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• Döös, K., 1995. Inter-ocean exchange of water masses. J. 
Geophys. Res. 100, 13499–13514.

• Blanke, B., S. Raynaud, 1997. Kinematics of the Pacific 
Equatorial Undercurrent: An Eulerian and Lagrangian
Approach from GCM Results. J. Phys. Oceanogr. 27, 1038–
1053.
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Döös (1995)

• Lagrangian method to calculate water mass 
transport between different ocean basins

• Calculate ventilation, mixing, t-s properties and 
residence time of water mass

• Finds that there is a direct exchange, unventilated, 
between ocean basins via the Southern Ocean 
(53%) and an indirect exchange involving circling 
Antarctica, ventilation, and export north in the 
Ekman layer (33%)



Numerical Model

• Fine resolution Antarctic model (FRAM)

• 24°S to Antarctica

• 0.25° resolution N-S, 0.5° resolution east-west

• Contains relaxation conditions for temperature and 
salinity in the surface layer

• Includes mean annual wind stress

• 16 year model run

• For years 10-15, data archived in monthly intervals; 
results time-averaged to steady velocity field



1. Exact solutions of trajectories 
to the time-averaged field



Zonal Velocity, u(x)
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Meridional Velocity, v(y)
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Back to zonal velocity as example:
𝑑𝑥

𝑑𝑡
= 𝑢 𝑥



Solve the differential equation with 
boundary conditions x(ta)=xa and x(tb)=xb .

Answer is 
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The calculation is repeated for v(y), w(z).

There is a time, tb , for each of the 
calculated velocities.  The lowest tb for a 
grid box determines which side the 
particle exits.



• Convection parameterized using steady model 
density field;

• particle takes random depth within a convectively 
unstable water column.



Non-divergent particle tracking 
(incompressible) velocities since

• U is a linear function of x where 𝛼 ≅ 𝑢𝑥

• V is a linear function of y where 𝛼2 ≅ 𝑣𝑦

• W is a linear function of z where 𝛼3 ≅ 𝑤𝑧



2. Seeding model to calculate 
volume transport
• Water particles are introduced at the open 

boundary (25°S) and followed until they leave the 
model.

• Calculate trajectories for all zonal-vertical grid 
boxes at open boundary with southward velocities.

• Sub-boxes, N=441 at 20S, 720 zonal, 32 vertical 
levels, excluding land = 5,569,141 trajectories.

• About 2,400 m horizontal and 1-10 m vertical 
distance between trajectories.



Can check that seeded water 
parcels conserve volume:

• Method works for forwards and backwards 
integration.

• Calculate the particle exits and then integrate 
backwards and compare the final velocity with the 
original southward velocity from FRAM.

• In paper, the Pacific receives 1 Sv (106 m3/s) too 
much, Indian Ocean exports 1 Sv too much.
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Other Major Results

• Water makes, on average 4.6 ± 2.3 circuits until it is 
ventilated, 6.5 ± 3.8 circuits before exiting

• Heat transport into the Atlantic comes 85% from 
the Indian Ocean and the rest from Drake Passage.

• The time spent in the Southern Ocean varies with a 
standard deviation of the same order as the mean.



Interesting Points

• “The use of traditional water masses seems to be a 
doubtful method to trace the interocean exchange 
of water masses.  Only 10 of the 29 Sv of NADW 
that enter at 24°S in the Atlantic will remain as 
such.”

• In the ventilated route, “the water rises to the 
surface in a gradual spiral around Antarctica.”



Weaknesses

• The model is for a steady velocity field; fields do 
not evolve in time.

• Method is “offline.” Integrating the model with 
passive tracers would be another method.



Blanke and Raynaud (1997)

• Lagrangian calculations used to evaluate accurately the 
mass transfers between various sections of the EUC and 
between the EUC and the tropics

• Use a time-varying set of velocities, able to resolve the 
annual cycle using monthly fields of velocity, assuming 
velocity is constant in-between snapshots of time.

