SIO 214A Fall 2021
Lecture Notes

The equations for a perfect barotropic fluid (Lectures 1 & 2)

We start with the abstract idea of a fluid continuum and derive the equa-
tions for an ideal, barotropic fluid, first by considering a control volume
(Kundu, 5th ed., p. 96-103), and then by averaging over molecular motions
(LGFD, p. 16-19), finally arriving at the equations for a perfect barotropic
fluid,
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where u = (u,v,w) is the velocity and F(p) is a prescribed function. The
momentum equation can also be written

where

is the time derivative following a fluid particle. These equations will serve us
well for the first half of the course. From time to time we will add gravity,
and eventually we will need to include the viscosity, which involves adding
the term vV?u to the momentum equation.

Here is the ‘molecular derivation’ of the continuity equation in greater

detail: Define
p(x,t) = ZmiR (ri(x, x;(t)))

where
T =[x = x4(t)|

and R(r) is a ‘sampling function’, maximum at r = 0, and vanishing when
r > ro. It must be normalized such that

47T/r2R(r)dr =1
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to ensure that
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if we take the last line as the definition of velocity.

Static stability (Lecture 3)

The simplest solutions are states of rest (u = 0,09/0t = 0). To make these
interesting, we must add gravity. In the state of rest, p = p(z), p = p(z) and
the barotropic equations reduce to

0= —%—pg (1)
p=F(p) (2)

For a given total mass of fluid, the solution is unique.

In this lecture we diverge from the main line of the course by considering
the more realistic case in which F' depends on two state variables. A natural
choice for the second state variable is temperature, but entropy proves more
convenient. Thus

p=F(p,n) (3)
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where 7 is the entropy per unit mass. The entropy proves convenient because
the needed extra equation is a simple one:

Dn
o =0 (4)
Entropy is conserved in adiabatic flow. The addition of a second state vari-
able means that there are an infinite number of possible hydrostatic flows.
However, only some of them are stable with respect to small disturbance.

First we prove Archimedes’ principle: The pressure force on an immersed
body is equal to the weight of the fluid it displaces. This result applies to
any type of fluid, because it only uses the hydrostatic relation, eqn (1). For a
fluid parcel displaced vertically, Archimedes’ principle leads to the prediction
that the state of rest is stable if

00: +5 < 0 (stable) (5)
where p
2 _ JR—

¢ = apF(m n) (6)

and ¢ turns out to be the sound speed (next lecture). From this we see that
the effect of fluid compressibility is always a de-stabilizing one. Eqn (5) a
general result, but meteorologists prefer equivalent statements that refer to
temperature and make use of the ideal gas relations. One such form is

or g
— 4+ = tabl
82+Cp>0 (stable) (7)
and another is
06 >0 (stable) (8)
0z

where 6 is the potential temperature. Potential temperature is a poor indica-
tor of stability in the ocean, because seawater density depends on tempera-
ture and salinity. For this lecture, see LGFD p. 39-42. For a good, and very
gentle, introduction to atmospheric thermodynamics and moisture variables,
see Introduction to Theoretical Meteorology by Seymour Hess, 1959.

Sound waves and the incompressible limit (Lecture 4, 5, 6, and 7)
From now on, to keep things as simple as possible, we omit the gravity
term.



We want to focus on flows in which the mass density is constant. However,
it is not a simple matter of setting p = po in the full equations. If we do,
the equation p = F'(p) implies that p = F'(py) (constant), and the remaining
equations become

V-u=0 (1)
Du

Eqns (1-2) are ill posed; there are more equations than unknowns.
The subtlety here is that p — pg corresponds to the limit ¢ — oo where ¢
is the sound speed. A careful application of this limit will yield the equations

V-u=0 (3)
P = ~Vp ()
p="Flp) (5)

Eqns (3-4) form closed set of equations for u and p in which p does not
appear. In these equations, the pressure acts to enforce the constraint that
the velocity field be nondivergent. Eqn (5) is then best viewed as an ‘auxiliary
equation’ that gives you p after the fact, that is, after (3-4) have been solved
for u and p. However, as ¢ — oo, the difference between p and py becomes
so small that it is hardly worth knowing.

