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I The Nature of Turbulence

1.1 Introduction

A turbulent flow is a fluid motion that possesses complex and seemingly
random structure at some macroscopic scale of dynamical importance.
Turbulent flows abound in nature. The motions of the atmosphere and
ocean are, to a large extent, turbulent. In fact, turbulence plays a vital
part in the dynamics of the widest variety of fluid motions on scales from
millimeters to light years.

The most important physical consequence of turbulence is the enhance-
ment of transport processes. In a turbulent flow, momentum, energy, and
particle transport rates greatly exceed the corresponding molecular trans-
port rates. Practical effects include the efficient turbulent mixing of ver-
mouth with gin to make martinis, as well as the efficient turbulent mixing
of pollutants with air to make smog. (Molecular diffusion would require at
least a day to mix a martini at room temperature!)

Turbulent flows exhibit much more small-scale structure than their non-
turbulent counterparts. In fact, this small-scale structure is correlated with
enhanced turbulent transport phenomena. Small-scale structure itself is
evidence of enhanced transport in the sense that small scales develop from
the degradation of large-scale excitations and are maintained by energy
transport from one scale to another.

Another important characteristic of turbulent flows is their apparent
randomness and instability to small perturbations. Two turbulent flows
that are at some time nearly identical in detail do not remain nearly identical
on the time scales of dynamical interest. This property of turbulent flows
may be used to give a quantitative definition of turbulence. Also, instability
of turbulent motion is related to the limited “predictability” of atmospheric
motions.

While the details of fully developed turbulent motions are extremely
sensitive to triggering disturbances, average properties are not. Otherwise
there would be little significance in the averages. On the other hand, transi-
tion flows (which occur naturally at Reynolds numbers several times critical)
have statistical properties which are sensitive to the nature of perturbations.
The idea that fully-developed turbulent flows are extremely seansitive to
small perturbations but have statistical properties that are insensitive to
perturbations is of central importance throughout these Lectures.

In the remainder of this section, we illustrate the above by simple
examples in order to set out the main trend of ideas in turbulence theory.
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240 STEVEN A. ORSZAG

1.2 Line Stretching by Isotropic Turbulence

An illustration of the enhanced transport property of turbulence is given by
an elementary, but rigorous, proof that infinitesimal line elements are
stretched (on the average) by homogeneous isotropic incompressible tur-
bulence (Cocke, 1969. Orszag, 1970a). Here the turbulence is said to be
homogeneous if all points in space are statistically equivalent; it is said to
be isotropic if all directions are statistically equivalent. Consider the infini-
tesimal material line element 6x(¢) between two fluid particles, say 4 and
B, separated by the (nonrandom) distance 6x(0) at t = 0. We show that

8x(1)? > 6x(0)? (.n

for all ¢ # 0, where { > denotes an appropriate average over the turbulence
statistics (cf. §. 1.3). Since the infinitesimal separation vector §x(f) must
be linearly related to §x(0), it follows that there exists a matrix U, [which
is a random function of time and the initial spatial position of particle 4
but not of the direction or magaitude of §x(0) ] such that

8x,(t) = U;ox,(0). - (1.2)
Therefore,
ox(t)? = W,6x,(0)8x,(0), W), = U Uy, (L.3)

where W, is a real symmetric matrix. Since éx(0) is not random, it follows
that -

$8x(1)*> = (W 26x,(0) éx,(0). (1.4)

Isotropy and homogeneity imply that {W,> = A(t)8 since no point x or
direction can be preferred. Hence,

{Ex(@)® = A(r)6x(0)2 (1.5

The proof is completed by showing that A(f) > 1.

For fixed t, denote the (real) eigenvalues of the symmetric matrix Wby
w,, wy, w; and the corresponding (real) eigenvectors by a,, a,, a;. Since
a,, A,, &; form an orthogonal triad and the voiume of the infinitesimal
element about particle 4 spanned by ea,, €a,, ea, (¢ < 1)is conserved in
evolution from 0 to ¢ (by incompressibility), it follows that w, > 0(i =1, 2,3)
and

W W, Wy = L. (1.6)

[After time evolution from 0 to ¢ the vectors about A resulting from ea,,
€a,, eazat t = Ohavelengths ew,, ew,, ew;, respectively, and are still ortho-
gonal (since 8x(7)- 8y (2) = W, 8x,(0) 5y,(0)). By thearithmetic-geometric-



STATISTICAL THEORY OF TURBULENCE 241

mean inequality
A= KIrW> = wy + wy + wid > dwywywy) = 1,

proving that line elements are stretched.

The same proof applies to show that surface elements are stretched, to
show line stretching in an arbitrary number of dimensions, and to show that
(1.1) holds for both ¢ > 0 and ¢ < 0. The latter result is understood by
observing that ¢t = 0 is singled as the instant at which §x is nonrandom.

It may appear that a similar proof applies to show that vortex lines are
stretched by homogeneous isotropic turbulence. However, it does not. The
vorticity w = WV X v bears a very special relation to the velocity field v,
so that although vortex lines move with the fluid (in the inviscid limit), their
special phase relation with the velocity precludes the statistical indepen-
dence of W with 6x(0) required for (1.4) to be correct. In fact, the growth
of vorticity is constrained by the conservation of kinetic energy so that
enhancement of vorticity on small scales must have as a consequence its
diminution on large scales.t Thus, the growth rate of vorticity should be
expected to be less than that of line elements. This inference has a physical
consequence: eddy viscosity », (which governs the enhanced turbulent dis-
sipation of kingtic energy and is related to vortex stretching) should be
expected to be less than eddy diffusivity &, (which governs the turbulent
dissipation of heat and is related to line stretching). In fact, it has been
argued (e.g. Kraichnan, 1962) that the eddy Prandtl number »,/x, is at most
0.05 in order to correlate eddy transport ideas with thelarge-scale energetics

_of convection.

1.3 Methods of Taking Averages

“There are at least three different kinds of averaging procedures that may be
used to obtain statistically-averaged properties from a turbulent flow. They
are space averages, time averages, and ensemble averages. The usefulness of
space averaging is limited to flows that are statistically homogeneous or at
least approximately homogeneous overscales larger than those of the turbu-
lent fluctuations. Similarly, time averages are useful only if the turbulence is,
in effect, statistically stationary over time scales much larger than the time
scale of the turbulent fluctuations. In practice, because of the convenience
afforded by locating a probe at a fixed point in space and integrating in time,
experimental results are usually obtained as time averages.

The third type of average, ensemble averages, are most versatile. Here the
average is taken over an ensemble of turbulent flows prepared under nearly

+1t follows from (2.36) that d/dt S : k-2 a(k)dk < O, whete Q(k) is the mean-square
vorticity spectrum.
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identical external conditions. Of course, these flows are not nearly ldentlcal
because of the large fluctuations present in turbulence. Each member of the
ensemble is called a realization. To make the notion of ensemble average
more precise (but no more understandable), define a parameter @, — 0.«
a < oo, to distinguish between realizations and weight each realization
according to the probability density P(a). The ensemble average of a
quantity that takes the value F(a) in realization a, e.g. the velocity field
v(X, 1; a), is defined to be

Py = f F(a)P(a)da. (L.7)

The weight factor P(e) is related to the n-point joint probability densities
of the turbulence. Define

_/;,(VI,X,, '1;"2:"2’12;-- » Yo X ')

as the probability density that the velocity is v, at each of the space-time
points x,, 1,(i = 1, ..., n). It follows that

j:,(v,,x,, tl; e Ve X, t,,) = <5(V(XI, tl)"vl) e é‘(V(X,,, tn) - vn)>
(1.8)

The advantage of ensemble averaging over space-time averaging is that it
can be applied to inhomogeneous, nonstationary turbulence. The disadvant-
age of ensemble averaging is that it does not correspond in a simple way
to a physical space-time averaging procedure. This jeopardizes the physical
interpretation of ensemble averages. There is no way to decide a priori on
the distribution function P(a) and the dilemma arises of deciding which
ensemble corresponds most closely to physical reality. No such criterion
has yet'been found.

Fortunately, the physics of turbulence suggests a way out of this problem
of interpretation. Since fully developed turbulence involves a large number
of interacting degrees of freedom, there should be an asymptotic statistical
state of turbulence that is independent of fine-grained details of the flows
and of P(a). Hopefully, this asymptotic state depends critically only on such
simple statistical properties as energy spectra, energy-transfer spectra, etc.,
much as in statistical mechanical equilibrium where the statistical state is
determined by the energy spectrum.

The asymptotic statistical state should not be expected to determine
uniquely details of individual realizations, because realizations need not be
given the same weight in different ensembles with the same low-order
statistical properties. Otherwise said, although fully developed turbulence is
unstable, there should be a “statistically stable” asymptotic state.

It should be strongly emphasized that the plausibility argument given
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above has been given no firm mathematical basis to date. The existence of an
asymptotic statistical state is strongly suggested experimentally, in the sense
that reproducible statistical results are obtained. However, physical plausi-
bility aside, it is embarassing that such an important feature of turbulence
as its statistical stability should remain mathematically unresolved, but such
is the nature of the subject. .

Even if approach to an asymptotic state be accepted, there remains a-
problem of interpretation of ensemble averages. Average quantities deter-
mined experimentally are usually time (or space-time) averages. Experi-
ments are not usually repeated a sufficiently large number of times for
averages over large ensembles to be made. Comparison of the predictions
of turbulence theory with these experiments is impossible unless ensemble
averages can be computed as space-time averages over almost every realiza-
tion of the ensemble. We now establish a simple result of this type.

Suppose that v(z) is a signal measured at a fixed point of a field of statisti-
cally stationary turbulence, and that the average value of f(v(?)) is desired
where f(+) is some given nonrandom function. We wish to determine the
conditions under which the ensemble average {f(v)) (whichis mdependent
of t by statistical stationarity) equals the time average lun f (v) where

= -'f fo " r0(t)) dt. (1.9)

Since the time average is a priori arandom variable distributed overmembers

.of the ensemble, it is clearly only reasonable to demand equality of averages
in the sense of probability, i.e. for almost every realization. It follows from
the definitions that

(= SO =1 f fo’R,(t — s)dt ds,

2 T
=?f° R,(s) (1 -~ 57) ds, (1.10)

where the covariance, defined by
Rt = 5) = (/) = <SG S () = <fOPP (1.11)

is an even function of ¢t — s alone by statistical stationarity. It follows that

if the covariance and mean value of f(v(t)) exist and if the right-hand side

of (1.10) approaches zero as T — oo, then lim f(v) =<{f(v)){oralmostevery
T

realization [Lumley, 1970; Monin and Yaglom, 1971 (Chap. 2)]
On physical grounds, a considerably stronger assumption is often made,
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viz. that the integral scales defined by

T
7.=1lim [ R(s){1 — <) ds/R,(0 _
7y=lim [ f(s)( T> s/ R, 0) (1.12)
are finite. In this case, (1.10) can be used to estimate the mean-square error
made by time-averaging for only a finite time T as

B = <SOND = 2R(0) T,/ T. w13

Eq. (1.13)is useful for estimating the averaging time required to get a good
estimate of {f(v)). It is frequently true that that integral scale J sdepends
only very weakly on the function ffor a given random process v(z). Assume.
v(t) is Gaussian with zero mean, i.e., {v(t)> = 0 and

(e )v(ty) - . v(t,)D = X o(t, () o SVt )V, )0 (1.14),

where the sum is over all distinct pairings of 1, .. ., n; for example,
vsvy) = D usved + iy D ved + v 2Cvpvsd.

In this case, the theorem of Sarmanov and Zakharov (Lumley, 1970; Sec..
3.11) implies that the largest integral scale of any function of v(z) is the
integral scale formed with the absolute value of the covariance function
{v(r)v(s)>. Consequently, the principal dependence of f(-)in the rms error
of a finite time average is due to R(0) = {(f(v(t)) — {f(v»)*. In fact,
if ¥(r) is Gaussian, then R,(0)/<v*(1)>* equals 2 if n = 2, 32/3 if n = 4,
226/5 if n = 6, and 1280/7 if n = 8. Hence, neglecting variations in the
integral scales, it requires roughly 16/3 times as long to get similar relative
accuracy in {v*) as in {v?), roughly 113/5 times as long for {¥} as {v?),
and roughly640/7 =~ 91 times aslong for {v®)as {v?>. Thisbehavior, duetothe
great dependence of high powers on infrequent large amplitude excursions
of v(t), limits accurate experimental results to averages of low powers of
the measured signal (Tennekes and Wyngaard, 1972).

The discussion just given of the equality of ensemble and time averages
extends easily to space averages in homogeneous turbulence. The existence
of integral scales is reasonable, but should not be accepted too uncritically.
It will be shown in Section II that the covariance function {v,(x, + r,
X5, X3)v,{x,, X5, X3)) behaves either as =3, r-4, r-3, r-¢(!) as r - co depend-
ing on the nature of the homogeneous turbulence, but does not decay
exponentially as » -+ co. Here v, is the x, component of the velocity field.

1.4 Finite-Mode Model

In order to understand the nature of “random” solutions to differential
equations, and thus get insight into the random nature of turbulence, we
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consider the following five-mode dynamical system:

dx, , .
Ext_‘ =X X2+ XX —2x,%,, (=1,...,5), (1.15)

where x; = x;,s is assumed. The system (1.15) is analogous to the inviscid
Navier-Stokes (Euler) equations in the following repsects: (a) the system
involves only quadratic interaction among degrees of freedom; (b) energy
is conserved in the sense that

d1g ,_
qzzx =0 (1.16)
(c) Liouville’s theorem is valid in the sense that (cf. Sec. 5.2)
5. 9 [dx,
Z (=) =0 1.17
,Z_:, ax; (dt> (L.17)

As in equilibrium statistical mechanics, it is convenient to introduce the
five-dimensional phase space (x,, x,, X3, x,, X;) of the system. The state of
the system (1.15) is represented by a point in this phase space, while the time
history of a particular solution is represented by a continuous curve. i.
follows from (1.16) that all orbits x(f) lie on the spheres Zx? = const. in
phase space. Furthermore, it follows from (1.17) that the time evolution of
an ensemble (represented by a ““cloud” of points in phase space) conserves
measure in phase space (so that the volume of the “cloud” is constant in

_time).

The energy (1.16) is said to be an *isolating” integral of motion of the
system (1.15). An isolating integral of motion is one that provides uscful
information to restrict an orbit to a non-dense subset of phase space. If
energy were not the only isolating integral which did not depend explicitly
on time then typical orbits of (1.15) would be confined (isolated) to a non-
dense subset of the energy surfaces. For example, if (1.15) is reduced to a
four-mode system i = 1, ..., 4 by imposition of x,,, = x, then it follows
that, in addition to the energy integral (1.16),

ad—t(xl —x3) = (%3 + X)(%; — x})
(1.18)

d

d_t_(xz - X)) = (x + x3)(x4 — %)

so that the sign of x, — x, and the sign of x, — x, are isolating integrals

(since they are conserved in time). If x,(0) > x;(0) and x,(0) > x,(0) then

the orbit x(z) is confined to the region x, = x;#x, = x, of phase space.
The five mode system (1.15) apparently has noisolating time-independent
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Figure 1.1 Plot of x;(f) vs xy(¢) for 0 « ¢ « 3000 for that solution of (1.15) with x;(0) =
- 540323, x,(0) = —1-543569, x3(0) = — 680421, x,(0) = —1-185361, x5(0) = —-676307. This
orbit was determined by numerical + \Intion of (1.15) using a ninth-order predictor-corrector
scheme.

integrals of motion in addition to the energy (1.16).1 In particular, all equi-
librium points and periodic orbits of (1.15) are unstable. In this case, the
system is strongly mixing (Halmos, 1956) and a fortiori ergodic, with a typical
orbit spending equal amounts of time on the average, in all regions of phase
space. It also follows that time averages over a single orbit equal space
averages over the appropriate energy surface, for almost every orbit. That

+The system (1.15) clearly has a complete set of 5 time-dependent isolating integrals of
motion, viz. the initial conditions x, (0). These integrals isolate orbits since x;(f) is an analytic
function of ¢ for ¢ real. However, they are ‘ime dependent since x,(0) = C;(x(?), {). When the
explicit time dependence is removed to get 4 time-independent integrals {{x(r)), the isolating
property is generally lost.
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is,
lim () d 1.19
lim /() = (S) J, @ (1.19)

for almost every orbit x(¢), where f(-) is an arbitrary integrable function,
S is the energy surface Zx? = Zx?(0) and o is the area of §.

The properties of (1.15) discussed above have been tested by numerical
calculation. In Fig. 1.1, we show an orbit x() projected onto the x; ~ x,
plane. The initial conditions given in the caption to the figure are chosen
so that the energy (1.16) is 2-5. If the orbit filled the energy surface
Ix? = 2E(= 5) uniformly, as required by mixing, the density of points in
Fig. 1.1 would be proportional to (2E — x? ~ x#)"2. Comparison of time
averages of various low order moments of x(¢) with the corresponding space
averages is given in Table 1.1 for the same orbit depicted in Fig. 1.1.
These results are consistent with (1.19). The evolution of the time-average

energy in modes 2 and 3, x7 and x1 , is plotted in Fig. 1.2. Also, the expected
number of zeroes of x, per unit time may be shown on the basis of ergodicity

2.5

20

0.5

1 1 1 | 1 i 1

o] 50 100 150 200 250 300 350
T

—T  —.T
Figure 1.2 Time-averaged energies x3 and x3 in modes 2 and 3, respectively, plotted vs
averaging time T for the orbit described in the caption to Fig. 1.1,
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075 I
R(Y)

0.50

0.25 -

0.0

-0.25 -

Figure 1.3 Time-correlation function (1.20) for mode 1 using the orbit described in Fig. 1.1.
The error bars indicate fluctuations in R obtained as a function of choice of mode, starting time,
and random initial conditions with gx?(0) = 1.

to be roughly 0.64 (2E/5)'2 so that the number of zeroes for 0 < ¢ < 3000
for the orbit with E = 2-5 should be roughly 1920. The calculated number
of zeroes of x, for the orbit shown in Fig. 1.1 is 2044, while the average
number of zeroes of modes 1-5 is 1960. Finally, in Fig. 1.3 we plot the
time correlation function

T .
R(t ~ 1) = lim f x(t + )x,(t" + s)ds/{x? (1.20)
bl (]

determined for i = | and the same orbit as used in the other figures and
Table 1.1. The error bars indicate the fluctuations in R as a function of
I, choice of starting time 2, and random choice of initial conditions x(0)
with Zx?(0) = 1. According to the mixing property of (1.15), R(z) » 0
as |7| = co. The slow and tortuous decrease of R to zero is presumably
related to the very few (5) degrees of freedom of (1.15); it is expected that
systems with large numbers of degrees of freedom and lacking isolating
integrals “forget” initial conditions rapidly as {pitial excitations are mixed
into a “sea” of excitable modes.

