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On Integrals
of the Hydrodynamic Equations

That Correspond to Vortex Motions
BY HERMANN VON HELMHOLTZ

Hitherto, integrals of the hydrodynamical equations have been sought
almost exclusively under the assumption that the orthogonal com-
ponents of the velocity of each water particle can be set equal to the
differential quotients in the corresponding directions of a certain func-

TRANSLATOR'S NOTE

Helmholtz's paper on vortex motions was first published in 1858 in the
Journal fur die reine and angewandte Mathematik*. It was the first in a
series of ground-breaking papers in hydrodynamics published by
Helmholtz in the decade between 1858 and 1868. In exemplary fashion it
expresses his attempt at applying hydrodynamic considerations to
electromagnetic phenomena, and electrodynamic models to the math-
ematical explication of complex hydrodynamical situations. The full
force of this mode of thinking is being recognized only now when
Helmholtz's basic ideas on vortex motion have found fruitful application
in the investigation of high energy plasmas by researchers like Wells
[this issue] and Bostick [IJFE, March 1977)].

A rough translation of Helmholtz's 1858 paper was presented by P.G.
Tait in the Philosophical Magazine and Journal of Science**. In a short
postscript of his translation Tait wrote: ‘‘The above version of one of
the most important recent investigations in mathematical physics was
made long ago for my own use, and does not pretend to be an exact
translation.’’ The translation here is therefore the first precise rendering
into English of Helmholtz's original and is presented in order to make
readily available to the contemporary physicist the paper that originates
the precise mathematical treatment of the concepts of vortex lines and
vortex filaments that play an increasingly important role in plasma
physics.

*Vol. 55, pp. 25-55. )
**Supplement to Vol. 33, Fourth Series (18?7?)
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tion, which we shall call the velocity potential. Indeed, Lagrange has
shown that this assumption is permissible whenever the motion of the
water mass has been produced by and continued under the influence of
forces that themselves can be represented as differential quotients of a
force potential, and also that the influence of moving solids that come in
contact with the fluid does not change the validity of that assumption.
And, since most of the natural forces that can be well defined mathe-
matically are representable as differential quotients of a force potential,
by far the greater number of mathematically investigable cases of fluid
motion fall into the category in which a velocity potential exists.

Yet, already Euler has pointed out that there are in fact cases of fluid
motions in which no velocity potential exists; for instance, the rotation of
a fluid about an axis with the same angular velocity for every particle.
Among the forces that can produce such types of motion are magnetic
forces acting upon a fluid conducting electric currents, and in particular
friction, whether among the fluid particles or against fixed bodies. The
influence of friction on fluids has not hitherto been mathematically
definable; yet it is very great, except in the case of infinitely small oscilla-
tions, and it produces the most marked deviations between theory and
reality. The difficulty of defining this effect and of finding methods for
its measurement mainly consisted in the fact that no conception existed
of the forms of motion that friction produces in fluids. In this regard it
appeared to me to be of importance to investigate those forms of motion
for which no velocity potential exists.

The following investigation will demonstrate that when there is a
velocity potential, the smallest water particles have no rotational
velocity, while at least a portion of the water particles is in rotation when
there is no velocity potential.

By vortex lines I denote lines drawn through the fluid mass so that
their direction at every point coincides with the direction of the
momentary axis of rotation of the water particles lying on it.

By vortex filaments 1 denote portions of the fluid mass cut out from it
by way of constructing corresponding vortex lines through all points of
the circumference of an infinitely small surface element.

The investigation shows that if all the forces that act on the fluid have
a potential: (1) no water particle that was not originally in rotation is
made to rotate; (2) the water particles that at any given time belong to
the same vortex line, however they may be translated, will continue to
belong to the same vortex line; (3) the product of the cross section and
the velocity of rotation of an infinitely thin vortex filament is constant
along the entire length of the filament and retains the same value during
all displacements of the filament. Hence the vortex filaments must run
back into themselves in the interior of the fluid or else must end at the
bounding surface of the fluid.

This last theorem enables us to determine the velocity of rotation when
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the form of the vortex filament at different times is given. Furthermore,
the problem is solved of finding the velocities of the water particles for a
given point in time if the velocities of rotation for this point in time are
given; an arbitrary function, however, remains undetermined, and is to
be applied to satisfy the boundary conditions.

This last problem leads to a peculiar analogy between the vortex
motions of water and the electromagnetic effects of electric currents.
Thus, if in a simply connected space* filled with a moving fluid there is a
velocity potential, then the velocities of the water particles are equal to
and in the same direction as the forces exerted on a magnetic particle in
the interior of the space by a certain distribution of magnetic masses on
its surface. If, on the other hand, vortex filaments exist in such a space,
then the velocities of the water particles are to be set equal to the forces
exerted on a magnetic particle by closed electric currents that in part
flow through the vortex filaments in the interior of the mass, in part in its
surface, and whose intensity is proportional to the product of the cross
section of the vortex filaments and their velocity of rotation.

In the following I shall therefore frequently avail myself of the fiction
of the presence of magnetic masses or of electric currents, simply in
order to obtain a briefer and more vivid representation of the nature of
functions that are the same kind of functions of the coordinates as the
potential functions or attractive forces that attach to those masses or
currents with respect to a magnetic particle.

By means of these theorems a series of forms of motion, concealed in
the class of the unexamined integrals of the hydrodynamic equations, at
least becomes accessible to the imagination even if the complete integra-
tion is possible only in a few of the simplest cases — as when we have one
or two straight or circular vortex filaments in a mass of water that is
either unlimited or partially bounded by an infinite plane.

It can be demonstrated that straight parallel vortex filaments, in a
water mass limited only by planes perpendicular to the filaments, rotate
about their common center of gravity, if for the determination of this
point the velocity of rotation is considered analogously to the density of a
mass. The position of the center of gravity remains unchanged. On the
other hand, in the case of circular vortex filaments that are all per-
pendicular to a common axis, the center of gravity of their cross sections
moves on a parallel to the axis.

