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Some applications of single-particle Lagrangian analysis

I Visualization of parcel origin and fate;

I Mapping of the Eulerian mean flow and eddy kinetic energy;

I Estimation of Lagrangian diffusivities;

I Direct measurement of eddy fluxes, e.g., u′v′, u′T ′;



Instruments

“Drifters float, floats sink”



Example: Drifter trajectories in the North Atlantic



Statistics of point clouds – metrics

•Center of mass’ displacement

Mx(t) =
1
N

N∑
i=1

[xi(t)− xi(0)]

•Cloud variance (a measure of relative dispersion/“cloud size")

Dx(t) =
1

N− 1

N∑
i=1

[xi(t)− xi(0)−Mx(t)]2



Statistics of point clouds – metrics

•Center of mass’ displacement

Mx(t) =
1
N

N∑
i=1

[xi(t)− xi(0)]

•Cloud variance (a measure of relative dispersion/“cloud size")

Dx(t) =
1

N− 1

N∑
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[xi(t)− xi(0)−Mx(t)]2

•Cloud variance in terms of the relative particle positions xi(t)− xj(t) only:

Dx(t) =
1

2N(N− 1)

∑
i 6=j

[xi(t)− xj(t)]2



Statistics of point clouds – metrics

•Skewness (asymmetry, a normal distribution has sk = 0)

sk(t) =

∑
i(xi − xi)

3(∑
i(xi − xi)2

) 3
2

•Kurtosis (tail length, a normal distribution has ku = 3)

ku(t) =

∑
i(xi − xi)

4∑
i(xi − xi)2



Statistics of point clouds – examples

•Advection by a random walk vs. by a realistic 2D turbulent flow:

•With assumptions (stationarity/homogeneity) all moments can be derived
from the displacement PDF Q(X, t).
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Single-particle statistics – Single-particle PDFs

•Consider a particle located at x0 at t0. Later, at t = t1, the probability P of
finding it at x = x1 is

P(x1, t1) =

∫
P(x0, t0)Q(x1, t1|x0, t0) dx0,

where Q is the single-particle displacement PDF.
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Single-particle statistics – Single-particle PDFs

•Consider a particle located at x0 at t0. Later, at t = t1, the probability P of
finding it at x = x1 is

P(x1, t1) =

∫
P(x0, t0)Q(x1, t1|x0, t0) dx0,

where Q is the single-particle displacement PDF.

•If the flow is statistically homogeneous, only the spatial lag X ≡ x1 − x0

matters, not x1 and x0:

Q(x1, t1|x0, t0) = Q(X, t1, t0)

•If the flow is statistically stationary, only the temporal lag t ≡ t1 − t0

matters, not t1 and t0:

Q(x1, t1|x0, t0) = Q(x1, x0, t)

•If both homogeneous and stationary:

Q(x1, t1|x0, t0) = Q(X, t)



Single-particle statistics – Definitions

−→If the flow is homogeneous and stationary and Q(X, t) is known:

•First moment −→mean displacement:

X(t) =

∫
XQ(X, t) dX.

•Second moment −→ Single-particle absolute dispersion:

X2(t) =

∫
X2Q(X, t) dX.

•Discussion: What about the physical interpretation of higher moments
(e.g., skewness, kurtosis)?



Single-particle statistics – Definitions

•The absolute dispersion X2(t) can be written in terms of ν and R(τ) instead
of X and Q:

X2 = 2ν2
∫ ∞

0
(t− τ)R(τ) dτ,

where ν is the RMS velocity and R(τ) is the normalized velocity autocorrelation.

•X2 first grows quadratically, then linearly.



Single-particle statistics – Definitions

•The diffusivity κ represents how fast particles disperse:

κ(t) ≡ 1
2

d
dt

X2 = X(t)u(t) =

∫ t

0
u(X, t)u(X, τ) dτ = ν2

∫ t

0
R(τ) dτ,︸ ︷︷ ︸

if flow is stationary



Single-particle statistics – Definitions

•The Lagrangian integral timescale TL measures the characteristic
decorrelation time for the particle velocities:

TL ≡
∫ ∞

0
R(τ) dτ



Single-particle statistics – Definitions

•The Lagrangian integral timescale TL measures the characteristic
decorrelation time for the particle velocities:

TL ≡
∫ ∞

0
R(τ) dτ

•The Lagrangian frequency spectrum L(ω) and R(τ) are Fourier transform
pairs:

L(ω) ≡ 2ν2
∫ ∞

0
R(τ) cos (2πωτ) dτ
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Eulerian mean flow from bin-averaged Lagrangian velocities

•Caveats:

I Uneven drifter coverage (array bias)

I Statistical significance



Diffusivity mapping

•The diffusivity tensor κjk is (Davis, 1991)

κjk(x, t) =

∫ 0

−t
〈u′j(t0|x, t0)u′k(t0 + τ |x, t0)〉dτ, u′(t0) = u(t0)− U(x),

where U(x) is the time-mean flow.
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Diffusivity mapping

•The diffusivity tensor κjk is (Davis, 1991)

κjk(x, t) =
∫ 0

−t
〈u′j (t0|x, t0)u

′
k(t0 + τ |x, t0)〉 dτ, u′(t0) = u(t0)− U(x),

where U(x) is the time-mean flow.