In summary, the model example (1.15) demonstrates the nature of *“ran-
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dom” solutions to (deceivingly simple) differential equations. A conserva-,
tive dynamical system which is mixing (in the dynamical sense) tends to
distribute modal excitations as equally as possible consistent with its.
isolating integrals. In the case of (1.15), the result is a tendency towards;
equipartition of energy amongst all modes as ¢ — co for almost every set o
initial conditions. Notice that (1.15) is time reversible under the transforma-.:
tion x(t) « —x(—t), so that nonequilibrium statistics at ¢ = 0 should:
be interpreted in the usual statistical mechanical way as a fluctuation that:
is damped as |t]| -+ oo (cf. § 5.5).

1.5 Mathematical Theory of the Navier—Stokes Equations

The Navier-Stokes equations for incompressible flow are

a_v(;_t,_t) +v(x, 1) VY(X, 1) = —=Vp(x, 1) + v V2¥(x, 1) (1.21)
v-v(x,t) =0, (1.22)

where v(x, #) is the three-dimensional velocity field, p(x, t) is the pressure,

the (constant) density is assumed unity, and » is the kinematic viscosity.
Application of the incompressible Navier—Stokes equation to turbulence, is
justified in nearly all circumstances by the small Mach numbers of most

turbulent flows. For example, typical fluctuation velocities in the atmo-

sphere are of order several meters per second while the sound velocity is of

order several hundred meters per second. Incompressibility is not an ap-

propriate approximation in the turbulent motion of interstellar gas clouds

where the Mach number is of order 10 and random strong shocks play an

important role. The latter situation is excluded from discussion here.

Egs. (1.21), (1.22) must be supplemented by boundary conditions on
material interfaces. On rigid stationary walls, the appropriate conditions
arev = 0.

The pressure field does not satisfy a prognostic equation, but rather only
serves the dynamical function of maintaining the incompressibility con-
dition (1.22) for all r. By taking the divergence of (1.21) and applying
(1.22), it follows that

VP = — V. [(v: V)] S (1.23)

Thus, the pressure is determined at each instant by the global velocity field
as the solution of the Poisson equation (1.23); the instantaneous effect of
distant regions on the local flow through the pressure is best understood by
recalling that incompressibility corresponds to the limit of zero Mach
number or infinite sound propagation speed.

It follows by (scalar) multiplying (1.21) by v and using (1.22) and the diver-
gence theorem that with stationary rigid boundaries and in the absence of
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external forces

dl 2 av, dv, .
aﬁfy v|2dx = _pfy Frvrs dx, (1.24)
where V is the volume occupied by the fluid. This relation is a statement
of the overall energy balance in the fluid. In particular, the convective
term (V- Vv) and the pressure term (— ¥ p) separately conserve total energy
according to (1.21), while the viscous term (v V ?v) dissipates it whenv > 0.
Equation (1.24) shows that all motions in a finite domain must cease as
¢t - coif there are no external forces, the boundaries are rigid and stationary,
and » > 0. In a viscous fluid, steady motion or turbulent motion which does
not decay with time requires that the fluid be subject to external forces of
some kind (including those provided by moving boundaries).

The mathematical theory of the Navier—Stokes equations is incomplete.
There is as yet no general existence and uniqueness theorem that shows
that (1.21) with (1.22) is well posed. However, a number of partial results
due to Leray, Hopf, and others are available (Ladyzhenskaya, 1969; Ebin
and Marsden, 1970). Briefly stated the results established to date include
the existence and uniqueness of solutions in three dimensions for short
time with arbitrary v and for all time if » is large enough. The mathematical
difficulties experienced in these attempts to establish general existence and
uniqueness theorems for three-dimensional flows are avoidable for plane-
parallel two-dimensional or annular axisymmetric flows (Ladyzhenskaya,
1969), in accord with the well-known property that the mathematical
regularity of solutions to a partial differential equation goes up with de-
creasing dimension.

The difficulty with existence and uniqueness theorems for the three-
dimensional case has led Ladyzhenskaya (1969) and others to suggest the
abandonment of the Navier—Stokes equations, especially for the study of
turbulence. Ladyzhenskaya (1963, p. 159) points out that if a biharmonic
damping —A ~4v is added to the right-hand side of the Navier—Stokes
equations (1.21), then existence and uniqueness of solutions is ensured
for all A > 0. In the second edition of Ladyzhenskaya’s book (1969, p. 193),
it is suggested that the constant viscosity appearing in (1.21) be replaced by
a viscosity coefficient that depends on the local deformation rate of the
flow. Under suitable hypotheses on this deformation-rate dependence,
satisfactory existence and uniqueness theorems can be proven. It is curious
that the deformation-rate dependence of the viscosity invoked by Lady-
zhenskaya for mathematical reasons is quite similar to the deformation-
rate dependence of the viscosity invoked by Smagorinsky (1963; also
Deardorff, 1970) to describe the sub-grid scale turbulent motions in numer-
ical flow simulations. The theory of turbulence developed later (and based
implicitly on the existence of smooth solutions to the equations) suggests
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that the phenomenon of turbulence and many of its properties are in-
dependent of the precise form of the viscous damping term. Nevertheless,
we must conservatively conclude that the mathematical (and hence physical)
basis of the Navier-Stokes equations requires much further elucidation,
and that the consequences of future mathematical work may undermine
contemporary turbulence theory.

II The General Theory of Homogenous Turbulence

2.1 The Description of Homogeneous Turbulence

Turbulence is homogeneous if the flow has identical statistical properties
at all points in space; it is isotropic if, in addition, the statistical properties
of the flow are the same in all directions. Isotropic turbulence is necessarily
homogeneous, but not vice versa. Homogeneous turbulence is an idealiz-
ation as there is no known phenomenon in which exact homogeneity is
obtained. However, there are circumstances where a very close approxima-
tion to homogeneous turbulence exists. Simmons and Salter (1934) were
apparently the first to observe that if a regular grid of bars is placed at right
angles to the uniform stream of a wind tunnel, the motion far downstream
consists of a closely isotropic homogeneous random velocity field super-
posed on the uniform stream velocity (see Fig. 2.1). The turbulence dies
away downstream so that the homogeneity cannot be exact, but the rate
of decay is so small that the turbulence may be considered approximately
homogeneous in the streamwise direction. In addition, beyond 40 mesh
lengths or so downstream from the grid and away from the walls of the wind
tunnel, the turbulence is observed to be homogeneous in planes normal
to the stream direction almost to within the accuracy of the measurements.
At any given instant, the spatial dependence of the turbulence downstream
from the grid provides a panoramic view of the decay of homogeneous
turbulence with decay time identified with downstream distance divided by
the uniform stream velocity. For further details on the nature of experi-
mental techniques involved in the study"of grid turbulence, the interested
reader should consult the review article by Corrsin (1963).

Turbulence that occurs in nature is usually not even approximately homo-
geneous. There is frequently important variation of mean velocity with
position. In this case, gradients of the average properties of the fluctuating
velocity field,

v(x, 1) = v(x, N - {v(x, N,

have a dominant effect on thc evolution of the mean field through the
action of Reynolds stresses. Dcspite the importance of these effects of in-
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Figure 2.1 (a) Schematic diagram of the arrangement for generating approximately isotropic
turbulence in a wind tunnel. (b) Small section of a typical grid. (c) Qualitative view of the
turbulence generated in the wake of the grid of bars shown in (b). (After Corrsin, 1963).

homogeneity, it is thought that the small-scale properties of general tur-
bulent flows should be locally homogeneous and, therefore, that the study
of homogeneous turbulence should not be entirely without practical con-
sequence. However, the real reason for limiting attention in these lectures
to homogeneous turbulence is analytical simplicity (or, rather, minimum
analytical complexity). This limitation may be unfortunate as shear tur-
bulence may be basically very much simpler than homogeneous turbulence.
Homogeneous turbulence isolates the problem of the self-interaction of
of fluctuating components from the problem of the interaction of fluctuating
components with the mean field, which is readily treated (Herring, 1963).
If the latter effect is dominant, as it is for some kinds of turbulence, we have
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unnecessarily complicated the physics by neglecting the mean flow inter-
action. Furthermore, inhomogeneous turbulence may be studied by the use
of rigorous upper bounds on flow quantities, like Reynolds stresses (Busse,
1970; Howard, 1972). The latter methods have not yet been applied to homo-
geneous turbulence, and are not discussed in the lectures.

If the turbulence is homogeneous, the mean velocity {V(x, #)> may be
assumed zero. For it follows from homogeneity and (1.21) that

E (%, 1)) =0,

since ensemble averaging and space-time differentiation commute. Hence,
{v(x, 1)) is space and time independent and may, by suitable choice of
reference frame, be chosen zero.

The quantities of most theoretical and expenmcnta] interest are averages
of the form

<va(xl! t)v}(xb t2) e vy(xnr tn)))

called a moment of order n. If t, = ¢, = ... =1,, the moment is termed single-
time; otherwise, it is called a many-time moment.

Complete specification of the turbulence implies, among other things,
knowledge of all moments. As a practical matter, only asmall finite number
of simple moments may be determined directly either experimentally or
theoretically. It is a fundamental, but to date not fully justified, assumption
that the asymptotic statistical state of turbulence is described in good
approximation by means of a few carefully chosen low-order moments.
Several mathematical subleties are involved, including the possibility that
even if the initial values of single-time moments of all orders are known,
moments may not be determined at later times (Orszag, 1970b).

2.2 Velocity-Correlation Tensor

The simplest (nonzero), and probably most important, moment of homo-
geneous turbulence is the velocity correlation tensor

Rop(F) = {va(x + 1)y (x), @1

where the time arguments are omitted for simplicity, it is assumed that
{v> = 0, and independence of x is assured by homogeneity. It may easily
be shown that

Ry(r) = Ry, (—1) 2.2)

t1In Section VI, it will be argued that other kinds of statistical properties (Green’s functions)
should be introduced in addition to moments,
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9R,, 3R,
ar,  ar =0 : @3
[R;@)* < R,(O)Ry(0), 2.4)

where (2.2) is a consequence of homogeneity, (2.3) follows from incompres-
sibility, and (2.4), called a realizability inequality, follows from the Schwarz’
inequality; we use the convention of summation on repeated Greek but not -
latin indices.

The vorticity correlation tensor {w,(X + r) w,(x)), where the vorticity is
defined by w, = ( VX ¥), = €,:8v,/dx,, can be easily related to R,,(r).
Here ¢,,; = +1(-1)if a, p, 5 is an even (odd) permutation of 1, 2, 3and
is zero otherwise. It may be shown that

2

(w,(x + D), (0) = VIR (E) = 4y VIR, () + aar R, (25
3
upon use of the incompressibility condition (2.3) and some algebra.

If the turbulence is isotropic, further simplification of R ,;(r) can be made.
The standard technique to reduce tensors to their isotropic form is the
method of invariants (Robertson, 1940; Batchelor, 1953). If a and b are
arbitrary vectors then

F(a,b,r) =a,b, R, (r) = {a-v(x +r)b-v(x))

is a scalar under rotations if the turbulence is isotropic. Consequently, F
can depend only on the scalars (invariants) that can be formed out of its
arguments; these invariants are all combinations of a2, b2, r%,a-b,a-r,b-r,
and a-b X r. Since Fis linear in a and in b, it follows that

F=a-rb-rA(r) + a-bB(r) +a-b xr C(r)
so that noting the arbitrariness of a and b,
R,x) = r,r,A(r) + 8,B(r) + €,,r,C(r). 2.6)

If the turbulence is invariant to reflections in space in addition to being
invariant to rotations then the pseudoscalar a- b x risnotinvariant and the
term involving C(») cannot appear. In these lectures, we assumereflection-
invariant isotropic turbulence, but the recent theory of turbulent hydro-
magnetic dynamos discussed elsewhere in this volume (Moffatt, 1976)
requires reflection noninvariance.

The incompressibility constraint (2.3) implies a relation between the
surviving scalar functions 4(r) and B(r) in (2.6). Itis conventional to rewrite
(2.6) as

Ro(6) = v2,, [f 0 -&0), , g(r)«SaJ @7
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where v,,, is the rms velocity of each velocity component
RII(O) = vrzms (2.8)
and the incompressibility constraint becomes
1 df
80 =f0r) +3r - (2.9)

It follows from (2.8) that f(0) = g(0) = 1. The functions f(r) [g(r)] are
called the longitudinal [latitudinal ] velocity correlation functions because

vi J(r) = v, (x + r)v,(x)> (2.102)
Vi g(r) = v, (x + v, (x)), (2.10b)

where v, is the velocity component parallel to r and v, is one of the com-
ponents perpendlcular tor. Homogenexty implies f/(0) = g'(0) = 0sothat
expansion about r = 0 gives

S =1 ———+0(r") (2.11a)

gy =1- /% + 0(r), (2.11b)
where

Az —f"(0) = (/9% ) Vi (2.12)

A is called the Taylor microscale. An interpretation of the dynamical signi-
ficance of A is given in Section IIl. For now, we note that A is related to
{w® by (2.5), (2.7) and (2.11) as

@ = VR0 =il Lrriag] = isa
ree r=0

Consequently, the rate of energy dissipation in isotropic turbulence is given
by
€ = v{w?) = 15vv},/A% (2.13)

noting that {v- V2v» = —{w?)inhomogeneous,incompressibleturbulence.

2.3 Fourier Analysis of the Velocity Field

It is convenient to Fourier analyze the velocity field of homogeneous
turbulence. This representation permits resolution of the velocity field into
components of various sizes. A Fourier component is not alocal coordinate
but is a collective coordinate which specifies the total cxcitation in some
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scale over the whole flow. In this way, it is possible to give precise meaning
to concepts such as the energy of small-scale motions. The disadvantage of
Fourier analysis also stems from its collective nature. Local coherent flow
structures, such as shear layers, are not easily recognizable except by detailed
examination of phase relations among Fourier componens.

A typical realization of homogeneous turbulence cannot be represented
as either a Fourier series or a Fourier integral. At any particular instant of
time, there is no reason why a typical realization v(x, ) should be periodic
in x and, hence, expansible in a Fourier series. Neither should v(x, ¢) be
expected to be absolutely integrable or square integrable so that a Fourier
integral representation would apply. A technique for rendering a stationary
random function (of position), such as v(x, t), Fourier transformable was
first given by Wiener (1930). The Fourier transforms so obtained are distri-
butions (Lighthill, 1958). An equivalent and conceptually simpler technique
is to consider only flows which are periodic with the basic period a large
cube in which the velocity field is expanded in a Fourier series. In this
latter method, the box size is allowed to approach infinity and the asymiptotic
ordering in terms of box volume of the various statistical averages of interest
is used to establish finite dynamical equations (Orszag and Kruskal, 1968).
However, in these lectures we avoid all technical niceties by assuming a
Fourier transform representation of v(x, ¢) in terms of distributions.

A statistically homogeneous velocity field can be represented as

v(x, 1) = f"(k’ tetxd | {2.14)
where u(k, t) is a random generalized function (distribution). It follows that

= (L) frs oeesees

This representation has’ immediate consequences for moments. For
example,

@@ = i [ax [y Guxy, e
which upon the change of variablesz = y,r = x — y gives
' <u,.(k)up(p)> = Sp&)s(k + p) (2.15)
Sop(k) = (2 o f R,,(F)e %+ dr (2.16)

using (2.1) and the integral representation

1 )
s0) = b femraa
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Similarly, it follows that

(R, @) = Ty, (k, p)ok + p + 1), (2.17)
where
Tk, p) = 6# fdy fdz v (x + y)vl,(xﬂ + Z)v,(x)De ~Hy-ipz,

(2.18)

Calculation of higher-order Fourier space moments is facilitated by the
following factorization (cluster) property of physical space moments:

<va(xh Sl) L vﬁ(xmr sm)vy(yl + x7 tl) c.. va(Yn + X, tn)>
I <va(xh Sl) v V’(x,,,, sm)><vy(YI + X, tl) e vb(yn +X, tn)> (2'19)

as X — oo for any set of fixed x,, 5, y,,(i =1,...,mj=1,...,n).This
factorization is plausible since the statistical properties of widely separated
sets of points should be independent. One consequence of (2.19) is the
approach of R,(r) to zero as r ~ oo {since {v> = 0). Ameasure of the length
scale over which R,,(r) goes to 0 is given, for isotropic turbulence by the
longitudinal integral scale L,

L= { “f)dr, =2 I “g(r) dr. (2.20)

It follows from (2.19) that
Su,(K)uy(P)u,@)u;(m)> = S,,(k)S,:(@)8(k + p)o(g + m)
+ S &)Sp®)sk + q)5@ + m) + 5,;K)S, @)k + m)s@ + q)
+ Uppa(k, D, )8k + P +q + m), .21

where
Uupalk 2. @) = 755 [y [z [w

[VaX + ¥)vp(x + Z)v,(x + W)vs(x)> — R,)(y ~ 2)R,,(W) ~
Ro(y — W)R,,(2) — Ru(Y)R,, (2 — W)]-e-ky-iwa-iav, (2.22)

U and its Fourier transform [in square brackets in {2.22) ] are called fourth-
order cumulants, as opposed to the fourth-order moment (2.21). Similarly,
it is possible to use the factorization property to obtain expressions for the
general moment of order n in terms of cumulants of order » or less (Orszag
and Kruskal, 1968). Second and third-order moments are also cumulants
(since {v) = 0).