1. Definition of Rotation

In a liquid capable of drop formation, at a point determined by the
rectangular coordinates x, y, z, let p be the pressure at time, ¢, u, v, w

*| use this expression in the same sense in which Reimann (Journal fur die reine und
angewandte Mathematik, Vol. 54, p. 108) speaks of simply and multiply connected surfaces.
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the components of the velocity parallel to the coordinate axes; X, Y, and
Z the components of external forces acting upon the unit of fluid mass;
and h the density whose variations will be assumed to be vanishingly
small. Then the known equations of motion for the interior points of the
fluid are:

1.dp __du
-3 d—m—a+”35+”@+wd;

- l,dp
I‘Z dy dt+ dm+vdy+ dz A
1.,dp _ dw dw dw [
% 3;——+“%+ Rk
(lw
+ +dz

Hitherto, almost without exception, only such cases have been treated
where the forces X, Y, Z, not only have a potential V so that

. AV . AV, 4V la
Y= Y=" Z=73 da)

but also a velocity potential ¢ can be found so that
deq do . _do (1b)

Thereby the problem is immensely simplified, since the first three of
the equations ( 1) give a common integral equation form which p is to be
found @ having previously been determined so as to satisfy the fourth
equation, which in this case takes on the form

Lo  L¢  dg
& Tapt =0

and thus coincides with the known differential equation for the potential
of magnetic masses, which are external to the space for which this

equation is assumed to hold. It is also known that every function ¢ that
satisfies the above equation within a simply connected space can be

An n-fold connected space, accordingly, is one which can be cut by n-1 but no more surfaces
without separating the space into two entirely separate parts. Thus a ring in this sense is a
twofold connected space. The cutting surfaces all around must be bounded completely by the
line in which they intersect the surface of the space.
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expressed as the potential of a definite distribution of magnetic masses
on the bounding surface, as I have already mentioned in the intro-
duction.

In order that the substitution (1b) may be admissible, we must have

du dv dv dw dw dv
Ty—%= , H—@—-—O, — — —=0, ( 1o)

To understand the mechanical meaning of these last three conditions,
we may consider the change undergone by an arbitrary infinitely small
volume of water during the time dz as composed of three different
motions: (1) a translation of the water particle through space; (2) an
expansion or contraction of the particle parallel to three main axes of
dilatation so that every rectangular parallelepiped, made out of water,
whose edges are parallel to the main directions of dilatation remains rec-
tangular, while its edges may alter their length but remain parallel to
their original direction; (3) a rotation about a temporary axis of rotation
of arbitrary direction, which, according to a well-known theorem, may
always be considered as the resultant of three rotations about the
coordinate axes.

If the conditions (Ic) are fulfilled at a point whose coordinates are ( €,

Y, and 3 ), then the values of u, v, w, and of their differential quotients
at the point may be put as

du dw dv
u=4, T=¢  T=7=¢

dv du dw
U-’-‘—‘B, d_’1/=b’ —d:=d—‘r—_—ﬂ,

dw dv du
w::a d—z=c’ E=d_y=7’

whence we have for a point whose coordinates x, y, z, differ by an in-
finitely small quantity from (¢, 9, 3 ):

u=A+a@@—y)+yy—9+BE=—13),
v=B+y@—1)+bly—y) + «l—3),
w=C+Be—0)+a(ly—y) +clz—3),

or, if we let
g=A(z— )+ By —9) + Clz—3) +ial@—1)?

+30(y — 9 +dc(z—3)+aly—y(—3 +LF@—1(z—3)
+7@ =1y —)
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then

=% _dg _dg
u_—dx, ’U—@, ?U—B;.

It is known that by an appropriate choice of differently oriented
coordinates x, y, z with origin at ( £, 1), % ) the expression for ¢ can be
brought into the form

¢=A 2 + By + Cz + Ya 22 + 4, v} + Ic, 7},

where the components u,v,w, of the velocity with respect to the new
coordinate axes have the values

u =A +ax, v,=DB +by, w=C0C+cz.

Velocity u, parallel to the x, axis is thus the same for all water particles
for which x, has the same value, so that water particles that at the
beginning of time dt are in a plane parallel to the y, z, plane will at the
end of dt also lie in such a plane. The same holds for the x; y1 and the
x,z, plane. Thus if we imagine a parallelepiped bounded by three
planes, parallel and infinitely close to the just mentioned coordinate
planes, then the enclosed water particles after the passage of time dt will
still form a rectangular parallelepiped whose surfaces are parallel to the
same coordinate planes. Thus, the entire motion of such an infinitely
small parallelepiped is, given assumptions (Ic), composed of only a
translation in space and a dilatation or contraction of its edges, but does
not involve any rotation.

Let us return to the first coordinate system of x,y,z, and suppose that
aside from the motions of the infinitely small water mass surrounding
point ( g, y,3 ) in existence so far, there exist additional rotational
motions around axes through point (1,9 ,3 ) and parallel to the x,y,
and z axes, whose angular velocities are &, #, £, Then the velocity
components parallel to the coordinate axes of x,y, z, contributed by these
motions are:
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Thus the velocities of the particle with coordinates x,y,z now become:

u=A+a@e—D)+F+Oy—9+@B—-nE—3),
v=B+{y—0l—0+o@—y + @+
w=C+@+ne—0+@—EH—9+ciE—z

From these follows by differentiation:

dv dw

E~d_7,=2§7

dw du

E—d—z_=2’7’ (2)
du dv "

The magnitudes on the left, therefore, which according to equations (1c)
must be equal to zero, if a velocity potential is to exist, are equal to twice
the rotational velocities of the water particles around the three coor-
dinate axes. The existence of a velocity potential excludes the existence
of rotational motions of the water particles.