If you are a meteorologist, you might be offended at the idea that con-
stant density is an acceptable approximation. However, meterologists end
up with a set of equations that are not so very different from (3-4) by the
strategy of adopting pressure coordinates, that is, by replacing z with p as
the vertical coordinate. To get the flavor of this, see LGFD p. 102-105. For
a more thorough introduction, see the beautiful article entitled “A view of
the equations of meteorological dynamics and various approximations” by A.
A. White in Large-Scale Atmosphere-Ocean Dynamics, edited by Norbury &
Roulstone, Cambridge, 2002.

We proceed by considering a solution of the full equations for which we
can take the limit ¢ — oco. Unfortunately, since we are dealing with coupled
nonlinear PDEs, we cannot solve the full equations exactly. We therefore
assume that the motion is a slight departure from the state of rest,

p=po, u=0 (6)



That is, we assume that
p=po+p(xt) u=0+u(x,1) (7)

where p/ and u’ are small. Then, neglecting the products of small quantities,
we obtain the linearized form of the full equations, namely

9p' _

a —+ pOV -u' =0 (8)
ou’

Pogr = -Vp (9)

p=Flpo) + F(po)p' =po+p =po+p (10)

Combining equations we obtain the ‘wave equation’

82 p/

=V (11)

This is a standard equation of mathematical physics which you have likely
seen before (see LPDE Chapter 6 or the book by G. B. Whitham, Linear
and Nonlinear Waves, Chapter 7).

In one space dimension, u’ and p’ obey the same equation as p’. Thus

o 0%
= 12
o~ o2 (12)
This has the general solution (d’Alembert’s solution)
u=F(t—x/c)+G(t+z/c) (13)

where F(-) and G(-) are arbitrary functions of a single variable.

Consider an infinite pipe along the x-axis, with fluid filling the right half
of the pipe, and a movable piston located at x,(¢) which is under our control.
To determine the response of the fluid to the motion of the piston we must
solve (12) subject to the boundary condition

W ylt), 1) = (1) =y 1) (1)

If the piston never moves far from its initial location at x = 0, we may
approximate this boundary condition as

u'(0,1) = up(?) (15)
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If there are no other sources of excitation besides the piston, then there can
be no incoming wave, and it follows that G = 0. (This type of boundary
condition is called a radiation condition.) Then (15) implies that F'(t) = w,(t)
and hence

u'(x,t) = uy(t —z/c) (16)

The fluid velocity at (z,t) is just the piston velocity at the earlier time t—x/c.
The signal moves at the sound speed ¢. From (8) and (10) we determine

P’ = pocuy(t — z/c) (17)
and
o =Lyt — /) (18)

Thus the density perturbation is smaller than the mean density by a factor
of the Mach number. As ¢ — oo, for all finite z,

u' — u,(t) (19)
p/ — Pocup(t) (20)
g %up(t) (21)

and the fluid in the pipe moves as a solid slug, obeying the one-dimensional
condition for zero divergence,

ou

e 0 (22)
This is classic action-at-a-distance, but it is true only as an approximation.
In reality, nothing goes faster than the speed of sound. The sound speed
plays the same role role in fluid dynamics as does the speed of light in elec-
trodynamics. A good book for sound waves is Waves in Fluids by James
Lighthill.

The one-dimensional case is interesting, but to get a good idea of what
is going on, we need to consider more space dimensions. For simplicity, we
consider the two-dimensional case. The basic question is this: In what sense
are (3-4) a good approximation to the full equations,

Dp
=_r ‘u= 2
D +pV-u=0 (23)
Du
Py = VP (24)
p=F(p) (25)



Again we regard the primes as the departure from the state of rest, but now
we do not assume that they are small. The full equations (including sound
waves) take the form

op' ou o'\ SN
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where we have placed all the linear terms on the left-hand side. In the nonlin-
ear terms on the right-hand side, we have introduced a further approximation
that anticipates that p’ will be small.

Next we introduce a change of variables that will allow us to better see
what is going on. We let

, 00  OY

v or 0Oy (29)
, 09 Oy

v = _8y + _856 (3())

Instead of (v, v, p'), it will be better to use (p', ¢, 1) as independent variables.
We call ¢ the velocity potential and 1) the stream function. The significance
of these new variables is that the divergence

ou o

e i Vi (31)
is the Laplacian of ¢; and the vorticity

o' o

is the Laplacian of the stream function.