Note that the existence of cumulants requires a somew “.it stronger factor-
ization property than is provided by (2.19). In order for the Fourier trans-
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forms (2.16), (2.18), (2.22) to exist, the approach of moments to their factored
forms must be sufficiently fast as X — oo, Thus, the existence of cumulants
is an additional assumption, but itis one that is consistent with the dynamical
equations, in the sense that if cumulants exist at some time they continue to
exist at later times. On the other hand, it is known that the approach of
moments to their factored forms is generally only algebraicin the séparation
distance X (Batchelor and Proudman, 1956; Saffman, 19673), so that the
question of the existence of cumulants should not be taken too lightly (cf. -
Sec. 2.7). ’

The cumulant tensors S, T, U, ... satisfy a number of kinematical con-
straints that follow from their definitions. First, there are realizability
inequalities that must be satisfied because the cumulants are obtained by
averaging over a probability (non-negative) distribution of realizations. It
follows from (2.15) that

a,ay S,(k) > 0 : (2.23)

for any complex vector a. Similarly, it may be shown (Orszag and Kruskal,
1968) that

| f Ttk my dp

2 & Sy(k) fdp[fUM(p, k —p,q)dg

+ S;®)Suk —p) + Si@)Syk — p)|, ((2.24)
where /, j, k are not summed. Second, reality of the velocity field v(x) implies

SopK) = [Sep(=K) % Top(k, p) = [T, (—k, —p)]* (2.25)
etc., while the incompressibility constraint (1.22) becomes

kasnﬂ(k) = kﬁSaﬂ(k) =0, (2-26)

etc.

Isotropy leads to much simplification in the structure of the cumulants.
The theory of isotropic invariants implies @,5,5,,(k) can be a function of
a-b,a-k, b-K, and k-k alone, so that linearity in a and b implies

S,,(k) = A(Vk,k, + B(K)S,.

The incompressibility constraint (2.26) then implies that S,,(k) can be
expressed as

E(k
S¢M=éﬁhﬂx @.27)
where
Poy(k) = 8,5 — koky/k? (2.28)

Here the scalar function E(k) is interpreted as the (kinetic) energy density
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in modes of wavenumber k so that

3, =

5 Vims = L E(k) dkv
which is a special case of

F¥ L) +2600) = ["EG)

sm kr

dk. ‘ 2.29)

The realizability inequality (2.23) becomes simply
E(k) » 0.

Similar applications of the isotropy requirement show that the number of
scalar functions of wavenumber required to represent the general cumulant
of order nis 1(n = 2), 2(n = 3), 4(n = 4), 4(n = 5), 9(n = 6), and soon.
(Orszag, 1969). The explicit results for 7(k, p) is(Proudman and Reid, 1954)

Top(k, p) = P, (K)P,,®)P,.(0)[k,5,,0(k p, q) + p,5,.O(p, ¢, k) —
- k,8,,0(q, k, p) + pk,k, ¥k, p, @)}, (2.30)

where @ = —~k — p and the scalar functions @, ¥ satisfy
ok, p.q) = —o(p, k, q)

W(k! D, ‘1) = W(p: q, k) = _W(p! k, q)

It is of some interest to construct examples of statistically homogeneous,
isotropic, incompressible velocity fields, e.g. for use as initial conditions in
numerical simulations of homogeneous isotropic turbulence. This is most
easily done using a Gaussian white noise process a(k) such that

(a,(k)a,,(p)) = 5ap5(k +p)
as constructed by Wiener. The velocity field whose Fourier transform is

1K) = 2R P, @ak)

satisfies the required kinematical conditions and has the (isotropic) energy
spectrum E(k). The resulting multivariate Gaussian velocity field has nth-
order cumulants which are identically zero for n = 3.

2.4 Dynamical Equations for Cumulants

It follows from (2.14) and a similar Fourier representation of the pressure
that the Navier-Stokes equations for u(k, 1) are

[aaz + vk] K1) =i f paug(k —p, Du,fp, ) dp — ik, p(k, ).
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Application of the incompressibility constraint k,u, (K, t) = 0 allows elimina-
tion of the pressure [essentially by the Fourier transform of (1.23)]giving

[a%+ ukﬂu.(k, 0 = ~3Pu® [u,@, 0uk —p,0dp. Q3D

The summation convention over repeated Greek indices is implied and
Py (k) = kyPo (k) + k,P,y(K),

where P, (k) is given by (2.28). Notice that (2.31) gives [0/01 + vk ]k u.(k,?)
= 0, so the flow remains incompressible if it is so initially. Notice also
that the terms in (2.31) proportional to the part §,, of P,,(k) originaies
from the convective term (v- Vv) in (1.21), while the terms proportional to
the part —kk,/k? of P_,(K) are due to the pressure gradient.

Dynamical equations for the cumulants follow directly from their defini-
tions (2.15), etc. by application of (2.31). It follows from (2.15) and (2.17)
that '

5 .
[57 + 2uk2] S,.(k) = —% oK) f T,.(—k, p) dp

3 Pyl —K) [Topk,B)dp. 2.32)

where it is assumed that the cumulants are all single-time. Sixhilarly, the
equation for 7 is of the form

[é‘:— + v(k* 4+ p* + |k + pl’):] Tk, p) =

~2Pepu®) [Uppol® —k — P, 0) dg

+oee —iPy (K)S,,®)S,.(—K —P) + ..., (2.33)

where the dots denote similar terms obtained by interchanging k, p, and
-k - p.

It is apparent that the equations obtained in this way do not form a
determinate set. The equation for ath-order cumulants involves (n + 1)-
order cumulants, as well as those of order n and lower, so a closed set of
equations for low-order cumulants is not obtained. Any finite subsystemof
this infinite set of equations possesses more unknown functions than are deter-
mined by the subsystem. This “closure problem” is perhaps the most funda-
mental difficulty of turbulence theory.

2.5 Energy Balance

As discussed in Sec. 1.5, the nonlinear terms of the Navier-Stokes equations
conserve kinetic energy while only the viscous term dissipates it. In fact,
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the convective term v+ Vv in (1.21) conserves energy componentwise, in the;
sense that

f (v V)v} dx
4

(no sum on 7) can be integrated to a surface integral of (1/2)v - nv, wherenis
an outward normal. On the other hand, the pressure term Vp in (1.21)
conserves kinetic energy in each Fourier mode, since u,,(~k)[ —ik,p(k)] =0:

If the turbulence is isotropic, the cumulant equation (2.32) reduces toa
single equation for E(k, t):

2 ; _
[5? + 2vk]E(k, £) = Ttk 1), (2.34)

where
Tk 1) = —4nk’k,Im [ T,,(,p) dp

and k is any vector with k = |k|. Conservation of energy by nonlinear"
interaction implies

{ Tk, 1) dk = 0. 2.35)
T
It follows that

d3,. __

555V = e (2.36)
where

=2 [ “KE(k, 1) dk .37)

0

is the rate of kinetic energy dissipation (per unit volume) [cf. (2.13)]. The
result (2.37) shows that high wavenumber Fourier components are dis-
sipated more effectively by viscosity than low wavenumber components.
Since inertia forces conserve each directional component of the integrated
energy-spectrum tensor, it is plausible to assert that, in the absence of other
constraints, the net tendency of inertia is to spread energy over all wave-
vectors. In particular, the tendency should be to transfer energy to those
parts of wavevector space where the energy density is lowest. This can not
be more than a tendency for surely initial conditions can be envisaged in
which the phases of the various Fourier components are chosen so that there
is initially flow of energy into any part of wavevector space. However, since
viscosity tends to deplete more rapidly the energy of small eddies (high
wavenumbers), the typical effect of inertia should be to transfer energy from
large to small eddies. This suggests that the energy spectrum evolves tow.rds
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a state where the rate of energy input to small scales due to inertia balances
the rate of dissipation due to viscosity. If it were not for viscosity, inertia
forces should succeed in spreading energy over all Fourier space, giving a
flow of energy to infinite wavenumber. In physical space, the corresponding
effect is the formation of infinitely sharp shear layers. '

Similarly, since pressure forces conserve the total energy in each Fourier
component, they may be expected to tend to equalize the energy in any
wavevector k uniformly over directions normal to k, the latter restriction
due to incompressibility. In x-space, pressure should tend to distribute the
energy uniformly over all directions, i.c., to “isotropize”. However, pressure
cannot isotropize completely by itself. A uniform distribution of energy
in k-space over directions perpendicular to each wavevector k requires
S,,(k) = F(k)P,(k), while isotropy requires in addition that F(k) be an
isotropic function of k.

2.6 The Spectrum of Homogeneons Turbulence

In homogeneous turbulence, the energy-spectrum tensor S,,(k) is a quantity
of fundamental interest. Studies of this spectrum tensor are classified
according to whether the wavenumber range concerned satisfies kL, < 1,
kL, ~ 1, kL, » 1, where L, is given by (2.20). Identifying the size of an
eddy of a turbulent flow with the wavelength 2x/k, these ranges are called
the large eddies, the energy-containing eddies, and the small eddies.

The large-eddy region of the energy spectrum was for some time thought
to be most accessible to analysis. However, it has since been learned that
the original analyses were not correct, and the actual nature of this range
of eddies is still unsettled. Some aspects of the theory of the large eddies are
reported in Sec. 2.7. In any case, the structure of the large eddies is without
much practical significance. The spectral region kL, < | contains negligible
energy and, as seen in the next chapter, interacts only very weakly with the
rest of the spectrum. At high Reynolds number, there would appear to be
little consequence if the large-eddy region of the spectrum were entirely
neglected.

The dynamical importance of the energy-containing range of eddies
cannot be denied. The characteristic velocity of these eddies is v, and
their characteristic length is L,. They make the dominant contribution to
f{fE(k) dk. As will be discussed in §2.9, the time scale for decay of the
turbulence is L,/ Vs which is also the circulation time of an eddy in the
energy-containing range. This means that the turbulence decays on approxi- -
mately the same time scale as eddies in this range execute their motion.
This makes it unlikely that the energy-containing eddies are in any simple
statistical state before the turbulence has decay®d appreciably. There seems
no compelling reason why there should be universally valid results concern-
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ing such eddies which do not have time to reach some form of approximate
equilibrium (but see the discussion of quasi-equilibrium states given by
Batchelor, 1953, Chap. 7). The evolution of the energy-containing eddies is
studied later by numerical solution of the equations of an analytical turbu-
lence theory.

The small-eddy wavenumber range is most suitable for statistical analysns
In §2.5, it was mentioned that the inertial terms of the Navier-Stokes
equations tend to spread energy in wavevector space while viscosity dis=
sipates energy with increasing effect at high wavenumbers. If the Reynolds
number is large, inertial spreading is expected to dominate viscous damping
for an appreciable range of wavenumbers, resulting in the excitation of high-
wavenumber Fourier components. If the intuitively plausible assumption (to
be checked later) is made that the characteristic time for dynamical evolu-
tion of an eddy is a monotonically increasing function of eddy size, then
small eddies have a characteristic time much shorter than the decay time of
the turbulence (which gives the characteristic time of the energy-containing
eddies). In this case, small eddies have sufficient time to reach some form
of statistical equilibrium. The picture that emerges is that the high-wave-
number components approach a universal statistical equilibrium in a time
much shorter than the overall decay time of the turbulence with the excita-
tion in these small eddies adjusting itself rapidly to a level consistent with
the rate at which energy is fed in from the energy-containing range.

In support of this picture, there is the property to be discussed in §2.9
that e is independent of v for large R. This means that the rate of energy
dissipation is primarily determined by the mutual interaction of energy-
containing eddies. The effect of decreasing v is not to decrease ¢ but rather
to modify the structure of the small eddies in order that they may dissipate
at a rate independent of ». Increasing R merely excites higher wavenumbers
so that (2.37) remains valid. This is consistent with an equilibriurn range of
small eddies which accommodates itself to the energy-containing range that
feeds it.

2.7 The Structure of the Large Eddies

The large eddies, kL, « 1, are studied by expansion of the cumulants about
k = 0. In early studies, cumulants were assumed analytic functions of k
near k = 0. For example, S,,(k) was assumed expansible in the power series

Sop(k) = Cop + Copk, + Copsk ks + O(K?). _ (2.38)

The analyticity of cumulants follows if spatial correlations decay exponen-
tially at infinity. In fact, (2.38) follows by expansion of (2.16) in powers of
k, which is justifiable if all the integrals

f rrs. .. rR,(r) dr (2.39)
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exist.
Assuming (2.38), (2.26) implies that for small k

k,C, + Ok =0.
Consequently, since k/k is arbitrary, C,, = 0. Similarly, (2.23) requires that
a,ayk,C,, + O(k?) > 0,

apy
which implies C,,, = 0. Furthermore, if third-order cumulants are also
analytic, it can be shown that (d/dt)C,,,; = O for all a, B, p, & (Batchelor,
1953, §5.3). If the turbulence is isotropic, then

E(k) = CK* + o(k*) (2.40)

for k — 0, where C = (22/3)C,,, is time ndependent. This result is known
as the “permanence of the large eddies . In the special case of isotropic
turbulence where . _,(r) has the form (2.7), permanence of the large eddies
is equivalent to dJ. dt = 0, where

=i [ "1 dr 2.41)
0

is called the Loitsiansky invariant (Loitsiansky, 1939).

" More recent work (Proudman and Reid, 1954; Batchelor and Proudman,
1956) has shown that analyticity assumptions such as (2.38) are untenable,
that the large eddies are not permanent, that J is not invariant, and thatJ
may not even exist. These difficulties are traced to the long-range nature of
the pressure field: in an unbounded fluid, the relevant solution to (1.23)is

i Aly)
P(x) - 47lf lx _ yIdY1
where A(X) = U-(v: V)v.

Batchelor and Proudman (1956) argued that even if all the moment
integrals of velocity cumulants, like (2.39), exist initially, the long-range
pressure force induces correlations such that they cannot all exist at later
instants. They found that R,,(r) was generally of order 1/r°asr — oo, except
for isotropic turbulence where it is at most of order 1/rS.

The hypothesis of convergent integral moments of the cumulants of the
initial velocity field leads to self-consistent results for the behavior of cumu-
lants at large distances. However, this hypothesis of Batchelorand Proudman
is not free from controversy. It is physically unreasonable to assert that
there is much long-range initial correlation, as it is hard to see why the
random fluctuations triggering the instabilities that lead to turbulence
should be correlated over large distances. However, Saffman (1967a) con-
siders the physically plausible alternative to Batchelor and Proudman's
hypothesis that all integral moments of cumulants of the vorticity field
converge at the initial instant. This assumption is somewhat weaker than
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Batchelor and Proudman’s in th- * it allows nonanalytic Fourier-space cumu-.
lants of the velocity field even t the initial instant. Saffman finds that near’
k=0 .

Sus(k) = - CP,(K) + O

so that for isotropic turbulence
E(k) = C'k? + o(k?).

The latter spectral form follows from the requirement that the energy per:
mode be finite at k = 0. Furth.r, Saffman shows that C'is constant during®
decay and that cumulants decay as 1/r? except for isotropic turbulence:
where they decay as 1/r4 It has not yet been decided which of the two.
hypotheses concerning initial integral moments is actually realized, though'
Saffman presents an argument that grid turbulence more nearly satxsﬁes
the Batchelor and Proudman hypothesis.

2.8 The Probability Distribution of Velocity

Instead of using cumulants to describe the ensemble, it may be described by
n-point joint-probability distribution functions. Knowledge of all the joint-
probability distributions up to order » gives considerably 1nore information
about the turbulence than knowledge of all cumulants up to order n. Indeed,
the distribution functions determine al/l moments involving at most n
distinct points. The price paid for this further detail is the dependence of £,
on a large number of independent variables. Single-time joint-probability
distributions of order n depend on 6n — 3 independent variables (3n velocity
variables and 3n — 3 space variables) while nth-order cumulants depend on
3n — 3 variables. This disadvantage of joint-probability distributions is’
amplified by the considerable simplification of low-order cumulants if the
turbulence is isotropic. For this reason, joint-probability distributions have
been used mainly for kinematical analysis rather than dynamical studies.
However, a coupled hierarchy of dynamical equations for the various f, has
been derived by Lundgren (1967). This hierarchy is most easily derived from
(1.8).

Experimental measurements in grid turbulence indicate that the time-
average ome-point velocity distribution [defined by (1.8) with n = 1]is
approximately Gaussian. For isotropic turbulence, a Gaussian one-point
distribution takes the form

£ 1) = @k, 2 exp [—vY(02,)] (2.42)

which is independent of x because of homogeneity. A fairly sensitive test
of the closeness of fit for large v is given by measuring <{v#>/{v¥? where v,
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is the component of v parallel to the axis of the wind tunnel. For a Gaussian
distribution, this ratio is exactly 3, while the experimental value lies between
2.9 and 3.0 (Batchelor, 1953, §8.1; Frenkiel and Klebanoff, 1967).

There appears to be no convincing theoretical reason yet suggested why
fi(v, t) should be so closely Gaussian. An obvious suggestion is that some
form of the central limit theorem (see, e.g., Lumley, 1972) applies to ensure
that (2.42) is realized. However, there is no obvious way to write the velocity
at a point as the sum of many independent random variables (except in the
final stages of decay when the Reynolds number is low). A full investigation
requires consideration of the effect of pressure forces on a representation
of the velocity field at a point as a sum of “weakly dependent” random
variables. However, it may be that f; Gaussian is not a general property but
rather is a result of the particular mechanism of generation of grid turbul-
ence.

The two-point joint-probability distribution f,(v, v, 1, 1) = f,(v, X, t; ¥/,
X + 1, 1) is not approximately Gaussian unless r > L,. The skewness factor
is defined by

S() = ~{vx + 1) =) ]P/{nE +r) - v x) D" (2.43)
and the flatness factor by
F(r) = <[Vl(x +r) — vl(x)]‘>/<[vl(x +r) - Vl(x)]2>2, (2.44)

wherer = (r, 0, 0) is parallel to the axis of the wind tunnel and all velocities
are measured simultaneously. Further, define Sy = S(r)|, 0., Fo = F(9 |, 0,
so that

So = —{(av\/8x,)*>/{(av\/dx,)2>*"* (2.45)
Fy = (8v,/8x,) )/ {(dv,/x,)>2 (2.46)

A Gaussian two-point velocity distribution requires that S, = S(r) =0,
Fy = F(r) = 3, for all r. Experiments indicate that S(r) - 0and F(r) - 3 as
r -+ oo, as follows from the definitions assuming the independence of widely
separated fluid elements and the Gaussian single-point distribution (2.42).
However, S(r) and F(r) differ appreciably from their Gaussian values for
r < L,. A variety of grid turbulence experiments give values of S, = 0-4
and F,~ 4.1

If the flatness factor of some zero-mean random variable is greater than
3, it indicates that the probability of very small and very large values of the
variable is larger than for a Gaussian distribution of the same standard
deviation. This can be explained by considering a six-valued zero-mean
random variable chosen so that the probability of taking the values +a,is

tOther experiments indicating somewhat larger values of Fy are described in Section IIL
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p/2fori =1,2,3and where0 < a, < a, <a,. Thenp, + p, + p, = 1 and
fixed standard deviation implies fixed {a?> = p ,a? + p,a? + p,ai. The max;-
mum flatness <a*)/{a®)? is attained when the distribution is p, = (a? —
(aD)/(a} - a}) =1 - p;,p, =0

A random variable having a large probability of taking values both very
large and very small compared to its standard deviation is called intermit-
tent. Intermittency in homogeneous turbulence was first noted by Batchelor
and Townsend (1949) who observed that high-order derivatives of the
velocity field alternated between regions of quiescence where the derivative
is small and regions of activity where it is large. Such behavior is not
unexpected since the viscous term in (1.21) contains the highest-order
derivative while high Reynolds number turbulence involves the limit
v ~ 0. This limit is a singular perturbation problem and localized regions
in which gradients are large should be expected to form. These regions
should have the character of vortex sheets and lines.

