ej one can also introduce the dual basis
vectors

e1
def
= σe2 × e3 = i + ζx̃k , (40)

e2
def
= σe3 × e1 = j + ζỹk , (41)
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e1 = i + zxk e2 = j + zyk e3 = σk

ei · ej = δj
i , (43)

The differential operators ∂x̃, ∂ỹ and ∂b̃ on the right of
(29) through (32) can be written as directional derivatives
along the ej-basis vectors:

∂x̃ = e1 ·∇ , ∂ỹ = e2 ·∇ , ∂b̃ = e3 ·∇ . (44)

It turns out that the non-orthogonal set ej provides the
most useful b-coordinate basis for many purposes.

b. Three representations of a vector field

An arbitrary vector field, q(x, t) for example, can be
expanded in three different ways:

q = qi + rj + sk , (45)

= q1e1 + q2e2 + q3e3 , (46)

= q1e
1 + q2e

2 + q3e
3 . (47)

In tensor analysis, qj are referred to as the contravariant
components of q and qj are the covariant components. The
component of q along a basis vector are extracted as:

qj = ej · q , and qj = ej · q . (48)

Thus q can be written in terms of its Cartesian components
q, r and s as
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where (27) is obtained by applying the differential opera-
tor in (23) to ζ. Thus, the element of volume is d3x =
dxdy dz = σ dx̃ dỹ db̃. The assumption of a stacked buoy-
ancy field ensures that the Jacobian σ is non-zero. We refer
to σ as the “thickness”. The important relations,

ζx̃ = −σbx , and ζỹ = −σby , and ζt̃ = −σbt , (28)

are obtained by applying the differential operators in (21)
through (24) to ζ. Using (28), one can alternatively write
the derivatives in (21) through (24) as
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Using (29) through (33), the convective derivative,

D

Dt
def
= ∂t + u∂x + v∂y + w∂z , (34)

is transformed to buoyancy coordinates as

D

Dt
= ∂t̃ + u∂x̃ + v∂ỹ + ϖ∂b̃ . (35)

Thus the passive scalar equation (16) becomes

ct̃ + ucx̃ + vcỹ + ϖcb̃ = κ . (36)

The diabatic term ϖ is equivalent to a velocity through
buoyancy surfaces.

Taking a z-derivative of (33), using ∇ · u = 0, and the
rules in (29) through (32), we deduce that

σt̃ + (σu)x̃ + (σv)ỹ + (σϖ)b̃ = 0 . (37)

The thickness equation (37) is equivalent to mass conser-
vation in buoyancy coordinates.
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2004). However the full power of the buoyancy coordi-
nates is not fully exploited unless one also understands how

vectors and coordinate-invariant differential operators ∇·,
∇× and the Laplacian ∇2 are represented. To accomplish
this we use the most elementary aspects of tensor analysis.
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APPENDIX A

Further buoyancy-coordinate relations

In this appendix we collect some formulas related to
buoyancy coordinates. For example, the basis ej is ex-
pressed in terms of ej by

e1 = e1 − ζx̃σ−1e3 , (A1)

e2 = e2 − ζỹσ−1e3 , (A2)

e3 = −ζx̃σ−1e1 − ζỹσ−1e2 + σ−2
(
1 + ζ2

x̃ + ζ2
ỹ

)
e3︸ ︷︷ ︸

=∇b

. (A3)

The inverse relation is

e1 = (1 + ζ2
x̃)e1 + ζx̃ζỹe2 + ζx̃σe3 , (A4)

e2 = ζx̃ζỹe1 + (1 + ζ2
ỹ )e2 + ζỹσe3 (A5)

e3 = σζx̃e1 + σζỹe2 + σ2e3 . (A6)

a. The curl of a vector field

To express the curl of a vector field q in buoyancy co-
ordinates, one starts with the covariant representation

q = q1 e1
︸︷︷︸
=i

+q2 e2
︸︷︷︸
=j

+q3 e3
︸︷︷︸
=∇b

. (A7)

Then, since ∇ × ej = 0, the curl of q is

∇ × q = ∇q1 × e1 + ∇q2 × e2 + ∇q3 × e3 . (A8)

σ∇×q = (q3ỹ−q2b̃)e1+(q1b̃−q3x̃)e2+(q2x̃−q1ỹ)e3 . (A9)

σ∇ × q =(q3ỹ − q2b̃)e1 (A10)

+ (q1b̃ − q3x̃)e2 (A11)

+ (q2x̃ − q1ỹ)e3 (A12)

∇ × uH = σ−1
[
−vb̃e1 + ub̃e2 + (vx̃ − uỹ)e3

]
, (A13)

= −vzi + uzj + (vx − uy)k . (A14)

b. The Laplacian

We express the Laplacian of c(x) in buoyancy coordi-
nates by first writing ∇2c = ∇·∇c, and then using the ear-
lier results for gradient and divergence, and (A1) through
(A3). One finds

σ∇2c =
(
ζb̃cx̃ − ζx̃cb̃

)
x̃

+
(
ζb̃cỹ − ζỹcb̃

)
ỹ

+
[
σ−1

(
1 + ζ2

x̃ + ζ2
ỹ

)
cb̃ − ζx̃cx̃ − ζỹcỹ

]
b̃

. (A15)

