
The Analogy Between
Electrodynamics and Fluid Mechanics

Rick Salmon
Scripps Institution of Oceanography
University of California, San Diego

Tel Aviv University
1 April, 2019

Journal of Fluid Mechanics  2014 & 2016



Quick review of Classical Electrodynamics

 

∇ ⋅B = 0 Bt +∇ × E = 0
∇ ⋅E = qi δ x − xi (t)( )

i
∑ ≡ ρ c2∇ × B − Et = qi !xi δ x − xi (t)( )

i
∑ ≡ j

 mi!!xi = qi (E + !xi × B)

Potential representation: E = − ∇φ − At B = ∇ × A

Gauge arbitrariness:        φ → φ − λt A→ A +∇λ

In this talk: E=(E1,E2 ,0) B = (0,0,B3) xi = (xi , yi ,0) A = (A,B,0)



Lagrangian for Classical Electrodynamics

 

L1[φ,A,B] =
1
2

dt∫ dxdy∫∫ At + φx( )2 + Bt + φy( )2 − c2 Bx − Ay( )2⎡
⎣

⎤
⎦

L2[φ,A,B, xi , yi ] = −
1
2

mi ( !xi
2 + !yi

2 ) +
i
∑ qi

i
∑ dt∫ dxdy∫∫ −φ + A!xi + B!yi( ) δ x − xi (t)( )

 

L = L1 + L2

L1[φ,A] =
1
2

dt dx∫∫∫ E ⋅E − c2B ⋅B( )∫ =
1
2

dt dx∫∫∫ (∇φ + At )
2 − c2 (∇ × A)2( )∫

L2[φ,A,xi ] = −
1
2

mi
i
∑ !xi ⋅ !xi + qi

i
∑ dt dx∫∫∫ −φ + A ⋅ !xi( )∫ δ x − xi (t)( )

In two dimensions:



Fluid dynamics

(1)    Regard  xi (t) as the location of a point vortex with vorticity qi

(2)    Set  mi = 0 , i.e. delete the kinetic energy of the charged particles

(3)   Attach new physical meanings to the potentials:

ĥ ≡ h
h0

= Bx − Ay

ĥ u = −φy − Bt
ĥ v = φx + At

(4)   Add denominators to two terms in L1



 

L = L1 + L2

L1[φ,A,B] =
1
2

dt∫ dxdy∫∫
At + φx( )2
Bx − Ay( ) +

Bt + φy( )2
Bx − Ay( ) − c

2 Bx − Ay( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

L2[φ,A,B, xi , yi ] = qi
i
∑ dt∫ dxdy∫∫ −φ + A!xi + B!yi( ) δ x − xi (t)( )

Lagrangian for Fluid Dynamics

 

Resulting equations:

δφ : vx − uy = q ≡ qi
i
∑ δ (x − xi (t))

δA,δB : ut +∇ c2ĥ + 1
2
u ⋅u⎛

⎝⎜
⎞
⎠⎟
= qi

i
∑ ( !yi ,− !xi )δ (x − xi (t)) → q(v,−u)

δxi : !xi = u(xi ,t)

Mass conservation,   ĥt + ∇ ⋅ (ĥu) = 0, is automatically satisfied.



How was this variational principle discovered?

development of a numerical algorithm similar to the Lattice Boltzmann Method

∂t ,∂x ,∂y( ) ⋅ ĥ, ĥu, ĥv( ) = 0 ⇒ ĥ, ĥu, ĥv( ) = ∂t ,∂x ,∂y( ) × −φ,A,B( )

Classical electrodynamics also has two variational principles.
See:  Wheeler & Feynman, RMP 1949, 
"Classical electrodynamics in terms of direct interparticle action."



Generalizations required for geophysical fluid dynamics

(1)  continuous vorticity  (requires labeling fields for the vorticity)
(2)  three-dimensional Boussnesq dynamics  (must remain hydrostatic)
(3)  coordinate-system rotation
(4)  adopt the Coulomb gauge Ax + By = 0 ⇒ (A,B) = (γ y ,−γ x )

Theory of wave/mean interactions:
L = L1 + L2 = LQG + LIG + ε Lcoupling



Wave packet propagating into a quiescent region (Bretherton flow)
⇔  electrodynamics in the absence of charge

L2 = 0 ⇒ L = L1

but since  L1   is non-quadratic (because of the "denominator terms"),  
the dynamics is nontrivial.

Apply Whitham's "averaged Lagrangian" method to obtain

∇2ψ +
∂
∂z

f 2

N 2

∂ψ
∂z

⎛
⎝⎜

⎞
⎠⎟
= ∇ × p

QG potential vorticity =  curl of wave pseudomomentum

p = Ek
ω



Wave packet propagating in the direction of k

p = Ek
ω ∇2ψ = ∇ × p

electrodynamic analogy:  pair production from a vacuum

However, fluid viscosity allows the vortices to detach.