From the Schwarz inequality, it follows that | S(r)| < [F(r)]“?and |S,| <
F{2 Improvement on the latter inequality is possible using the kinematical
constraints of incompressibility and isotropy. The result, due to Betchov
(1956) and Batchelor and Townsend (1956), is

2
|So] < —=— Fyn. (2.47)
VAt

For a Gaussian two-point velocity distribution F, = 3 and Betchov’s in-
equality requires | S,| < 0-756. With F, = 4, the inequality requires | S| <
0-872. The experimental value S, =~ 0-4 is well within this bound.

2.9 The Decay of Total Energy

If the flow were not turbulent, we could estimate | w| = 0(v,,,,/L,) (Where we
use v, and L, to characterize the large-scale features of the flow), so that
(2.13) would give

e.= 0(w2,/L2). (2.48)

If this estimate were correct, the rate of energy dissipation would tend to
zero with increasing Reynolds number. In fact, it is found experimentally
(cf. Batchelor, 1953, Fig. 6.1) that e does not depend so strongly on Reynolds
number and that

A = L, /v, (2.49)

is of order unity even for large Reynolds numbers, in contrast to 4 =

0[1/R(= v/vsL,)] which follows from the estimate (2.48). This result

marks a fundamental difference between laminar .. turbulent flows.
Evidently fine-grained velocity fluctuations give r.s¢ to values of | Vv|



STATISTICAL THEORY OF TURBULENCE 269

far in excess of v.,/L,. The value of e given by (2.49) with 4 = 0(1) may
be reconciled with (2.48) by replacing v with an *“‘eddy viscosity”

Ve = AvrmsL,, > v,

when R » 1. The ratio v,/v gives the enhancement of energy dissipation
by the turbulence.
Equation (2.36) may be revaitten as

d3

242 ’
dt 2 vrms - Avrms/(Lp/vrms)' (250)

The quantity L,/vy, is the turnover time of an eddy of size L, and typical
velocity v,,,. Hence the interpretation of (2.50) is that the total energy
in the flow decays in about one turnover time of an eddy of size L,. It
may be said that the energy-containing range is approximately critically
damped.

There has been considerable interest in the literature in establishing
simple features of the overall energy decay process. One podsibility ex-
amined in detail is that, during decay of high-Reynolds-number turbulence,
the energy obcys the similarity law (Karman and Howarth, 1938)

Eth, 1) = 3 vr’ms(t)L(t)F(kL(t)),
where fo F(x) dx = 1. It follows that
€ oo vi (1) L(2)2

Hence, if v,,,, decays according to a power-law, v3,(1) o (t — t,)~" where
1o is a virtual origin of time, then L(r) o (¢ — 1,) "2 But the longitudinal
integral scale L, is given by

L, = [“0)dr, - 2K EW
0 4 JPE@Wdk

(which follows from isotropy), so that L,{#) oc L(z). Consequently, if .
(2.50) is valid with 4 = 0(/), it follows that vZ, oc (¢ — ,) "~ Since similar-
ity over all wavenumbers is a rather strong and unsubstantiated assumption,
this result should be regarded suspiciously. In fact, v3,, oc (t — 1,) ~'is not
in agreement with experiments.

Lin (1948) found that the weaker assumption that similarity extends
overall wavenumbers except the very lowest implies t atvi,=a(t—4,)"'+ b,
where g and b are constant during decay. The underlying idea is ‘hat low
wavenumber components do not have time to relax to a similasity state.
The constants a, b, 1, may be chosen to give reasonably good fit with ex-
periments.

Other possible decay laws for v, (#) may be denved if similarity assump-

.51
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tions of the above type are not made. As a crude model of E(k), suppose that

Ckr(0 < kL(t) < 1)
E() =
CLL()] ="k~ (L) > 1), (2.52)

where r > 0, s > | and L(¢) is a time-dependent parameter specifying the
scale of the flow (not a similarity parameter). The basis for (2.52) is that
E(k, 1) is known to be of such form for kL, very small (Sec. 2.7) and moder-
ately large (Sec. 3.1). In fact, if k refers to a large eddy and Loitsiansky’s
invariant is invariant, then r = 4 and C is constant during decay. On the
other hand, Saffman’s (1967a) analysis of the large eddies gives r = 2 and
C constant during decay. It follows from (2.52) that

Vi) o< [LO]Y L) « L(2),

where the constants of proportionality are time independent. Substituting
in (2.50) gives

Vi OC (8 — 2o) 243 [ oc (1 — £ (2.53)

as obtained by Comte-Bellot and Corrsin (1966). Here ¢, is a constant of
integration. With r = 4 and C constant, it follows that

Vi € (8 — 1)1, L, oc (¢ — 1) (2.54)
as found by Kolmogorov (1941b). However, if r = 2
Vi oc (t = 1), L, oc (t — 15)¥° (2.55)

as found by Saffman (1967b). The laws (2.54) and (2.55) are both in satis-
factory agreement with experimental results, though the general nonexist-
ence of the Loitsiansky invariant would appear to give greater theoretical
support to (2.55). ' '
Further insight into the decay of total energy is gained by considering the -
mechanism of decay. Since the vorticity is related to e by (2.13), it follows
that production of vorticity is equivalent to the enhancement of dissipation
by turbulence (Taylor, 1938). For this reason, it is often said that turbulence
is a field of random vorticity. .
The stretching of vortex lines by the velocity field induced by the vorticity
distribution is the fundamental process involved in the decay of turbulence.
If vortex lines tend to stretch, vorticity is generated and e is enhanced. This
process may be studied using the dynamical equation for vorticity

}% w(X, 1) + v(X, 1) VX, 1) = w(X, 1)} 9v(x, ) + v V2iaw(x,1).
(2.56)
The left-hand side of (2.56) describes the convection of vorticity while
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the first term on the right describes the generation of vorticity by stretching
of vortex lines and the second accounts for diffusion of vorticity by vxscosny
Tt follows that

dQ
dr

dw, dw,
= {w, w‘,a ) - p{=—= ox, ax,,> (2.57)

where the “enslrophy” 0 = 1/2{w[>. Since the viscous term is non-
positive, production of enstrophy can only be accomplished by the first
term on the right-hand side of (2.57) which describes the mean stretching of
vortex lines.

The.stretching term in (2.57) had a particu'arly simple form in 1sotrop1c
turbulence (Batchelor and Townsend, 1947):

ey 35 o f e\
oy 5 =3 So( 15,,> , (2.58)
where S, is the skewness (2.45) or, equivalently,
135 r;’kzr(k) dk
Sy = L (2.59)
98 [I:kEE(k) dk ]

The latter form shows that S, is a nondimensional measure of the rate of
enstrophy production by the nonlinear terms; on the other hand, (2.58)
shows that in order for enstrophy to be produced by mean stretching of
vortex lines, it is necessary that S, > 0.

At high Reynolds numbers, (2.58) implies that the time rate of change
of enstrophy is much smaller than either the rate of production of enstrophy
by vortex stretching or the rate of dissipation of enstrophy by viscosity. For

do_1de 35 ( e\
A " nda €72 S"(m) ’

since Sy, ¢, and de/dz are nearly independent of ‘v as » — 0. Therefore,
the left-hand side of (2.57) is of order R -2 compared to the terms on the
" right taken separately, giving the approximate balance

2 n Vg IS kER) dk
4 (EE> Avop, = L0 : 2.60)
[ k2E (k) dk ]
This result is not very surprising since the small-eddy range of wavenumbers
dominates {w? =2 |; k*E(k) dk and the small eddies are expected to reach
a quasi-steady statistical equilibriumlong before the turbulence has decayed

appreciably.
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2.10 The Taylor~Green Vortex

Taylor and Green (1937) initiated the study of a model three-dimensional
vortex field in order to clarify the dynamics of turbulence. This vortex
motion illustrates the basic turbulence decay mechanisms of the production
of small eddies and the enhancement of dissipation by the stretching of
vortex lines.

At t = 0, the velocity field is assumed to be =

v (xy, X, X3) = COS X, sint X, COS X3
va(x;, X;, X3) = —Sin x, COS X, COS X; (2.61)
v3(xl! X2y xl) = 0,

where we have shifted the origin of x; by »/2 from the initial conditions
chosen by Taylor and Green. Although the streamlines of (2.61) are the
curves cOs X, COS X, = const in the planes x; = const, the flowthat develops
is three-dimensional. The initial vortex lines are the curves sin x,/sin x, =
const, sin? x, cos x; = const, so they are twisted and may induce a velocity
field to stretch themselves. In fact, since w- Vv is initially nonzero such
stretching does take place. Also, v, becomes nonzero for ¢t > 0. TheTaylor—
Green vortex is perhaps the simplex example of self-induced vortex stretch-
ing by a three-dimensional velocity field.

Taylor and Green (1937) investigated the evolution of their vortex by
developing a perturbation solution to the Navier-Stokes equations in
powers of the time ¢. They found that the enstrophy is given by

5 18 5 36\ 1
Qm:"[l +(48+R2>' (§+F>§

25 1835 | 54\,
* (3168 * Taar: R‘)t +d (2.62)

where R = 1/p is a Reynolds number for this flow. It is clear that finite--
order truncations of (2.62) cannot remain valid as ¢t -+ oo (since Q — 0 as
t — o). More recently, Orszag and Fateman (1974) extended the series
through terms of order ¢4,

Goldstein (1940) investigated the evolution of the Taylor and Green
vortex by developing a perturbation series in powers of the Reynolds
number R, finding

— _3_ —~6t/R __ R;z —6t/R __ ~1217R ~14/R __ —160/R
o) = g [e 334 (e 20e + 35e 16e )
+ ] (2.63)

This series is a resummation of (2.62); each term of (2.63) is a partial
sum of an infinite number of terms of (2.62). Finite order truncations of
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(2.63) do not have the secular behavior exhibited by truncations of (2.62)
ast — co.

Neither perturbation series in ¢ nor R describes properly the evolution of
the flow field for large ¢ or R. Orszag and Fateman (1974) report numerical
solutions of the Navier-Stokes equations for the Taylor-Green vortex
using a method specially suited to the problem. In Fig. 2.2, we plot the
evolution of Q(¢) at R = 300determined by perturbation series in ¢ truncated
at ¢3 (curve 1). perturbation series in R truncated at R* (curve 2), and nume-
rical simulation (curve 3). Independent tests show that the numerical simula-
tion is accurate to within 5% at this Reynolds number. An indication of
the magnitude of the Reynolds number R is given by the relation R, = 0.372
Ratt =0, where

RJ. = V,m,ﬂv

is the Reynolds number based on the Taylor microscale. Thus, at R = 300,
R, =112 att = Owhile it is found that R, = 37 att = 6. These values of R,
should be compared with laboratory wind-tunnel experiments on grid
generated turbulence which are generally performed in the range R, =
25-50. Also, notice that in the absence of the nonlinear terms of the Navier—

T T T T T T 7 T
R =300

2.0 | Series in t 7]
2 Series in R

8.0F -]

3 Simulation (K=16)

6.0

(1) /720

| 1 | 1 " i
0O 2 4 6 8 10 2 14 |6 18 20
{

Figure 2.2 Enhancement of mean-square vorticity Q(¢)/ £2(0) vs ¢ for the Taylor—Green vortex
at R = 300, Curve |: perturbation series in powers of ¢ truncated at order ¢°, Curve 2: perturba-
tion series in powers of R truncated at order R%. Curve 3; numerical solution of the Navier—
Stokes equations.
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Stokes equations Q(f) < Q(0), so that the enhancement of mean-square:
vorticity observed on Fig. 2.2 is a measure of the strength of the nons
linearity. )

The variation of Q(r) with Reynolds number relates indirectly to the:
effect of Reynolds number on large-scale structures in the flow since =~

e(t) = % aqQ).

If Q(t) is asymptotically proportional to R (for ¢ beyond some initial adjust-
ment period) then e(f) is Reynolds number independent, i.e. 4 in (2.49)is=
0(1) as R — co. Some support for this behavior is given by the results plotted
in Fig. 2.3. Here ¢(¢) is plotted as a function of # for R = 100 — 400, the:
simulation with R = 400 being only moderately accurate.

0O 2 4 6 8 10 12 14 |16 i8 20
t

Figure 2.3 Rate of energy dissipation «(r) [= 2vn(1)] vs t for R = 100, 200, 300, 400.

It may be suggested from these results that, as R — oo, e(f) approaches
a finite limiting function e,(z) [with the property that e,(1) = 0fort < 1,,].
In order that ¢, (t) > Ofor¢ > t_, it is necessary that Q(t) -+ coas R - cofor
t > t,. In other words, typical solutions of the Fuler equations (inviscid
Navier-Stokes equations) should develop infinite vorticity after a finite time
even in the absence of solid boundaries. It is not now known whether the
generation of infinite vorticity in a finite time is consistent or not with the
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three-dimensjonal Euler equations,t though there are several indications
that it is from analytical turbulence theory.

The asymptotic Reynolds number independence of «(t) has important
consequences. In fact, if all large scale features of turbulent flows are
similarly Reynolds number independent then it is possible to simulate
(numerically or otherwise) large-scale flow features of very high Reynolds
number turbulence when ‘the Reynolds number of the simulation (and,
hence, the required resolution) is qulte modest (cf. §6.6), so long as the
Reynolds number of the simulation is large enough for the flow to be
“turbulent”’.

In Fig. 2.4, we plot the evolution at R = 200 of

D3/D1 = {vv;. vv)/{wv,+ ¥¥)
E3/El = D/OP

where { ) denotes space average, which are, respectively, measures of the
‘anisotropy of energy dissipation and energy. It is apparent that energy dis-
sipation approaches a state of near isotropy for ¢t = 4-16, while the kinetic
energy itself is always far from isotropy. This result is consistent with the
qualitative ideas on local equilibrium outlined in §2.6. Small eddies domin-
ate dissipation but energy-containing eddies dominate the energy.
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Figure 2.4 Anisotropy ratios of kinetic energy (£3/E1) and dissipation (D3/D1) vs ¢ for the
Taylor-Green vortex at R = 200,

tIn order that vorticity, become infinite in a finite length of time, Kelvin's and Helmholtz’
vorticity theorems require that vortex lines be stretched to infinite length in a finite time.
Since the velocity is bounded (by energy considerations), this can only be done in the
interior of the inviscid fluid by small-scale “‘crinkling™ of vortex lines. The author knows
of no analytical example of this complex process.
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Finally, we remark that, as 1 — oo, the flow reverts to a form proportional
to the initial conditions (2.61), which is very anisotropic. This result may
be demonstrated directly from a modal representation of the velocity field
(Orszag and Fateman, 1974). '

III Small-Scale Structure of Turbuleuce

3.1 The Equilibrium Range

According to the discussion of §2.6 and §2.9, the principal dynamical’
effect of small eddies back on larger scales is through their contribution:
to the energy dissipation rate e. In order for € to be asymptotically indepen-;
dent of Reynolds number, it is necessary that the wavenumber range contn-
buting to enstrophy grow with Reynolds numbers. The excitation of small;
scales is accomplished by the nonlinear terms in the Navier—Stokes equa
tions. If the small scales are indeed generated solely to dissipate at the ratet
¢, then we may argue that the energy spectrum E (k) may be a functxon'oﬁ
only ¢ k, and », the molecular viscosity. Since [E(k)] = cm3-2 [e] =

cm’-2, [k] = cm-}, and [v] = cm%-}, it follows by dimensional analysxs

that the energy spectrum for k > L' must be of the form

E(k) = €*k= F(kik,) (3.1);
k, = (e/v*)", (32)

where F(x) is an arbitrary function satisfying [ x? F(x)dx = 1/2in order.
that ¢ be given by (2.37).

The result (3.1) is precisely that given by the theories of Kolmogorov
(1941 a,c), Obukhov (1941), Onsager (1945, 1949), and von Weizsdcker
(1948). We now examine the relationship of the theories to the above argu-
ment in more detail. The principal assumption of these theories is that
high-wavenumber components are not influenced directly by the external:
conditions that give rise to the turbulence. To see the plausibility of this:
assumption, consider the mechanism of excitation of small eddies. Only’
the energy containing eddies are directly excited by whatever drives the:
turbulence. Small eddies are excited when the energy-containing eddies’
become unstable and nonlinear interaction acts to transfer energy to hlgh_
wavenumbers. If, at some time, only Fourier components up to wavenumber
K are excited appreciably and if Ris so large that viscosity is unimportant for!
k < 2K then nonlinear interaction in (2.31) induces excitation in wave-;
numbers up to 2K. Once these latter wavenumbers become appreciably'
excited and if viscosity is still negligible, a further doubling of wavenumber:
up to 4K will be possible, and so on. If the characteristic external scale is:
L, = 2n/k,, then modes with & >» k, are excited only after this wave-~
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number-doubling process acts many times [of order log; (k/k.)]. It is
plausible to expect that while the external conditions do have an important
effect on wavenumbers of order k;, all such effects are “forgotten™ by very
small eddies for which the wavenumber-doubling process intervenes alarge
number of times.}

It is not a priori obvious that Kolmogorov’s assumption is dynamically
consistent. Surely the energy-containing eddies have an important kine-
matical effect on small eddies—small eddies are convected from point to
point by the large-scale flow. The essence of the assumption is that this
convection is dynamically unimportant. In fact, a small eddy superimposed
on a uniform velocity field is convected without any change of shape. Ifthe
large scales of turbulence can be approximated by uniform convection, then
large scales should have only a weak effect on the structure of small eddies.
In this case, interactions between large and small scales should be dynamic-
ally insignificant and small eddies should be statistically independent of
large eddies. "

Another aspect of Kolmogorov’s assumption is worthwhile pointing out.
Consider turbulence maintained in a fully-developed state by random forces
acting on large scales. At high Reynolds number, the energy fed in at low
wavenumbers is lost to viscous dissipation at high wavenumbers. In order
for Kolmogorov’s assumption to be justified, the process in which energy
is transferred in many steps of size k; (k, « k) to maintain the excitation at
k must be dynamically insignificant compared to the direct transfer of
excitation from wavenumbers of order k/2, say, to wavenumber k. How-
ever, it is clear from (2.31) that the former interaction involves u(k)u(k)
while the latter involves u(p)u(q) with p = 0(k/2) and g = 0(k/2). Now,
since k » k., ju@u(q)] < juk,)uk)|if |u(k)] decreases with k as, say,
a power of 1/k. It would seem that interactions (k,, k) are dominant relative
to (k/2, k/2) and that Kolmogorov’s assumption is unjustified. This difficulty
is resolved by noting that the principal effect of (k., k) interactions is a phase
change of u(k) corresponding to the uniform convection of small scales
by large scales. This phase change will be seen to have no dynamical effect
on the structure of small eddies (cf. Sec. 6.5).