A simple check is that ∇2ζ = 0.
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Overturning circulations in vertical and density coordinates

Eulerian zonally 
averaged meridional  
mass transport 
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Figure 1. Eulerian zonal-mean meridional mass-transport streamfunction, in the atmosphere (derived from eight 
years (1986-93) of operational global analyses by the Meteorological Office) and in the Southern Ocean (derived 
from one year of output from the high-resolution FRAM numerical model of the ocean). Dashed lines indicate 
negative values of the streamfunction and dotted lines surfaces of zonally averaged density: (a) in the atmosphere 
averaged over the months December-February; (b) in the atmosphere averaged over the months June-August; (c) 

in the Southern Ocean averaged over a full year. 
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Figure 4. Meridional transport streamfunction, in the Southern Ocean (derived from one year of output from 
the high-resolution FRAM numerical model of the ocean): (a) calculated by averaging in density coordinates and 
remapping to height coordinates using the mean height of density surfaces; (b) residual mean circulation; (c) as 

@) but using data which have been averaged in time to remove transient eddies. 
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Figure 4. Meridional transport streamfunction, in the Southern Ocean (derived from one year of output from 
the high-resolution FRAM numerical model of the ocean): (a) calculated by averaging in density coordinates and 
remapping to height coordinates using the mean height of density surfaces; (b) residual mean circulation; (c) as 

@) but using data which have been averaged in time to remove transient eddies. 

Southern-ocean

Zonal average in density 
coordinates,remapped in height

The thermally indirect cell (Deacon cell) disappear in density coordinates 
Q. J. R. Meteorol. SOC. (1997), 123, pp. 519-526 

Similarities of the Deacon cell in the Southern Ocean and Ferrel cells in the atmosphere 
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SUMMARY 
The meridional circulation in the ocean and the atmosphere, when averaged over longitude and time at 

constant height, shows a number of cells. Most of these appear as direct circulations, with ascent in response 
to forcing which reduces the density. There are several indirect circulations, particularly the Deacon cell in the 
Southem Ocean and the Ferrel cells in the mid-latitude atmosphere, which appear to act against the mean density- 
gradient in regions of no apparent mean density-forcing. When the zonal-mean circulation is calculated in density 
coordinates, both the Deacon cell and the Ferrel cells disappear. A transformation of the zonal-mean circulation as 
a function of height is used to give the residual mean circulation, which is remarkably similar to the zonal-mean 
circulation in density coordinates in both the Southern Ocean and the atmosphere. This shows that the existence 
of the Deacon and Ferrel cells is the result of correlations of zonal variations of density and meridional flow, and 
not of zonal-mean density-forcing. Zonal variations associated with the time-mean eddies in the Southern Ocean 
are the main contributors to the Deacon cell, while correlations in transient weather systems are the major factor 
leading to Ferrel cells. 

KEYWORDS: Indirect circulations Oceanic eddies Transient weather systems 

1. ZONAL-MEAN MERIDIONAL CIRCULATION IN HEIGHT COORDINATES 

A simplified picture of the mean meridional (north-south) circulation in the ocean and in the at- 
mosphere can be obtained by averaging the meridional flow over time and around a latitude circle at 
constant height to give the time-mean zonal-mean circulation as a function of latitude and height. This 
representation of the flow at fixed locations is often called the Eulerian mean flow. It is common to rep- 
resent the mean meridional flow using a streamfunction $, where the flow is parallel to contours of the 
streamfunction and proportional to the gradient of the streamfunction. This approach has been used to 
represent the zonal-mean meridional circulation in the atmosphere for many years and is now being used 
with data from global ocean models (Manabe et nl. 1990; DOOs and Webb 1994). 

Figure 1 shows the Eulerian mean meridional mass-transport streamfunction in the atmosphere in the 
two extreme seasons (from eight years of operational weather analyses from the Meteorological Office 
(MO)) and in the Southern Ocean (from one year of simulation with the FRAMt high resolution ocean 
model (FRAM Group 1991)). We use the FRAM model simulation as this is an eddy-resolving ocean 
model and there are no global ocean observational data-sets which resolve ocean eddies. The annual cycle 
in the meridional circulation is marked in the atmosphere but is weaker in the ocean (Doos 1996). The 
major features of the meridional circulation in the atmosphere are the Hadley cells, with maximum ascent 
in the summer tropics and descent in the winter subtropics, and the reversed Ferrel cells, with ascent in 
high latitudes and descent in the subtropics (Lorenz 1967; Holton 1992). In the Southern Ocean, a major 
meridional circulation is the Deacon cell, with descent around 35"s and ascent around 55"S, reaching 
depths in excess of 2000 m (Doos and Webb 1994). The Hadley cells are direct meridional circulations, 
with ascent in the tropics in regions of mean atmospheric-heating and sinking motion in regions of net 
cooling. However, the Ferrel cells and the Deacon cell are indirect or reversed circulations, with apparent 
ascent or descent across strong density-gradients in regions of no apparent mean density-forcing. 

