
Fundamentals of Lagrangian Analysis 
and its applications

as told by Paola Cessi



Definition of a “particle”

The fluid is considered as a continuous field of particles, which are averages of 
many molecules of water (or air for the atmosphere).

The velocity at a point x,y,z and time t is the mass-weighted average over many 
molecules, with mass mi and velocities vi, centered around the point (x,y,z)

In the ocean, L is typically several millimeters or more, whereas A is only about
10 8cm. Thus seawater easily satisfies the necessary condition (0.2) for (0.1) to
make sense. We shall see that condition (0.2) recurs frequently as we attempt to
derive equations for \(x,y,z,i) and the other macroscopic fields.

There are two general methods for deriving the equations governing
macroscopic variables like v(x,y,z,t) . The first, which we shall call the averaging
method, is by direct averaging of the equations governing the point masses.
Unfortunately, this method leads to equations that arc exact but mathema-
tically unclosed until further assumptions are invoked. These further assump-
tions require the methods of kinetic theory and non-equilibrium statistical
mechanics.

The second general method is the more traditional. This method treats the
fluid as if it really were a continuous distribution of mass in space, and it derives
the macroscopic equations by analogy with the equations for point masses. The
success of this second general method can be gauged by the fact that fluid
mechanics was a highly developed subject long before the existence of atoms and
molecules was generally accepted, at the beginning of the twentieth century. For
the most part, we shall follow the traditional method, although the analogy with
particle mechanics will be even closer than in the usual presentation. However,
we shall also follow the averaging method for a while, in order to appreciate the
fundamental difficulties that arise when an exact but complicated dynamics
is "simplified" by averaging. We shall encounter these same fundamental dif-
ficulties in our subsequent study of turbulence, where they cannot be so easily
circumvented.

4 Lectures on Geophysical Fluid Dynamics

It is of course utterly impractical to follow the motion of every molecule,
because even the smallest volume of fluid contains an immense number of
molecules. We are immediately forced to consider dynamical quantities that
represent averages over many molecules. For example, the velocity v(x,y,z,t) at
location (x,y,z) and time t is defined as a mass-weighted average,

in which the sums run over all the molecules in a small volume 5V centered on
(x,y,z). Here, ra, is the mass of the ith molecule, and v,(^)is its velocity. However,
the definition (0.1) makes sense only if the volume 8V is neither too large nor too
small. If 8V is too small, then it contains too few molecules for a meaningful
average. If, on the other hand, 5V is too large, then the average (0.1) smoothes
out physically interesting features of the velocity field. In fact, the definition (0.1)
makes sense only if v(x,y,z,t) is independent of the size of 5V for a considerable
range of sizes, that is, only if the smallest scale L over which the velocity field
varies appreciably is much larger than the average separation /I between
molecules,
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The volume must be much smaller than the size of the fluid, i.e. several mm or 
more, but much larger than the separation between molecules, about 10-10 m.

The velocity the particles (or parcels) is then considered to obey the same laws 
of motion as a point mass (a molecule), with both position and velocity taking 
continuous (rather than discrete) values.



Eulerian vs. Lagrangian descriptions

In the Eulerian description the independent variables are x,y,z and time t. Dependent 
variables are v(x,y,x,t), T(x,y,z,t), S(x,y,z,t), etc…

In the Lagrangian description the independent variables are particle labels (a,b,c) and time t=t. 
Dependent variables are x(a,b,c, t), y(a,b,c, t), z(a,b,c, t).

Particle labels vary continuously through the fluid, but they stay fixed as a particle moves 
through the fluid. They can be thought of as the initial position of the particle, which varies as 
you pick a different particle in the fluid, but is kept fixed for each particle. The time is 
denoted by t because we keep (a,b,c)  fixed when varying t.

The connection between the time rate of change in the Lagrangian and Eulerian description 
is 

Fundamentals 5

I. Eulerian and Lagrangian Descriptions

For the moment, then, we regard our fluid as a continuum—a continuous distri-
bution of mass in space. There arc two common descriptions of continuum
motion. In the Eulerian description, the independent variables are the space
coordinates x = (x,y,z) and the time t. The dependent variables include the
velocity v (x ,y ,z , t ) , the mass density p(x,y,z, t) , and the pressure p(x,y,z,t).