[Digression. This is the first appearance of vorticity in our course. To
give a physical interpretation of vorticity, I will digress to discuss the decom-
position of the velocity field into components of divergence, vorticity, and
strain. Kundu, p. 77-82, does this for the general 3d case; my presentation
will be simpler, being confined to 2 dimensions.]
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Taking the divergence and curl of (27-28), we arrive at the equations

8 /
S+ V6 =0 (33)
oV3¢p oo,  ONg ON,
— e Py 4
po—g TV o oy (34)
2
oV _ ON, B ON, (35)
ot ox oy
In the linear limit these become
op 2.
8t +p0V ¢—0 (36)
2
Po aZt¢ + AV =0 (37)
V2
5 0 (38)

which are in the form of equations for normal modes. The variables p’ and
¢ representing the ‘sound-wave mode’ with dispersion relation w = ck. ¥
represents the ‘vorticity mode” with dispersion relation w = 0. We think of
(0, @) as the ‘fast mode’ and v as the slow mode. In the linear limit these two
modes are fully decoupled. The sound waves and the slow vortical motion
are completely unaware of one other.

In the full dynamics (33-35), the nonlinear terms couple the two modes
together. Symbolically,

N=o¢x¢+dxp+xv (39)

where N stands for A, or N,. However this coupling tends to be weak
because the timescale of the fast mode (p, ¢) is so much shorter than that
of the slow mode .

If you are only interested in the slow mode, then a reasonable approxi-
mation is to throw away the equations (33) and (34) for the fast mode, and
to keep only the terms ¢ * ¢ in the slow-mode equation (35). The result is
(35) in the form

OV*y
v = (u, - 9)(V) (40
where u, = (—3—7’57 g—f) is the slow velocity. Equation (40) describes the slow

mode interacting with itself, and is equivalent to the ‘sound-free’ dynamics

8



(3-5). In other words, the replacement of the full, compressible equations by
(3- b) is equivalent to just throwing out the fast modes. In two dimensions,
it is generally easier to use (40) than to use (3-4). In three dimensions it may
be easier to use (3-4) than to use the (more complicated) three-dimensional
analog of (40). However, the two approaches—vorticity equation versus mo-
mentum equations—are equivalent, and always give the same result.

The elimination of the fast modes converts the dynamics from an ‘exact’
dynamics in which nothing moves faster than the speed of sound, to an ap-
proximate dynamics with action-at-a-distance: In the formulation (40), one
must determine ¢ from V?%; in the formulation (3-4), one must determine
p from

V2=~V - (pou - V)u) (41)

Elliptic equations always express action-at-a-distance.

By solving for the slow motion by itself, we are not necessarily assuming
that the sound waves are negligible. We are actually only saying that we
don’t care about them. It doesn’t matter what they are doing, because they
couple only weakly to what we do care about.

But suppose we start from a situation in which no fast modes are present
() =0 = ¢). Would the fast modes remain zero? No. Nonlinear terms of
the form 1 % ¢ on the right hand side of (34) would excite fast modes. How
effectively would they do that? This was considered in a famous paper by
James Lighthill. He found that the excitation of sound waves by the slow
vortical modes was extremely weak. The weakness is due to the tremendous
mismatch in the time scales. The ratio of time scales is the Mach number,
Ule.

If we were to re-admit gravity—we won’t—this entire discussion repeats
itself at another level. Internal gravity waves become present, and they
become the new fast modes (but not as fast as sound waves). Throwing out
the gravity modes leaves us with a new, slow, vortical mode interacting only
with itself. This new type of slow dynamics—with both sound waves and
gravity waves extracted—is called quasigeostrophic dynamics. But here is
the catch. The phase speed of internal waves is not that much greater than
the velocity of the quasigeostrophic mode. The ratio of time scales is the
Froude number U/cypq,, Where now cg,q, is the speed of gravity waves. Thus
the coupling between gravity modes and vortical modes is not a weak one.
These modes interact strongly, and their interaction is a hot research topic
in both meteorology and oceanography.



