
SIO 214A Homework 2 Answers

1.) The eqns for a perfect barotropic fluid are:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

ρ
Du

Dt
= −∇p (2)

p = F (ρ) (3)

To get an energy equation, you could take the dot-product of (2) with u to
get

ρ
D

Dt

(
1

2
u · u

)
= −u · ∇p (4)

Using (1), this can be written

∂K

∂t
+∇ · (uK) = −∇ · (up) + p∇ · u (5)

where

K =
1

2
ρu · u (6)

is the kinetic energy per unit volume. Using (3) and the relation

F (ρ) = ρ2
d

dρ
E(ρ) (7)

(5) becomes

∂K

∂t
+∇ · (uK) = −∇ · (up) + ρ2

d

dρ
E(ρ)∇ · u (8)

Substituting (1) into the last term gives

∂K

∂t
+∇ · (uK) = −∇ · (up)− ρ2 d

dρ
E(ρ)

1

ρ

Dρ

Dt
(9)

= −∇ · (up)− ρ D
Dt

E(ρ) (10)

which can also be written

∂

∂t
(K + ρE(ρ)) +∇ · (u(K + ρE(ρ)) = −∇ · (up) (11)
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Integrating this over a rigid container on whose boundary the normal velocity
vanishes (u · n̂ = 0) gives the desired result,

d

dt

∫∫∫
dxdydz

(
1

2
ρu · u + ρE(ρ)

)
= 0 (12)

These manipulations could be performed in many different ways; Kundu (p.
121-125) uses summation-convention notation and includes viscosity, which
we are still omitting. However you do it, it is very handy to remember that

ρ
DA

Dt
=

∂

∂t
(ρA) +∇ · (uρA) (13)

where A(x, y, z, t) is anything.
For adiabatic flow

dE = −PdV + TdS (14)

reminds us that

P = −dE
dV

(15)

If E is the internal energy per unit mass, and α = 1
ρ

is the volume per unit
mass, this becomes

p = −∂E
∂α

(16)

which is equivalent to (7).
The linear equations

∂ρ′

∂t
+ ρ0∇ · u = 0 (17)

ρ0
∂u

∂t
= −∇p′ (18)

p′ = c2ρ′ (19)

are easier to handle:

∂

∂t

(
1

2
ρ0u · u

)
= −u · ∇p′ (20)

= −∇ · (up′) + p′∇ · u (21)

= −∇ · (up′)− c2ρ′ 1

ρ0

∂ρ′

∂t
(22)
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which implies
∂

∂t

(
1

2
ρ0u · u +

1

2
c2

(ρ′)2

ρ0

)
= −∇ · (up′) (23)

Compare (23) to (11). The advection terms in (11) are missing from (23).
Also, the internal energies look very different. By Taylor expansion, we have

ρE(ρ) = ρ0E(ρ0) +
d

dρ
[ρE(ρ)]|ρ=ρ0(ρ

′ − ρ) +
1

2

d2

dρ2
[ρE(ρ)]|ρ=ρ0(ρ

′ − ρ)2 + · · ·

(24)
The first term is an irrelevant constant; by (17), the spatial integral of the
second term is separately conserved; and the coefficient of the third term
simplifies as follows:

d2

dρ2
(ρE(ρ)) =

d

dρ

(
p

ρ
+ E(ρ)

)
=

(
− p

ρ2
+
dE

dρ
+

1

ρ

dp

dρ

)
=

(
0 +

c2

ρ

)
(25)

and thus the last term in (24) becomes

1

2

c2

ρ0
(ρ′ − ρ)2 (26)

This represents the available internal energy, the internal energy that could
be wholly converted into kinetic energy if the fluid were to arrange itself into
a state in which ρ′ = 0. It is entirely analogous to the available potential
energy that you will hear about in other courses.
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2.) The pressure associated with the waves in the aorta is

p1(x, t) = F (t− x/c) +G(t+ x/c) (27)

where F is set by the heart, and G represents the wave reflected by the iliac
bifurcation. The pressure in the two iliac arteries is

p2(x, t) = p3(x, t) = H(t− x/c) (28)

where H represents the transmitted waves. The corresponding blood veloci-
ties are given by

ρ0cu1(x, t) = F (t− x/c)−G(t+ x/c) (29)

and
ρ0cu2(x, t) = ρ0cu3(x, t) = H(t− x/c) (30)

We are given the function F and must find G and H. (None of this includes
the steady background blood velocity.)

Let x = 0 at the bifurcation. The matching conditions there are

p1(0, t) = p2(0, t) = p3(0, t) (31)

(continuous momentum flux) and

A1ρ0u1(0, t) = A2ρ0u2(0, t) + A3ρ0u3(0, t) = 2A2ρ0u2(0, t) (32)
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(continuous mass flux). Applying the matching conditions we obtain

F (t) +G(t) = H(t) (33)

F (t)−G(t) =
2A2

A1

H(t) (34)

with solution
H(t) = TF (t), G(t) = RF (t) (35)

where

T =
2A1

A1 + 2A2

, R =
A1 − 2A2

A1 + 2A2

(36)

Thus

p1(x, t) = F (t− x/c) +RF (t+ x/c) (37)

ρ0cu1(x, t) = F (t− x/c)−RF (t+ x/c) (38)

p2(x, t) = p3(x, t) = TF (t− x/c) (39)

ρ0cu2(x, t) = ρ0cu3(x, t) = TF (t− x/c) (40)

Using the results of the first problem, the energy flux, evaluated at x = 0,
in the aorta is

A1p1(0, t)u1(0, t) =
A1

ρ0c
(1 +R)(1−R)F (t)2 =

A1

ρ0c
(1−R2)F (t)2 (41)

Note that the reflected wave contributes a negative flux. The energy fluxes
in the two iliac arteries is

2A2p2(0, t)u2(0, t) = 2
A2

ρ0c
T 2F (t)2 (42)

Since
A1(1−R2) = 2A2T

2 (43)

the energy fluxes balance: The energy flux in the wave emitted by the heart
equals the sum of the energy fluxes in the reflected and transmitted waves.
It is interesting that the positive pressure pulse reflects as a positive pressure
pulse if A1 > 2A2, which is the situation in the human body. (If A1 <
2A2, it would reflect as a negative pulse; see (35b).) Since there is a small
‘Stokes drift’ of blood associated with the pulses, this may be an evolutionary
adjustment that prevents blood in the aorta from being depleted.
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