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We review statistical analyses of Lagrangian data from the ocean. These can be grouped into studies
involving single: particies and those with pairs or groups of particies. Singke particle studies are the mast
common. The prevalent analysis. involves binning velocities geographically to estimate the Eulerian
means and lateral diffusivities. However single particle statistics have also been used to study Rossby
Other studies have used sto-
chastic models to simulate dispersion, calculated Lagrangian frequency spectra and examined the rela-
tion between Lagrangian and Eulerian integral scales. Studies involving pairs of particles are fewer,
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Introduction



Some applications of single-particle Lagrangian analysis

v

Visualization of parcel origin and fate;

v

Mapping of the Eulerian mean flow and eddy kinetic energy;

\4

Estimation of Lagrangian diffusivities;

v

Direct measurement of eddy fluxes, e.g., u'v/, u'T’;




Instruments

“Drifters float, floats sink”



Example: Drifter trajectories in the North Atlantic
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Statistics of point clouds - metrics

eCenter of mass’ displacement

N

My (1) = = [xi(t) — xi(0)]

i=1

eCloud variance (a measure of relative dispersion/“cloud size")

N
D(t) = 1 D bale) — xi(0) — M(0)



Statistics of point clouds - metrics

eCenter of mass’ displacement

Z[x, —x;(0)]

eCloud variance (a measure of relative dispersion/“cloud size")

Z[X/ xi( MX(t)]Z

Cloud variance in terms of the relative particle positions x;(t) — x;(t) only:

Dy(t) = Z[x,(t

l;ﬁ/



Statistics of point clouds - metrics

eSkewness (asymmetry, a normal distribution has sk = 0)

sk(t) = Silxi — xi)?
(Xilxi —xi)?)

eKurtosis (tail length, a normal distribution has ku = 3)

3
2

Xj — Xj &
) = R



Statistics of point clouds - examples

eAdvection by a random walk vs. by a realistic 2D turbulent flow:

4
LaCasce (2008)
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e\With assumptions (stationarity/homogeneity) all moments can be derived
from the displacement PDF Q(X, t).
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Single-particle statistics - Theory



Single-particle statistics - Single-particle PDFs

eConsider a particle located at xg at to. Later, at t = t;, the probability P of
finding it at x = xq is

P(x1, ) = / P(xo0, t0)Q(x1, X0, to) cxo,

where Q is the single-particle displacement PDF.



Single-particle statistics - Single-particle PDFs

eConsider a particle located at xg at to. Later, at t = t;, the probability P of
finding it at x = xq is

P(x1,t1) = /P(Xo, to)Q(x, t1|xo, to) dxo,
where Q is the single-particle displacement PDF.

olf the flow is statistically homogeneous, only the spatial lag X = x; — xo
matters, not x; and xo:

Q(X17 t1 ‘XO7 tO) - Q(X7 t17 tO)

olf the flow is statistically stationary, only the temporal lagt = t; — to
matters, not t; and to:

Q(x1, ti|xo0, to) = Q(x1, X0, t)



Single-particle statistics - Single-particle PDFs

eConsider a particle located at xg at to. Later, at t = t;, the probability P of
finding it at x = xq is

Plxi 1) = [ Plxa,t0) Qi o to) o
where Q is the single-particle displacement PDF.

olf the flow is statistically homogeneous, only the spatial lag X = x; — xo
matters, not x; and xo:

Q(X17 t |X0> tO) - Q(X7 t17 tO)

olf the flow is statistically stationary, only the temporal lagt = t; — to
matters, not t; and to:

Q(x1, ti|xo0, to) = Q(x1, X0, t)
elf both homogeneous and stationary:

| Q(x1, tilxo, to) = Q(X, 1) |




Single-particle statistics - Definitions
—If the flow is homogeneous and stationary and Q(X, t) is known:

oFirst moment — mean displacement:

X(t) = /XQ(X, t) dX.

eSecond moment — Single-particle absolute dispersion:

X2(t) = / X2Q(X, t) dX.

eDiscussion: What about the physical interpretation of higher moments
(e.g., skewness, kurtosis)?



Single-particle statistics - Definitions

eThe absolute dispersion X2(t) can be written in terms of v and R(7) instead
of X and Q:

. [e.e]
X2 = ZVZ/ (t — 7)R(7) dT,
0
where v is the RMS velocity and R(7) is the normalized velocity autocorrelation.

