
SIO 214A Homework 3 Answers

1.) Assuming u = ∇φ, the continuity equation takes the form

∂ρ

∂t
+∇ · (ρ∇φ) = 0 (1)

and the momentum equations take the form

∇
(
∂φ

∂t
+

1

2
∇φ · ∇φ

)
+

1

ρ
∇p = 0 (2)

As in the constant density case, we want to get (2) into the form

∇ (something) = 0 (3)

This requires us to express

1

ρ
∇p = ∇ (something) = 0 (4)

or, in other words, we must show that dp/ρ is an exact differential. But

1

ρ
∇p = ∇

(
p

ρ

)
− p∇

(
1

ρ

)
(5)

= ∇
(
p

ρ

)
+

p

ρ2
∇ρ (6)

= ∇
(
p

ρ

)
+
dE

dρ
∇ρ (7)

= ∇
(
p

ρ
+ E(ρ)

)
(8)

where we have used p = ρ2dE/dρ. Hence (2) becomes

∇
(
∂φ

∂t
+

1

2
∇φ · ∇φ+

p

ρ
+ E(ρ)

)
= 0 (9)

which implies
∂φ

∂t
+

1

2
∇φ · ∇φ+

p

ρ
+ E(ρ) = 0 (10)

after absorbing an arbitrary function of time into φ. Compressible, irrota-
tional, barotropic flow is governed by (1) and (10). These equations are more
complicated and much harder to solve than the corresponding equations for
incompressible, irrotational flow, but they can be used to study flows with
large Mach numbers.
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2.) The analytic function corresponding to a source at z = −a and a sink of
equal strength at z = +a is

f(z) = A[ln(z + a)− ln(z − a)] (11)

where A is proportional to the source.
To determine A in terms of the given data, we reason as follows: An

isolated source of the form φ = A ln r would introduce a volume per unit
time of 2πAd where d is the depth of the lake, if the velocity field is assumed
uniform with depth. A source placed at the mouth of a river would introduce
a volume/time half as large. Hence πAd = Q, where Q is the given input
(gallons per second, say) of the river. Thus our anticipated solution is

f(z) = φ− iψ =
Q

πd
[ln(z + a)− ln(z − a)] (12)

The river width w does not appear, because the river has been abstracted as
a line.

For simplicity, we now drop the constant prefactor in (12). It is not
needed to answer the rest of the question.

The real part of (12) is the velocity potential

φ(x, y) = ln |z + a| − ln |z − a| = 1

2
ln

(
(x+ a)2 + y2

(x− a)2 + y2

)
(13)

The boundary conditions are no-normal-flow on x2 + y2 = a2, except at the
river mouths, where the appropriate conditions have already been satisfied.
The no-normal-flow boundary condition requires that ψ be uniform on shore-
line locations between the two river mouths, or that the normal derivative
of φ vanish at the shoreline. Either one of these is sufficient, because the
Cauchy-Riemann conditions then imply the other.

By the divergence theorem, ∇2φ = 0 implies∮
∂φ

∂n
= 0 (14)

which may be regarded as a consistency condition on the boundary condi-
tions. It requires the source at one river mouth to balance the sink at the
other river mouth.

2



The velocity field can be computed as (u, v) = (φx, φy) or more simply
from

df

dz
= u− iv =

1

z + a
− 1

z − a
= − 2a

z2 − a2
(15)

To see that the boundary condition u · n̂ = 0 is obeyed, one could verify that

∇φ · ∇(x2 + y2 − a2) = 0 (16)

or proceed more simply as follows. The no-normal-flow boundary condition
is equivalent to

(u, v) · (x, y) = Re[(u− iv)(x+ iy)] = Re

(
df

dz
z

)
= 0 on z = aiθ (17)

But on z = aiθ

df

dz
z = −2

a

eiθ

e2iθ − 1
= −2

a

1

eiθ − e−iθ
= −2

a

1

2i sin θ
(18)

which is pure imaginary. Hence the boundary condition (17) is satisfied.
To find the minimum current speed, we compute

u2 + v2 = | 2a

z2 − a2
|2 ∝ 1

(z2 − a2)(z̄2 − a2)
(19)

where z̄ = x− iy is the complex conjugate of z. The minimum of (19) occurs
at the maximum of

D ≡ (z2 − a2)(z̄2 − a2) = r4 + a4 − 2a2r2 cos(2θ) (20)

where we have set z = reiθ. The last term in (20) is a maximum when
θ = ±π/2. When θ = ±π/2,

D = r4 + a4 + 2a2r2 (21)

which increases with r, and is therefore a maximum within the lake at r = a.
Therefore the velocity is minimal at the points z = ae±iπ/2, which lie at the
north and south extremity of the lake. By (19) the minimum current speed
is

Q

πd
| 2a

(ia)2 − a2
| = Q

πda
(22)

where we have restored the constant prefactor.
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