To understand the mean meridional circulation in the atmosphere and the ocean, it is useful to 
consider the equations for fluid motion on the earth after averaging around a latitude circle (zonal mean). 
We consider local Cartesian coordinates ( x ,  y ,  z) on the surface of the earth, with x eastward, y northward 
and z upward, and fluid velocity ( u ,  v ,  w ) .  Let s' = s - S be the departure of an arbitrary variable s from 
its zonal-mean value S. The equation for zonally averaged density may be written 

* Corresponding author, present address: Cooperative Research Centre for Southem Hemisphere Meteorology, 
Monash University, Clayton, VIC 3168, Australia. 

Fine Resolution Antarctic Model. 

519 

524 NOTES AND CORRESPONDENCE 

25 30 35 40 45 M 55 60 65 70 75 
Latitude (S) 

Figure 4. Meridional transport streamfunction, in the Southern Ocean (derived from one year of output from 
the high-resolution FRAM numerical model of the ocean): (a) calculated by averaging in density coordinates and 
remapping to height coordinates using the mean height of density surfaces; (b) residual mean circulation; (c) as 

@) but using data which have been averaged in time to remove transient eddies. 



The ACC velocity (FESOM model)

A massive westward current with rich eddy-field



We have

We can express 

Application to TWA to idealized ACC

3

Idealized Southern Ocean

Figure from Stewart, A. L., & Thompson, A. F. (2013). Connecting Antarctic cross-slope exchange with Southern Ocean 
overturning. Journal of Physical Oceanography, 43(7), 1453–1471. http://doi.org/10.1175/JPO-D-12-0205.1

Spin up: 
100 years at 20 km from rest 
20 years at 10 km interpolated from 10 km 
15 years at 5 km interpolated from 5 km

Simulation and Analysis: 
20 years of simulation sampled every 3 day 
ocean PDE solver uses 100 levels 
TWA analysis uses 100 buoyancy levels

Forcing: 
zonally-uniform wind stress as shown 
linear restoring of surface temperature 
linear restoring of interior temperature at boundaries. restore to -1C

restore to exponentially-decaying profile

Configuration: 
1000 km x 2000 km x 2.5 km 
includes continental shelf and shelf break. 
zonally-periodic 
linear EOS with uniform salinity 
(surfaces of temperate == surfaces of buoyancy)

surface restoring to quasi-lin
ear te

mperature profile

A Thickness-Weighted Average Perspective of Force Balance in an Idealized Circumpolar Current  
Ringler et al.,JPO 2017 https://doi.org/10.1175/JPO-D-16-0096.1

https://doi.org/10.1175/JPO-D-16-0096.1
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A Thickness-Weighted Average Perspective of Force Balance in an Idealized Circumpolar Current  
Ringler et al.,JPO 2017 https://doi.org/10.1175/JPO-D-16-0096.1
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Thickness-Weighted Averaged (TWA) equations:
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The TWA machinery 
leaves the structure of 
the equations intact and 
isolates the action of the 
eddies into a single term.

Young, W. R. (2012). An Exact Thickness-Weighted Average Formulation of the Boussinesq Equations. J. Phys. Oceanogr, 42(5), 692–707. 
http://doi.org/10.1175/JPO-D-11-0102.1

The advecting velocity 
is now the thickness-
weighted velocity (aka 
residual mean velocity).

5

Boussinesq equations in buoyancy coordinates and 
vector invariant form.

:  zonal momentum equation

:  meridional momentum equation

:  hydrostatic pressure
:  continuity equation
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m :  Montgomery potential Now apply the thickness-weighted 

averaging machinery to the Boussinesq 

equations written in buoyancy coordinates 

and expressed in vector-invariant form.
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TWA at out-cropped buoyancy layers …. what to do?
from the z-space perspective

For each sample,

, is given a value of zero for out-cropped layers.� = ⇣b̃
, is given a value of zero for out-cropped layers.�u

buoyancy surfaces

de
pt

h

meridional position

û =
�u

�
�u =

1

M

MX

m�1

�u� =
1

M

MX

m�1

� , , 

==

https://doi.org/10.1175/JPO-D-16-0096.1


TWA meridional velocity time and zonally averaged
Thickness-weighted average meridional velocity in buoyancy space. 
(This is the meridional velocity that advects the TWA tracer fields.)

10

weak 

upwelling

Why is the TWA meridional velocity zero at the base of the 

ventilation-defined surface layer?

The lightest (warm) 

water comes from 

the north.

The heaviest 

(cold) water 

comes from 

the south.

m/s

The TWA meridional velocity is in the surface diabatic layer and at the bottom

Almost no TWA meridional velocity in the interior 
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wind stresseddy 
force

advection of 
potential vorticity

Force due to diabatic 
advection is negligible 

everywhere.

residual

bottom drag

[ût̃] = �
⇥
$̂ûb̃

⇤
+
⇥
�v̂⇧]

⇤
+

h
X̂
i
� [r ·Eu]

surface layer

upwelling layer

acceleration (m/s/day)

v̂

Momentum balance in the box

Nothing below 600m until the bottom boundary layer near 3000m.

