# The Analogy Between Electrodynamics and Fluid Mechanics

Rick Salmon Scripps Institution of Oceanography University of California, San Diego

> Tel Aviv University 1 April, 2019

Journal of Fluid Mechanics 2014 & 2016

#### Quick review of Classical Electrodynamics

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{E} = \sum_{i} q_{i} \, \delta(\mathbf{x} - \mathbf{x}_{i}(t)) \equiv \rho \qquad c^{2} \nabla \times \mathbf{B} - \mathbf{E}_{t} = \sum_{i} q_{i} \, \dot{\mathbf{x}}_{i} \, \delta(\mathbf{x} - \mathbf{x}_{i}(t)) \equiv \mathbf{j}$$

$$m_i \ddot{\mathbf{x}}_i = q_i \left( \mathbf{E} + \dot{\mathbf{x}}_i \times \mathbf{B} \right)$$

Potential representation: 
$$\mathbf{E} = -\nabla \phi - \mathbf{A}_t$$
  $\mathbf{B} = \nabla \times \mathbf{A}$ 

Gauge arbitrariness: 
$$\phi \rightarrow \phi - \lambda_t$$
  $\mathbf{A} \rightarrow \mathbf{A} + \nabla \lambda$ 

In this talk: 
$$\mathbf{E} = (E_1, E_2, 0)$$
  $\mathbf{B} = (0, 0, B_3)$   $\mathbf{x}_i = (x_i, y_i, 0)$   $\mathbf{A} = (A, B, 0)$ 

## Lagrangian for Classical Electrodynamics

$$\begin{split} L &= L_1 + L_2 \\ L_1[\phi, \mathbf{A}] &= \frac{1}{2} \int dt \iiint d\mathbf{x} \left( \mathbf{E} \cdot \mathbf{E} - c^2 \mathbf{B} \cdot \mathbf{B} \right) = \frac{1}{2} \int dt \iiint d\mathbf{x} \left( (\nabla \phi + \mathbf{A}_t)^2 - c^2 (\nabla \times \mathbf{A})^2 \right) \\ L_2[\phi, \mathbf{A}, \mathbf{x}_i] &= -\frac{1}{2} \sum_i m_i \dot{\mathbf{x}}_i \cdot \dot{\mathbf{x}}_i + \sum_i q_i \int dt \iiint d\mathbf{x} \left( -\phi + \mathbf{A} \cdot \dot{\mathbf{x}}_i \right) \delta \left( \mathbf{x} - \mathbf{x}_i(t) \right) \end{split}$$

#### In two dimensions:

$$L_{1}[\phi, A, B] = \frac{1}{2} \int dt \iint dx \, dy \left[ \left( A_{t} + \phi_{x} \right)^{2} + \left( B_{t} + \phi_{y} \right)^{2} - c^{2} \left( B_{x} - A_{y} \right)^{2} \right]$$

$$L_{2}[\phi, A, B, x_{i}, y_{i}] = -\frac{1}{2} \sum_{i} m_{i} (\dot{x}_{i}^{2} + \dot{y}_{i}^{2}) + \sum_{i} q_{i} \int dt \iint dx \, dy \, \left( -\phi + A\dot{x}_{i} + B\dot{y}_{i} \right) \, \delta \left( \mathbf{x} - \mathbf{x}_{i}(t) \right)$$

## Fluid dynamics

- (1) Regard  $\mathbf{x}_i(t)$  as the location of a point vortex with vorticity  $q_i$
- (2) Set  $m_i = 0$ , i.e. delete the kinetic energy of the charged particles
- (3) Attach new physical meanings to the potentials:

$$\hat{h} \equiv \frac{h}{h_0} = B_x - A_y$$

$$\hat{h} u = -\phi_y - B_t$$

$$\hat{h} v = \phi_x + A_t$$

(4) Add denominators to two terms in  $L_1$ 

## Lagrangian for Fluid Dynamics

$$L = L_1 + L_2$$

$$L_{1}[\phi, A, B] = \frac{1}{2} \int dt \iint dx \, dy \left[ \frac{\left(A_{t} + \phi_{x}\right)^{2}}{\left(B_{x} - A_{y}\right)} + \frac{\left(B_{t} + \phi_{y}\right)^{2}}{\left(B_{x} - A_{y}\right)} - c^{2} \left(B_{x} - A_{y}\right)^{2} \right]$$

$$L_2[\phi, A, B, x_i, y_i] = \sum_i q_i \int dt \iint dx \, dy \, \left( -\phi + A\dot{x}_i + B\dot{y}_i \right) \, \delta\left(\mathbf{x} - \mathbf{x}_i(t)\right)$$