Kolmogorov's assumption requires that energy transfer among small
eddies not depend on large-scale peculiarities of the flow, so that energy
transfer is Jocal in k-space. That is, direct effects of wavenumbers k, <« k
through (k,, k) interactions are not effective in changing the energy in

+This argument indicates that energy flow to wavenumbers much smaller than those of
the energy-containing range need not be accompanied by loss of information. Such flow
can proceed in one step when two energy-containing wavevectors nearly the negatives of
each other interact to excite a very low wavenumber.
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mode k. Heuristically, it is helpful to think that energy from a large eddy.
passes through many intervening wavenumbers in the process of reaching a:
small eddy. Consequently, if X is a surface in k-space not intersecting
wavenumbers of order &, and if the Reynolds number is sufficiently large,
it is possible to associate an energy flux ¢(Z) to Z whichdepends only on the
parameters of the flow determined by modes “near” the surface X. Similarly,
all dynamical characteristics of small eddies miist be transferred locally in k-
space. Another consequence of Kolmogorov's assumption is that the energy
spectrum must be approximately isotropic at large k, since dependence on -
any direction preferred by imposed external conditions is ruled out. :

The picture emerges that high-Reynolds-number k-space flow consists;:
of an energy source (low k) and an energy sink (high k) with the properties
of the sink statistically independent of those of the source. If Ris sufficiently
large, energy dissipation is principally confined to wavenumbers k > k; >» k,,
where k,, given by (3.2), is a dissipation wavenumber at which viscous dis-
sipation first becomes significant. The principal contnibution to [ E(k) dk.
comes from k ~ k., while the principal contribution to [, k%E (k) dk comes
from k ~ k4 In effect, high-Reynolds-number energetics involves two
distinct “black boxes”, one containing the energy source k ~ k, and the
other, the energy sink k ~ k,;, which are connected by a transmission line
k., < k < k,. The part of the spectrum corresponding to the transmission
line is called the inertial range since inertial forces, not external conditions
or friction, dominate the dynamics. The wavenumber range k > k,is called
the dissipation range, while k > k,is the far dissipation range. The complete
range k » k, is called the equilibrium range.

The properties of the inertial range are partlcularly simple. Since k » kg,
statistical properties are approximately isotropic in space and quasi-station-
ary in time. Further, since k <« k,, effects of viscosity are negligible. Since
the inertial range is completely local, E(k) can depend only on the local
properties of the transmission line at k. Two of the simplest properties at k
are k itself and e(%), the rate of energy transfer through the sphere [k| =
Notice that although e(k) may be defined locally at £, it has a global signi-
ficance. The rate of energy transfer e(k) must be constant throughout the
inertial range and must equal the rate of energy input e from the energy-
containing range which must itself equal the rate of energy dissipation given
by (2.37). In other words, the transmission line is loss-free. It is natural to
assume, following Kolmogorov, that the properties of the transmission line
at k are completely determined by k and e. In particular, E(k) can depend
only on k and e. It follows by dimensional analysis that

E(k) = Cre*k—3R3 (k. < k < k), (3.3)

where C, is a uriversal constant independent of viscosity and large-scale
conditions. This result is consistent with (3.1) if F(0) =
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As a simple consistency check, it may be verified that the Kolmogorov
spectrum (3.3) is such that most of the energy of the turbulence lies in
wavenumbers much smaller than those of the inertial range, while most of
the dissipation occurs in much larger wavenumbers. This follows since
fo k- dk diverges at k = O and [ k%-%*dkdiverges at k = oo. Consistency
by this criterion requires only that if E(k) oc k=" in the inertial range then
1<n<3

A further check involves the characteristic time of inertial-range eddies, .
which will be denoted by z,(k). Since 7,(k) can depend only on k and ¢, -
dimensional analysis shows that

7k} = Age~'Pk=2, (3.4)

where A, is a universal constant. There are at least three reasons why ,(k)
may be called a characteristic time of an inertial-range mode. First, the total
energy in inertial-range eddies whose physical size is of order 271:/k may be
taken to be -

2k
v = [ E(p)dp, ek,
2 12k

which is clearly a definition of some arbitrariness. The quantity Av(k) isa
measure of velocity differences across distances of order 2x/k. Therefore,
the time it takes an eddy of wavenumber k to circulate relative to itself, or
turn over, is of order [kAv(k)]-! o« 7,(k). Another interpretation of 7,(k)
obtains by considering the time it would take energy transfer occurring at
rate ¢ to deplete the energy 4[Av(k) J% if the input to Av(k) from lower modes
were turned off. This time is clearly §[Av(k) ]¥¢ o =,(k). These two alterna-
tive interpretations of z,(k) show that inertial-range modesin Kolmogorov’s
theory share the property of energy-containing modes of being critically
damped: an inertial-range eddy is damped, when the energy input is turned
off, in a time of order its turnover time. Notice that 7,(k) » 7,(k) = (kv )~
when k » k,. Here z,(k) is the time it takes an energy-containing eddy to
sweep an inertial-range eddy past a fixed observation point. If sweeping were
dynamically significant, inertial-range energetics would be governed by =,(k)
and the inertial-range energy spectrum would be proportional to k-2 (cf.
Sec. 4.9). Since weak shearing does not effectively mix small eddies, =,(k)
is not dynamically significant.

A third interpretation of (k) is the time it takes to decorrelate the relative
phase of the simultaneous Fourier amplitudes of distinct wavevectors of
magnitude of order k. With regard to this third interpretation, it isimportant
to observe that =,(k) is nor the time it takes nonsimultaneous phases to
become uncorrelated. In fact, we will show in § VI that the time for u(k, 1)
to become uncorrelated with u(k, *) is ¢ — ¢’ = 0(<,(k)). Essentially, the
distinction is that sweeping by a large eddy is effective in decorrelating the
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phase of a mode at different times because the position in space of the eddies’
corresponding to the mode is changing randomly, but sweeping is not
effective in decorrelating the simultaneous relative phase of correlated:
modes which is not sensitive to change of position by large-scale convectiof?*

Equation (3.4) may be used to test the consistency of (3.3). In order for k
to reach approximaté equilibrium, it is necessary that z,(k) « 7, where i
is the time for appreciable decay of the turbulence. According to (2. 49)"“
€ = 0(vi,k.) so that 7, = O(k;'v;L). Therefore, 7,(k) < =,is equivalent tg_
k%3 » k¥? which is satisfied in the inertial range.

In the dissipation range k 2 k;, the spectrum takes the general form (3.1);
The dissipation wavenumber k, measures the wavenumber at which viscous.-
effects become important. The latter identification follows in at least thrég,
other ways. First, viscous effects become important when the viscous dis-,
sipation time for mode k, 7,(k) = (vk?) -!, is shorter than z,(k), which requird's'_'f
k 2 k,. Notice that 7,(k;) = 7,(k;) = (v/ )2

Second, viscosity may be expected to damp rapidly the energy spectrum.
at high %, so that the function F(x) should approach zero rapidly as x-
increases. In this case, the dissipation integral (2.37) may be approximated-
using the inertial-range spectrum (3.3) up to a cutoff k,, so that "

: 4
€= 2p j; kK (Cyre?3k-57) dk.

Equation (3.2) follows to within a numerical factor.t
A third interpretation of k; is obtained by considering the “local”
Reynolds number R,(k) defined by

Ri(k) = Av(k)/(kv), oc V¥ (k¥v), = (kJR)¥?

the latter two relations holding for k in the inertial range. For ¥ < k,,-
R,(k) » 1 and the corresponding inertial-range eddy should be strongly
unstable. However, when k = 0(k,), R,(k) = O(1) and, therefore, k;specifies
the wavenumber beyond which eddies are stable and the nonlinear transfer
mechanism ceases to be effective.

It is interesting to compare the relative sizes of the advective (v- vv)and
viscous (v v2v) terms of the Navier—Stokes equations. Naively, the estimates
[v: v v| = 0%, /L,) and |[v ¥ 2v| = O(vv,,,/L2) give

fv: ov|

= O(R).
on] 0@

tSinilarly, if kL is defined as the low-wavenumber cutoff of the inertial range and if it is
required that §v2n, = [ Cre¥’k~97dk, then ¢ = Cg¥ 2y3 oK. This shows that ¢ indepen-
dent of vas v =+ Oisan esscntlal ingredient of the Kolmogorov theory which requires Cy to
be universal.
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Actually,
Jv-vv[D =0002,.9), = 0(evi,/v)
while
| TH[) = 0‘(1)2 (" KE® dk>, — 0(uk3e).
0

. Thus, the correct estimate of the ratio of advection to dissipation is given by

A EAA YA — O(RVA
o] 0 ) O(RYV4),

Corresponding to these k-space results, there are x-space expressions for
the so-called structure-function tensor defined by

B, 1) = X + 5, 1) = v, O]0x +5,8) = v&x, D, (3:5)
If the turbulence is isotropic, it follows that

B ) =4 [ ® Bk, t)[l - Si‘;r"’ ]dk, (3.6)

where r = |r|. If k.7 < 1, the contribution from wavenumbers k = 0(k,)
where E(k) is largest, is suppressed by the factor [kr — sin kr Y kr = §(kr)* +
0[(kr)*] With a spectrum of the form (3.3), this latter factor ensures that
the dominant contribution to (3.6) comes from the equilibrium range, infact
k £ 1/r. Therefore, using (3.1),

B ~ ()" Glk), @3.7)

where

G(y) = 4 fo ® FG)x -3y -1[xy — sin xp]dx. (3.8)

As y - oo, it may be verified that

G(y) ~ Bry*?,
where

= 4F(0) fo°° z-%[z - sin z]dz, = %r(%) Cp, = 4-82C. (3.9

Therefore, if k,r < 1 < k,r,
“(l‘) o~ B €2l3r2/3 (310)

These results are precisely what would be derived by dimensional analysis
with the assumptions that the probability distribution of v(x +r,7) —v(x,?)
depends only on ¢, r, and v for k,r « | and that the dependence on vis
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negligible if k,» » 1. Indeed, this is the formulation originally used by
Kolmogorov. This version of the theory is formulated using velocity differs
ences since it is necessary to remove the kinematical effect of convection of
small eddies by large eddies before applying the statistical hypothesis of
dynamical independence of large and small eddies. For example, naive
dimensional analysis applied directly to R, (r) indicates that it has the form
(3.10)—proper dimensional analysis basedwon velocity differences not
absolute velocity indicates that B _,(r) = 2(R,,(0) — R,.(r))is given by (3. 10)’f

Since the skewness factor S(r) and the flatness factor F(r) depend only on
velocity differences, dimensional analysis applies, showing that

S() = Skar), F(r) = Flkyr) (.11

for k,r « 1. Here &(x) and #(x) are universal functions. In partxcular,
Sy = #(0) and F, = ¥ (0) are universal constants independent of Reynolds
number. For k;r <« 1 « k,r, S(r) = F(o0) is uniquely expressible in terms
of C,. The result, due to Kolmogorov (1941c), is

S() = 0-53Cg¥? (kyr 1 € k) (3.12)
which is derived as follows. Let r = (r, 0, 0). Then, since B (r) =
22, [1 = f(n)], ocr?, it follows from (2.9) that

g =4 -} lUr <1 <kp). - (3.13)
But since B, (r) = 2v%,[3 ~ f(©) — 2g(n], (3.10) implies that
& + 1) — &) = B,), = §4Bge??rs. (3.14y

Also, dimensjonal analysis shows that {[v,(x + 1) — »(x)]*> o er for.
k;r € 1 « kyr. In fact, a dynamical argument not reproduced here but.
given by Landau and Lifschitz (1959, §33) shows that the latter constant of
proportionality is exactly —4/5, so that

nEx +1 - nX) P~ —ter (kr <1 <€ kyr). (3.15)

Equations (3.9), (3.14) and (3.15) establish (3.12). It is important to empha-
size that (3.12) does not apply to S—evidently, as » decreases from L,, S(r)
first reaches the plateau (3.12) with S, approached only when k;r < 1.

The consistency of the equilibrium range with the dynamical equations
for cumulants developed in Sec. 2.4 has been examined by Orszag and
Kruskal (1968). It was found that the inertial range k-%3 spectrum is con-
sistent with the cumulant equations, but that its uniqueness is by no means
guaranteed. In the far dissipation range, it was also shown that, if the energy
spectrum is of the form

E() ~ CkPe-* (k > k,) (3.16)
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it is necessary that @ < 1. The reason is simply that if @ > 1, wavevector
interactions involving wavevectors of order 4k (}k + }k — k) would drive too
large a response in u(k); in fact, ju(ik)u(dk)| » |u(k)|if @ > 1. A spectrum
of the form (3.16) with @ = 1, 8 = 3 was shown to be consistent w1th the
hierarchy of cumulant equations.

In closing this section, it is fitting to point out the distinctive nature of
the equilibrium range. The equilibrium range is not in *‘equilibrium” inthe
usual statistical mechanical sense, since there need be no detailed balance.
On the other hand, the equilibrium range continually dissipates energy with
a stationary state maintained only because characteristic time scales are
short compared to large-scale evolutionary times.

3.2 Comparison with Experimeut

The basic assumptions of the Kolmogorov theory are sufficiently general
that there is no a priori reason why the theory should not apply equally to
all types of high-Reynolds-number turbulence. The small-scale structure of
such diverse flows as turbulent wakes, jets, and boundary layers should be
governed by the theory of §3.1. For this reason, Kolmogorov’s theory is
sometimes called the universal equilibrium theory. This is a misnomer. Even
if the theory is basically sound, which it may not be (cf. §3.3), it cannot
justifiably be applied to hydromagnetic turbulence (Kraichnan, 1965z),
large-Mach-number compressible turbulence, and a host of other physically
interesting turbulent flows which involve high-frequency modifications of
small-eddy dynamics (Orszag and Kruskal, 1968).

Over the past decade, there have been many experimental verifications of
the k-33law (3.3). Recent references that provide fairly exhaustive citations
of earlier work include Gibson, Stegun, and Williams (1970), Van Atta and
Park (1972), and Wyngaard and Pao (1972). The inertial-range power-law
exponent —5/3 is accurately verified with measurements ruling out a signi-
ficantly flatter inertial-range spectrum but perhaps consistent with a slightly
steeper spectrum than k-%:. The experimental results are consistent with
Cy = 1-5 or perhaps somewhat larger, but there are indications that the
value of Cy muy depend on the conditions under which the turbulence
develops.

The predictions of the Kolmogorov theory for higher-order statistics are
not consistent with experiment. According to (3.11), the skewness factor S,
and the flatness factor F,should be universal constants. Moderate Reynolds’
number grid turbulence experiments give S, = 0-4 and F, ~ 4 at R, =~ 50.
However, more recent measurements show an unmistakable increase of F,
with R,. Kuo and Corrsin (1971) present laboratory data that show F,
increasing to nearly 10 at R, =~ 1000. This is abput the limit for laboratory
flows, but geophysical flows can be studied to nearly ten times that Reynolds
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number. Wyngaard and Tennekes (1970) and Gibson and Masiello (1972)
present data from an atmospheric boundary layer giving values of S, up t6
about 1.0 and F, up to about 40. The data are consistent with F, oc R3%
(Kuo and Corrsin, 1971). The flatness factors show no sign of approaching;
constants even at R, = 10% which is generally believed high enough fo'gé
Kolmogorov’s theory to apply. It should be noted that there are a number;
of technical difficulties in making reliable measurements of high-order;
statistical properties at high R,, as has been recently emphasized by
Tennekes and Wyngaard (1972) and.Van Atta (1974).

3.3 Intermittency and Models of Turbulent Motion

The Reynolds number dependencies of F, and S, are not consistent with
the theory of §3.1. As noted in §2.8, a statistical quantity with a large flat-
ness has a larger probability of taking on either very small or very large
values than a Gaussian variable. The fact that the flatness of av,/éx, is
large implies that high Reynolds number turbulence is intermittent with
regions of high turbulence activity separated by regions of very low turbul-
ence.

A related defect in the theory of Sec. 3.1 was pointed out by Landau, who
noted that Kolmogorov's theory does not take proper account of spatial-
fluctuations of local dissipation rates (see the footnote on p. 126 of Landau
and Lifschitz, 1959). The average rate of energy dissipation e is the space
(or ensemble) average of the fluctuating quantity

. 1 fov, ov

€=3" <ax,, + a_xﬂ)
where summation on a, g is implied. With increase of Reynolds number,
Landau argued that the variance of ¢ should increase without limit. On the
other hand, the equilibrium theory of § 3.1 gives {(é — €)*> = 0(¢?), inde-
pendent of Reynolds number. There has been a spate of work recently on
estimating the Reynolds number dependence of the variance of € and the
consequent effects on the Kolmogorov theory.

Obukhov (1962) determined the effect of the variation of € on B,,(r),
defined by (3.5), by assuming that (3.10) remains valid if ¢ is replaced by
the spatial average of é throughout a region of linear dimension r about the
point x. Call this spatial average ¢, (X, t). Since the averaging volume in its
definition is finite, ¢,(x, t) is a random function of x, #, but {e,(x, 1)) = €.
The local structure function obtained in this way can be averaged over the
fluctuations of ¢, to obtain an “average” structure function

B, (r, 1) = Bele?*>r¥3, = B, b(r)e¥*r?3, (3.17)
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where
b(r) = {e¥*) ¥,

The function b(r), not determined without further hypotheses, gives the
effect of the dissipation fluctuations on the structure function. The result so
obtained neglects the effect of fluctuations of k,(e,), in the sense that
'Obukhov assumed- that (3.10) applies for <k,(¢,))r » 1, while it may seem
- that the local criterion k4(e,)r » 1 is more appropriate. However, more
fundamentally, if (3.10) is not generally valid, then there is no evident rcason
why (3.10) should bold in Obukhov’s modified form. In fact, there is no
evident reason to expect a direct connection between ¢,(x, 1) and incrtial
range,quantities. While the dissipation rate e must equal the rate of ¢ .crgy
cascade through tle inertial range, there is no such connection b. -een
e,(X, t) and the locul inertial-range cascade rate.