Coriolis term



The EP fluxes: vertical flux of eastward momentum

EP vertical flux of eastward momentum

The vertical component of eastward momentum flux is dominated by ⇣ 0m0
x

21

Eu = [u00u00e1 + [u00v00e2 + �̄�1

✓
1

2
⇣ 02e1 + ⇣ 0m

0
x̃

e3

◆

Johnson, G. C., & Bryden, H. L. (1989). On the size of the Antarctic Circumpolar Current. Deep Sea Research 
Part a. Oceanographic Research Papers, 36(1), 39–53. http://doi.org/10.1016/0198-0149(89)90017-4

The imposed wind stress is almost 
entirely balanced by the vertical eddy 
flux of zonal momentum. 

Maximum wind stress is 0.2 N/m2.

⇢0⇣
0m

0
x̃

N/m2



in z-coordinates

EP vertical flux

is vertically uniform except in the top and bottom boundary layer: no divergence
and no residual velocity except in top and bottom layers

⇣ 0m0
x

⇣ 0m0
x



:  form-stress⇣ 0m0
x

⇣ 0 ⇣ 0

6. The TWA equations of motion

We now proceed with averaging the equations of mo-
tion in b coordinates. Following the discussion of kine-
matics in section 3, the average of the thickness equation
(110) is (68). The average of the hydrostatic relation (109)
is just z 5 2 m ~b, with s 5 z ~b 5 2 m ~b ~b.

To average the horizontal momentum equations (107)
and (108), one first multiplies by s. The identity

sm~x 5 2m ~b ~bm~x (118)

5 (zm~x) ~b 1
1

2
z2

! "

~x
(119)

is key in dealing with the pressure gradient. Averaging
(119) and using the mean hydrostatic relation, one has

sm~x 5 sm~x 1 (z9m9~x)~b 1
1

2
z92

! "

~x
. (120)

Dividing (120) by s and using (53) to recognize a diver-
gence results in

s21sm~x 5 m~x 1 $ ! s21 1

2
z92e1 1 z9m9~xe3

! "
. (121)

The hydrostatic relation z 1 m ~b 5 0 is used at several
points in the manipulations above and is therefore es-
sential to TWA.

The identity (121) and application of (80) to sDu/Dt
and sDy/Dt results in the TWA momentum equations,

DYû

Dt
2 f ŷ 1 m~x 1 $ ! Eu 5 X̂ (122)

and

DYŷ

Dt
1 f û 1 m~y 1 $ ! Ey 5 Ŷ. (123)

The convective derivative DY/Dt above is defined in (76),
and the EP vectors Eu and Ey are

Eu 5
def

Ju 1 s21 1

2
z92e1 1 z9m9~xe3

! "
(124)

and

Ey 5
def

Jy 1 s21 1

2
z92e2 1 z9m9~ye3

! "
, (125)

where Ju and Jy are defined via (81). In the adiabatic
case (with - 5 0) the flux vectors Ju and Jy involve only
e1 and e2, and therefore Ju and Jy lie in a bY surface.

Thus, on the right of (124) and (125) only the terms
proportional to e3 5 sk transport momentum through bY

surfaces. This is the ‘‘inviscid pressure drag’’ identified
by Rhines and Holland (1979), or ‘‘form drag.’’

In de Szoeke and Bennett (1993) and Greatbatch and
McDougall (2003), the thickness-weighted velocity is
advected by the thickness-weighted velocity, and there-
fore these are probably the closest antecedents of the
thickness-weighted momentum equations (122) and
(123). An advantage of the form in (122) and (123) is
that the eddy forcing appears as the divergence of the
three-dimensional Eliassen–Palm flux vectors Eu and Ey.

a. The Rossby–Ertel PV equation

Following the same steps used to derive the unaver-
aged PV equation (115), one finds from the averaged mo-
mentum equations, (122) and (123), as well as from the
averaged thickness equation (68), that

DYPY

Dt
1 $ ! FY 1 $ ! GY 5 0, (126)

where

PY 5
def f 1 ŷ~x 2 û~y

s
(127)

is a form of the Rossby–Ertel potential vorticity. In (126)
the diabatic terms appear in

sGY 5
def

2[(Ŷ 2 ŷ ~b-̂)e1 2 (X̂ 2 û ~b-̂)e2] 2 s-̂PYe3;

(128)

GY is the analog of the unaveraged G in (117). Also in (126)

FY 5
def

s21($ ! Ey)e1 2 s21($ ! Eu)e2 (129)

is the eddy flux of PY.
Taking the dot product of (129) with e1 5 i and e2 5 j

expresses the EP divergences in terms of components
of the PV eddy flux FY. Thus, the TWA horizontal mo-
mentum equations can be written as

û~t 1 -̂û ~b 2 sŷPY 1 m 1
1

2
û2 1

1

2
ŷ2

! "

~x
5 X̂ 1 sj ! FY

(130)

and

ŷ~t 1 -̂ ŷ ~b 2 sûPY 1 m 1
1

2
û2 1

1

2
ŷ2

! "

~y 5 Ŷ 2 si ! FY.