Resulting equations:

$$\begin{split} \delta \phi : & v_x - u_y = q \equiv \sum_i q_i \; \delta(\mathbf{x} - \mathbf{x}_i(t)) \\ \delta A, \delta B : & \mathbf{u}_t + \nabla \bigg( c^2 \hat{h} + \frac{1}{2} \mathbf{u} \cdot \mathbf{u} \bigg) = \sum_i q_i (\dot{y}_i, -\dot{x}_i) \; \delta(\mathbf{x} - \mathbf{x}_i(t)) \to q(v, -u) \\ \delta \mathbf{x}_i : & \dot{\mathbf{x}}_i = \mathbf{u}(\mathbf{x}_i, t) \end{split}$$

Mass conservation,  $\hat{h}_t + \nabla \cdot (\hat{h}\mathbf{u}) = 0$ , is automatically satisfied.

#### How was this variational principle discovered?

development of a numerical algorithm similar to the Lattice Boltzmann Method

$$(\partial_t, \partial_x, \partial_y) \cdot (\hat{h}, \hat{h}u, \hat{h}v) = 0 \qquad \Rightarrow \qquad (\hat{h}, \hat{h}u, \hat{h}v) = (\partial_t, \partial_x, \partial_y) \times (-\phi, A, B)$$

Classical electrodynamics also has two variational principles.

See: Wheeler & Feynman, RMP 1949,

"Classical electrodynamics in terms of direct interparticle action."

#### Generalizations required for geophysical fluid dynamics

- (1) continuous vorticity (requires labeling fields for the vorticity)
- (2) three-dimensional Boussnesq dynamics (must remain hydrostatic)
- (3) coordinate-system rotation
- (4) adopt the Coulomb gauge  $A_x + B_y = 0 \implies (A,B) = (\gamma_y, -\gamma_x)$

Theory of wave/mean interactions:

$$L = L_1 + L_2 = L_{QG} + L_{IG} + \varepsilon L_{coupling}$$

Wave packet propagating into a quiescent region (Bretherton flow)

⇔ electrodynamics in the absence of charge

$$L_2 = 0 \implies L = L_1$$

but since  $L_1$  is non-quadratic (because of the "denominator terms"), the dynamics is nontrivial.

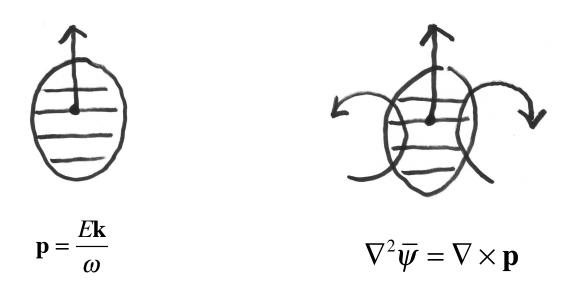
Apply Whitham's "averaged Lagrangian" method to obtain

$$\nabla^2 \overline{\psi} + \frac{\partial}{\partial z} \left( \frac{f^2}{N^2} \frac{\partial \overline{\psi}}{\partial z} \right) = \nabla \times \mathbf{p}$$

QG potential vorticity = curl of wave pseudomomentum

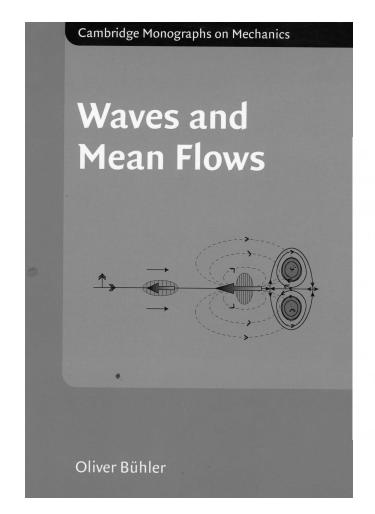
$$\mathbf{p} = \frac{E\mathbf{k}}{\omega}$$

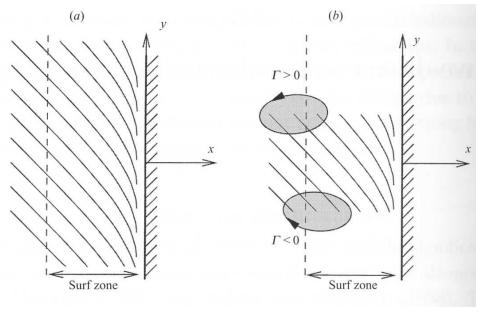
# Wave packet propagating in the direction of k



electrodynamic analogy: pair production from a vacuum

However, fluid viscosity allows the vortices to detach.