Potential flow (Lecture 9 & 10)
Soon after the perfect-fluid equations were discovered, several people had
the idea to seek solutions in the form

u= Vo (1)

Flows with the property (1) are called potential flows. Most fluids books
treat them thoroughly (e.g. Kundu, chapter 6) so these notes offer only an
outline.

The primary motivation for (1) was that it made things much easier.
Early workers justified (1) by noting that fluids that were set in motion
solely by pressure forces satisfied (1) automatically. Nevertheless, results
obtained with (1) often disagreed with reality. The need to go beyond (1)
became clear following Helmholtz’s great paper of 1885.

The assumption (1) is deficient because it assumes that the vorticity
w = V x u vanishes. Most flows contain vorticity. However, viscosity is
required to generate the vorticity, and, however generated, vorticity behaves
unrealistically unless viscosity is present to control it. Thus, to go beyond
(1), we must introduce both viscosity and vorticity. However, the presence
of vorticity and viscosity in the equations greatly complicates their analysis.
We follow the historical development of the field by learning as much as we
can from the consequences of (1) before adding vorticity and viscosity.

We start with the constant-density equations discussed in previous lec-
tures. With the assumption (1) the continuity equation V - u = 0 takes the
form

V3 =0 (2)
and the momentum equations take the form of the Bernoulli equation,
dp 1 P
L L IV-V = =90 3
5 ToVe Vot . (3)

Eqns (2-3) are two coupled equations in the two unknowns ¢(x,y, z,t) and
p(z,y, z,t). They replace the four coupled equations in (u, v, w, p). The only
nonlinearity resides in the middle term of (3).

How easy is it to solve (2-3)7 That depends on the boundary conditions,
which largely control the solutions. If the boundary conditions on the Laplace
eqn (2) involve only ¢, then that equation determines ¢(z,vy, z,t) and (3)
serves only to tell us p(x,y,z,t). The nonlinearity in (3) is no problem,
because we know ¢(z,y, z,t) from having solved (2).
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If the boundary conditions involve both ¢ and p—as in the surface-wave
problem—then things become much more difficult. People have been working
hard on surface waves for more than two centuries.

Although (2) and (3) apply to general three-dimensional flow, it is much
easier to discuss solutions in two space dimensions, where analytic function
theory becomes a powerful tool. In two dimensions,

Vou=0=u=(—v¢,,1Y,) (4)

and
Vxu=0=u= (60, (5)

Thus we may describe the velocity field using either the stream function or
the velocity potential. (Contrast this with an earlier lecture in which we
needed both.) The two are related by

¢a: = _¢ya (by = % (6>

from which we see that curves of constant ¢ are everywhere perpendicular
to curves of constant . Moreover, since vanishing vorticity implies

V) =0 (7)

both ¢ and v are harmonic functions.

We still need a method for finding ¢ or . Analytic function theory
provides such a method. Let z = z 4 iy and consider functions f(z) for
which the derivative of f(z) has a sensible, ‘direction independent’, meaning.
From this requirement it follows that the real and imaginary parts of

obey (2), (6) and (7), and therefore represent a possible potential flow.
In other words, every analytic function corresponds to a solution of the
potential-flow problem in two dimensions. The challenge then becomes: Can
you find an analytic function that satisfies your boundary conditions? Typ-
ical boundary conditions are no-normal-flow at a prescribed solid boundary.
Then the challenge becomes: Can you find an analytic function whose imagi-
nary part—the stream function—takes a constant value along your particular
boundary.

The proper choice of analytic function is an art best learned by practice.
Two facts are of immense importance: First, the sum of analytic functions
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is an analytic function. Second, the analytic function of an analytic function
is an analytic function. The latter corresponds to conformal mapping.

The problem with all this is that potential flows are fundamentally lacking
in personality. If you are having a party, and you only invite potential flows,
you are in for a dull evening. To liven things up, you need a small amount of
vorticity. But be careful with vorticity. If you invite too much vorticity, you
can expect broken furniture (aka turbulence) and a visit from the police.

Vorticity without viscosity (Lecture 11)

References for this are LGFD pp. 197-205, or chapter 5 of Kundu. This
topic is thoroughly covered in all fluids books, so the following is merely a
summary of the lecture.