Kolmogorov (19¢2) assumed that the distribution of the random variable
e,(x, ¢) is log-normal, i.e., the distribution of In ¢, is Gaussian, and that the
variance of In ¢, is

X
o7 = ln 6%, 1) — mitx, o> =] 00 )+ ORI K >
A(x, t) + 9 In(k,L,), k,r < 1,
(3.18)
where m,(x, t) = <In €,(x, 1), h is a universal constant (with the factor 9
inserted for convenience), and A(x, 1), 4'(x, ¢) depend on the large-scale

structure of the flow. The log-normal distribution of ¢, requires that the
probability density that €,(x, ) = a be

P(a) = 2nota?)-exp[—(n a — m,)Y20?] (3.19)

These assumptions of Kolmogorov are derived by Yaglom (1966) and
Gurvich and Yaglom (1967) from a hypothesis of self-similarity of the
spatial structure of é(x, ¢) at large Reynclds number. An implicit assumption
of independence between scales is also used by Yaglom er al.

The assumptions of log-normality and (3.18) suffice to determine the
function b(r). The distribution (3.19) implies that

{er) = exp(pm, + 4p’o}) (3.20)
for all p. It follows that

€ = exp(m, + {o?)

ey =exp(qm, + 3od), o e*(r/L,)Y (kor » 1).
Consequently,

B (x) oc e r3(r/LY (kor « 1 <« kgr)
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so that (3.6) gives, in the inertial range,
E(k) oc ¥Pk-33(kL,) . (3. 21'):-

The log-normal distribution of ¢, has not been subject to direct experiz,
mental test. However, the probability distribution and spectrum of fluctuas
tions of D(x) = (dv,/9x,)? have been measured. The latter spectrum is the:
Fourier transform of

{DPE + 1) = DHD(X) — <DH)).

It has found that the probability distribution of D(x) is approximately log-
normal (cf. Stewart, Wilson and Burling, 1970; Gibson and Masiello, 1972;
Wyngaard and Pao, 1972, and papers cited therein). The experimental value
of 9k in (3.18) is determined to be approximately 0.4, so that the induced
modification in the k-5 spectral law is exceedingly small.
It follows from the log-normality of D(x) and (3.20) that
F, = exp (¢?)

SO = exp (i 0.2),

where ¢?is the variance of In D and the expression for S, requires the
(incorrect) assumption that —(dv,/9x,)® > O everywhere. With this latter
assumption, it follows that S, oc F2%, which is not inconsistent with experi-
ments (Wyngaard and Tennekes, 1970). .

The correctness or not of log-normal models of small-scale fluctuations
have recently been given close scrutiny (Novikov, 1971; Kraichnan, 1974a;
Mandelbrot, 1974). Kraichnan considers the basic self-consistency of both
the original Kolmogorov theory of §3.1 and the log-normal modifications .
described here. He concludes that the intermittent nature of turbulenceis
exceedi 1gly subtle, does not reflect general statistical mechanical principles,’
but rather depends on the detailed structure of the Navier—Stokes equations.
Novikov, Kraichnan, and Mandelbrot argue that log-normality cannot be
exact, but nevertheless it can be a good model of the phenomencn. Nearly
all the experimental results show substantial deviations from log-normality
at very large and very small amplitudes.

Additional studies of intermittency of small scales have been based on
physical models of turbulent motion. The progenitor of these models is
Townsend's (1951) model of turbulence as a random collection of vortex
sheets and lines. Several models have been suggested (Corrsin, 1962;
Tennekes, 1968; Saffman, 1968, 1970; Kuo and Corrsin, 1972; Kraichnan,
1974a), but unfortunately none is fully satisfactory. Saffman observes that
the energy-containing eddies produce a local straining field whose magni-
tude «. ‘s of order v,,,/L,. If the convergence associated with these motions
tends to produce vortex sheets and tubes, then the thickness of the sheets
or the radius of the tubes is easily shown to be of order (v/a) 2 = (4/15)" A,
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according to (2.13) and (2.49). This gives the physical interpretation of
the Taylor microscale as the typical thickness of shear layers formed in the
flow.

Saffman next assumes that the characteristic velocity within the sheets
and tubes is of order v,,,. Also, he observes that the model structure thus
far obtained can explain neither the empirical result that eis independent of
Reynolds number nor the physical meaning of the Kolmogorovlengthscale
1/k,. This leads him to suggest that the curved vortex sheets of thickness
2 are themselves unstable to a kind of Taylor—Gértler instability (Taylor,
1923; Gértler, 1940). This instability has the property that a secondary
motion is formed with a cellular structure of typical size the thickness of the
original vortex sheet. The boundary layers between these Taylor-Gértler
cells have a thickness of order (vA/v,,,)¥? oc 1/k,, since the strain rate within
the sheet is of order v,./A. On the basis of this model of 1/k,, Saffman
argues that the dJissipation within the boundary layers between Taylor—
Gortler cells is of the right magnitude to explain eindependent of Reynolds
number. An interesting prediction of the model is that the flatness factor
F, is proportional to R,, a prediction not in complete disagreement with
available experiments (which are better fit by R} as noted in §3.2). How-
ever, the model has some shortcomings that await clarification. First, the
k-7 inertial-range law is not obtained, nor is the equivalent constancy of
the skewness factor S(r) in the inertial range secured. Second, it is by no
means obvious, at least to the author, that Taylor—-Gortler instability need
occur in the absence of solid boundaries. Third, if the latter instability does
occur, it must be explained why the Taylor—Gértler cellular motion is not
itself unstable. G:.her criticisms are given by Kraichnan (1974).

3.4 Two-Dimensional Homogeneous Turbuleuce

Motion in two dimensions has the property that the vorticity of each fluid
element is unchanged, except by viscous diffusion. In fact, since w = (0,0, w)
for two-dimensional motion in the x,—x, plane, the vortex stretching term
on the right-hand side of (2.57) vanishes, so that

%w(x, 1 + v(x, 1) Vo(Xx, 1) = vV2w(X, ).

it follows that there exist an infinite number of isolating inviscid constants
of motion

f [w(x, £)]"dx (3.22)

in addition to the energy integral. The presepce of these additional con-
straints has fundamental effects on the nature of two-dimensional turbul-
ence. For one thing, inertial forces alone cannot produce an equilibrium
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range with a universal statistical distribution independent of externally
applied boundary conditions and random forces. The presence of infinitely
many constrains ¢n inviscid motion clouds the validity of ergodicity argu-
ments for the approach to an asymptotic statistical state.t Furthermore;
even accepting ths existencc of an asymptotic state, the properties of two-
dimensional turbulence differ fundamentally frém three~dimensional turbus
lence.

In isotropic two-dimensional turbulence, the energy spectrum E(k) is
defined in analogy to (2.27) by

Sop(k) = %‘l P ,(K), (3.23)
where a, f now take the values I, 2. It follows that
%(v,,(x + 00> = [ ERIoke) dk (3.24)
0 .
%(w(x + 00 = | * RE(R)Jo(kr) dk, (3.25)
0

where J, is the Besse!l function of zero order.
In freely decaying turbulence, the equations of motion imply

d (- w
7 J, Bl dk = 2 [TREG ) = (0] (3.26)
% fo “KE®k, 1) dk = ~2» fo “KE®K, 1) dk [= -] - (3.27)

where 7(t) is the rate of dissipation of enstrophy Q = {{w?). Since 5 ». 0,
enstrophy is bounded by its initial value. Therefore, ¢ — 0 as v — 0, in
marked contrast to three dimensions where (2.49) holds with 4 = 0(1).
Just as we inferred that the principal dynamical effect of small scales in
three dimensions is to ensure that ¢ = 0(1)as R - o, 50 we may hypothesize
that in two dimensions the principal effect of small scales should be to
ensure = 0(1) as R -+ oo. While vorticity growth is bounded in two dimen-
sions so that e = 0(I/R) as R - oo, vorticity gradients can grow and thereby
maintain 5 = (1) as R - co. Unfortunately, it is known that n = O(1}is
untenable; it would require that the Euler equations generate infinite mean-

t1n inviscid three-dimensional flow, the circulation in any circuit composed wholly of fluid
elements is conserved. This gives an infinity of integrals in addition to the energy. However,
in contrast to the two-dimensional vorticity integrals (3.22), these circulation integrals should
not be of consequence to the statistical mechanics of turbulence since they are probably not
isolating, A closed curve consisting of fluid elements twists, turns, and tangles in a complicated
way, so that the circulation constraiat does not effectively “isolate™ realizations.
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square vorticity gradients after a finite time (cf. § 2.10). Howeyer, it is
known that, in two dimensions, mean-square vorticity gradients can grow at
most exponentially fast, so that at any fixed time 5 = 0(1/R) as R — co.
Nevertheless, the heuristic argument is still tenable that small scales are
generated in response to the need to dissipate enstrophy at the rate 1.

Using the argument that led to (3.1), it follows that for small scales, E(k)
is a function of #, k, and v so that [Kraichnan, 1967; Leith, 1968; Batchelor,
1969]

E(k) = n¥*k-2 G(k/k,) (3.28)

ky = (/) (3.29)
since [n] = s For ~k < k,, it follows that

E(k) = Cn¥k=, ©(3.30)

where C' = G(0).

In this modified inertial range, the analog of the eddy-circulation time
(3.4)is

Ti(k) = A=A, (3.31)

Since z/(k) is independent of k in this enstrophy-transfer inertial range, high
wavenumbers do not relax in a characteristic time much shorter than the
characteristic time of energy-containing eddies. Therefore, theideasleading
to (3.30), in particular, the notion of an equilibrium range, are not strictly
correct and (3.30) may be in error. Alternatively, the spectral law (3.30)is
inconsistent because it implies that the enstrophy-cascade is not local. The
enstrophy spectrum corresponding to (3.30) is proportional to k! so that
each octave contributes equally to the mean-square shear. Since shear on
scales larger than the size of an eddy can distort the eddy, in contrast to
shear-free convection which gives no distortion, it follows that the large
mean-square shear due to small k gives nonlocal effects of large scales on
the transfer process. However, it can be shown that logarithmic corrections
to the k—*law suffice to maintain self-consistency. Kraichnan (1971b) argues
that E(k) = C'p**k-3(In k/k,)~" for some k,.

There are several length scales that are associated with the enstrophy-
transfer inertial-range (3.30) (Lilly 1971). The length L, defined by

n = Viu/L3 (3.32)

is analogous to the integral scale of three-dimensional turbulence, because
of the formal similarity with (2.49). It may be shown that, aside from
logarithmic factors, L, is proportional to the Taylor microscale [cf. (2.13)].
This follows since (3.30) may be used to estimate Q, with the result propor-
tional to n¥? except for a logarithmic factor dependent on the cutoffs of
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the enstrophy-transfer range. It is a simple exercise to show that the Taylor:'
microscale is a nondecreasing function of time in two dimensions. Another:
length scale is given by 2n/k,, which may be interpreted analogously to'
2n/k, in three dimensions as a dissipation length. A second Taylor micros,
scale may be defined by (2.13), replacing ¢ by n and vZ, by Q, i.e. A, =
(vQ/n)V% However, since enstrophy equals u”’ to within a logarithmic!
factor, A, is proportional to 2x/k,.

Batchelor (1969) infers the manner of decay of enstrophy from similarity-
principles. Since v, is nearly constant during decay of high-Reynolds-
number two-dimensional turbulence, and assuming that E(k, t) depends only
on the parameters v, ¢, k, so that the spectrum is shape preserving, it
follows that

E(k, 1) = vt g(Vumsk?), ' (3.33)°

where g is some undetermined function. Therefore, enstrophy decays as
a0 = | " KEK, 1), = { “ g(x) dx 12 (3.34)
0 0
at large Reynolds number. It follows that
=2 [ ") dx 1l e(t) = 20 { “ g(x) dx 12 (3.35) -
0 0

As t + o, v, approaches a nonzero limit while enstrophy decays to zero.
This requires that energy be concentrated in small wavenumber, which is
consistent with Onsager’s (1949) picture of the clumping together and
coalescence of similarly signed vortices. In Onsager’s picture, an ‘initial
motion evolves into a number of strong, isolated vortices. Whatever high-
wavenumber excitation survives is produced in the boundary layers between
these vortices and, therefore, should be intermittent.

Saffman (1971) has extended this argument to model the inertial range
of two-dimensional turbulence as originating in the small scales in the
boundary layers between nearly-constant vorticity eddies. This model leads
to a k-4 inertial range spectrum (since w(x) is discontinuous) and an ens-
trophy dissipation rate 5 oc »¥?Q!"6. This model is not inconsistent with
presently available numerical and experimental results, but Kraichnan
(1974b) presents cogent arguments for believing it to be oversimplified.
Kraichnan (1974b) also argues that intermittency does not affect the log-
corrected k-3 inertial-range spectrum.

Numerical simulations of two-dimensional turbulence have been quite
useful for testing turbulence theories and overall energy dynamics. How-
ever, as shown by Herring, Orszag, Kraichnan, and Fox (1974), the currently
available simulations do not give trustworthy results at Reynolds numbers
large enough that there be an inertial range sufficiently extensive to test
power law exponents.
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. Two-dimensional turbulence relates to the planetary-scale dynamics of
the atmosphere, since the atmosphere is a thin, stratified fluid layer in which
large-scale motions are largely two-dimensional. A more relevant theory of
planetary-scale motions is given by the theory of quasi-geostrophic turbul-
ence (Charney, 1971) in which a k-3inertial range s also obtained. Observed
spectra [Julian, Washington, Hembree, and Ridley (1970) and references
cited therein ] are not incons}Ftcnt with the k-3 spectrallaw, thoughthedata -
reduction methods used by Julian et al may have influenced their results,

Shur (1962) and Lumley tl964) deduce a k-3 spectrum for a physical
situation different from the strictly two-dimensional flows considered above.
Shur and Lumley consider turbulence in a stably stratified fluid, i.e. a
fluid ift a gravitational field with the density of the fluid decreasing upwards,
assuming the Boussinesq approximation. The stable stratification has an
important effect on the vertical motion of eddies whenever the eddy-
circulation time (3.4) is longer than the internal oscillation time of the
stratified fluid, viz. the inverse Brunt—Vaisala frequency N ="[—ga(In p)/
dx, 2 where g is the gravitational acceleration acting in the negative x;-
direction and p is the potential density (Phillips, 1966, 2.2). This condition
requires k < k,, where k, = A¥?N¥2¢-'2 The same wavenumber criterion
for effects of stratification on vertical motions follows from the condition
that the kinetic energy of an eddy be small compared to the gravitational -
potential energy necessary to flip the eddy over. In the so-called buoyancy
subrange, k, « k <« k,, the vertical-velocity spectrum should depend
only on N and k, so that dimensional analysis gives the buoyancy-subrange
spectrum proportional to N2k-3 This result is identical to (3.30) with the
time 5~ replaced by N-\. For k » k,, vertical motions are not constrained
by stratification and the k-3 law (3.3) results for the vertical-velocity
spectrum.

IV Introductiou to Analytical Theories of Turbulence

4.1 Introduction

Ideally, the objective of an:ﬂdytical turbulence theory is the exact calculation
of all statistical properties of turbulence. At the present time this objective
has not been met. Several formally exact theories have been proposed, but
these have not proved workable. For example, there has been much interest
in the application of functional analysis to turbulence. Hopf (1952) devised
an elegant single functional-differential equation that is formally equivalent
to the complete cumulant hierarchy introduced in § 2.4, Tatarskii (1962) and
others have solved Hopf’s equation in term$ of functional integrals—a
lucid exposition is given in the monograph by Monin and Yaglom (1967).
Howevcr, at present, these formal functional integrals remain intractable
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to both exact and approximate analyis. The results obtained to date are,
just a formal restatement of the Navier—Stokes equations. It even seens:
that the extraction of useful information from the functional integrals i is;
more difficult than the brute-force study of turbulence by computer sunula;;
tion of solutions of the Navier-Stokes equations. The point is that whil

finite-difference methods for the solution of partial differential equatlonsﬁ
such as (1.21), are well founded, known approximate methods for the
solution of Hopf’s equation are not. The problem of approximating the
solutions to Hopf’s equation does not involve only numerical analysis-:
essential physics must be understood and accounted for. '

A more realistic objective of analytical turbulence theory is the approxl-
mate calculation of some statistical properties of turbulence. This goal is
consistent with the motive for introducing statistical averages in the first
place, viz., to be able to say something about complicated, otherwise un-
wieldy, solutions of the Navier—Stokes equations. For one thing, it is
necessary to show that statistical information is more accessible from the
equations of an analytical turbulence theory than from computer simula-
tion of turbulence. In this regard, analytical turbulence theory offers two
principal advantages over direct computer simulation. First, the statistical
averages employed by an analytical theory exhibit symmetries, such as
isotropy, which need not be evident in individual realizations. Second,
statistically averaged quantities are smooth functions of their arguments,
and do not exhibit the fine-scale intricacy of individual realizations. A com-
parison of the relative difficulty of solution of the equations of turbulence
theory versus solution of the Navier—Stokes equations is given in §§4.5,5.1,
and 6.6. .

‘In summary, we require that a theory be workable, in the sense that
approximate results can be obtained from it, at least in principal. For
example, the complete unclosed hierarchy of §2.4 is formally exact, butit -
is not clearly workable, at least until a physically plausible prescription is
given for resolving the closure problem.