As a further characteristic property of fluid motion with a velocity
potential, we shall adduce here that no such motion can exist in a simply
connected space, S, which is completely filled with a fluid enclosed by
completely rigid walls. For if #» denotes the normal of the surface of such
a sphere, pointing to the interior, then the velocity component per-
pendicular to the wall de/dn must be zero everywhere. Then, ac-
cording to a well-known theorem by Green*:

I 25 o (4 e — ot

where the integral on the left is to be extended over the entire space S,
the integral on the right over the entire surface of S, a surface element of
which is denoted by dw . Now, if dg/dn is equal to zero over the
entire surface, then the integral on the left, too, must be equal to zero,
which can be the case only if throughout the whole space S:

|
h-]

de
dx

=0,

&.]&‘
w8

»
z

thus, if no motion of the water takes place at all. Every motion of a
bounded fluid mass in a simply connected space, when a velocity
potential exists, therefore necessarily implies a motion of the fluid
surface. If this surface motion, thatis dep/dn , is given in full, then as
a result of this the entire motion of the enclosed fluid mass, too, is

* The previously noted theorem, which is not valid for multiply connected spaces.
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uniquely determined. For if there were two functions ¢, and ¢, which in
the interior of space § were to simultaneously satisfy equation:

e | dP¢ | di¢

dz? d_gﬁ dzt =0

and at the surface were to satisfy the condition:

I
<

A=

iy

where 1 denotes the values of ¢ /dn  determined by the given surface
motion, then the function (%,-¢,), too, would satisfy the first condition
in the interior of §, while at the surface we would have:

d(@:—q?u) P
=0

which, as just demonstrated, for the whole interior of S would imply:

d(¢/— (pu) — d (q’/—(pu) — d(@/'—%,) — 0
dx dy dz '

To both functions, therefore, exactly the same velocities also would
correspond in the whole interior of §.

Thus rotations of the water particles and motions on a closed curve
can occur in simply connected and entirely closed spaces only if no
velocity potential exists. Therefore, in general, we may call motions
without velocity potential vortex motions.

2. CONSTANCY OF VORTEX MOTION

First, we shall determine the variations of the rotational velocities
§& 7 and { during the motion, when the only active forces are those
that have a force potential. I first note in general that, if ¥ is a function
of x,y,z, and t and increases by Jd while the latter four magnitudes
increase by 0z, 0y, 0z, and 0t , we have:
110-1.

6w=%6t+gax+ %ﬂay-l—%az.

If we now want to determine the change of ¥¢ during the time interval
0t for a water particle that remains constant, then we have to give to
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the magnitudes 0z, dy ,and @z the same values they have for the
moving water particle, that is:

0xr =udt, Oy=v0t, 0Oz=wot,
and we obtain:

dy

dy 0wy 4y o 4y,
9t —dt T axT Vg, T

dt dx dy dz

In what follows I shall employ the symbol @ /0t only in the sense that
(Ow/0t) di denotes the change of ¥ during the time d¢ for the
specific water particle, whose coordinates at the beginning of the time
interval dt were x,y, and z.

If we elminate the magnitudes p by differentiation from the first of the
equations (1) and simultaneously introduce the notation of equations
(2), regarding equations (la) as satisfiable for the forces X,Y,Z, we
obtain the following three equations:

g—f:g% +n%+§%>
R R R s e
or equivalently:
B8 _ gy &y,
R RE R ( 3a)
a—j:&%—}—rig—zﬁ—;%

If in a water particle & #, and { simultaneously are equal to zero,
then also:

08 _dy _8:
gt = ot —ar =Y

Hence, those water particles that do not already possess rotational
motion do not attain such motion as time goes on.

As is well known, rotations can be composed according to the method
of the parallelogram for forces. If & 7, ¢ are the rotational velocities
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around the coordinate axes, then the rotational velocity ¢ around the
momentary axis of rotation is:

q:V§2+ﬁ2+227
and the cosines of the angles of this axis with the coordinates are:

§/g, n/qg und §/q.

If we now take in the direction of this momentary axis of rotation the
infinitely small portion ¢e,then the projections of this portion onto the
three coordinate axis are &&, &7, ¢£. While at point x,y,z the
components of the velocity are u, v,w, at the other endpoint of ¢¢ they
are:

u =u+ ag%-i- .sr]‘;—; -+ e;%,

. dv

_ dv dv
”1'—"‘*‘85%4‘5’/@"‘553—2’

y dw dw dw
wy=w-+ 55% + 577@ -+ Egzﬁ'
At the end of time dt, therefore, the projections of the distance between
the two particles, which at the beginning of dt limited the portion g¢ ,
have attained values that, taking into account equations (3), may be
written as follows:

<l
L
~
~—

e§-|—(ul—u)dt=a<§+

D O

I

ey + (v, —v)dt 5(7'1—}— :

£ dt).

The left-handed sides of these equations give the projections of the
new position of the connecting line ¢é&, the right-hand sides the
projection of the new velocity of rotation, multiplied by the constant
factor € ; it follows from these equations that the connecting line be-
tween the two water particles, which at the beginning of time d¢ bounded
the portion ¢¢of the momentary axis of rotation, also after the lapse of
time dt still coincides with the now-altered axis of rotation.

If we call vortex line a line whose direction coincides everywhere with
the momentary axis of rotation of the water particles situated there, as
we defined above, then the just-found theorem can be enunciated as
follows: Fach vortex line remains continually composed of the same
water particles, while it swims forward with these water particles in the
fluid.

D Q)l
e 3
.

N
SN

a‘g—l-(wl—zc)a’t:s(g—}—

\

(o1}
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The rectangular components of the velocity of rotation increase in the
same proportion as the projections of the portion ¢¢ of the axis of
rotation; from this it follows that the magnitude of the resulting velocity
of rotation in a specific water particle varies in the same proportion as
the distance of this water particle from its neighbor in the axis of
rotation.

If we imagine that vortex lines are drawn through every point of the
circumference of an infinitely small surface, then as a result of this a
filament of infinitely small cross section is separated out from the fluid,
which we shall call vortex filament. The volume of the portion of such a
filament is bounded by two specific water particles, which, according to
the just-proved theorems, is always filled by the same water particles,
must remain constant during the motion, and its cross section,
therefore, must vary inversely to its length. Hence the just-stated
theorem also may be enunciated as follows: The product of the velocity
of rotation and the cross section in a portion of a vortex filament con-
taining the same water particles remains constant during the motion of
the filament.

From equations (2) it follows immediately that:

dE dy (l;__
g =0,

And, further, from this that:

[P+t )y

where the integral may be extended over an entirely arbitrary portion §
of the water mass. Through integration by parts it follows:

ffst‘l?/ dz + ff;,’(lw dz + ff_:d.z* dy =0,

where the integrals are to be extended over the entire surface of the space
S. Calling an element of this surface dw and «, 3, y the three angles
made with the coordinate axes by the normal d w, drawn outwards, we
have:

dydz=cosaedw, dedz=cospgdw, drdy=cosydn.

