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5.  Classification of second-order equations

There are 2 general methods for classifying higher-order partial differential
equations.  One is very general (applying even to some nonlinear equations), and seems to
have been motivated by the success of the theory of first-order PDEs.  In this method one
rewrites the higher order PDE as a system of first-order PDEs and attempts to generalize
the method of characteristics to that system.  This turns out to be possible only for a
restricted (but important) class of PDEs called hyperbolic.

The other classification method applies only to linear, second-order equations.  This
lecture covers this second method;  we postpone the first method until the last lecture.

Consider the general linear, second-order PDE in the form

(1)
ij
∑ Aij

∂2θ
∂xi∂x j

+
i
∑ Bi

∂θ
∂xi

+ Cθ = F x( )

where θ is a function of the n variables   x ≡ x1,x2,K, xn( ) .  We assume that all the
coefficients Aij , Bi  and C are constants.  With no loss in generality, we assume that Aij  is
symmetric.

We will show that, because Aij  is symmetric, it is possible to transform to new
coordinates in which (1) takes the diagonal form

(2)
i
∑ Ai

∂ 2θ
∂xi

2 +
i
∑ Bi

∂θ
∂xi

+ Cθ = F x( )

and each Ai  takes the value +1 , −1  or 0.  For example, the general 2-dimensional equation

(3) A11θxx + 2A12θxy + A22θ yy + l.o.d . = F

(where l.o.d. means “lower-order derivatives”) can always be transformed into one of the
following forms:

(4)
θ xx +θyy + l.o.d. = F
θ xx −θyy + l.o.d. = F
θ xx ±θy + l.o.d. = F

plus various permutations of these, such as θ yy ± θx + l.o.d. = F .  In (4) we write only the
highest-derivative terms in each variable, and we do not consider the case   θ x +θy +L
because it is a first-order equation.

It turns out that some of the most important properties of such equations (such as
the appropriate form of boundary conditions) depend only on the highest-derivative terms.
Thus there is some point in considering the cases (4) in their “purest forms”:

θ xx +θyy = F           Poisson’s equation
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(5) θ tt −θxx = F            wave equation
θ t −θxx = F             heat equation

(where the notation hints at the typical physical meaning).

To prove our claim we must first prove a theorem about symmetric Aij .  For future
purposes, we shall prove more than is actually needed for this lecture.

Theorem.  [The spectral decomposition theorem.]  If the matrix A is Hermitian (meaning
that Aij = Aji *  where * denotes the complex conjugate), then all the eigenvalues of A are
real, and all the eigenvectors are, or can be made, orthogonal.

Note that real symmetric A, like that in (1), are a class of Hermitian matrices.

Before proving this theorem, we note that the problem of diagonalizing (1) is closely
related to the problem of diagonalizing the quadratic form

(6)
ij
∑ Aijxi xj +

i
∑ Bi xi + Cθ .

In both problems the strategy is the same:  choose the new coordinates x  to be the
coefficients in the expansion

(7) x = x ie i
i
∑

of x in the n eigenvectors e i  of A.  Then the first term in (6) becomes

(8)
xTAx = x je j

j
∑
 

 
 

 

 
 

T

A x iei
i
∑   

 
  

= x ix j
i, j
∑ e j

TAei( ) = x ix j
i, j
∑ e j

Tλie i( ) = x ix jλi e j ⋅ e i
i, j
∑ = λix i

2

i
∑

where λi  is the eigenvalue corresponding to eigenvector e i .  Note that we use the supposed
orthogonality of the eigenvectors in 2 ways:  first, in the assumption (7) that any x can be
expanded in these eigenvectors, and, second, in the final step of (8).  By an additional
rescaling of x i , we may reduce (8) to simplest form, x i

2

i
∑ .

The transformation of (1) to the diagonal form (2) proceeds in the same manner.
But first we prove the theorem.