(131)
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In QG-TEM

On a constant buoyancy surface 

Form-stress transfers momentum vertically (or across buoyancies)

b = b̄(z) + b

0(x, y, z, t) =) ⇣

0 ⇡ � b

0

b̄z
= � b

0

N

2

f0 v
0 = p0

x



Using residual velocities in a prognostic model: 
cartesian coordinates

problem from the approximations employed by Ferreira
and Marshall to derive a residual-mean system. Finalizing
the divorce by systematically deriving a totally residual-
mean formulation of the Boussinesq primitive equations
is the goal of this article.

The key step is averaging the equations of motion
in buoyancy1 coordinates, using an average weighted
by the ‘‘isopycnal thickness.’’ We refer to this as the
thickness-weighted average (TWA) formulation. The re-
sulting exact description assumes neither small-isopycnal
slope, rapid rotation, weak eddies, nor small diabatic ef-
fects. For example, the TWA formulation applies equally
well to nonrotating fluids, provided only that the strati-
fication is stable.

With hindsight, some of the ingredients in the TWA
formulation (e.g., the definitions of bY and wY below) are
already contained in de Szoeke and Bennett (1993),
Smith (1999), and Greatbatch and McDougall (2003). A
main point of de Szoeke and Bennett is that the Osborn–
Cox relation between diabatic density flux and molec-
ular dissipation actually provides the diapycnal (rather
than vertical) flux of density (see also Winters and
D’Asaro 1996). This is a second potent reason for using
the TWA formulation.

In section 2, we review the kinematic problem of
transforming from Cartesian coordinates (x, y, z, t) to
buoyancy coordinates (~x, ~y, ~b, ~t ). In this framework the
depth of a buoyancy surface, z 5 z(~x, ~y, ~b, ~t ), is an in-
dependent variable and

s 5
def

z ~b (1)

is the isopycnal ‘‘thickness.’’ Some new formulas pro-
viding the b-coordinate representation of gradient,
divergence, and curl are obtained: (53) is particularly
useful. In section 3, we review the thickness-weighted
average, which is used to define the horizontal compo-
nents of the residual velocity as

(û, ŷ) 5
def

(su, sy)/s (2)

(Andrews 1983; de Szoeke and Bennett 1993). The over-
bar above denotes an ensemble average in buoyancy
coordinates over realizations of the eddies. The third
component of the three-dimensional incompressible re-
sidual velocity uY is not the thickness-weighted average ŵ:

instead, using the standard Cartesian basis vectors (i, j, k),
the nondivergent residual velocity is uY 5 ûi 1 ŷj 1 wYk;
the vertical component wY is defined in terms of the av-
erage depth of an isopycnal surface z(~x, ~y, ~b, ~t ) by (73).
The ‘‘averaging identities’’ (72), (80), and (83) are key
results in section 3.

Sections 5 and 6 turn to dynamics by starting with the
hydrostatic equations of motion, written in b coordi-
nates. After a thickness-weighted average, the equations
of motion are transformed into Cartesian coordinates,
(x, y, z, t). In the adiabatic case, this results in the Car-
tesian coordinate TWA system:

ût 1 ûûx 1 ŷûy 1 wYûz 2 f ŷ 1 pY
x 1 $ ! Eu 5 0, (3)

ŷt 1 ûŷx 1 ŷŷy 1 wYŷz 1 f û 1 pY
y 1 $ ! Ey 5 0, (4)

pY
z 5 bY, (5)

ûx 1 ŷy 1 wY
z 5 0, (6)

bY
t 1 ûbY

x 1 ŷbY
y 1 wYbY

z 5 0. (7)

The variables pY, bY, and wY are defined in terms of the
mean depth of buoyancy surface, z(~x, ~y, b, ~t ) [e.g., as in
(59) and (73)]. The field bY(x, y, z, t) is equal to the value
of the buoyancy surface whose average depth is z.

The eddy forcing of the TWA system above is con-
fined to the horizontal momentum equations and is via
the divergence of the three-dimensional Eliassen–Palm
(EP) vectors Eu and Ey, defined in (124) and (125). These
EP vectors are second-order in eddy amplitude and there
is a three-dimensional generalization of Andrews’s (1983)
finite-amplitude zonal-mean EP theorem.

If the superscripts ^ and Y are dropped, then, apart
from the EP divergences $ ! Eu and $ ! Ey, the TWA
system (3)–(7) is identical to the primitive equations.
Thus, the eddy parameterization problem devolves to
relating the EP divergences to residual-mean quantities
so that (3)–(7) is closed. Parameterization is not a main
focus of this article. However, an important clue is pro-
vided by the relation between the divergence of the EP
vectors and the eddy flux of the relevant form of Rossby–
Ertel potential vorticity (PV), which is

PY 5 ûzbY
y 2 ŷzbY

x 1 ( f 1 ŷx 2 ûy)bY
z. (8)

Specifically, in the adiabatic case

PY
t 1 ûPY

x 1 ŷPY
y 1 wYPY

z 1 $ ! FY 5 0, (9)

where the eddy PV flux is

1 We use the Boussinesq approximation with a linear equation
of state. The buoyancy b is defined in terms of the density r as
b 5

def
g(r0 2 r)/r0, where r0 is the constant bulk density of the

ocean. Thus, buoyancy coordinates are essentially the same as
isopycnal coordinates.
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(1) Only residual velocity appears.

(2) All tracers are advected by the 
residual velocity.