Hence:

ff (§cose + ycos 3+ {cosy)dw =0,
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or if & is the resulting velocity of rotation, and 9 the angle between its
axis and the normal,

ffdcosﬁ'.dw =0,

the integral extending over the entire surface of S.

Now let S be a portion of a vortex filament, bounded by two infinitely
small planes ®, and w,, perpendicular to the axis of the filament. Then
cos ¢ is equal to 1 at one of these planes, equal to -1 at the other, and
equal to O at the rest of the surface of the filament. Consequently, if o,
and ¢,, are the rotational velocities in w, and ®,, the last equation reduces
to:

0,0, = 6, 0,,
from which it follows that the product of the velocity of rotation and the
cross section is constant throughout the entire length of a given vortex
filament. That it does not change as a result of the motion of the
filament has been proven previously.

It also follows from this that a vortex filament can never end within the
fluid, but must either return ring-shaped into itself within the fluid or
reach to the boundaries of the fluid; for if a vortex filament ended
anywhere within the fluid, a closed surface could be constructed for
which the integral fa cos<? would not have the value zero.

3. SPATIAL INTEGRATION

If the motion of the vortex filaments in the fluid can be determined,
the stated theorems also will enable us to determine the magnitudes
& 7 ,and ¢ completely. We shall now consider the problem of finding
the velocities u, v, and w from the magnitudes & % ,and C.

Thus, let there be given within a water mass that fills the space S the
values of & 7%, and {, which three magnitudes satisfy the condition
that:

a§ dy 4 dr 2
+ay v =0 ( 2a)

We want to find », v, and w, so that within the entire space § they satisfy
the conditions that:

=0, (1
- =2,
et 2
‘i‘_‘_ﬂzgg

dy dx
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In addition there are the conditions determined by the particular nature
of a given problem for the boundary of the space S. .

For a given distribution of §, %, { we now may have vortex lines that
within the space § are closed and return into themselves, as well as some
that reach the boundary of § and there break off. If the latter is the case,
one can continue these vortex lines, either on the surface of S or outside
of §, and close them so that they return into themselves, so that a larger
space S then comes into existence that contains only closed vortex lines,
and for the entire surface of which &, 7, { and their resultant ¢ are
each equal to zero, or at least:

fcosa 4 neosf 4+ Lcosy = gcosF = 0. ( 2b)

As previously «, J, 7 denote the angles between the normal of the
portion of the surface of § under consideration and the coordinate axes,
¢ the angle between the normal and the resulting axis of rotation.

We obtain values of u, v, w, that satisfy the equations (1), and (2) if we
put:

_dP AN _dM

= da:+7y___z—’
dP ,  dL dN

C=yta T (4
dP  dM dL

=TT 4 Ty

and determine the magnitudes L, M, N, P by means of the conditions
that within the space § :

d*L  d*L d*L

2 Tag o =25
a*M a*M | JAPM

dx? dy® dz2 27, L
d:N  d*N  d®*N 9¢
dzt dy? dzr T 4w
2P @#P PP _
dax? dy? dz2 =

(5

The method of integrating these latter equations is known. L, M, N, are
the potential functions of imaginary magnetic masses distributed
through the space § with the densities— §/27x, — 4/2n,and — §/2n
the potential function of masses which lie outside the space S. If we
denote by r the distance of a point, whose coordinates are a, b, ¢, from
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the point x,y,z, and by §a 7a; a the values of & = ¢ at the point
a,b,c, then we have:

L=— 2L [[[% da s ac
M= —g [[[2 aa as ac ( 5a)

N=—§1—nfff—i~‘1dadbdc,

the integration extending over the space S and:

P=[[[ dadsac,

where k i3 an arbitrary function of a,b,c, and the integration is to be
extended over the exterior space enclosing §. The arbitrary function &
must be taken so as to satisfy the boundary conditions, a problem whose
difficulty is similar to that concerning electric and magnetic distribution.

That the values of u,v, and w, given in (4), satisfy condition (1) is
proved by differentiation, taking into account the fourth of equations
(S).

We further find by differentiation of equations (4), taking into ac-
count the first three of equations (5), that:

dve  dw d[dL , dM , dN
E"@=2§”Tx[ﬁ+ﬁj+d7]
dw _ du . dT[dL , dM | dN
32“3‘2“2’/_7{324'3@‘*'?]

d
du dv d [dL dM  dN
&y = s 2§—d“[ﬁ+"@+ﬁ]

z

Equations (2) are thus also satisfied, if it can be shown that in the entire
space S :

W+—+W=O. ( Sb)

That this is the case follows from equations (Sa):

iz _ %ffffm;ﬁdadbdc,
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or, after integration by parts:

e dof i[5 v

__%ff da dc———fff— U da db de,
AN _ L ([ eqnas— L [[[L. %2 4 db de.

Adding these three equations, and again calling the surface element of §
dw, we obtain:

clN 1
d.r+ dy + o= f §acosu+1/acos/]+§acos7)—dw

fff (e + G + 5)da 0 e

Since, however, throughout the interior of the space:

dEa dnll d;a
Wt ta =% (2
and on its entire surface:
§acos e+ 7,008 B + L, cosy =0, ( 2b)

therefore both integrals. are equal to zero and equation (Sb) as well as
equations (2) are satisfied. Equations (4) and (5) or (5a) are thus indeed
integrals of equations (1), and (2).

The analogy mentioned in the introduction between the distance-
actions of vortex filaments and the electromagnetic distance-actions of
current-conducting wires, which provides a very good means of clearly
demonstrating the form of vortex motions, is deducible from these
theorems.

If we substitute in equation (4) the values of L, M, N from equations
(5a), and denote by Au, dv, Aw those infinitely small parts of u,v,
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and w which in the integrals result from the element da, db, dc, also
their resultant by Ap, we have:

1Dt — G0,

du = 5 pc dadbde,
do = LEERTETD % g ap g,
27 ”»
—a)y, — (y—b
Aw = 2 (=) 7a s(y )Eadadbdc.
27 r

From these equations it follows that:

du(e—a) + Av(y —b) + dw(z—c) = 0,

that is, the resultant 4p of Au, Av and A is at right angles to r.
Further:

§adu+nadv + Ldw =0,

that is, the same resultant 4p is also at right angles to the resulting axis
of rotation at a,b,c. Finally:

Ap = VdAu? + dv? + dw? =2 ;P—Aasin v,

where 0 is the resultant of &, %4, . and » the angle it makes with r,
which is determined by means of the equation:

orcosv = (@—a) €+ (y—58) 7o + (2—c) & -

FEach rotating water particle a thus determines in every other particle b
of the same water mass a velocity whose direction is perpendicular to the
plane through the axis of rotation of a and particle b. The magnitude of
this velocity is directly proportional to the volume of a, its velocity of
rotation, and the sine of the angle between the line ab and the axis of
rotation, and inversely proportional to the square of the distance be-
tween both particles.