The vorticity is defined as

w=Vxu (1)

and carries the physical interpretation of local solid rotation. To derive its
evolution equation from the incompressible Euler equations

V-u=0 (2)

g—l; +(u-Viu=-Vp (3)
we use a vector identity to rewrite the latter as
1

g—ltl—l—wxu——V(p—l—iu-u) (4)

Then, taking the curl and invoking another vector identity, we obtain

0
%9 (- V)w = (w- V)u (5)
ot
In two space dimensions u = (u, v,0) and w = (0,0, ¢), where { = v, —u,.
In this case (5) reduces to
a¢
— -V)(=0 6
S (u- V)G (6
Thus vorticity is conserved on fluid particles in two-dimensional flow. The
general three-dimensional equation (5) is much harder to interpret.
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Helmholtz (1858) was first to see what it meant. He considered the rel-
ative displacement dr(¢)between two infinitesimally separated fluid particles
located at ri(t) and ry(t). Using Taylor series expansion,

d
2;07(t) = u(rz(t),t) —u(ru(t),¢) (7)
implies
d ou,
Y ;= 5. 8
dt " 8.17]' " ( )
in index notation. Compare this to (5) rewritten as
Dwi (9uz
= —dw, 9
Dt &cj i ( )

We see that the vorticity vector undergoes the same evolution as the dis-
placement vector between two fluid particles located ‘along’ the vorticity
vector. As the two fluid particles change their orientation, the vorticity vec-
tor changes its direction. As the fluid particles move apart, the vorticity
vector gets longer in proportion.

Kelvin provided the next step. He showed that the circulation

ct) = ]{u-dr (10)

where the integral is around a closed material loop of fluid particles, is con-
served:

dC
B 11

j{u-dr://w-fldAEF (12)

provides the connection with vorticity.

Consider a vortex tube, defined as the extension, at a fixed time, of a loop
of particles in the direction of the local vorticity vector. Since V - w = 0,
I' is uniform along the tube. By the circulation theorem, it is also constant
in time. Thus, as the tube moves with the fluid particles it contains, the
product of its cross section and its vorticity remains the same. Where the
tube is stretched, becoming thinner, its vorticity must increase.

Stokes’s theorem,
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Vorticity Dynamics (Lecture 12)

The vorticity equation (5) can be considered an alternative formulation
of fluid dynamics. That is, instead of solving (2-3), we can use (5) to step
the vorticity w forward in time and the ‘invert’ (1) to find the velocity u at
the new time.

In two dimensions this is easy, and it is probably the best way to solve
two-dimensional, incompressible Euler dynamics. One uses (6) to step ¢
forward in time and then ‘inverts’

Vi =( (13)

to determine ¢ and hence u = (—,,,) at the new time.
In three dimensions, the determination of u from w is analogus to finding
the magnetic field B from the current density j via

V xB=j (14)

and the Biot-Savart law. This approach is well covered in chapter 1 of P. G.
Saffman, Vortex Dynamics, Cambridge, 1992. You may remember it from
electrodynamics. However, it is probably fair to say that in three dimensions
most people prefer to solve (2-3) rather than (1) and (5).

The term wvorticity dynamics is reserved for flows in which vorticity is
present within only a very small fraction of the flow. Such flows occupy the
very outward limit of analytical theory. For a good dose, see Saffman’s book.

One can think of vorticity as an explosive substance. If present in small
and widely separated locations, it can be handled safely, albeit with consid-
erable exertion (Saffman’s book). However, if vorticity is present throughout
the flow, then chaos (aka turbulence) ensues, and the only recourse is to
adopt a statistical approach.

The poster child of vorticity dynamics is point vortex dynamics in two
dimensions (Helmholtz 1858, Kirchoff 1876). This is barely touched on in
Kundu, pp. 187-191, but it turns out to be a very useful way of visualizing
two-dimensional flow. For a thorough introduction, see H. Aref, Point vortex
dynamics: a classical mathematics playground J. Mathematical Physics, vol
48, 2007.