4.2 Models for Energy Transfer

A simple theory of high-Reynolds-number turbulence is obtained by resolv-
ing the closure difficulty at the level of (2.34) with an expression for T(k)in
terms of E(k). A number of such relations have been proposed, notably by
Obukhov (1941), Heisenberg (1948), Kovasznay (1948), von K4rmdn (1948),
Ellison (1962), Kraichnan and Spiegel (1962), and Leith (1967). These
models for energy transfer are not strictly deductive, as they all involve
one or more undetermined constants or functions. The spirit of these
transfer approximations is exemplified by the theories of Heisenberg and
Leith, described below.
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The basis of Heisenberg’s theory is the assumption that the small eddies
play a similar role in nonlinear transfer to that played by molecules in
viscous dissipation. This assumption is plausible provided the eddies respon-
sible for the eddy-viscous dissipation have much smaller size and timescale
than the eddies which are to be dissipated. The rate at which eddies of
wavenumber less than K lose energy by viscous dissipationis 2 [§ k2E (k)dk.
By analogy, Heisenberg proposed that the energy balance equation (2.34) be
written

_%IKE(I(, I) dk = [u + ve(K)]fK zsz(k, t) dk, (41)

where »,(K) is an “ed:ly viscosity” coefficient used to model transfer to
small eddies. Heisenbe.g observed that 1,(K) should depend only on the
structure of small edd. s, and so he assumed that v,(K) depends only on
E(k, ) for k > K. Sinc. (v(K)] = cm?s~! and [E(k)] = cm?s 2 Heisenberg
suggested the dimensionally correct expression

v(K) = py [ VEG 0V d, 4.2)

where py is an undertermined constant. By differentiation of (4.1) with
respect to K, it follows that

9%)— - -2 [u o * VER DIE dk] KEK, 1) +
X

4.3)
K
+ py VEK, 1)/K? f 2k2E(k, 1) dk.
. 0
Detailed numerical solutions to (4.3) are presented in the review artcle

by Lin and Reid (1963).
For K in the equilibrium range, (4.1) with (4.2) takes the form

€= [v + u fK CVERE dk:| fo " 2kE W) dk, (4.4)

where eis the rate of energy dissipation. Equation (4.4)is most easily solved
by using v,(K) instead of E(k) as the dependent variable. The result is
(Bass, 1949)

Ek) = 8 \*” 1+_8£3_k_4 _mk—s/a_ (4.5)
v 3yke

In the inertial range, k « (p}e/v?)"so that the k-¥*law (3.3) is recovered
with Cg = (8/9py)¥3. With Cy = 1.5, it follows that p, =~ 0-5.
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In the far-dissipation-range, (4.5) reduces to
E() = phevk=" (k > (phe/v’)). (4.6}

This k-7 law for the far-dissipation-range follows directly from (4.3) with!
the approximations

3E(K, 1)
at

Since [= kSE(k) dk diverges for the spectrum (4.5), it follows that third:,
and higher-order derivatives of the velocity field do not exist a mean square. -
This prediction of Heisenberg’s theory is contrary to the expectation that!
viscosity is sufficiently smoothing that all derivatives of the velicity exist.
in mean square. The origin of the unphysical power-law dissipation-range’
spectrum may be understood as follows. In the dissipation range, an alter-
native for »,(K), as plausible as Heisenberg's, is

K
< 20K2EKK, 1), v, (K) < 1, f 2k2E(k) dk = e/v.
0

n(K) = f"’ g(k/k,) VETE, 7R dk, @7

where g(0) = py, g(x) » 0 as x -, o, and k, = (e(t)/v’)"“ In the inertial
range, this modified v, (K) also ylelds the law (3.3). However, the far- dis-
sipation-range spectrum (4.6) is modified by (4.7). With g(x) = pye ¢ > 0,
it follows that the far-dissipation‘range spectrum is

E(®) = iphe?v=*k~"7 exp(=2ck/k,) (k > (phelv)"). (4.8)

Therefore, the k-7 law is an artifact of the neglect of any destructive inter-
ference between molecular and eddy viscosity, qualitatively accounted for
by (4.7).

Even aside from the prediction of the unphysical dissipation-range .
spectrum (4.6), Heisenberg’s transfer expression is not entirely satisfactory.
The dominant contribution to p,(K) with the spectrum (4.5) comes from
k = 0(K), but the notion of eddy viscosity is not strictly appropriate to
describe energy transfer between wavenumbers of the same order of magni-
tude. For the transfer process to be describable in terms of a viscosity
coefficient, it is necessdry that the energy-receiving eddies reach dynamic
equilibrium in a time scale much shorter than that of the eddies whose
dynamics is under consideration.

In a sense, Leith's (1967) transfer approximation is complementary to
Heisenberg’s. Leith bases his theory on the assumption that energy transfer
is a diffusion process in k-space. Forisotropic turbulence, Leith writes

Tk, 1) = —de(k, t)/k, 4.8)

which defines e(k, ) as the energy flux across a sphere of radius k. Leith
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makes the diffusion approximation
e(k, 1) = —d(k) de(k, 1)/ ok, . 4.9

where d(k) = p k' e(k, t) = [E(k, t)]* k% and p, > 0. These forms for
k), e(k, t) are obtained by consideration of dimensional correctness and
the possibility of inviscid equipartition solutions. The latter solutions, dis-
cussed in § 5.2, require that T'(k, £) = 0 if E(k) o k2

In the equilibrium range, Leith’s approximation gives a Kolmogorov
inertial-range spectrum

E(k) = Qe/11p, )2k, 4.10)

ConsiStency with a Kolmogorov constant Cy= 1-5 requires p, = 0-10.
In the dissipation range, there is a cutoff wavenumber & such that E(k) =0
for k » k¢ Itis found that kI’ = 6.32 (p2%/v?)"4. This cutoff is evidently a
consequence of the improper local nature of (4.9).

All these energy transfer approximations suffer from the difficulty that
they approximate T(k, ?) characterized by interactions among triads of
Fourier modes [cf. (2.34)] by transfer expression involving interactions
between pairs of wavenumbers [as in (4.3)]. A consequence of this artificial-
ity is that interactions among distant wavenumbers are misrepresented. This
is the origin of the difficulties that these theories have in portraying plausible
dissipation-range dynamics. Effectively, the third wavenumber of a triad
modulates the interaction between the other two. When k& <« p then also
k « gsincek + p + q = 0, so that the interaction between u(k) and u(p)
is modulated by the factor u(q) which is very small for gin the dissipation
range. The absence of this destructive interference in Heisenberg’s theory,
where all pair interactions are given essentially the same weight, leads to
the unphysical power-law dissipation-range spectrum. Another difficulty
of theories of the type discussed here is generalizing them to inhomo-
genous turbulence problems.

Orszag and Raila (1973) compared the results of Heisenberg’s and Leith’s
theories with numerical simulations of the decay of moderate Reynolds
number homogenous turbulence. Leith’s theory gave very unsatisfactory
results, while Heisenberg’s gave satisfactory energy spectra but unsatis-
factory transfer spectra.

4.3 Expansion in Powers of the Reynolds Number

Formal solutions to the Navier-Stokes equations are obtained by expan-
sion in powers of the Reynolds number. The formal solutions obtained in
this way are used to give formal series expansions of various statistically
averaged quantities. The latter expansions proVide a convenient framework
within which various analytical theories can be compared and the nature of
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diverse approximations to high-Reynolds-number turb:ience understood:
In addition, Reynolds number expansions form the bz.is of the theory of-
low-Reynolds-number turbulence. o

It is convenient to introduce dimensionless variables by measuring.
distances, velocities, and times in units of the initial values of L,, v,
and L?/v, respectively. In these units, (2.31) takes the form

3 ! '
[E + kz] u, (k) = _E'anl’"(k)f uy(p, tyu,(k —p, t)dp, 4.10) )
where R = v, L,/v. If u(k, ¢) is formally expanded in the series
u,k, 1) = f: Rou®(k, ), u®k, 0)= 9k, 0) - 4.12),
nel

and substituted in (4.11), equations for u{(k, ¢) are obtained by equating
the coefficients of like powers of R.
By this procedure, it follows that

_a_ 2‘ (©) —
l:@t +k] un (k‘t) —01

whence
uO(K, 1) = e~y (k, 0). (4.13)

Similarly,
i I 2 .
P, 1) = =3 Pogy () f ds e K- f ufP(p, $Hu®k — p, 5) dp. (4.14)
(4] .

Proceeding in this way from order to order, it is possible to obtain u )(k, 7}
as a homogeneous functional of degree n + 1 in u®,

The formal solution (4.12) of the Navier—Stokes cquations may be used
to express any moment in terms of the initial veloci:y field. For example,

<k, Dy (p, 1)) = 3 R* 5 Cat(k, Duf (p, 1°). (4.15)

nw0 mw0 .

The coefficient of R"is a homogeneous functional of degree n + 2 in the
initial velocity field. Therefore, <u,(k, )u,(p, ¢')> for ¢ or ¢’ > 0 depends
on moments of all orders of the initial distribution (Kraichnan, 1966a).

If the initial velocity distribution is multivariatc Gaussian, then all
moments may be expressed in terms of {u,(k, O)u,(p, 0)) so that the only
nonvanishing cumulant of the initial distribution is S(k, 0), which is arbi-
trary. In particular, all odd-number cumulants (and moments) vanish
initially. The resulting series for {u, (k, t)u,(p,!')) contains only even powers
of R. The coefficient of R* consists of at least 9"(2n)!/(27+' n!) terms each
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of which is an n-fold integral over wavevectors of a quantity of functional
power n + 1 in §,,(k, 0). This proliferation of terms is due to: (a) the
algorithm for computing 2nth order moments of a Gaussian distribution
[factor (2n)!/(2"n 1)]; and (b) the number of possible branchings in (4.15)
when u ¢ is expressed in terms of u® [factor (1/2)32].

This accounting of terms in the series for S,,(k; 7, 2/) suggests that trunca-
tions of expansions in powers of R are not likely to be convenient approxima-
tions unless R is very smali. Even aside from questions of convergence or
divergence, the number and complexity of terms rises so rapidly with in-
creasing order that calculation is not feasible. Kraichnan (1966a) points
out that to calculate S,,(k) through order R* requires evaluation of con-
siderably more than 401/(2%20!) = 3.2 x 103 terms.

The convergence properties of (4.12), and by implication (4.15), remain
in doubt. Consideration of various model dynamical systems suggests that,
for a typical realization, the expansion (4.12) has at most a finite radius of
convergence for ¢t > 0. For example, the model equation

dx

rTi —~Rsgn(x)x? x(0) = x,,

where sgn(x) is the sign of x, has the solution
x(1) = xo/(1 + R|xo]0).

Expansion of this x(r) in powers of R converges only for R < (]x,]#) - This
example also suggests that the radius of convergence of (4.12) approaches
w ast — 0 and O ast —+ . These results for model dynamics do not really
prove anything about (4.12), but they do show that infinite radius of con-
vergence of (4.12) should not be assumed.

If, for typical realizations, (4.12) has only a finite radius of convergence,
it may be concluded that (4.15) and similar series expansions of higher-order
moments probably have zero radius of convergence. This conclusion is
reached as follows. For each realization, define a Reynolds number R’ =
vime L}/ v, where vl L’ are obtained as spatial averages for the particular
realization. The Reynolds number R = v,,, L,/ v entering (4.15) is a kind of
average of R’ over the ensemble. Now consider a realization with Reynolds
number R’at ¢ = 0 and for which the series (4.12) has radius of convergence
Ry(z) with Ry(tr) < oo fort > 0. Note that R,(¢) may depend on k. Since the
initial ensemble is assumed Gaussian, the initial flow obtained by increasing
all velocities by an arbitrary constant factor A is also a member of the en-
semble with positive probability. However, the initial Reynolds number of
this accelerated flow is AR', which for 4 > R,(f)/R'is beyond the radius of
convergence of (4.12). It follows thatforany¢ > Oand any R > 0, a Gaussian
ensemble has realizations for which (4.12) diverges. Therefore, (4.15)
probably diverges for any R > 0if ¢ or ¢* > 0. This argument also shows that
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the Reynolds number expansions of averages over any unboundedensemble
probably diverge for all R after the initial instant.

However, even if (4.15) is divergent, it is still likely that it is an asymptotic .
expansion as R — 0. The limit R < 1 occurs in one situation of interest in
turbulence theory, viz., the final period of decay of unforced turbulence’
(Reissner, 1938; Batchelor, 1953, §5.4). If 1 =°0 is chosen as an instant’
within this final period, u,(k, ) is approximated for t = 0 by u® (k, ). It
follows that

S,p(k, 1) = =28, (k, 0) 4.16)

for the principally excited wavevector range during the final period. The -
result (4.16) can only be valid when k% = 0(1). When k% » 1, the series

(4.15) is not uniformly valid. For it was argued in §3.1 that spectra in the far

dissipation range steeper than e - could not be dynamically consistent. The
same argument shows that nonlinear transfer maintains the excitation of

wavenumbers with k¢ :» 1 above the level (4.16). Although the problem of

the spectrum for k% » 1 in the final period remains unsolved at this time, it

has been shown by Benney and Lang (1970) that the series (4.15) remains

uniformly valid as an expansion in R for all ¢ provided k¥ = 0(1).

4.4 Quasi-Normal Theory: Single-Time Moments

An obvious way to close the hierarchy of Sec. 2.4, and so obtain deter-
ministic equations for a finite number of cumulants, is to neglect the effect
of all cumulants above a certain order. For example, neglect of triple
moments, T(k, p), in equation (2.32) for the energy-spectrum tensor gives

8 2 =
[3t + 2vk]s,,(k, £) =0,

whose solution (4.16) includes only the effect of viscous dissipation of
energy. Since triple moments are neglected there is no nonlinear energy
transfer in this approximation. However it may be hoped that, by making
similar closures at higher order, consistent theories are obtained which
include nonlinear effects and whose solutions approximate the exact dyna-
mics with increasing accuracy. Closures obtained by the procedure just out-
lined are called cumulant-discard approximations.

The second closure within this scheme involves neglecting fourth-order
cumulants, U (k, p, q), in equation (2.33) for third-order cumulants. In this
way, there results the closed set of equations

3 i
[+ 2] 5,00,0) = ~12u) [ Ttk p ) e
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—éP,p,(—k) f T,..k,p, t)dp @.17

[;f; Lok 4P q2>] Top (K, B, 1) = —iP.,o(€)S,, (0, 1)S,.(8, £)

—iPp,, (p)S., (K, 1)S,, 4, 1) —iP,,,(@)S,,(k, 1)S,, P, 1), (4.18)

where q = —k — p (Millionshtchikov, 1941; Proudman and Reid 1954;
Tatsumi, 1957).

Equations (4.17) and (4.18) may be derived if it is assumed that the statisti-
cal distribution of Fourier modes is approximately Gaussian with zero mean.
More specifically, it is only necessary to assume that fourth-order moments
are related to second-order momeants in the same way as for a Gaussian dis-
tribution. In this case, (4.17) and (4.18) follow directly by taking second
and third moments of (2.31). In this “derivation”, the assumption of a
Gaussian distribution of Fourier amplitudes is applied inconsistently, since
T, (k, p, t) does not have the value appropriate to a Gaussian zero-mean
distribution, which is zero. To derive (4.17), (4.18) consistently, it is neces-
sary to justify an asymptotic ordering in which the neglected fourth-order
cumulants remain small compared to the terms retained in (4.18). This has
not been done, except at very low Reynolds number. The present application
of the Gaussian hypothesis to fourth-order moments, but not third, is called
the quasi-Gaussian or quasi-normal approximation. It is analogous to the
random phase approximation of many-body physics (Bohm and Pines,
1953).

If the probability distribution at ¢ = Ois exactly Gaussian, then T, (k,p,0)
= 0. At later times, evolution according to (4.18) implies that T is no longer
necessarily zero, so that the probability distribution typically does not
remain Gaussian. In fact, the solution to (4.18) with 7, (k,p, 0) = Ois

t
Tk, p, 1) = —i fo ds e K@= P, (K)Sy, (D) 5)S,0(Q; 5)

+ Py, (0)S., (K, 5)S,,@, 8) + P, (@)S,,(k, 5)Ss(p, )], 4.19)
which may be substituted in (4.17) to give an integro-differential equation
for §,,(k, 1).

If the turbulence is isotropic, the equations of the theory simplify when
" S(k, 1) and Tk, p, ) are expressed in terms of the scalar functions E(k, 2),
o(k, p, q, 1), Y(k, p, g, t) according to (2.27) and (2.30). In terms of these
scalar functions, (4.17) becomes

[73; + 2vk2] E(k, 1) = 4nk*Im f dp [-2ay(k, p, q)o(k, P, g, 1)

+ bik, p, Q@(p, g, k, 1) + k*ci(k, p, @) W(k, p, 4, 1)), - (4.20)
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where
a,(k, Py @) = ~PuPyu(K)Py,(P)P.s(0)/ (2K7) @21y
bk pr 4) = —PaPup®)Pp(B)P,s(@)/ (2K7) (4.22)
alk, p, @) = —pokyk P K)P,@P, @/ (2K (4.23)

and k + p + q = Osothat k, p, g are the legs of a triangle. The geometrical
coefficients are discussed further in the next Section. Their complication is
due directly to the pressure in (1.21) and the incompressibility constraint
(1.22). It is important to note that (4.20) follows directly from (2.32) and
isotropy, so that (4.20) is generally valid for isotropic turbulence indepen-
dently of the quasi-normal approximation.

Similarly, (4.19) reduces to the two scalar equations

t
@k, p, g, t) = —i(4nkpg)~* f ds e —ok+p7+)0-9)
0

- E(q, 5)[KE(p, 5) — p*E(k, 5)] (4.24)
¥ (k, p 4, 1) =0. (4.25)

Finally, a single integro-differential equation for E(k, r) is obtained by
substitution of these results .n (4.20):

k2
47pig?

K 2 = i ' SRt
I:at+2vk]E(k,t)_ j dpf0 ds e -k .