Exactly the same law holds for the force that would be exerted by an
electric current at a, parallel to the axis of rotation, on a magnetic
particle at b.

The mathematical similarity of these two classes of natural
phenomena rests upon this, that in the case of water vortices, for those
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parts of the water mass that have no rotation, a velocity potential
exists that satisfies the equation:

Ty By Py
dz? @2_ + dz? 0

which equation holds everywhere except within the vortex filaments. If
however, we consider the vortex filaments as always closed either within
or outside of the water mass, then the space for which the differential
equation for ¢ is valid is multiply connected, for it remains connected,
if we imagine surfaces of separation through it, each of which is com-
pletely bounded by a vortex filament. In such multiply connected spaces
a function ¢ that satisfies the above differential equation can become
multivalued; and it must become multivalued if it is to represent cur-
rents returning into themselves; for, since the velocities of the water mass
outside the vortex filaments are proportional to the differential quotients
of ¢, following the motion of the water one must progress to ever in-
creasing values of ¢ . Therefore, if the current returns into itself, and if
following it one finally arrives at the place where one had been
previously, one finds for this place a second higher value of ¢. Since the
same procedure can be carried out infinitely often, there must exist
infinitely many different values of @ for each point of such a multiply
connected space that differ by the same differences, much as in the case
of the different values of Arc tan [x/y], which is such a multivalued
function satisfying the above differential equation.

Such also is the case with the electromagnetic effects of a closed
electric current. This acts at a distance just as a specific distribution of
magnetic masses on a surface bounded by the conductor. Outside the
current, therefore, the forces it exerts on a magnetic particle can be
considered as the differential quotients of a potential function V that
satisfies the equation:

>y, aev, ey

dx? dy? d 2%
But in this case, too, the space that surrounds the closed conductor and
in which this equation holds, is multiply connected, and V is
multivalued.

Thus, in the case of vortex motions of water as in the case of electro-
magnetic effects, the velocities or forces outside the space traversed by
vortex filaments or electric currents depend upon multivalued potential
functions, which incidentally satisfy the general differential equation for
magnetic potential functions, while inside the space penetrated by vortex
filaments or electric currents instead of the potential functions, which do
not exist here, different cormmon functions of the kind appearing in
equations (4), (5), and (Sa) arise. On the other hand, in the case of

= 0.
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simply streaming water motions and magnetic forces we are dealing with
single-valued potential functions just as in the cases of gravitation, forces
of electric attraction, and constant electric and thermal currents.

Those integrals of the hydrodynamical equations for which a single-
valued velocity potential exists, we may call integrals of the first class.
On the other hand, those where there is rotation of some of the water
particles and consequently a multivalued velocity potential in the
nonrotating water particles, we may call integrals of the second class. It
may occur that in the latter case only those portions of the space are to be
treated in the problem that contain no rotating water particles; for
instance, in the case of motions of water in ring-shaped vessels, where a
vortex filament may be supposed to lie along the axis of the vessel, and
where the problem, therefore, still belongs to those that can be solved by
the assumption of a velocity potential.

In the hydrodynamical integrals of the first class, the velocities of the
water particles are in the same direction as and proportional to the forces
that a specific distribution of magnetic masses outside the fluid would
exert on a magnetic particle at the place of the water particle.

In the hydrodynamic integrals of the second class the velocities of the
water particles are in the same direction as and proportional to the forces
that would act on a magnetic particle and that would be produced by
closed electric currents flowing through the vortex filaments with a
density proportional to the velocity of rotation of these filaments,
combined with magnetic masses outside the fluid. The electric currents
inside the fluid would have to move with their respective vortex filaments
and retain constant intensity. The assumed distribution of magnetic
masses outside the fluid or on its surface must be taken so that the
boundary conditions are satisfied. Each magnetic mass also, as we
know, can be replaced by electric currents. Thus, instead of using for the
values of u, v, w, the potential function P of an external mass k, we obtain
a solution of the same generality if we give §, 7, and ¢ outside of, or
even just at the surface of, the fluid arbitrary values such that only closed
current filaments are generated; and then the integration in equations
(5a) must be extended over the whole space in which &, 7, and § are
different from zero.

4. VORTEX SURFACES AND ENERGY OF VORTEX FILAMENTS

In hydrodynamic integrals of the first class, it is sufficient, as I have
shown above, to know the motion of the surface. By this the motion in
the interior of the fluid is entirely determined. In integrals of the second
class, on the other hand, it is necessary, in addition, to determine the
motion of the vortex filament in the interior of the fluid taking into
account their mutual interaction and respecting the boundary con-
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ditions, which makes the problem much more complicated. Even this
problem, however, can be solved for certain simple cases — specifically,
when rotation of the water particles occurs only in certain surfaces or
lines and the form of these surfaces or lines remains unchanged during
the motion.