• Further take advantage of forward and backwards 
iteration



Numerical Model

• Laboratoire d’Oceanographie Dynamique et de 
Climatologie (LODYC) GCM model, in the paper 
referred to as OPA model

• 47 °N to 65 °S domain

• Zonal resolution 0.33°-0.75°, meridional resolution 
0.33°-1.5°, 30 vertical levels

• Climatological wind stress, climatological surface 
heat flux, salinity relaxed to seasonal climatology

• Annual mean and monthly averages from last year  
the 10-year experiment



1. Computing Lagrangian
Trajectories



Write the divergence of a velocity field as:

The scale factors in each direction are e1,2,3 and 
represent dx, dy, and dz calculated at v gridpoints. 
The product e1e2e3=b is the volume of a water parcel 
calculated from the center of a grid cell.

The transport in the x-direction, for example, is
such that for a non-divergent flow:



Transport varies linearly from opposite faces of 
individual cell.  For x-direction

Next, rewrite the relationship 𝑈 =
𝑑𝑥

𝑑𝑡
in terms of transport by 

using a new set of variables:

Where 𝐹 𝑖 = 𝐹𝑖 , 𝐹 𝑖 = 0 = 𝐹0, ∆𝐹 = 𝐹1 − 𝐹0.

Since 𝑑𝑥 = 𝑒1𝑑𝑟,
𝑑𝑡 = 𝑒1𝑒2𝑒3𝑑𝑠,
𝐹 = 𝑒2𝑒3𝑈,



Solving the differential equation  
(r=0 for s=0) for r gives:

Where if there is no transport difference: 



Need to compute time to reach the 
other side, or when r=1, for example

Since

It follows that



The pseudo-time, s, is then

To get to the other side,𝐹1,



• The shortest time defines the travel direction in the 
cell.

• Due to incompressibility, each given particle 
conserves its volume (mass).

• Transport of a given water mass is calculated from 
its own particles and their associated infinitesimal 
transports.



• Update from Döös (1995) is writing equations to 
explicitly associate volume transport in calculating 
trajectories.

• Still need to assume velocity is constant in-between 
two snapshots of the velocity field (for example, 
monthly average of June and of July)



Major Results

• All over the Pacific Ocean, the EUC loses water through 
equatorial upwelling and Ekman divergence.

• West of 150 °W, geostrophic convergence of shallow 
water at the Equator mixes downward from the 
overlying SEC.

• East of 150 ° W, the EUC core approaches the surface 
and becomes more affected by Ekman divergence.  The 
balance is from the west.  Two thirds of the EUC 
transport in the eastern Pacific (120 °W) originates 
from the western Pacific (150 °E).

• Asymmetric meridional wind causes greater southward 
export.



A=recirculation, B=south subtropical gyre, C=deeper levels, from East Australia, 
D=North Pacific origin, E and F= particles entering east of 150°W at 15°N or 15°S



Döös, Jönsson, and Kjellsson (2017)

Considers time dependence to Lagrangian method.

• Two methods: 
• 1) step-wise stationary - assumes velocity fields are 

stationary for a limited time and solves the trajectory path 
from a differential equation only as a function of space.

• 2) time dependent – uses continuous linear interpolation of 
the fields in time and solves differential equation as a 
function of both space and time

• Time-dependent scheme greatly improves accuracy 
with only a small increase in computational time 
compared to step-wise stationary scheme.



GCM output is 5-day average



Time dependent Scheme

General idea:
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Bilinear interpolation in space and 
time:
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The differential equation is:



“We strongly recommend the use of the ‘time-
dependent’ scheme based on Vries and Döös (2001) 
in favour of the ‘stepwise-stationary’ scheme. We 
would also like to dissuade the use of the more 
primitive ‘fixed GCM time step’ scheme, which is used 
in other trajectory codes since the velocity fields 
remain stationary for longer periods creating abrupt 
discontinuities in the velocity fields, and yielding 
inaccurate solutions.”