X2 first grows quadratically, then linearly.



Single-particle statistics - Definitions

eThe diffusivity x represents how fast particles disperse:

1 B [ S— t
n(t):ithZ —X(t)u(t)—/o u(X, l’)U(X,T)dT—VZ/O R(T)dT,

~—
if flow is stationary




Single-particle statistics - Definitions

eThe Lagrangian integral timescale T; measures the characteristic
decorrelation time for the particle velocities:

7= /OOO R(r)dr



Single-particle statistics - Definitions

eThe Lagrangian integral timescale T; measures the characteristic
decorrelation time for the particle velocities:

T, = /OOO R()dr

eThe Lagrangian frequency spectrum L(w) and R(7) are Fourier transform
pairs:

L(w) = 202 /ooo R(7) cos (2mwT) dT
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Advection and diffusion
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Eulerian mean flow from bin-averaged Lagrangian velocities

» Uneven drifter coverage (array bias)

» Statistical significance

eCaveats:



Diffusivity mapping

eThe diffusivity tensor rj is (Davis, 1991)

0
Iijk(X, t) = /t<u;(to\x, to)uf((to + 7|x,to)) dT, u’(to) = u(to) — U(x),

where U(x) is the time-mean flow.



Diffusivity mapping

eThe diffusivity tensor rj is (Davis, 1991)

0
Kj(x, t) = /_t<uj’-(to\x, to)ui(to + 7|x,to)) dr, U'(to) = u(to) — U(x),

where U(x) is the time-mean flow.

eIn terms of the residual displacements d’(t) = d(t) — dm(x, t):

Kik(x, 1) = —(ui(tolx, to)di(to — t|x, o))



Diffusivity mapping
eThe diffusivity tensor Kjk is (Davis, 1991)
{0}
(1) = / (W (tolx, to)ul(to + TIx, t0)) dr, U/ (to) = u(to) — U(X),

where U(x) is the time-mean flow.

eln terms of the residual displacements d’(t) = d(t) — dm(x, t):

Ri(x, 1) = —<uj(t0\x, to)d, (to — t|x, t0))
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Diffusivity - sensitivity to choice of mean
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Fig. 6. The diffusivity plotted against lag from drifter data in a region of the tropical
Pacific. Three different mean fields were used to calculate the residual velocities: a
constant one, one obtained from averaging in 10° x 1° rectangles and one derived
from spline-fitting. The latter method produces the best convergence. From Bauer

et al. (1998), with permission.

25

eResults are sensitive to the definition of mean velocity field.
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Stochastic models



Stochastic models

Order Stochastic variable ~Model equations Fokker-Planck equation

o position %= U+ Vi dP+U-VP=V - (kVP)

P is the position PDF. P = P(x, t)

ex;, uj and a; are position, velocity and acceleration.

eU; is the time-mean background velocity.

oT; = T,; and T, are velocity and acceleration integral timescales.

oV, = 0, + V0, is the gradient operator in velocity space.

eln the 2" order model, the F-P eqn. would have diffusion in x, v and a spaces.



Stochastic models

Order Stochastic variable Model equations Fokker-Planck equation
ra dx; dw;
o position E=Ui+ Vgt P+ U-VP=V - (kVP)
dx, = U+ u;
st weledty dy _ 2 dw; 0P+ (U+u) VP =Ny (uP/T)+ V- (kVuP)
dt u,/T + Vi~Gr

P is the position PDF. P = P(x, u, t)
ex;, u; and a; are position, velocity and acceleration.
eU; is the time-mean background velocity.
oT; = T,; and T, are velocity and acceleration integral timescales.
oV, = 00, + V0, is the gradient operator in velocity space.

eln the 2" order model, the F-P eqn. would have diffusion in x, v and a spaces.



Stochastic models

Order  Stochastic variable Model equations Fokker-Planck equation
oth position dX’ =U; + fu, = NP +U-VP=V . (kVP)
dx, =Ui+u
™ velocity dhy dw; QP+ (U+u) - VP =+Vy - (P/T) + V- (kV,P)
o U:/T/ + ViTgr
dxr =U; .
(/-
- =ai —u;/T
P acceleration dt o ’/ vi ?
dop _ _ 4 /T 2(Tai+Tvi) dw;
o = —ai/Tai + < TaTw ) Vi dt

P is the position PDF. P = P(x,u,a,t)

ex;, u; and a; are position, velocity and acceleration.

eU; is the time-mean background velocity.

oT; = T,; and T,; are velocity and acceleration integral timescales.
oV, = 0, + V0, is the gradient operator in velocity space.

eln the 2" order model, the F-P eqn. would have diffusion in x, v and a spaces.