The properties of the surfaces bounded by an infinitely thin layer of
rotating water particles can be deduced easily from equations (5a). If
& m, and & differ from zero only in an infinitely thin layer, their
potential functions L, M, and N, according to known theorems, will have
the same values on both sides of the layer, while their differential
quotients, taken in the direction of the normal of the layer, will be
different. If we assume the coordinate axes so placed that at the point of
the vortex surface under consideration the z-axis corresponds to the
normal of the surface and the x-axis to the axis of rotation of the water
particles in the surface so that at this point % = { =0, then the
potentials M and N as well as their differential quotients will have the
same values on both sides of the layer. The same holds for L and dL/dx
and dL/dy, while dL/dz will have two different values, whose difference
is equal to z &¢,if ¢ denotes the thickness of the layer. Consequently
equations (4), for u and w, yield the same values on both sides of the
vortex surface, for v, however, values which differ by 2£¢. Hence, that
component of the velocity that is a tangent to the vortex surface and at
right angles to the vortex lines differs in value on both sides of the
surface. Within the layer of rotating water particles, the component of
the velocity under consideration must be thought of as uniformly in-
creasing from the value on one side of the surface to that on the other.
For if ¢ is constant here through the entire thickness of the layer, and

a represents a proper fraction, v' the value of v on one, v, on the other
side, v its value in the layer itself at a distance ae from the first side,
then we saw that ' —v,=2Fe , because between both sides there is a
layer of thickness € and of intensity of rotation £ . For the same reason
we must have —v,=2fea=a(v'—v) , which expresses the above
theorem. Since we must consider the rotating water particles as
themselves moved, and the change of their distribution on the surface
depends on their motion, we must assign to them a mean velocity of flow
along the surface for the entire thickness of the layer, which corresponds
to the arithmetical mean of the velocities on both sides of the layer.

Such a vortex surface would be produced, for example, when two
previously separate moving masses of fluid come into contact with each
other. At the surface of contact the velocities perpendicular to the
surface necessarily would have to become equal. However, the velocities
tangential to the surface will be different, in general, in the two fluid
masses. The surface of contact thus would have the properties of a vortex
surface.

On the other hand, isolated vortex filaments cannot, in general, be
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supposed infinitely thin, since the velocities at opposite sides of the
filament then would attain infinitely great and opposite values, and the
velocity of the filament itself would become indefinite. To nonetheless
obtain certain general conclusions about the motion of very thin
filaments of arbitrary cross section, we will make use of the principle of
the conservation of vis viva.

Thus, before we proceed to specific examples, we will first form the
equation for the vis viva K of the moving mass of water:

K=1hr fff (w?® 4+ v° + w) drdy de.
We now from equations (4) substitute in this integral:

o (LR 2 am)
= da dy — dz )

sy (LR 2 4N)
vt=v dy dz dz )’

5 d P dL
e = ((Zz L3 ‘z;)
and integrate by parts, denoting by cos a, cos 8, Cos?¥ , and cos ¢ the
angles, which the inwardly directed normal of the element (w of the
water mass makes with the coordinate axes and with the resultant
velocity g; we thus obtain, taking into account equations (2) and (1) :

K= —%fdw[chosﬁ-i-L(vcosy—wcosﬂ) (6 a)
+ M(wcosw — ucosy) + N(ucos§ — vcos )]

—h [[[(LE+ My + N dadydz.

The value of dK/dt is obtained from equations (1) by multiplying the
first by u, the second by v, the third by w, and adding:

dt
d 2 2
—I—h(u—V-]-vd—y—kw(ﬁ)_.27<1 ‘f{(z)_l_ d(9)+wdc§g))'

if both sides are multiplied by dxdydz and then we integrate over the entire
extent of the water mass, noticing that because of ( 1)

fff(u% d’«”_].w )dz'd_ydz_—qucosﬁdm’

if ¢ denotes a continuous and single valued function in the interior of
the water mass, we obtain:

K _ [do(p —hU+3hgyqeos . (6 D)

/z(u——i—v —I—U@):——<u¥+v +w )

If the water mass is entirely enclosed within rigid walls, ¢ cos  must be
zero at all points on the surface. Hence also dK/dt=0, that is,
K=constant.
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If we consider this rigid wall as being at an infinite distance from the
origin of the coordinates, and all existing vortex filaments at a finite
distance, then the potential functions L, M, N, whose masses &, #, &
are each in sum equal to zero, will at an infinite distance §§ decrease
proportional to {—2 , and the velocities, their differential quotients, will
decrease as R{—3,; but the surface element dw if it is always to
correspond to the same solid angle at the coordinate origin, will increase
proportional to R#? . The first integral in the expression for K[equation
(6a)], which is extended over the surface of the water mass, will decrease
as {3, and, therefore, will vanish for an infinite value of &. Thus the
value of K reduces to:

K= —h[[[(LE+ My+ NY) dedydz ( 6¢)

and this value does not alter during the motion.

5. STRAIGHT PARALLEL VORTEX FILAMENTS

First we shall consider the case where only straight vortex filaments
parallel to the z-axis exist, whether in an infinitely extended mass of
water or in a similar mass limited by two infinite planes perpendicular to
the filaments, which amounts to the same thing. All motions then occur
in planes perpendicular to the z-axis and are exactly the same in all such
planes.

We therefore put:

_du_dv _dp 4V
w——_(lz__z—d_z=_z=0
Then equations (2) reduce to:
. d d
§=0, =0, 2é«=d—;—d—:,

equations (3) to:

The vortex filaments thus retain constant rotational velocity as well as
constant cross section.
Equations (4) reduce to:

2 2
Y AN iN &N BN _ g,

dy’ VT T da’ dat T gy T T
In accordance with the remark at the end of section 3, we have here put
P=0. The equation of the stream lines is therefore N=constant.

N is in this case the potential function of infinitely long lines; it is itself
infinitely great, but its differential quotients are finite. If a and b are the
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coordinates of a vortex filament, whose cross section is da db, then we
have:

dN _tdadb z—a 4N _ldadb y-—b

dax % ! dy T 7

From this it follows that the resultant velocity ¢ is perpendicular to r,
which is the perpendicular to the vortex filament, and that:

If in a water mass infinitely extended in the directions of x and y we
have several vortex filaments, whose coordinates are x ,y ,x ,y , and so
forth, and we denote the product of the rotational velocity and the cross
section of each of these by m ,m and so forth, then, forming the sums:

U=m u, + m,u, + my, u, etc.,
V=m v +myuv, + mg vy ete.,

these will each be equal to zero, since the portion of the sum V that arises
from the effect of the second vortex filament on the first is canceled by
the effect of the first on the second. For both are:

m, - %ﬁ f‘—;—x’ und m, - "—lﬂ‘ = - 5
and so for all the others in both sums. Now U is the velocity of the center
of gravity of the masses m;, m, and so forth, in the direction of x
multiplied by the sum of these masses; so of V in the direction of y. Both
velocities are thus zero, unless the sum of the masses is zero, in which
case there is no center of gravity. Thus the center of gravity of the vortex
filaments remains unchanged during their motions about one another;
and since this theorem holds for any arbitrary distribution of vortex
filaments we also may apply it to isolated vortex filaments of infinitely
small cross section.