Sketch of the proof.  Recall that the column vector e is an eigenvector of the n × n  matrix A
if Ae=λe where λ is the corresponding eigenvalue, a generally complex number.  Thus the
eigenvalues of A correspond to the roots of det (A − λI) =0.  Let λi  be the eigenvalue of A
corresponding to eigenvector e i :

(9) Ae i = λie i .

Let A + ≡AT *  (transpose conjugate).  Thus A = A+  if A is Hermitian.
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To prove that λi  is real, take the transpose conjugate of (9) to get

(10) e i
+A+ = λi

*ei
+ .

(Note that e i
+  is a row vector.)  Now multiply (9) on the left by e i

+ , multiply (10) on the
right by e i , and subtract, using the fact that A = A+ .  The result is

(11) λi − λi
*( )e i+e i = 0

which proves that λi  is real.

To prove that the e i  are orthogonal, consider any 2 eigenvalues λi  and λ j .  Multiply
(9) by e j

+ , multiply

(12) e j
+A + = λ je j

+

(obtained by taking the Hermitian conjugate of (9)) by e i  on the right and subtract, again
using the fact that A is Hermitian, to obtain

(13) λi − λj( )e j+e i = 0 .

Thus if λi ≠ λ j , then

(14) e j
+e i = e j ⋅ ei = 0

and the two eigenvectors are orthogonal.  This proof does not apply to the case λi = λ j  of
degenerate eigenvalues, which we postpone until later in this lecture.

__________________

Assume for the moment that the n eigenvalues are distinct.  Then we have n
orthogonal eigenvectors.  These can easily be normalized;  we henceforth assume that they
are.  The normalized eigenvectors can be used to diagonalize A.  Consider the n × n  matrix

(15)   U = e1,e2,K,en( )

whose column vectors are the orthonormal eigenvectors of A.  Then

(16) U + =U −1,

that is,

(17) U +U = I

which simply restates the fact that the e i  are orthonormal.  Matrices U with the property
(17) are called unitary.  [Note that since A and λi  are real, it is always possible to choose
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real eigenvectors e i .  Then U is real and U + =U T ].  The matrix U defined by (15)
diagonalizes A in the sense that

(18)
  

U −1AU = UTAU =UT λ1 e1,λ2 e2,K,λn en( )
= diag λ1 ,λ2 ,K, λn( )

Now we return to the general equation (1) with second-order term

(19)
ij
∑ Aij

∂2θ
∂xi∂x j

Defining Uij  as above, we introduce the new variables

(20) x i =
j
∑ Uij

T xj .

Thus x i  is the projection of x onto e i ;  (20) is equivalent to (7).  Since

(21) ∂

∂xi

=
j
∑

∂x j
∂xi

∂

∂x j
=

j
∑ Uji

T ∂

∂x j

we have

(22)
ij
∑ Aij

∂2θ
∂xi∂x j

=
ijkm
∑ AijUki

TUmj
T ∂2θ
∂x k∂x m

=
km
∑ A km

∂2θ
∂x k∂x m

where, in matrix notation,

(23) A = UTAU .

But, by (18), A  is the diagonal matrix with the eigenvalues of A on the diagonal.  Thus

(24)
ij
∑ Aij

∂2θ
∂xi∂x j

=
i
∑ λi

∂ 2θ
∂x i

2 .

This is almost the simplest form.  To obtain the simplest form, it is only necessary to
redefine

(25) x i ← x i / λi

(provided that λi ≠ 0 .)

In overall summary, to transform the second derivatives in (1) to the canonical form
(2), we use the transformation

(26) x = UTx
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where U is the unitary matrix defined by (15).  The components of x  are just the
“amplitude” of each eigenvector’s contribution to x.  Since unitary transformations have
the property that they preserve x ⋅ x  (prove this!), the transformation (26) may be
interpretted as a rotation of the coordinates in n-dimensional space.