#### Pair production in fluid dynamics & electrodynamics

Fluid Lagrangian with no vorticity present:

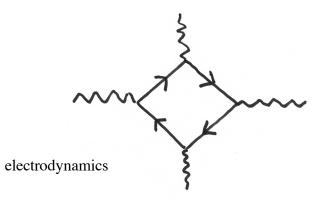
$$L = \frac{1}{2} \frac{\left(A_t - \phi_x\right)^2}{\left(1 + B_x - A_y\right)} + \frac{1}{2} \frac{\left(B_t - \phi_y\right)^2}{\left(1 + B_x - A_y\right)} - \frac{1}{2} c^2 \left(1 + B_x - A_y\right)^2$$

$$\sim \frac{1}{2} \frac{E_1^2}{(1 + B_3)} + \frac{1}{2} \frac{E_2^2}{(1 + B_3)} - \frac{1}{2} c^2 B_3^2$$

$$\approx L_0 + \frac{1}{2} \left(E_1^2 + E_2^2\right) B_3$$

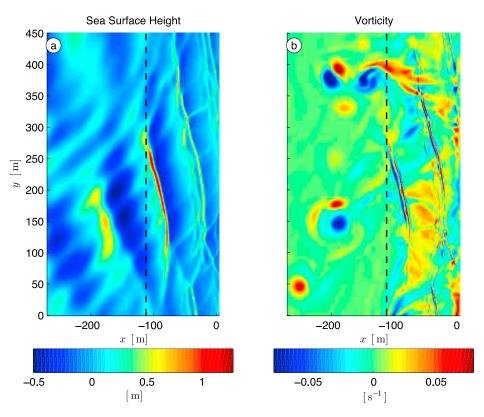
Electrodynamics Lagrangian with no charge present (Heisenberg-Euler):

$$L \sim L_0 + \alpha_1 (\mathbf{E} \cdot \mathbf{E} - \mathbf{B} \cdot \mathbf{B})^2 + \alpha_2 (\mathbf{E} \cdot \mathbf{B})^2$$





fluid dynamics



**Figure 3.** Snapshot in time of modeled (a) sea surface elevation  $\eta$  and (b) vorticity  $\zeta$  versus x and y for R3, 2700 s into the model run. The shoreline is located at x = 0 m and the black dashed line is the approximate outer limit of the surf zone. Only a subset of the model domain is shown. Note the broad range of vorticity length scales within the surf zone.

# Surface wave packet propogating to the right

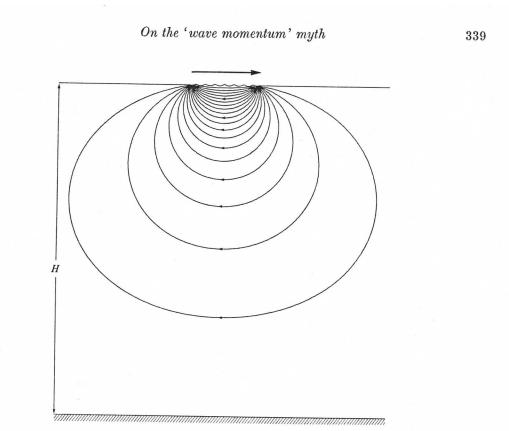


Figure 2. The irrotational,  $O(a^2)$  return flow underneath a packet of surface gravity waves propagating to the right. (The streamlines, plotted at equal intervals, are quantitatively correct for a two-dimensional wave packet whose amplitude is constant except near its ends.)

McIntyre (1981)

#### Advantages of the electrodynamic analogy:

- 1. Lagrangian in which vorticity plays a prominent role.
- 2. Sharp distinction between virtual vorticity  $(L_1)$  and actual vorticity  $(L_2)$ .
- 3. Wave/vorticity replaces wave/mean.
- 4. Vorticity is the true slow variable.