From this we derive the following consequences:

1.In case of a single rectilinear vortex filament of infinitely small cross
section in a water mass infinite in all directions perpendicular to the
vortex filament, the motion of the water particles at a finite distance
from it depends only on the product {dadb = m of the rotational
velocity and the magnitude of its cross section, not on the form of its
cross section. The particles of the water mass rotate about it with
tangential velocity m /mr, where r denotes the distance from the center
of gravity of the vortex filament. The position of the center of gravity
itself, the rotational velocity, the magnitude of the cross section, and
thus also the magnitude m remain unchanged, even if the form of the
infinitely small cross section may alter.
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2. In case of two rectilinear vortex filaments of infinitely small cross
section in an unlimited water mass, each will cause the other to move in a
direction perpendicular to the line connecting them. The length of the
connecting line is not changed as a result of this. Thus, both will rotate
about their common center of gravity at constant distances from it. If the
rotational velocity in both vortex filaments is of the same direction, that
is, of the same sign, then their center of gravity must lie between them. If
it is of opposite direction, that is, of different signs, then their center of
gravity lies in the prolongation of the line connecting them. And if the
product of the rotational velocity and the cross sections is the same for
both, but of opposite sign, so that the center of gravity would lie at an
infinite distance, they both travel forward with equal velocity and in the
same direction perpendicular to the line connecting them.

To the latter case may also be referred that in which a vortex filament
of infinitely small cross section moves next to an infinitely extended
plane that is parallel to it. The boundary condition for the motion of the
water touching the plane, that is, that it must be parallel to the plane, is
satisfied by imagining that beyond the plane there is a second vortex
filament, the mirror image of the first. From this it follows that the
vortex filament in the water mass travels forward parallel to the plane in
the direction in which the water particles between it and plane move, and
with one-fourth of the velocity possessed by the water particles at the foot
of a perpendicular from the vortex filament onto the plane.

For rectilinear vortex filaments the assumption of an infinitely small
cross section leads to no inadmissible consequences, since no individual
filament exerts a propelling action upon itself, but is propelled only by
the influence of the other filaments present. It is different for curved
filaments.

6. CIRCULAR VORTEX FILAMENTS

Assume that in an infinitely extended water mass there exist only two
circular vortex filaments, whose planes are perpendicular to the z-axis
and whose centers lie in this axis so that all around them everything is
symmetrical. Let the coordinates be changed by putting:

T = y CoS &, a=gcose,
y = ysing, b=gsine,
g =2, c=C.

According to our assumption the velocity of rotation ¢ is a tunction only
of ¥ and z or of g and ¢, and the axis of rotation is everywhere perpen-
dicular to ¥ (or g) and the z-axis. Thus the rectangular components of
the rotation at the point with coordinates g, e, and ¢ are:

§= —osine, m=ocose, (=0.
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In equations (Sa) we obtain:
=(@E—0)* 4 x* + 9> —2x g cos (s—e),

L—2nff ZELy gdgdedec,

M= ——-fffacosejdgdedc,

N=20

By multiplying with cos- ¢ and sin ¢ , and adding, one obtains from the
equations for L and M:

Lsing — Mcose = — ffffocos(g_e)g dg d(e—e)dc,

Lcose + Msing = E;fff&n(:—_—g dg d(e—e)dc.

In both integrals the angles e and & occur only in the form of ( ¢—e¢ ),
and this magnitude, therefore can be regarded as the variable under the
integral. In the second integral, the elements in which (¢ — ¢) = ¢ are
canceled by those in which (¢ — ¢) = 27 — ¢, and it is, therefore, equal to
zero. If we put:

”_Lfff‘ geose.gdgdede
f 2n Ve—o) + 4 +g°—2gzcose (7

we therefore obtain:

Mcose — Lging =y,
Msing + Lcose=0,
or:
L = — ysing, M = ycose. (7a)

Calling 7 the velocity in the direction of the radius %; and taking into
account that because of the symmetrical position of the vortex rings
about the axis the velocity in the direction of the circumference must be
equal to zero, we have:

1 = T COSE, v = Tsine,

and according to equations (4):

w=dM o _dL S _dM_ dL
T dz? T dz’ T dx dy ”

Frem this it follows:

__dy _dy |y
T T A w_dz'*',?’
or
d d (w;
= =20, wy=TEL (70)

The equation of the streamlines is therefore:
wy = Const.

If first we carry out the integration indicated in the value of ¥ for a
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vortex filament of infinitely small cross section, putting and
labeling the part of  obtained from this by V., , then: odydc=m,,
2
Yy = "’7 % {7 (F—E) — ZF},

s 49y

Tttt
where F and E are the complete elliptic integrals of the first and second
kind for the modulus

Putting, for the sake of brevity,

U=2(F—E)—xF,

where, therefore, U is a function of » , we have:

= Myg, WU . EmC
TX= Vg% ix X G+ +GE—0)?

®

Now, if at the point given by ¥ and z there exists a second vortex
filament m, and if by 7, we denote the velocity in the direction of g that it
imparts to the vortex filament m,, then we obtain the latter if in the
expression for ¢ weput?; 9 ¥¢ z m.insteadof T y g z ¢ m,
In this » and U remain unchanged and we obtain:
mty+m1,9=0. ( 8)
If now we determine the value w of the velocity parallel to the axis,
which is produced by the vortex filament m, , whose coordinates are g
and ¢, we find:
1 m my— AU =« z—c)? + 9> — x?
w3 R Y U VI G e
If we call w, the velocity parallel to the z-axis produced by the vortex
ring m, whose coordinates are z and 7, at the position of m,, then we
need only make again the previously indicated interchange of the

relevant coordinates and masses. Then one finds that:
2mm,

2mwy? + 2myw, g — mryz — mT, gc = = Vax U-( 8a)