How does this work in the case n=2?  We let a = A11 , b = A12 , and c = A22 , so (1)
takes the form

(27)   aθ xx + 2bθxy + cθyy +L = F

The eigenvalues of

(28) A =
a b
b c
 

 
 

 

 
 

satisfy

(29) a − λ( ) c − λ( ) = b2 .

Thus

(30) λ =
a + c
2

±
1
2

a − c( )2 + 4b2 = a + c
2

±
1
2

a + c( )2 + 4 b2 − ac( )

from which we see that λ is indeed real for any a, b, c.  If

(31) b2 − ac = 0          (the parabolic case)

it follows from (30) that at least one of the eigenvalues vanishes.  This is the parabolic case
and leads to   θ xx +θy +L  or   θ yy + θx +L

Similarly, the 2 eigenvalues have the same sign if

(32) b2 − ac < 0          (the elliptic case)

This is the elliptic case and leads to   θ xx +θyy +L

Finally, the 2 eigenvalues have opposite signs if

(33) b2 − ac > 0          (the hyperbolic case)

This is the hyperbolic case and leads to   θ xx −θyy +L   We have already mentioned the
connection with quadratic forms.  For the form ax 2 + 2bxy + cy2 , the same transformation
produces a diagonalization, and the resulting equation describes a parabola, ellipse or
hyperbola.

Quadratic forms lie at the heart of Riemannian geometry.  There one seeks
coordinates in which the differential arc length ds, which has the general form
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(34) ds 2 =
ij
∑ Aijdxidx j

simplifies to

(35)   ds 2 = dx 1( )2 ± dx 2( )2L ± dx n( )2

The new coordinates are called Cartesian coordinates.  Examples include

Euclidean space ds 2 = dx( )2 + dy( )2 + dz( )2

Lorentzian spacetime ds 2 = c2 dt( )2 − dx( )2 − dy( )2 − dz( )2

If you have studied general relativity (where Aij  is always written as gij ) then you know that
global Cartesian coordinates exist only if the curvature tensor associated with gij  vanishes.

This bears upon the generalization of (1) to the case of nonconstant coefficients
Aij x( ) .  Whereas (1) can always be transformed locally to the form (2), there is in general
no globally valid transformation.  For the case n=2 however, one can show that a global
transformation to the form (2) is possible provided that the Aij  do not vary in such a way
that the equation changes type (e.g. from elliptic to hyperbolic).  For a careful discussion of
this, see Garabedian, Chapter 2.

__________________

We must still complete the proof of the spectral decomposition theorem by showing that
orthonormal eigenvectors may be found even in the case where some of the eigenvalues are
equal.

Completion of the proof.  Even if all the eigenvalues are equal, we can find at least one
eigenvector e1 .  Then we define

(36)   U1 = e1, ˆ e 2,K, ˆ e n( )

where   ̂ e 2 ,K, ˆ e n  are n −1  other vectors (not necessarily eigenvectors of A) which are
orthonormal to e1  and to each other.  (It is always possible to find such a set!)  By the
orthonormality of its columns, U1  is unitary.

We use U1  to transform A into the form

(37)

  

U1
−1AU1 =

λ1 0 L 0
0
M

0
A2

 

 

 
 
  

 

 

 
 
  

where A2  is an n −1( ) × n −1( )  matrix.  Then we do the same thing to A2 .  That is, we find
the (unitary) U2  such that
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(38)

  

U2
−1 U1

−1AU1( )U2 =

λ1 0 L 0
0
M

0

λ2 0 L 0
0
M

0
A3

 

 

 
 
 
 
 

 

 

 
 
 
 
 

and keep going.  Each step corresponds to a rotation in the remaining coordinates.  At the
end we have

(39)   U
−1AU = diag λ1 ,λ2 ,K, λn( )

where   U = U1U2LUn  is unitary because the product of unitary matrices is unitary (prove
this!).  Eqn (39) implies that the columns of U are the sought-for orthonormal eigenvectors.
(Each Ui  has rank n, hence so does U.)

References.  Mathews and Walker Chap 6,  Zauderer Chap 3.