Consider a point vortex at the origin. Its total, integrated vorticity I'
occupies an infinitesimally small region near x = y = 0. Outside this region
the vorticity vanishes. Thus

V2 =T §(x) (15)
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where 0(x) is the delta function. Using the divergence theorem we find that

r r
P(x) = Py In|x| = yym In (2% + y°) (16)
The associated velocity field is
u(X) = (_wvaac) = 22 (—y,:z:) (17)

where 12 = 22 + /%

In point vortex dynamics there are N point vortices, and they push each
other around: Each vortex is advected by the velocity field induced by the
other N — 1 vortices. (A vortex has no effect upon itself.) As N — oo the
collection of point vortices behaves like a continuous distribution of vorticity
governed by (6) and (13). In fact, numerical models of two-dimensional flow
are sometimes formulated in terms of point vortices. If N < 3, the motion
is exactly solvable (integrable), but if N > 3 the motion is generally chaotic,
demonstrating how little vorticity is required to produce chaos.

We consider the special case N = 2 of two point vortices. For this we
have

r r
w(x)zﬁlnk—xl]—i—ﬁlnlx—xz\ (18)

and r r
u(x) = 27r11~% (1 —y.x — 1) + 27;% (v2 — Y,z — 22 (19)

where 7 = |x — x1| and 79 = |x — X3|. The dynamics is

dX1 FZ
—L = - - 20
i o 7“%2 (yz Y1, 11 xz) ( )
dX2 Fl
_— = — — 21
i o 7’%2 (3/1 Y2, T2 351) ( )

where 12 = |x; — Xg|. The analysis of (20-21) is aided by the fact that the
following 4 quantities remain constant in time:

ria, Dz +Toxa,  Tiyr + Toyo,  Ti(af 4 yi) + Do) + v3) (22)

These correspond to the conservation of energy, z-direction momentum, y-
direction momentum, and angular momentum, respectively. Two simple
cases are co-rotating (I'; = I's) and counter-rotating (I'y = —I'3) vortices.
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Two-dimensional turbulence (Lecture 13)

In three space dimensions, the stretching of vortex tubes transfers energy
from the large scales of motion, which are doing the stretching, to the small
scales of motion associated with fluid spinning around the tube. As we shall
see in a future lecture, this mechanism of energy transfer is very efficient.

In two space dimensions, it is a very different story. The energy-containing
scales transfer their energy to larger scales. This astonishing fact was not
realized until the mid-twentieth century.

The fundamental papers are by:

Onsager, L. 1949. Statistical hydrodynamics. Nuovo Cimento, Suppl. 6,
p. 279-287.

Kraichnan, R. H. 1967. Inertial ranges in two-dimensional turbulence.
Phys. Fluids 10, 1417-1423.

Batchelor, G. K. 1969 Computation of the energy spectrum in homoge-
neous two-dimensional turbulence. Phys. Fluids 12 | 11-233-11-239.

Leith, C. E. 1968. Diffusion approximation for two-dimensional turbu-
lence. Phys. Fluids 11 , 671-673.

The history behind Onsager’s paper is discussed in:
Eyink, G.L. & K.R. Sreenivasan 2006. Onsager and the theory of hydro-
dynamic turbulence. Rev. Mod. Phys., 78, 87-135.

The lecture follows LGFD pp. 217-221.
Viscosity (finally). (Lecture 14-15)

Much of this course has been concerned with the incompressible perfect-
fluid equations. Now we add viscosity to the momentum equation to obtain
the Navier Stokes equations,

V-ou=0 (1)
f,;—ltl + (u-V)u=—-Vp+vViu (2)

with the viscous coefficient v assumed to be constant. The momentum equa-
tion (2) can also be written

o " or, = o )
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where

Tij = pdij — Tij (4)
is the momentum fluz tensor, and
(“)uz- 0uj
= 5
T Y <81‘] * 8x,) ( )

is the deviatoric stress tensor. (Many books refer to —T;; as the stress tensor,
so close attention to definitions is required. I will be following LGFD pp.
19-25 for this lecture.)

Where does (5) come from and what does it mean? First we explain
what it means. If we integrate the i-th component of (3) over a fixed control
volume, we obtain

%///d:pdydzui+---=—//dAT,-jﬁj://dA(—pﬁmLTijﬁj) (6)

where n; is the i-th component of the outward pointing unit normal to the
surface of the control volume. The ... stand for the advective fluxes of mo-
mentum that arise form the second term in (3). From (6) we see that Tj;
represents the flux of i-direction momentum in the j-direction, and that 7;;
represents the part of the flux not arising from pressure. Thus 7;; includes
tangential forces acting on the surface of the control volume. We had pre-
viously neglected these tangential forces by assuming that there was only a
normal force (pressure) and that it did not depend on the orientation of the
surface.