In the Lagrangian description, the independent variables are a set of particle
labels a = (a,b,c), and the time i=t. The dependent variables are the coordinates

at time i, of the fluid particle identified by (a,b,c). The particle labels vary
continuously throughout the fluid, but the values of (a,b,c) on each fluid particle
remain fixed as the fluid particle moves from place to place. By fluid particle, we
now mean a tiny piece of the imaginary continuum—not a molecule!

In the Lagrangian description, we use the special symbol rfor time so that we
shall know that d/dt means that (a,b,c) are held fixed, (d/dt means that (x,y,z) are
held fixed.) Thus dF/fais the rate of change in (arbitrary quantity) F measured by
an observer following a fluid particle. In other words,

is the usual substantial derivative.
We can think of a label space with coordinates (a,b,c) and a location space with

coordinates (x,y,z). Then the fluid motion (1.1) is a time-dependent mapping
between these two spaces. Alternatively, we can think of the label variables
(a,b,c) as curvilinear coordinates in location space. Then the fluid motion drags
these curvilinear coordinates through location space.

The label variables (a,b,c) can be arbitrarily assigned. Commonly, the a are
defined to be the x-location of the corresponding fluid particle at a reference time
T= 0. We will give a different, more convenient definition. But no matter how the
labels are defined, each fluid particle keeps the same values of (a,b,c) for all time.

The derivatives with respect to Eulerian and Lagrangian coordinates are
related by the chain rule. For example,

for any quantity F that can be regarded as a function of (x,y,z,i) or (a,b,c,T). But
the substantial derivatives of (x,y,z) are, by definition, the components of the
velocity,

and thus (1.3) becomes
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or

By definition 
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6 Lectures on Geophysical Fluid Dynamics

Equation (1.5) is the familiar formula for the substantial derivative.

2. Mass Conservation

We can assign the labeling coordinates (a,b,c) so that

where dVahl. = dadbdc is an infinitesimal volume in a-space, and d(mass) is the
enclosed mass.1 Since the labeling coordinates move with the fluid, (2.1) holds at
all subsequent times. By definition,

where p is the mass density, and dVxyz = dxdydz. is the volume in x-space
corresponding to dVahc. Thus, remembering that

we find that

Equations (1.4) and (2.4) define the Eulerian dependent variables v(x,f) and
p(x,f) in terms of the Lagrangian dependent variables x(a,r). The corresponding
definition of.p(x,t) will emerge later.

Next, define the specific volume

The substantial derivative of (2.5) is
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and thus 



Mass conservation

Let’s define the particle labels such that 

with

In the Boussinesq approximation  

and thus 
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is an infinitesimal volume in label-space enclosing the infinitesimal mass  
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In Eulerian space we have 
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The two volumes are connected by

6 Lectures on Geophysical Fluid Dynamics
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r is constant,

and thus volume is conserved following a particle.

For an incompressible fluid, the infinitesimal volume assigned to a particle at t=0 is conserved   
It can be assigned at t=0, and then conserved following the path



Determine the origin of waters in the upper limb of the AMOC
Trace particles trajectories backwards in time 
that cross 20oN, coming from outside the 
Atlantic (14.9 Sv)

(a) Particles originating from Drake Passage: 
6.5Sv

(b) Particles originating in the Indonesian 
throughflow: 5.3Sv

(c) Particles originating between Australia and 
Antarctica at 145oE (not going through DP): 
3.1Sv

312 SPEICH ET AL.: WARM AND COLD WATER ROUTES IN AN OGCM CONVEYOR BELT
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S. Autralia to N. Atl. : 3.1 Sv

20oN

40oS

80oS

Eq.

la
tit

ud
e

longitude

50oW 0o 50oE 100oE 150oE
Troughflow to N. Atl. : 5.3 Sv

20oN

40oS

80oS

Eq.

la
tit

ud
e

50oW 0o 50oE 100oE 150oE
South Australia to N. Atl. : 3.1 Sv

20oN

40oS

80oS

Eq.

la
tit

ud
e

Plate 1. Horizontal streamfunction related to the vertically-
integrated transport of the northward-transmitted warm waters
to the North Atlantic (0-1200m) with origins a) in the Drake
Passage b) in the Indonesian Throughflow c) South of Australia.

equatorial currents not well resolved in the Levitus’ clima-
tology. The computed transports compare rather well with
observations (cf. discussion in Blanke et al., 1999).