Acceleration (T,,) and velocity (T,;) timescales

eThe ratio T,;/T,; is closer to unity in energetic regions.
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Velocity autocorrelations
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PDFs



Velocity PDFs in the ocean

eWhat do Lagrangian velocity PDFs look like in the ocean?

» California Current: Gaussian away from coast (Swenson & Niiler, 1996)
» North Atlantic: Non-Gaussian, longer tails during energetic events
[Bracco et al. (2000)]

Western North Atlantic (z > ~1000 m)

Floats and meters, z<1000 m, 1 degree bins
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Alternate stationary coordinates and f /H



Lagrangian particles and the Taylor-Proudman constraint

eTaking curl of the the depth-averaged linear momentum equation and
defining a transport streamfunction (U, V) = (=%, ¢x):

oo t) v (72)



Lagrangian particles and the Taylor-Proudman constraint

eTaking curl of the the depth-averaged linear momentum equation and
defining a transport streamfunction (U, V) = (=%, ¢x):

acoot) v (25

LaCasce (2000)

LaCasce (2000)

Observations
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eFloats preferentially displace and spread along f/H rather than across.
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Non-stationary fields: Correlations with scalars



Correlations with scalar fields and eddy fluxes (e.g., temperature)

KT+ V -(UT)+ V - (UT) = sources + mixing

oU’T’ can be estimated with drifter data.
eExample of an application: Experimental testing of diffusion
parameterizations based on mean gradients:

V. (UT)= -V (xVT)

» Accurate in the California Current System (Swenson and Niiler, 1996);
» Not accurate in the Southern Ocean (Cille, 2003).
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Frequency spectra



Frequency spectra

eFourier-transforming an exponentially-decaying autocorrelation with timescale T;
predicts a flat spectrum at low w and a w2 power-law dependence at high w:

t/T, d ZT[1
uw),viw) = e 'tcos(2rwt)dt = ———— =
UMY /o ( ) T2 + 4m2w?

QL( ! ) a <1—Q§/w2+9‘g/w4+-~->

2mw? \ 1+ Q% /w? = 212

a b c d
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Eulerian vs. Lagrangian scales



Eulerian vs. Lagrangian scales

eHow are Lagrangian and Eulerian time/length scales related?

s q

~

Te (g +TE/T%)

Middleton (1985)

NI=

Tadv = Le/v, q=+/7/8, v =rms velocity



Eulerian vs. Lagrangian scales

eHow are Lagrangian and Eulerian time/length scales related?

e q

— = — Middleton (1985)
E (qz + TE/TadV)

NI=

Tadv = Le/v, g=+/m/8, v =rmsvelocity
eAlso, with L; = vTy,

L Ty » Te
Le  Te  Tagv




Eulerian vs. Lagrangian scales

eHow are Lagrangian and Eulerian time/length scales related?

Tadv = Le/v, g=+/m/8, v =rmsvelocity

% ~ %, é . Lumpkin et al. (2002)
E 72 2 /T2 i 75 -
(q +TE/Tadv)Z -
>
s s e =
= o o
25 5‘: %0
— 25
LT Te RE, Aeoc:
~ 0 0 -
LE TE Tadv 0 25 5 75 10 0 25 50 75 100 125 150 175 200
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3
oMo 0
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03 — 5
Wooo == w06 JISTIEVCINIRIOIR
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eMiddleton’s (1985) simple prediction tests well against observations.



Eulerian vs. Lagrangian scales

eConsider the nondimensional advection-diffusion equation for a scalar S:

S 5
28,5+ 2u . v's' = 0
Te Le

—_——

eThe ratio e/o scales as vTg/Lg = Tg/Toqy = .

olf TE = Tadv- a=1

olf & < 1, mean flow is sluggish. Eddies determine scales — “fixed float”
limit.

elf &« > 1, mean flow is fast and carries eddies — “frozen turbulence” limit.



Does diffusivity scale with other variables?

eTwo hypotheses:

» Eddy kinetic energy, : If T is constant (“Fixed-float” regime).

» RMS velocity, | oc vL | If L is constant (“frozen turbulence” regime).
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