(3) Eddy effects are confined to the 
momentum equations, and appear in 
EP vectors.

and
z = ζ̄

(
x̃, ỹ, b♯ (x, y, z, t) , t̃

)
. (60)

It is b♯ that serves as the buoyancy variable in the TWA
formulation.

To understand b♯, consider an Eulerian observer E at
a fixed position x = xi + yj + zk. E is always at the
mean depth of some buoyancy surface, and from (60) that
surface is b̃ = b♯(x, y, z, t).

The analog of (27) is

σ̄ = ζ̄b̃ = 1/b♯
z . (61)

To prove (61), one simply takes the z-derivative of (60).
Likewise one can verify that results such as (28) apply to
averaged variables provided that all ζ’s and σ’s are replaced
by ζ̄ and σ̄, and all b’s are replaced by b♯.

With the exception of the passive scalar equation (16),
all the important results from section 2 can be averaged
simply by appropriately decorating the variables i.e., we
are not troubled by eddy correlations till we consider the
averaged passive scalar equation in (89) below.

For example, the vectors ēj are defined by averaging ej

in (39) through (41):

ē1 = i + ζ̄x̃k = i − b♯
xk/b♯

z , (62)

ē2 = j + ζ̄ỹk = j − b♯
yk/b♯

z , (63)

ē3 = σ̄k = k/b♯
z . (64)

There are no eddy correlations introduced by averaging the
ej basis vectors in b-coordinates. Note too that the vectors
ē1 and ē2 in (62) and (63) are tangent to b♯-surfaces i.e.,
after averaging b♯(x, t) plays the role of b(x, t).

b. The thickness-weighted average

If θ(x̃, ỹ, b̃, t̃) is any field, then the thickness-weighted
average of θ is:

θ̂
def
=

σ θ

σ̄
. (65)

For instance, the thickness-weighted average velocity com-
ponents are

σ̄û = uσ , and σ̄v̂ = vσ . (66)

Following Andrews (1983), we refer to û and v̂ as the resid-
ual velocities.

One must be sensitively aware that the thickness-weighted
averageˆdoes not satisfy property (57) i.e., ∂̂xu ̸= ∂xû. Be-
cause ûx is ambiguous, we adopt the definition

ûx
def
= ∂xû , v̂t

def
= ∂tv̂ , etc. (67)

That is, first take the thickness-weighted average, and then
the derivative.

The advantage of the thickness-weighted average is im-
mediately clear if one averages (37) to obtain:

σ̄t + (ûσ̄)x̃ + (v̂σ̄)ỹ + (ϖ̂σ̄)b̃ = 0 . (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field θ can be Reynolds decom-
posed as θ = θ̄ + θ′. Indeed, the decomposition

ζ = ζ̄ + ζ′ , and σ = σ̄ + σ′ , (69)

is used throughout the TWA formulation. However for all
other variables de Szoeke & Bennett’s (1993) thickness-
weighted decomposition

θ = θ̂ + θ′′ (70)

is more useful.
Equation (70) is a definition of the fluctuation θ′′. As

a consequence of (55) through (65) one has4

σ θ′′ = 0 . (71)

The decomposition (70), and the identity in (71), results
in the key relation

σφθ = σ̄
(
φ̂θ̂ + φ̂′′θ′′

)
. (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual ve-
locity. In analogy with (33), the third component is

w♯ def
= ζ̄t̃ + ûζ̄x̃ + v̂ζ̄ỹ + ϖ̂ζ̄b̃ , (73)

(de Szoeke & Bennett 1993). Notice that w♯ ̸= ŵ. In fact
w♯ is not the average of any field5. Using w♯, the three-
dimensional residual velocity is

u♯ def
= ûi + v̂j + w♯k , (74)

= ûē1 + v̂ē2 + σ̄−1
(
ζ̄t̃ + ϖ̂ζ̄b̃

)
ē3 . (75)

One can verify that ∇ ·u♯ = 0 using either ∇· in Cartesian
coordinates, or more readily with the buoyancy-coordinate
formula in (53) (with σ → σ̄ and en → ēn).

u♯ = ûi + v̂j + (z̄t + ûz̄x + v̂z̄y)︸ ︷︷ ︸
=w♯

k

4The unweighted average of θ′′ is nonzero: σ̄θ′′ = −σ′θ′
5The superscript ♯ flags non-mean fields, such as b♯ and w♯, that

play in the mean-field equations.

6

The residual 
velocity is:

û =
�u

�
� =

1
bz

There are no eddy correlations introduced by averaging
the e1 basis vectors in b coordinates. Note too that the
vectors e1 and e2 in (62) and (63) are tangent to bY sur-
faces; that is, after averaging bY(x, t) plays the role of
b(x, t).

b. The thickness-weighted average

If u(~x, ~y, ~b, ~t ) is any field, then the thickness-weighted
average of u is

û 5
def su

s
. (65)

For instance, the thickness-weighted average velocity
components are

sû 5 us, and sŷ 5 ys. (66)

Following Andrews (1983), we refer to û and ŷ as the
residual velocities.