3. The Lagrangian methodology

A natural and convenient way to trace ocean water
masses is to follow their pathways. This is something still
difficult to achieve with observations, even though there is
a true effort of the scientific community to use real floats
to track water movements. In the meantime, ocean mod-
els, despite the fact they only approximate reality, compute
time-varying three-dimensional velocity fields that can be
used for Lagrangian diagnostics.
In our approach, individual trajectories are computed

with a mass-preserving algorithm [Blanke and Raynaud,
1997; Blanke et al., 1999]. Due to water mass incompress-
ibility, we assume that individual particles conserve their
infinitesimal mass along their trajectory. As a current can
be entirely determined from the particles composing it, with
well defined characteristics (position, velocity and tracers),
the transport of a given water mass can be computed from
its own particles and their associated infinitesimal trans-
ports. Following Döös [1995], quantitative conclusions are
obtained by using a large number of particles, sufficient to
insure the numerical stability of the transport estimates. We
have used individual transports that are always less than

10−2 Sv. It ensures an overall error of the computed water
mass transports less than 0.1 Sv.
The Lagrangian computations are achieved with a monthly

varying velocity field as the results showed to be sensitive
to a time sampling larger than one month.

4. Results

In order to determine the origin of the water composing
the upper branch of the GCB, we trace backward in time
the northward flow crossing the 20◦N section of the Atlantic
Ocean (NATL hereafter) and decompose it according to its
origins at the limits of the Indo-Atlantic region: NATL itself,
the Indonesian Throughflow (I-TFL), the section between
Australia and Antarctica (S-AUS), and the Drake Passage
(DRAKE).
The total northward flow through NATL is 40.4 Sv. A

large fraction of it, 25.5 Sv, comes from NATL itself. It is a
recirculation within the Indo-Atlantic domain, with only 2.9
Sv of these 25.5 Sv crossing the equator and 1.3 Sv entering
the Indian Ocean before going back to NATL. It is thus
mainly associated with the North Atlantic subtropical gyre.
The mass flux that originates outside the Indo-Atlantic

sector amounts to 14.9 Sv. Two origins are defined in the
literature respectively as the cold route (from the Drake
Passage, 6.5 Sv in the model) and the warm route (from
I-TFL, 5.3 Sv). Interestingly, the model suggests an addi-
tional source for the upper branch of the GCB, with waters
coming from the Pacific, south of Australia, for a total of
3.1 Sv. This latter contribution was never considered in
the classical pictures of the global thermohaline circulation
[Gordon,, 1986; Broecker, 1991; Rintoul, 1991; Gordon et
al., 1992; Schmitz, 1995, 1996a, 1996b]. Nevertheless the
inversions performed by Metzl et al. [1990] in the Indian
Ocean always produced a westward flow in one or more of
the subsurface layers. Evidence of a westward flow of In-
termediate Water south of Australia is also documented by
Reid [1986], Fine [1993], and Rintoul and Bullister [1999].
Ganachaud’s [1999] inversion confirmed its presence between
the sea surface and 1200m. Numerical simulations may pro-
duce a westward current south of Tasmania [Döös, 1995].
Though the transport we associate to this origin is smaller

Plate 2. Yearly binned transport (in red) and time integrated
transport (in blue) as function of travel times for the northward-
transmitted warm waters to the North Atlantic (0-1200m) with
origins a) in the Drake Passage b) in the Indonesian Throughflow
c) South of Australia.

A transport is associated with the initial 
particle position going through a grid cell of 
this 2ox2o model (ORCA), and then 
preserved during the particle trajectory. The 
model’s T and S are relaxed to Levitus, as a 
crude form of data assimilation.
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Plate 1. Horizontal streamfunction related to the vertically-
integrated transport of the northward-transmitted warm waters
to the North Atlantic (0-1200m) with origins a) in the Drake
Passage b) in the Indonesian Throughflow c) South of Australia.

equatorial currents not well resolved in the Levitus’ clima-
tology. The computed transports compare rather well with
observations (cf. discussion in Blanke et al., 1999).
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3.1 Sv. This latter contribution was never considered in
the classical pictures of the global thermohaline circulation
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inversions performed by Metzl et al. [1990] in the Indian
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the subsurface layers. Evidence of a westward flow of In-
termediate Water south of Australia is also documented by
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Determine the origin of ventilated waters
Trace particles trajectories escaping from and 
returning to the mixed layer in a 2ox2o model 
(OPA).The model’s T and S are relaxed to 
Levitus, as a crude form of data assimilation.

(a) Color coding of the region of origin or of 
final destination.

