(a) The Poisson bracket is defined by

\[\{ A, B \} = \frac{\partial A}{\partial z^i} J^{ij} \frac{\partial B}{\partial z^j} \]

(1)

where repeated indices are summed. Show that the Jacobi identity

\[\{ A, \{ B, C \} \} + \{ B, \{ C, A \} \} + \{ C, \{ A, B \} \} = 0 \]

(2)

is equivalent to

\[J^{im} \frac{\partial J^{jk}}{\partial z^m} + J^{lm} \frac{\partial J^{ki}}{\partial z^m} + J^{km} \frac{\partial J^{ij}}{\partial z^m} = 0 \]

(3)

Answer. Substituting (1) into (2) yields

\[\frac{\partial A}{\partial z^i} J^{ij} \frac{\partial B}{\partial z^j} \left(\frac{\partial B_{l}}{\partial z^l} J^{lm} \frac{\partial C}{\partial z^m} \right) + \text{cyc}(A, B, C) = 0 \]

(4)

Expanding this out,

\[\frac{\partial A}{\partial z^i} \frac{\partial B}{\partial z^l} \frac{\partial C}{\partial z^j} J^{ij} J^{lm} \frac{\partial C}{\partial z^m} + \text{cyc}(A, B, C) \]

\[+ \frac{\partial A}{\partial z^i} \frac{\partial B}{\partial z^l} \frac{\partial C}{\partial z^j} \frac{\partial B}{\partial z^m} J^{ij} J^{lm} + \text{cyc}(A, B, C) \]

\[+ \frac{\partial A}{\partial z^i} \frac{\partial B}{\partial z^l} \frac{\partial C}{\partial z^j} \frac{\partial^2 B}{\partial z^m \partial z^j} J^{ij} J^{lm} + \text{cyc}(A, B, C) = 0 \]

(5)

Now we go to work on the last line in (5). It can be rewritten

\[\frac{\partial C}{\partial z^i} \frac{\partial A}{\partial z^l} \frac{\partial B}{\partial z^m} \frac{\partial^2 B}{\partial z^m \partial z^j} J^{ij} J^{lm} + \text{cyc}(A, B, C) \]

(6)

Next we note that all the indices in (6) are repeated; they are all dummy indices. Thus we may permute the indices as follows:

\[m \to l \]
\[l \to i \]
\[i \to m \]

(7)

The result is

\[\frac{\partial A}{\partial z^i} \frac{\partial B}{\partial z^l} \frac{\partial C}{\partial z^j} J^{mj} J^{il} + \text{cyc}(A, B, C) \]

(8)

1
The strategy here is to make (8) look as much like the second line in (5) as possible. We are almost there. The final step is to interchange \(j \) and \(l \) in (8). This gives

\[
\frac{\partial A}{\partial z^i} \frac{\partial^2 B}{\partial z^j \partial z^l} \frac{\partial C}{\partial z^m} J^{ml} J^{ij} + \text{cyc}(A, B, C)
\]

(9)

By the antisymmetry of \(J^{ml} \), (9) cancels the second line in (5). Thus (5) reduces to

\[
\frac{\partial A}{\partial z^i} \frac{\partial B}{\partial z^j} \frac{\partial C}{\partial z^m} J^{ij} \frac{\partial J^{lm}}{\partial z^j} + \text{cyc}(A, B, C) = 0
\]

(10)

Since \(A, B, C \) are arbitrary functionals, (10) implies (3). QED.

(b) Verify that

\[
\frac{dF}{dt} = \{F, H\} = \int \int d\mathbf{x} \left\{ \frac{\delta(F, H)}{\delta(u, v)} - \frac{\delta F}{\delta \mathbf{u}} \cdot \nabla \frac{\delta H}{\delta h} + \frac{\delta H}{\delta \mathbf{u}} \cdot \nabla \frac{\delta F}{\delta h} \right\}
\]

(11)

implies the shallow water equations, where \(F[u, v, h] \) is an arbitrary functional, \(H[u, v, h] \) is the shallow-water Hamiltonian, and

\[
q = \frac{\zeta + f}{h}
\]

(12)

is the potential vorticity. Then show that

\[
\{A, C\} = 0
\]

(13)

for any \(A \) whatsoever, and any \(C \) of the form

\[
C = \int \int d\mathbf{x} \ hG(q)
\]

(14)

where \(G(q) \) is an arbitrary function of the potential vorticity \(q \). Answer. It is relatively easy to verify the equations. To show that \(C \) is a Casimir, first note that

\[
\delta C = \int \int d\mathbf{x} \ \{\delta h \ G(q) + hG'(q)\delta q\}
\]

\[
= \int \int d\mathbf{x} \ \{\delta h \ G(q) + hG'(q)(-\frac{\zeta + f}{h^2} \delta h + \frac{(\delta v)_x - (\delta u)_y}{h})\}
\]

\[
= \int \int d\mathbf{x} \ \{(G - qG')\delta h + (G')_y \delta u - (G')_x \delta v\}
\]

(15)
implies that

\[
\frac{\delta C}{\delta h} = G - qG' \\
\frac{\delta C}{\delta u} = (G')_y \\
\frac{\delta C}{\delta v} = -(G')_x
\]

Thus

\[
\{A, C\} = \int \int d\mathbf{x} \left\{ q \frac{\delta (A, C)}{\delta (u, v)} - \frac{\delta A}{\delta u} \cdot \nabla \frac{\delta C}{\delta h} + \frac{\delta C}{\delta u} \cdot \nabla \frac{\delta A}{\delta h} \right\} \\
= \int \int d\mathbf{x} \left\{ -q \frac{\delta A}{\delta u} (G')_x - q \frac{\delta A}{\delta v} (G')_y - \frac{\delta A}{\delta u} \cdot \nabla (G - qG') - (\nabla \cdot \frac{\delta C}{\delta u}) \frac{\delta A}{\delta h} \right\}
\]

which vanishes for any \(A \), because the coefficients of \(\delta A/\delta u, \delta A/\delta v, \delta A/\delta h \) vanish separately, for any function \(G(q) \). QED