We must still find a way to justify (5). There are two approaches to this.
The first one, which I call the ‘top down’ approach, is the one followed in
most fluids books. It assumes that the 9 components of 7;; are proportional
to the 9 components of du;/0x;, and that the law relating them is invariant
to coordinate system rotations. It also assumes that you know the general
form of a fourth order isotropic tensor (Kundu, section 4.5), and it offers no
means of estimating v. Mathematicians love it because it is clean and easy.

The other approach, which I call ‘bottom up’, starts with molecules.
It derives the Boltzmann equation governing the probability distribution of
molecular velocity in an ideal gas, and applies the Chapman-Enskog expan-
sion to eventually arrive at (5). A proper explanation of this method would
fill a whole course. If you are interested in digging deeper into this, see the
lecture notes by Paul Dellar, University of Oxford, at:
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https://people.maths.ox.ac.uk/dellar/papers/MMPkinetic.pdf

The two general derivations of viscosity reflect a bitter ‘culture war’ that
raged throughout the latter half of the nineteenth century. On the one side
were the positivists, led by Ernst Mach, who, despite Dalton’s Laws, argued
that it was impermissible to invoke anything (such as atoms) which could
never be directly observed. On the other side were the atomists, led by
Ludwig Boltzmann. As the nineteenth century drew to a close, the positivists
actually seemed to be winning. But they were convincingly defeated by
Einstein in his 1905 paper on Brownian motion. Sadly, Boltzmann, who died
in 1906, probably never realized the extent of his victory.

We shall follow a very cheap version of the ‘bottom up’ approach , which
is sufficient to get the flavor. First we attempt to derive the momentum
equation by the same molecular-averaging method that we used to derive
the continuity equation in the first lecture of this course (LGFD pp. 19-23).
We find that

Tz = <ufmolufmol>7 —Tzy = <ufmol,U;nol>7 —Tzz = <ufmolw:’nol> (7)

where

/mol7 U;noh w;nol) (8>

is the departure of the molecular velocity from the local average of molecular
velocities, namely the continuum velocity u.

Next we consider the special situation in which the average velocity takes
the form

u;nol - (u

u = (u(y),0,0) (9)
For this situation (5) predicts that
ou Ov ou
(5 +5) = (3) 1o

Thus the flux of z-direction momentum, across the surface y = 0, in the
direction of increasing vy, is

P // dwdz v (g—Z) (11)

and to ‘prove’ (5) we must show that
ou
v (5 = it (12)
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for some scalar v. This we do following the steps presented in LGFD pp.

23-26. We find that
SA

2
where s is the speed of molecules and \ is the mean free path.

V=

(13)

Eddy viscosity. (Lecture 16)

The course ends with a review of molecular viscosity and a parallel dis-
cussion of macroscopic averaging (often called Reynolds averaging), its asso-
ciated closure problem, and the artifice of eddy viscosity. From the modern
physics viewpoint, eddy viscosity represents a kind of renormalized molecu-
lar viscosity that results when one attempts to sweep the smaller scales of
the continuum velocity into the same category as molecular fluctuations. Its
conventional justification in terms of ‘mixing length theory’ is an outright
embarrassment. See LGFD pp 31-34.

Numerical models that do not resolve the smallest scales of the velocity
field must contain some form of eddy viscosity. Such models are now called
Large Eddy Simulations (LES) to distinguish them from Direct Numerical
Simulations (DNS) which resolve the viscous cutoff.

The journey ends with a discussion of the so-called Zeroth Law of Turbu-
lence: that the molecular dissipation of energy is independent of v as v — 0,
and its implication that, as v — 0, solutions of the Navier-Stokes equations
form singularities in a finite time (LGFD pp 226-230). A Clay Prize of § 1
million dollars is yours if you can prove or disprove this conjecture. See

https://www.claymath.org/millennium-problems /navierstokes-equation

and good luck!
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