 

Fluid Lagrangian with no vorticity present:

L =
1
2

At − φx( )2

1+ Bx − Ay( ) +
1
2

Bt − φy( )2

1+ Bx − Ay( ) −
1
2
c2 1+ Bx − Ay( )2

∼
1
2

E1
2

(1+ B3)
+

1
2

E2
2

(1+ B3)
−

1
2
c2B3

2

≈ L0 +
1
2
E1

2 + E2
2( )B3

 

Electrodynamics Lagrangian with no charge present (Heisenberg-Euler):

L ∼ L0 +α1 E ⋅E − B ⋅B( )2 +α2 E ⋅B( )2

Pair production in fluid dynamics & electrodynamics

electrodynamics fluid dynamics



[21] The wave maker is forced following Wei et al. [1999]
so that

!WM ¼
X

i

ai
X

j

dij cos ky;ijy" 2"fi t " #ij
! "

ð7Þ

where ai is the amplitude at each frequency, dij is directional
distribution, ky,ij is the alongshore wavenumber, and cij is a
uniformly distributed random phase. The amplitudes ai are
derived from the sea surface elevation spectrum and the
frequency resolution, i.e., ai = [Shh( fi)(Df )]1/2. At each
frequency, the set of ky = sin($)|k| (where |k| is the linear
theory wavenumber magnitude) satisfy alongshore period-
icity, ky = nLy/(2p), where n is an integer. The frequency‐
dependent directional distribution dij is given by

d2ij ¼ exp "
$j " $2;WM fið Þ
! "2

2:25%2
$;WM fið Þ

" #

; ð8Þ

and is subsequently normalized so that ∑j dij
2 = 1. With (8),

the resulting directional spread s$ (see Appendix A) is
approximately equal to the input s$,WM. For |$j| > 50°,Dij = 0
to prevent extreme angle of incidence within the domain.
[22] At the WM, the mean (energy‐weighted) frequency f

varied from 0.08 to 0.09 Hz, with a slightly lower peak
frequency, depending upon release. At f , kh ≈ 0.5, and at the
maximum forced frequency ( f = 0.18 Hz), kh = 1.13 is
within the valid Nwogu [1993] equations kh range for wave
phase speed [Gobbi et al., 2000]. At the WM, the wave

nonlinearity parameter a/h is small (a = Hs/2) and varies
between 0.04 (R6) and 0.08 (R1, R2, R4). The number of
frequencies and directions were sufficient to avoid the
source standing wave problem [Johnson and Pattiaratchi,
2006]. However, due to finite frequency and directional
bandwidth, weak (standard deviation <4% of the mean)
alongshore variations in incident Hs remain.

3.4. Model Output and Example
[23] For each release, the model was run for 16,000 s. To

facilitate model spin‐up, the model alongshore velocities v
initial condition was set to an interpolation of the observed
mean alongshore current V(x). The model h, and u initial
conditions were zero. The wave maker began generating
waves at t = 0 s. After 2000 s (≈22 min), model variables
h, nbr, u, and v were output over the entire model domain at
0.5 Hz. Model vorticity z = ∂v/∂x − ∂u/∂y was estimated
from the output velocity fields. Model wave and current
parameters are estimated at 26 cross‐shore transects, sepa-
rated in the alongshore by 62.5 m using the last 13,000 s of
model output, allowing 3000 s of spin‐up. Modeled fre-
quency‐dependent wave spectral quantities and “bulk” sea
swell band frequency‐integrated wave statistics (e.g., Hs, $,
and %$) are calculated with the same estimation methods as
the field observations (section 2 and Appendix A). The
mean alongshore current V is the time‐averaged v, and
the mean cross‐shore current is the time‐averaged u. The
alongshore mean and standard deviation of all model sta-
tistics are subsequently calculated.

Figure 3. Snapshot in time of modeled (a) sea surface elevation h and (b) vorticity z versus x and y for
R3, 2700 s into the model run. The shoreline is located at x = 0 m and the black dashed line is the approx-
imate outer limit of the surf zone. Only a subset of the model domain is shown. Note the broad range of
vorticity length scales within the surf zone.
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McIntyre (1981)

Surface wave packet propogating to the right



Advantages of the electrodynamic analogy:

1.  Lagrangian in which vorticity plays a prominent role.
2.  Sharp distinction between virtual vorticity (L1) and actual vorticity (L2 ).
3.  Wave/vorticity replaces wave/mean.
4.  Vorticity is the true slow variable.