•In terms of the residual displacements d′(t) = d(t)− dm(x, t):

κjk(x, t) = −〈u′j (t0|x, t0)d
′
k(t0 − t|x, t0)〉



Diffusivity – sensitivity to choice of mean

•Results are sensitive to the definition of mean velocity field.
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Stochastic models

Order Stochastic variable Model equations Fokker-Planck equation

0th position dxi
dt = Ui +

√
2νi

dwi
dt ∂tP + U · ∇P =∇ · (κ∇P)

•P is the position PDF. P = P(x, t)
•xi, ui and ai are position, velocity and acceleration.
•Ui is the time-mean background velocity.
•Ti = Tvi and Tai are velocity and acceleration integral timescales.
•∇u = û∂u + v̂∂v is the gradient operator in velocity space.
•In the 2nd order model, the F-P eqn. would have diffusion in x, v and a spaces.
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Order Stochastic variable Model equations Fokker-Planck equation

0th position
dxi
dt = Ui +

√
2νi

dwi
dt ∂tP + U · ∇P = ∇ · (κ∇P)

1st velocity

dxi
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dui
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√
2
Ti
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Stochastic models

Order Stochastic variable Model equations Fokker-Planck equation

0th position
dxi
dt = Ui +

√
2νi

dwi
dt ∂tP + U · ∇P = ∇ · (κ∇P)

1st velocity

dxi
dt = Ui + ui

dui
dt = −ui/Ti +

√
2
Ti
νi

dwi
dt

∂tP + (U + u) · ∇P = +∇u · (uP/T) +∇u · (κ∇uP)

2nd acceleration

dxi
dt = Ui + ui

dui
dt = ai − ui/Tvi

dai
dt = −ai/Tai +

(
2(Tai+Tvi)

TaiTvi

)
νi

dwi
dt

?

•P is the position PDF. P = P(x, u,a, t)
•xi, ui and ai are position, velocity and acceleration.
•Ui is the time-mean background velocity.
•Ti = Tvi and Tai are velocity and acceleration integral timescales.
•∇u = û∂u + v̂∂v is the gradient operator in velocity space.
•In the 2nd order model, the F-P eqn. would have diffusion in x, v and a spaces.



Acceleration (Tai) and velocity (Tvi) timescales

•The ratio Tai/Tvi is closer to unity in energetic regions.



Velocity autocorrelations
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Velocity PDFs in the ocean

•What do Lagrangian velocity PDFs look like in the ocean?

I California Current: Gaussian away from coast (Swenson & Niiler, 1996)
I North Atlantic: Non-Gaussian, longer tails during energetic events

[Bracco et al. (2000)]
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Lagrangian particles and the Taylor–Proudman constraint

•Taking curl of the the depth-averaged linear momentum equation and
defining a transport streamfunction (U,V) ≡ (−ψy, ψx):

∂tζ + J

(
ψ,

f
H

)
=∇×

(
τs − τb

ρH

)



Lagrangian particles and the Taylor–Proudman constraint

•Taking curl of the the depth-averaged linear momentum equation and
defining a transport streamfunction (U,V) ≡ (−ψy, ψx):

∂tζ + J

(
ψ,

f
H

)
=∇×

(
τs − τb

ρH

)

•Floats preferentially displace and spread along f/H rather than across.
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Correlations with scalar fields and eddy fluxes (e.g., temperature)

∂tT +∇ · (U T) +∇ · (U′T ′) = sources + mixing

•U′T ′ can be estimated with drifter data.
•Example of an application: Experimental testing of diffusion
parameterizations based on mean gradients:

∇ · (U′T ′) = −∇ · (κ∇T)

I Accurate in the California Current System (Swenson and Niiler, 1996);

I Not accurate in the Southern Ocean (Gille, 2003).
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Frequency spectra

•Fourier-transforming an exponentially-decaying autocorrelation with timescale TL

predicts a flat spectrum at low ω and a ω−2 power-law dependence at high ω:

u(ω), v(ω) =

∫ ∞
0

e−t/TLcos(2πωt) dt =
2T−1

L

T−2
L + 4π2ω2

=

ΩL

2πω2

(
1

1 + Ω2
L/ω

2

)
=

ΩL

2πω2

(
1− Ω2

L/ω
2 + Ω4

L/ω
4 + · · ·

)
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Eulerian vs. Lagrangian scales

•How are Lagrangian and Eulerian time/length scales related?

TL

TE
≈ q

(q2 + T2
E/T2

adv)
1
2

. Middleton (1985)

Tadv ≡ LE/ν, q ≡
√
π/8, ν ≡ rms velocity



Eulerian vs. Lagrangian scales

•How are Lagrangian and Eulerian time/length scales related?

TL

TE
≈ q

(q2 + T2
E/T2

adv)
1
2

. Middleton (1985)

Tadv ≡ LE/ν, q ≡
√
π/8, ν ≡ rms velocity

•Also, with LL = νTL,

LL

LE
≈ TL

TE
× TE

Tadv



Eulerian vs. Lagrangian scales

•How are Lagrangian and Eulerian time/length scales related?

Tadv ≡ LE/ν, q ≡
√
π/8, ν ≡ rms velocity

TL
TE
≈ q

(q2+T2
E/T2

adv)
1
2
,

LL
LE
≈ TL

TE
× TE

Tadv

•Middleton’s (1985) simple prediction tests well against observations.



Eulerian vs. Lagrangian scales

•Consider the nondimensional advection-diffusion equation for a scalar S:

Ŝ
TE
∂t′S

′︸ ︷︷ ︸
1

+
νŜ
LE

u′ · ∇′S′︸ ︷︷ ︸
2

= 0

•The ratio 2 / 1 scales as νTE/LE = TE/Tadv = α.

•If TE = Tadv, α = 1.
•If α� 1, mean flow is sluggish. Eddies determine scales→ “fixed float”
limit.
•If α� 1, mean flow is fast and carries eddies→ “frozen turbulence” limit.



Does diffusivity scale with other variables?

•Two hypotheses:

I Eddy kinetic energy, κ ∝ ν2T : If T is constant (“Fixed-float” regime).

I RMS velocity, κ ∝ νL : If L is constant (“frozen turbulence” regime).
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