(b) Water mass origin from interior to mixed 
layer: notice the rim of the supergyre taking 
S.Atl. water to Indian, and the interior N. H. 
subtropical gyres taking water to the WBC.

(c) Water mass destination: N.H. WBC waters 
ending in the subtropical gyres. and NH 
Indian ocean water ending at rim of N.Pac. 
subtropical gyre (gray coloring).

[10] The signal decreases with time, as longer periods corre-
spond to a larger dispersion of the particles. The particles travelling
for more than 1 yr explain 324 Sv: this is our estimate for the
ventilation rate of the global interior ocean, 60% of which being
achieved over periods shorter than 10 yr, and 22% inside the 10–
100 yr window. An average residence time can be derived as the
ratio of the interior ocean global volume to the ventilation rate and
comes close to 125 years. It may be compared to the average
residence time for fresh water in the oceans within Earth’s hydro-
logical cycle (roughly 4000 years) [Open University, 1997]. There-
fore, ocean internal dynamics proves very efficient in mixing
surface and interior waters.
[11] We derive more selective replacement time scales by

analyzing water masses properties at the exact time they leave
the surface mixed layer, averaging the travel times of particles
referring to equivalent (0.2 kg/m3) initial density classes
(Figure 1). Corresponding ventilation fluxes and median bands
of latitude accounting for half of them are also given. Tropical
light waters (with density lower than 1024.0 kg/m3) present short
renewal time scales of the order of 1 to 40 yr, in agreement with a
shallow position of the upper thermocline and active equatorial
upwelling processes. Subducting subtropical waters (1024.7 to
1028.7 kg/m3) are related to longer scales (up to a hundred years).
Modal and intermediate waters (1026.5 to 1027.1 kg/m3), formed
mostly in the Southern Ocean and in the Northeastern Atlantic,
take an active part in ventilation, with mean time scales that exceed
250 yr. Denser water masses characteristic of deep (Arctic) or
bottom (Antarctic) water formation have the longest renewal time

scales, but never exceeding 400 years, in agreement with modeling
views of the overturning circulation [Weaver et al., 1993].

3.2. The Global Ventilation Field

[12] Figure 2 proposes a global mapping for the net ventilation
rate. It is obtained by summing algebraically each infinitesimal
positive (respectively negative) transport at the initial (respec-
tively final) particle’s location over the relevant model horizontal
gridcell, and normalizing the result by each gridcell area. We find
some net ventilation south of 70!S, associated with bottom water
formation in the neighborhood of the Weddell and Ross Seas.
The southern portion of the Antarctica Circumpolar Current
(ACC) is dominantly associated with a return flow from the

Figure 1. Mean renewal time scales in years (solid line, left-hand
axis) as a function of surface density (in kg/m3), with correspond-
ing median bands of longitude (shaded area, right-hand axis) and
ventilation fluxes (dashed line, arbitrary unit).

Figure 2. Net ventilation rate for the global ocean contoured with
a 50 m/yr contour interval, as diagnosed from the initial and final
positions of the trajectories documenting the ventilation process.
Dotted areas refer to movements from the interior ocean to the
surface mixed layer.

Figure 3. (a) Partitioning of the global ocean into 16 regions
related to dominant mass transfers from (respectively to) the
surface mixed layer, to (respectively from) the interior ocean
(except for the Mediterranean Sea and the Arctic domain where
mixed processes occur). (b) Color mapping of water mass origins
over model gridcells linked to a transfer of interior ocean water to
the surface mixed layer. (c) Color mapping of water mass fates
over model gridcells linked to a transfer of surface mixed layer
water to the interior ocean (ventilation).
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Time-scale for ventilation
Bin the travel time from the mixed layer at a  
certain density until the water comes back to 
the mixed layer (somewhere else) (solid line).

Lightest waters (equatorial) have short transit 
times, and abyssal waters (high latitudes) have 
the longest times. 

This analysis caps the longest travel times to 400 
years (this would be the time of the abyssal 
overturning cell)
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fore, ocean internal dynamics proves very efficient in mixing
surface and interior waters.
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referring to equivalent (0.2 kg/m3) initial density classes
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of latitude accounting for half of them are also given. Tropical
light waters (with density lower than 1024.0 kg/m3) present short
renewal time scales of the order of 1 to 40 yr, in agreement with a
shallow position of the upper thermocline and active equatorial
upwelling processes. Subducting subtropical waters (1024.7 to
1028.7 kg/m3) are related to longer scales (up to a hundred years).
Modal and intermediate waters (1026.5 to 1027.1 kg/m3), formed
mostly in the Southern Ocean and in the Northeastern Atlantic,
take an active part in ventilation, with mean time scales that exceed
250 yr. Denser water masses characteristic of deep (Arctic) or
bottom (Antarctic) water formation have the longest renewal time

scales, but never exceeding 400 years, in agreement with modeling
views of the overturning circulation [Weaver et al., 1993].