Sums similar to (8) and (8a) can be formed for an arbitrarily large
number of vortex rings. For the nth of these the product 6dgdc is
denoted by m,, the components of the velocity, that is imparted to it by
the other vortex filaments by ¢, and w,, where, however, we omit for
the time being the velocities that each vortex ring can impart to itself. I
also call the radius of the ring ¢, and 1, its distance from a plane per-
pendicular to the axis, which two magnitudes coincide in direction with
X and z, but as belonging to a particular vortex ring are functions of the
time and not independent variables like ¥ and z. Finally, let the value of
y, so far as it arises from the other vortex rings, be . From (8) and
(8a), by writing out the corresponding equations for every single pair of
vortex rings and adding all of them, we obtain:

2 [Mp@nta] =0,
E[zmnwn 93; —_ mnrninn] = 2[7’1" Qn'l//'n]-
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As long as in these sums we still have a finite number of separate and
infinitely thin vortex rings, we can consider @, 7, and ¥ only as those
parts of these magnitudes that are produced by the presence of the other
rings. If, however, we suppose the space to be continuously filled with an
infinitely large number of such rings, 1 is the potential function of a
continuous mass, w and 7 are the differential quotients of this potential
function; and it is known that for such a function as weli as for its differ-
ential quotients the parts of the function due to the presence of mass in
an infinitely small neighborhood around the point for which the function
is determined are infinitely small in comparison with those due to finite
masses at a finite distance.*

If, therefore, we change the sums into integrals, then we can consider
w, T , and ¥ the total values of these magnitudes at the point in
question, and put:

_a o _de
’tU——C—l—t, —dt

For this purpose we replace the magnitude m with the product 6 do dA.
d
ffﬁgd—gdgdl=0, ( 9)
di d
QIIG()Zd—tdgdl—ffo'gld—fdgdl =ffo-gwd@dl. ( 9a)

Since according to section 2 the product ¢dod7 is constant with
respect to time, equation (9) can be integrated with respect to ¢ and we
obtain:

%ff o602do dA = Const.

If we consider the space to be divided by a plane that passes through
the z-axis and therefore cuts all existing vortex rings; if we further
consider ¢ as the density of a layer of mass, and call I the entire
mass in this layer of the plane, that is:

M= [[ododi,

and R? the mean value of o2for all the elements of mass, then:
Jf ce.0dodi= MRy,

and since this integral and the value of 9t are constant with respect to
time, it follows that R, too, also remains unchanged during the forward
motion.

Therefore, if there exists in the unlimited fluid mass only one circular
vortex filament of infinitely small cross section, then its radius remains
unchanged.

*Cf Gauss in Resultate des magnetischen Vereins, 1839, p. 7.
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According to equation (6¢) the magnitude of the vis viva is in our case:

K= —h[[f(L&+ My)dadbdc
= —hfffwo.gdgdlda
= —2nh [[yo.od 1

It, too, is constant with respect to time.
We further note that since o do dA. is constant with respect to time,

dtffcg%dgdl—?faol dgdl-i—ffag % did,

and thus equation (9a), if by / we denote the value of 4 for the center of
gravity of the cross section of the vortex filament and multiply (9) by it
and add, becomes:

ffa@;(lgdz+5ffao(z B dpai=— . ()

If the cross section of the vortex filament is infinitely small, and ¢ is an
infinitely small magnitude of the same order as {— 5 and the other
linear dimensions of the cross section, while ododJ is finite, then v
as well as K are of the same order of infinitely large quantities as log ¢ .
For very small values of the distances v from the vortex ring we have:

Y, = 7_”; log (Vl:nﬁ > ™ 10g gp"

In the value of K, v is further multiplied by ¢ or g. If g is finite and v of
the same order as € then K is of the order of log &. Only if g is infinitely
large of the order of 1/ &, K becomes infinitely large as ( 1/ )log . The
the circle becomes a straight line. But, on the other hand, d¢ / d¢
which is equal to dw/dz , becomes of the order 1/, the second in-
tegral therefore is finite and for finite o vanishingly small compared to
K. In this case we may put the constant /in place of 3, and obtain:

g MR _ K
g TR

or:
oOMRl=C— E ¢

T 2ah
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Since IR and R are constant, / can vary only proportional to time. If )¢ is
positive, the motion of the water particles on the outer side of the ring is
in the direction of positive z, on the inner side in the direction of negative
z; K, h and R from their nature always positive.

From this, therefore, it follows that in case of a circular vortex
filament of very small cross section in an infinitely extended water mass
the center of gravity of the cross section has motion parallel to the axis of
the vortex ring of approximately constant and very high velocity, which is
directed to the same side to which the water flows through the ring.
Infinitely thin vortex filaments of finite radius would attain infinitely
great translational velocities. If, however, the radius of the vortex
filament is infinitely great of order 1/ ¢ , then R?becomes infinitely great
in comparison with K, and [ becomes ‘constant. The vortex
filament, which now has changed into a straight line, becomes
stationary, as we have already found earlier for rectilinear vortex
filaments. Now we can also see in general how two ringlike vortex
filaments with the same axis will mutually affect each other, since each
in addition to its own motion also follows the motion of the water par-
ticles produced by the other. If they have the same direction of rotation,
they both travel in the same direction; the one in front will widen and
then travel more slowly, the pursuing one will contract and travel faster,
till finally at velocities not too different, it will catch up with the other
and go through it. Then this same game will be repeated with the other
one so that, in turn, the rings will pass one through the other.

If the vortex filaments have equal radii and equal and opposite
velocities of rotation, they will approach each other and widen one
another, so that finally when they have come very close to each other
their velocity of approach becomes smaller and smaller; the widening, on
the other hand, occurs with increasing velocity. If the two vortex
filaments are entirely symmetrical, the velocity of the water particles
midway between the two and parallel to the axis is equal to zero. Thus
one might imagine a rigid wall inserted here without disturbing the
motion, and so obtain the case of a vortex ring that runs up against a
rigid wall.

Finally, I remark that these motions of circular vortex rings are easily
studied in nature by rapidly drawing for a short space along the surface
of a fluid a half-immersed circular disc or the approximately semicir-
cular point of a spoon and quickly withdrawing it. Half vortex rings then
remain in the fluid whose axis lies in the free surface. The free surface
thus forms a limiting plane of the water mass placed through the axis,
but as a result of which there is no essential change in the motions. The
vortex rings travel on, widen when they come to a wall, and are widened
or contracted by other vortex rings exactly as we have deduced it from
the theory.