One must be sensitively aware that the thickness-
weighted average caret does not satisfy property (57):
that is, d›xu 6¼ ›xû. Because ûx is ambiguous, we adopt
the definition

ûx 5
def

›xû, ŷt 5
def

›tŷ, etc. (67)

That is, first take the thickness-weighted average and
then the derivative.

The advantage of the thickness-weighted average is
immediately clear if one averages (37) to obtain

s~t 1 (ûs)~x 1 (ŷs)~y 1 (-̂s) ~b 5 0. (68)

There are no Reynolds eddy correlation terms in (68).

c. The thickness-weighted decomposition

Using the average, any field u can be Reynolds de-
composed as u 5 u 1 u9. Indeed, the decomposition

z 5 z 1 z9 and s 5 s 1 s9 (69)

is used throughout the TWA formulation. However, for
all other variables the de Szoeke and Bennett (1993)
thickness-weighted decomposition

u 5 û 1 u0 (70)

is more useful.
Equation (70) is a definition of the fluctuation u0. As

a consequence of (55)–(65), one has4

su0 5 0. (71)

The decomposition (70), as well as the identity in (71),
results in the key relation

sfu 5 s(f̂û 1 df0u0). (72)

d. The three-dimensional residual velocity

In (66) we defined two components of the residual
velocity. In analogy with (33), the third component is

wY 5
def

z~t 1 ûz~x 1 ŷz~y 1 -̂z ~b (73)

(de Szoeke and Bennett 1993). Notice that wY 6¼ ŵ. In
fact, wY is not the average of any field.5 Using wY, the
three-dimensional residual velocity is

uY 5
def

ûi 1 ŷj 1 wYk (74)

5 ûe1 1 ŷe2 1 s21(z~t 1 -̂z ~b)e3. (75)

One can verify that $ " uY 5 0 using either $" in Car-
tesian coordinates or more readily with the buoyancy–
coordinate formula in (53) (with s / s and en / en).

Proceeding with this program, the convective deriva-
tive following the residual velocity uY is

DY

Dt
5
def

›~t 1 û›~x 1 ŷ›~y 1 -̂›~b (76)

5 ›t 1 û›x 1 ŷ›y 1 wY›z. (77)

The results above are analogous to the unaveraged con-
vective derivative in (34) and (35).

To summarize, suppose one starts in z coordinates
with u and b satisfying (14) and (15). One then transforms
to b coordinates, takes the thickness-weighted average,
and then moves back to z coordinates. When the dust
settles, the variables in z coordinates are uY(x, y, z, t)
and bY(x, y, z, t), satisfying the analogs of (14) and (15):
namely,

$ " uY 5 0 (78)

and

bY
t 1 uY " $bY 5 -̂. (79)

If the flow is adiabatic (-̂ 5 0) and steady (zt 5 0), then
from (75) the residual velocity uY lies in a bY surface.

4 The unweighted average of u0 is nonzero: su0 5 2 s9u9.

5 The superscript Y flags nonmean fields, such as bY and vY, that
play in the mean-field equations.
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diabatic effects

An eulerian observer at (x,y,z,t) is 
at the mean depth z of some 

buoyancy surface.  This defines

or as

q = (q + sζx̃)︸ ︷︷ ︸
=q1

e1 + (r + sζỹ)
︸ ︷︷ ︸

=q2

e2 + σs︸︷︷︸
=q3

e3 . (49)

An important result follows from the special case q = u:
using the thickness equation (37) the contravariant repre-
sentation of u is

u = ue1 + ve2 + σ−1
(
ζt̃ + ϖζb̃

)
e3 . (50)

σ

c. Gradient and divergence

A scalar field f can be written as either f(x, y, z, t)
or f(x̃, ỹ, b̃, t̃). In Cartesian coordinates the gradient is
∇f = fxi + fyj + fzk. Using (38), and the definition
of the basis ej in (39) through (41), one has the natural
covariant representation of the gradient

∇f(x̃, ỹ, b̃, t̃) = fx̃ ∇x̃ + fỹ ∇ỹ + fb̃ ∇b ,

= fx̃ e1 + fỹ e2 + fb̃ e3 . (51)

q = q1e
1 + q2e

2 + q3e
3

Turning to the divergence, if a vector field q is presented
in the ej-basis as

q = q1e1 + q2e2 + q3e3 , (52)

then the divergence is

∇ · q = σ−1
(
σq1
)
x̃

+ σ−1
(
σq2
)
ỹ

+ σ−1
(
σq3
)
b̃

. (53)

σ∇ · q =
(
σq1
)
x̃

+
(
σq2
)
ỹ

+
(
σq3
)
b̃

Later we will crucially need the inverse of (53): the
pattern lx̃ + mỹ + nb̃ signals the introduction3 of a vector
field σ−1(le1 + me2 + ne3) so that

lx̃ + mỹ + nb̃ = σ∇ · σ−1 (le1 + me2 + ne3) . (54)

There are oversights in the oceanographic and meteorolog-
ical literature made by claiming that lx̃ + mỹ + nb̃ is the
divergence of a “vector” (l, m, n). This is dangerous be-
cause the basis in which the “vector” (l, m, n) is expressed
is not stated (the Cartesian basis is implied), and because
the various factors of σ in the correct expression (54) are
easily overlooked.