3.2. The Global Ventilation Field

[12] Figure 2 proposes a global mapping for the net ventilation
rate. It is obtained by summing algebraically each infinitesimal
positive (respectively negative) transport at the initial (respec-
tively final) particle’s location over the relevant model horizontal
gridcell, and normalizing the result by each gridcell area. We find
some net ventilation south of 70!S, associated with bottom water
formation in the neighborhood of the Weddell and Ross Seas.
The southern portion of the Antarctica Circumpolar Current
(ACC) is dominantly associated with a return flow from the

Figure 1. Mean renewal time scales in years (solid line, left-hand
axis) as a function of surface density (in kg/m3), with correspond-
ing median bands of longitude (shaded area, right-hand axis) and
ventilation fluxes (dashed line, arbitrary unit).

Figure 2. Net ventilation rate for the global ocean contoured with
a 50 m/yr contour interval, as diagnosed from the initial and final
positions of the trajectories documenting the ventilation process.
Dotted areas refer to movements from the interior ocean to the
surface mixed layer.

Figure 3. (a) Partitioning of the global ocean into 16 regions
related to dominant mass transfers from (respectively to) the
surface mixed layer, to (respectively from) the interior ocean
(except for the Mediterranean Sea and the Arctic domain where
mixed processes occur). (b) Color mapping of water mass origins
over model gridcells linked to a transfer of interior ocean water to
the surface mixed layer. (c) Color mapping of water mass fates
over model gridcells linked to a transfer of surface mixed layer
water to the interior ocean (ventilation).
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Ventilation rate: geographical distribution
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spond to a larger dispersion of the particles. The particles travelling
for more than 1 yr explain 324 Sv: this is our estimate for the
ventilation rate of the global interior ocean, 60% of which being
achieved over periods shorter than 10 yr, and 22% inside the 10–
100 yr window. An average residence time can be derived as the
ratio of the interior ocean global volume to the ventilation rate and
comes close to 125 years. It may be compared to the average
residence time for fresh water in the oceans within Earth’s hydro-
logical cycle (roughly 4000 years) [Open University, 1997]. There-
fore, ocean internal dynamics proves very efficient in mixing
surface and interior waters.
[11] We derive more selective replacement time scales by

analyzing water masses properties at the exact time they leave
the surface mixed layer, averaging the travel times of particles
referring to equivalent (0.2 kg/m3) initial density classes
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of latitude accounting for half of them are also given. Tropical
light waters (with density lower than 1024.0 kg/m3) present short
renewal time scales of the order of 1 to 40 yr, in agreement with a
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upwelling processes. Subducting subtropical waters (1024.7 to
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take an active part in ventilation, with mean time scales that exceed
250 yr. Denser water masses characteristic of deep (Arctic) or
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Figure 3. (a) Partitioning of the global ocean into 16 regions
related to dominant mass transfers from (respectively to) the
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Divide the downward transport by the cell size to get the positive ventilation rate. Divide the 
upward transport by the cell size to get the upwelling rate (dotted lines). Contour size is 50m/yr



Updated origin of waters in the upper limb of the AMOC

Use eddy-resolving model to trace back origin of 14.4Sv waters in the North Brazil 
Current (NBC):  6.3Sv from Aghulas Current (AC), 4.7Sv from Drake Passage (DP) and 
0.8Sv from Tasman Leakage (eIO).

(a) (b)

(c)

Figure 3. Sources for NBC transport inferred from the REF set of 10 Lagrangian experiments for which particles were released in the NBC at

6 �S every 5 days for years 2000 to 2009 and then traced backwards in time towards the indicated source sections for maximum 40 years. (a)

Mean Lagrangian streamfunction representing volume transport pathways from all source sections towards the NBC. (b) Mean volumetric

contributions of the individual sources to the NBC; whiskers indicate the range of transport estimates. (c) Timeseries of interannual variability

of the total NBC transport (black line) and its individual contributions, that are, volumetric contribution of each Lagrangian experiment plotted

against the respective release year (colored lines).
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