σt + σ∇ · (ue1 + ve2) = 0

3The solution of the inverse problem is not unique: one can add
an arbitrary solenoidal vector field to σ−1(le1 + me2 +ne3) without
changing the divergence. Thus (54) involves a gauge choice.

3. The kinematics of averaging

Although the thickness-weighted average is familiar, ear-
lier works have not exhaustively exploited this procedure
(Andrews 1983; Gent et al. 1995; Lee & Leach 1996;
Treguier et al. 1997; Greatbatch & McDougall 2003). Thus
in this section we review the thickness-weighted average
and obtain some new results needed in section 5.

The average of a field θ(x̃, ỹ, b̃, t̃) is denoted by θ̄(x̃, ỹ, b̃, t̃).
We insist that the average is a linear projection operator.
This means that

θ̄ = θ̄ , (55)

and
θ̄φ = θ̄ φ̄ . (56)

We also require that the average commutes with derivatives
with respect to (x̃, ỹ, b̃, t̃). For example,

∂x̃θ = ∂x̃θ̄ , and ∂t̃θ = ∂t̃θ̄ , etc. (57)

It is safest to think of this overbar as an ensemble aver-
age: space and time filters will usually only approximately
satisfy the three essential conditions in (55) through (57)
(Davis 1994).

The averaging operation introduced above is conducted
in buoyancy coordinates. For example, to calculate the
average of buoyancy b(x, t), we write buoyancy in buoyancy
coordinates, as in (19), and therefore

b(x, t) = b̃ = b̃ = b(x, t) . (58)

Thus buoyancy itself is unaffected by averaging. This em-
phasizes that the average of a field represented in buoyancy
coordinates is not equal to the average of the same field rep-
resented in Cartesian coordinates (Smith 1999; Jacobson &
Aiki 2006).

A most important mean field in the TWA formulation
is the mean depth of an isopycnal, ζ̄(x̃, ỹ, b̃, t̃), and σ̄ = ζ̄b̃

is the mean thickness.

a. Returning to Cartesian coordinates

b♯(x, y, z, t)

Although the average of θ is defined using the buoy-
ancy coordinate representation of θ, given θ̄(x̃, ỹ, b̃, t) one
can return to the Cartesian representation. de Szoeke &
Bennett (1993) make this transition by inverting the rela-
tion z = ζ̄(x̃, ỹ, b̃, t̃) to obtain a field b = b♯(x, y, z, t). In
other words

b̃ = b♯
(
x, y, ζ̄(x̃, ỹ, b̃, t̃), t

)
, (59)

and
z = ζ̄

(
x̃, ỹ, b♯ (x, y, z, t) , t̃

)
. (60)
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Parametrization of EP fluxes

If        are in geostrophic balance, then 

A model in terms of the TWA fields requires parametrizing the EP fluxes

⇣ 0m0
x

= �µ�̄û
z Vertical viscosity of horizontal momentum (Rhines and Young, 1982) 

⇣ 0m0
y = �µ�̄v̂z

û v̂ (u⇤, v⇤) =

✓
a

r⇢]

⇢]z

◆

z

a = µf�2�̄�1 = µf�2N̄2With

The parametrization for the extra velocity is equivalent 
to Gent-McWilliams scheme with diffusivity 

fv⇤ ⌘
✓
⇣ 0m0

x

�̄

◆

z

fu⇤ ⌘ �
 
⇣ 0m0

y

�̄

!

z

This is equivalent to adding extra velocities to the Coriolis terms such that 

a

 Prognostic Residual Mean Flow in an Ocean General Circulation Model and its Relation to Prognostic Eulerian Mean Flow 
Saenz, J.A. et al. JPO 2017. https://doi.org/10.1175/JPO-D-15-0024.1

https://doi.org/10.1175/JPO-D-15-0024.1


Comparison to a Eulerian model
A model in terms of the Eulerian fields requires parametrizing the eddy-fluxes:
start with the buoyancy fluxes (no momentum fluxes)



Implementation in a numerical model of the ACC

Residual overturning using TWA model
EP fluxes parametrized as vertical 
viscosity 

Residual overturning using 
conventional Eulerian mean,  
parametrized buoyancy fluxes, 
assuming 

 Prognostic Residual Mean Flow in an Ocean General Circulation Model and its Relation to Prognostic Eulerian Mean Flow 
Saenz, J.A. et al. JPO 2017. https://doi.org/10.1175/JPO-D-15-0024.1

(û, v̂) = (ū, v̄) + (u⇤, v⇤)

a = µf�2�̄�1 = µf�2N̄2With

Quantitative agreement, because eddy 
mom. flux is negligible.

https://doi.org/10.1175/JPO-D-15-0024.1


Summary

Residual mean formalism is very useful to capture the effect of eddy-fluxes on buoyancy 
transport (and possibly other tracers).

TWA places eddy-effect in EP flux divergence in the momentum equation using a single 
velocity. Not clear how to get the Eulerian flow (is it needed?)

Not widely implemented yet, but it can and has been done in the ACC setting.

Agrees with parametrization of eddy-fluxes, if confined to buoyancy fluxes.

Not clear how to parametrize all of the EP fluxes (momentum), which are important for 
jets formation and maintenance.