-{2k%a(k, p, 9)E(p, 5)E(q, s) — E(k, s)[p*b(k, p, 9)E(q, 5) +

+ q*b(k, 9, P)E(p, )]} (4.26)
where
a(k, p, ) = Py, (K)Py(@)P,,(Q)P.;,(K)/ (4k?) (4.27)

bk, p, q) = ~P.,(K)P,.;(p)Pys(q)/ (2k?) (4.28)
andq = -k ~p. )

4.5 Properties of Wavevector Integrations and Kinematical Coefficients

The coefficients a, b,, ¢, a, b defined in the last section are not pecuhar to
the quasi-normal approximation. In fact, these kinematical coefficients
appear naturally in most low-order closure approximations. In this section,
some properties of the kinematical coefficients are explained. First, it is
convenient to investigate some properties of the wavevector integrations
appearing, e.g., in (4.26).
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As mentioned several times in the foregoing, the conditionk +p +q =0
implies that k, p, q form a triangie with sides of length k, p, g. It follows
that k, p, g necessarily satisfy the triangle inequality

lk—pl <qa<k+p

with equality only if the triangle degenerates into a line segment. Con-
sequently, for fixed k, the only possible triad interactions involve wave-
vectors lying in the “wavenumber slot” shown in Fig. 4.1. It is possible to
convert wavevector integrations of the type appearing in the hierarchy
equations into integrations over the wavenumber slot. If F(k, p, g) is an
(isotropic) function of triangle shape and size but not of triangle orientation,
then for any fixed k& it follows that

{

P+9=-k

Flsp 9% =27 [f ELFk, p, ) dp dg, (4.29)

where ff dp dq indicates integration over the slot shown in Fig. 4.1. Tliis
result follows from dp = 2np?*dpdzand ¢* = k? + p? — 2kpz(law of cosines),
where z is the cosine of the angle included between k and p, since 8(p, g/
a(p, z) = —kp/q. Using (4.29), the quasi-normal closure (4.26) assumes the

; 1 1 | | | 1
0 1.0 2.0 3.0 4.0 5.0 6.0 70
p/k

Figure 4.1 Region of integration in the “triangle integrals” (4.29).
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symmetrical form
i 2 _l ! —Hk 4+ @)W =$) -1~
[at+2vk]5(k,t)_2ffdpdq fo ds e -k 41 +a0-9 kp-1g
a

* {Zkza(k! D q)E(P, S)E(q’ S) - E(kr S)[sz(kr P Q)E(q, S) +
+ g*b(k, g, P)E(p, 5]} . (4.30)

The kinematical coefficients defined by (4.21)—(4.23), (4.27), (4.28) are
most conveniently evaluated in terms of the angle cosines of the triangle
formed from k, p, q. Let &, 8, y denote the interior angles opposite k, p, g,
respectively. Also, let x = cos @, y = cos f, z = cos p, so that kpz = —k-p,
etc. Then, it follows by straightforward calculation from the definitions that t

alk, p, q) = (1 — xyz — 2y?2%) @.31)
bk, p, 9) =% oy + %) @)
ay(k, p. q) = alk p, g) + ¥(z* - ) (4.33)
bk p, @) = £(1 = Py — (1 - y)xz (4.34)
ek, p, ) = 31 — A1 — 22)(1 — 2pz/k). (4.35)

For example, (4.31) follows by expansion of (4.27), noting that
ko kyPoy(p) = K¥(1 — 22), P, (K)P,@) =1 + z*

etc. It is also convenient to note that since B + y = n ~
x=0=-y)H201 =z2)2 —pz, x2 42 4 22 =1 —2xyz.

Also, the law of sines implies that p/k = (1 — p?)"¥(1 — x?)? etc.
Various manipulations, some outlined below, establish the following
results:

0 <alk,p,q) =atk,q.p) < % 4.36)
k:b(k, p, q) = p*b(p, k, q) (4.37)
2a(k, p, ) = b(k, p, q) + b(k, q, p) (4.38)
bi(k, p, q) = —bi(k g, p) (4.39)

tLeith (1971) gives the two-dimensional analogs of the geometrical coefficients (%, p, g),
etc. A particularly clegant form of the two-dimensional b(k, p, g), due to Lilly, is

bk 2, ) = k=371 = (A2 - g0 = 2
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bk, p, 9) = ai(k, p, q) + bi(k, p, q) (4.40)
alk, p, ) = —ci(k, ¢, p). (441

For example, nonnegativity of a(k, p, q) follows from (4.31) since
(1 = )21 - )V 4 yz < 1 for|y| < 1,]z| <. Alternatively, nonnegat-
ivity of a(k, p, g) may be demonstrated directly from (4.27) by introducing

unit vectors n,(p), n,(p) [nl (@), nz(‘l)] defined so that p, n, (p), n,(p) [‘I- n,(qg),
n,(q)] form an orthogonal basis of three-dimensional space. Then since

Pau(p) = ”la(P)”u(P) + nza(P)ﬂzp(P)»

it follows that

4atep. ) = 3 [Pan0, 0@ [Pun ), G)(0)] > O,

where n,,(p) are the components of n,(p), and so on.

Some insight into the nature of the kinematical coefficients a(k, p, g),
b(k, p, q) is gotten by examining the contour plots shown in Figs. 4.2 and
4.3, respectively. Only the values of a(k, p, g) and b(k, p, g) within the wave-
number slot are relevant, so that only these values are plotted. Itis apparent
that b(k, p, q) shows much structure, while a(k, p, g) = 0-5 over most of
the slot.

At this point, it is appropriate to make some comments on numerical

5.0

4.0

3.0 -]
x5
~
o

20 -

1.0 =

| L | !
o] 1.0 2.0 3.0 40 5.0 6.0 70

p/k

Figure 4.2 Contour plot of a(k, p, g) within the wavenuymber slot shown in Fig. 4.1. The con-
tours are labelled by the values of a(k, p, ).
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q/k

| | i J
3.0 40 50 6.0 70
p/k

Figure 4.3 Contour plot of h(k, p, ¢) within the wavenumber slot shown in Fig. 4.2. The
contours are labelled by the values of b(k, p, 9).

methods to evaluate triangle integrals
I= ([ Ftep,q)dpdq
A

of the sort that appear on the right-hand side of (4.30), for example. Sup-
pose that the region of integration is truncated by requiring k, p, g to lie
in the finite range (kyo, k), where k,, may or may not be zero. If /repre-
sents the triangle integral in (4.30), then (ke k,op) must include all wave-
numbers with appreciable excitation, requiring that &y, < L, kiop > &,
In practice, the choices kyo = 0, ky, 2 ks oc RYY L, suffice. The resulting
truncated triangle integral is evaluated as a Riemann sum by dividing the
range (Kuo, kiop) With N 4+ 1 discrete wavenumbers k; = kyo, 4y, - - -,
ky = kyp- If the Nintervals Ak, =k, — k,_; (n =1,..., N)arechosen equal,
then the requirement that the mesh be sufficiently fine to resolve structure
at the integral scale L, requires that Ak, < L;!,sothat N 2 k, L, 2 R}
In this case, evaluation of Jinvolves order R}arithmetic operations for each
value of k. With equally spaced discrete wavenumbers, the requirement
N 2 R37is so severe that, at high Reynolds numbers, solution of (4.30) (or
any structurally-similar turbulence theory) involves nearly as much (or
more) computation as numerical solution of the Navier—Stokes equations.
If the use of equally spaced discrete wavenumbers were the only way to
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evaluate triangle integrals, there would seem little point to turbulence
theory, except for aesthetics. .

Fortunately, another choice of &y, ..., ky considerably reduces the
amount of arithmetic computation necessary to get acceptable accuracy in
the evaluation of J.-The point is that the integrand of the triangle integral
in (4.30) should be a smooth function of k, p, g with typically power-law
behavior, if the interpretation of E(k) as an ensemble average makes sense.
Therefore, an adequate approximation representation of the integrand is
gotten by choosing {k,} so that {log, k,} are eq ally spaced. With constant
logarithmic steps, k, = r"k,,, where r = log, k, — log, k,_,, so that thereare
a fixed number of steps m = 1/log, r per octave of wavenumber. Then,
N = mlog,(k,/kyy) = im log, R, + O(m) so that evaluation of /requires
order m?(log, R,)? arithmetic operations for each value of k. In numerical
calculations of the equations of turbulence theories, it is found that m =8
(eighth-octave bands) is usually sufficient for accurate wavevector integra-
tions. At high R,, the computational savings afforded by constant logarith-
mic steps is evident. Some of the details of the numerical methods used to
evaluate triangle integrals with constant logarithmic wavenumber intervals
are given by Kraichnan (1964a) and Leith and Kraichnan (1972). Numerical
methods are discussed further in Section VL

4.6 Properties of the Single-Time Qnasi-Normal Theory

The single-time quasi-normal approximation (4.17), (4.18) will be shown
unsatisfactory, in the sense that its predictions are not a valid approximation
to the properties of turbulence. Before showing this, a number of plausible
features of the quasi-normal theory will be indicated.

The quasi-normal theory conserves energy by nonlinear interaction, in the
sense th.t (2.35) remains valid. Conservation follows from (4.30) using
(4.36) — (4.38) and j’dk [[dpdg = fg’f dkdpdg.

A

Further insight into the nonlinear dynamics of the quasi-normal theory is
gotten by considering the evolution of enstrophy Q(f) = f{,” k’E(k, 1) dk,
when the Reynolds number isinfinite. An equation for Q(¢)is obtained using
the following relations, whose derivation is straightforward but tedious,

P+q 2
f Ka(k, p, @) dk = 3pa(p* + ¢*)

lp~gl

k
f " pbk, p, @) dp = (13K - 8Kg? + 3¢
el 12k

(k2_qz)3ln'k+q
8k* k—qf

+
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powers of Rort — f,indicates that the theories are asymptotically exact fof
small R or small ¢t — 1,. The fact that cumulant-discard approximations
retain terms of all ordersin Rz — 1, |suggests that solutions to the cumulant?
discard equations may be acceptable at finite or large R[¢ — ¢, ] where simple
truncations of the power series fail. Unfortunately, this is not the case. The,
domains of validity of the cumulant-discard approximations and the simpler
power-series truncations are apparently the saine, namely, small Ror¢ -,
Outside this domain of validity, both sets of approximations give physically
unacceptable results.

In numerical integrations of (4.30) from various initial spectra, Ogura
(1963) found that regions of negative E(k, ¢) developed if R was sufficiently
large. Some spectra obtained by numerical integration of (4.30) are shown;
in Figs. 4.4-4.6 (Orszag, 1970c). The only novel feature of the numerical
scheme used to obtain these results is the use of constant logarithmic wave-
number steps, for reasons described at the end of §4.5. Theinitial spectrum’
in all three cases is

E(k, 0) = 16(2/n)"2 v2,, k3, k* exp [~ 2(k/Kpes)2), (4.47)

where k., is the wavenumber of maximum initial excitation. In the runs.
‘plotted in Figs. 4.4-4.6, k., = 4 X 2'?and v, = 1 (initially). The values
of other relevant parameters are stated in the figure captions. The behavior:
shown in these figures is typical and not materially affected by the choice of
initial spectrum (4.47).

0.4 T T T T
—_—t=0
~ == t =.501p{0}/ Vs (O)
o3 / \ - t=1.00Lp(0})/ vpms (O)_|

—-— Pure Viscous Decay
1=1,00Lp(0)/ vpppe (O)

0.2 -

E (k,t)

0.1 |

1 s
[¢) 4 8 12 16 20

Figure 4.4 Decay calculation using the quasi-normal equation (4.30) with » = 0.08 and (4.47)
for the initial energy spectrum with v, (t = 0) = 1, kpy, = 4 X 214 = 4.75683. Wavevector
space was Lruncated into quarter-octave bands between ki, = 28 = 1.09051 and kiop
24¥8 = 41.4990 and the time step was Ar = 0-0025. These initial conditions give the mma.l
Reynolds number R, (0) = 5-25, and Taylor microscale A(0) = 0-4202. L,(0) = 0-5248 is the
initial longitudinal integral scale. The curve marked pure viscous dccay is computed using’
(4.16).



STATISTICAL THEORY OF TURBULENCE 309

At the lowest Reynolds number (R, ~ 5), the results plotted in Fig. 4.4
show that viscous decay is dominant and evolution according to (4.30)
differs little from evolution according to (4.16). This low Reynolds number
behavior is quite plausible. However, for R, = 15, the behavior predicated
by (4.30) is distinctly unphysical. For isotropic turbulence, (2.23) requires

0.4 T T T T

1=0

——— 1=.50Lp(OVvyms O)
—-— 121,00Lp(0)/ Vg (OF]
c-m=ms 121,27 Lp{O) Vg (O)

0.3r

o2

E(k, 1)

Figure 4.5 Decay calculation using the quasi-normal equation with v = 0.02 and all other
parameter values, except R,(0), identical to those given in the caption to Fig. 4.4. The initial
Reynolds number for this case is R,(0) = 21.

0.4 T T T [ T T T ] T T T I T T T [ T T T
| —1:0
——= 1=.50Lp(0)/ vims(0)
e 12 75 Lp(0)/ vy (O)
0.3~ --==— 1= 1.0OLp(0)/ vyms (0) ]
o2+
o
W L
O.1 [~
0
LlAl“']’J[llllJllIlll
0 4 8 12 16 20

Figure 4.6 Decay calculation using the quasi-normal equation with » = 001 and all other
parameter values, except R, (0), identical to those given in th& caption to Fig. 4.4. The mitial
Reynolds number for this case is R, (0) = 42.
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Figure 4.7 Evolution of E(kpy,,, ¢) for the calculation shown in Fig. 4.6. Here k,,,,, = 475683
and R, (0) = 42.

that the energy spectrum E(k, r) be nonnegative, which is grossly violated:
by the solutions plotted in Figs. 4.5 and 4.6. In these latter figures, it is seen-
that the energy density in modes that are most strongly excited initially.
becomes negative after about one circulation of the energy-containing
eddies.t In Fig. 4.7, the evolution at R, ~ 42 of the energy density in the
mode with the highest initial excitation is plotted as a function of time to
illustrate that E(ky,,, f) goes smoothly through zero.

It is lmportant to emphasize that violation of the realizability mequahty
(2.23) is not in itself disqualifying. After all, the quasi-normal theory is at
best an approximate theory, so that if the negative energy densities only
appeared in weakly excited, uninteresting regions of Fourier space, the
theory might still give a uscful description of other features of the tur-
bulence. Violation of realizability by the quasi-normal approximation is dis-
qualifying because the violation occurs strongly in dynamically important
regions of Fourier space.

If the initial flow is not restricted to be Gaussian, it is easy to concoct
initial energy and transfer spectra which are realizable + but which evolve
according to (4.17), (4.18) to violate realizability. The idea is to choose

T,,, (,p, 0) large in magnitude and of sign such that 8S,,(k, t)/8t|,ois very
negative, for some particular k. Then for fixed finite », S, (k, ¢) evolves
according to (4.17) to become negative in a time scale short compared to

tThe results of numerical simulation of the Navier—Stokes equation with initial spectra
(4.47) at a Reynolds number near that used for Fig. 4.6 are reported in § 6.6. The spectra
evolve smoothly.

{The cnergy and transfer spectra are said to be realizable if they can be expressed as
averages over a suitable ensemble,
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that required for T, (k, p, ?) to evolve significantly according to (4.18),
The initial conditions are realizable since the unspecified fourth-order
cumulants may be chosen large enough and of such sign to satisfy (2.24).
Of course, it is the neglect of the large fourth-order cumulants in deriving
(4.18) that leads to the violation of (2.23).

-. If only Gaussian initial conditions are allowed, the above argument ex-
plaining the origin of negative energy spectra in the quasi-normal theory
is not applicable. Therefore, we return to (4.30) to see whether there is any
tendency to preserve the positivity of energy spectra. For simplicity, only
the extreme case » = 0 is considered. Suppose that E(k, ¢} > O for all kand
all ¢ < t), but that (4.30) evolves the energy spectrum so that E(k,, ¢) =0.
Does (4.30) prevent E(k;, 1) < Ofort > 1,7

With » = 0 and E(k,, ¢,) = 0, it follows from (4.30) and (4.36) that -

Ek, 1)
or?

=;‘ I % [2ia(k,, p, 9)E(p, 1,)E(g, 1,)] dp dg > 0.

ret,

(4.48)

However, because the right-hand side of (4.30) involves the complete
history of E(k, t) fort < t,, 9E(k,, t)/3t|,., is not restricted positive by (4.30).
Since there is no restriction on the sign of the first time-derivative at ¢t = ¢,,
the positivity of the second derivative is not sufficient to prevent E(k,, t)
from becoming negative. In the next section, we shall (drastically) modify
(4.30) so that the left-hand side of (4.48) is replaced by dE(k,, t)/atl,_,l.
In this modified form, (4.48) implies that E(k,, ) remains positive forz > ¢,.

It is still necessary to explain how the conditions assumed at ¢z =¢,canbe
realized in normal evolution according to (4.30). Again, suppose that »is
negligible in the wavenumber range of interest. If E(k, 0) is chosen arbit-
rarily, we should expect, on the basis of the statistical mechanical principles
argued in §I, initial approach to an asymptotic state. This latter behavior
which is expected of the exact dynamics should persist in the quasi-normal
approximation, because the quasi-normal theory has plausible small-time
behavior (since it reproduces the first four terms of the formally exact
expansion in powers of f). Suppose for the sake of argument that (4.30)
evolves E(k, 1) so that E(k, t,) is very close to the asymptotic state. Now,
at r = t,, the memory integral on the right-hand side of (4.30) involves
quantities like

‘X
I= " E(p,s)E(g,5)ds
(1}
since v is negligible. In the expression J, equal wejght is given instants near

§ = 0 when E(k, s) is far from the asymptotic state as is given instants near
§ = 1, when E(k, s) is close to the asymptotic state. It follows that, at large
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Reynolds number, the right-hand side of (4.30) gives finite weight to instants
when the energy spectrum differs greatly from that of the asymptotio state,
even though the current spectrum may be closely approximated by that of
the asymptotic state. We infer that energy spectra evolving according to
(4.30) overshoot the asymptotic state and do not immediately relax. In fact,
this argument suggests that the spectral regions requiring the most internal
reorganization to reach the asymptotic state are those which overshoot
most. These regions, in particular wavenumbers containing much of the
initial excitation in the examples shown in Figs. 4.5, 4.6 are those which
first evolve to the condition E(k, ¢} = 0 and thence negative. .

The basic trouble is that the right-hand side of (4.30) includes too much
memory of past dynamical evolution. The only limitation on the memory
integrals in (4.30) is provided by viscosity. This viscous cutoff occurs at a
time of order (sk?)-', which is very large for » small and k not too large.
Actually, nonlinear effects (summarily called nonlinear scrambling) should
cut off interactions more efficiently than viscosity.t In the inertial range,
the relevant time scale for nonlinear scrambling is the local time (3.4),
which is independent of ». In this case, the memory integrals would cut off
after a much shorter time than (vk?)-!. Using this idea of nonlinear scramb-
ling to assist the loss of memory, we shall later be led to theories which do .
not significantly overshoot an asymptotic state. A simple theory of this type
is described in the next section.

Violation of realizability by the quasi-normal theory may also be demon-
strated using(Beichov's inequality (2.47).)The assumption of vanishing
fourth-order cumulants requires F, = 3, so that Betchov’sinequality implies
|So} <« 0.756. This bound on Sy is violated by the quasi-normal theory,as .
show by (4.47). Therefore, the quasi-normal approximation is incompatible
with a nonnegative probability distribution of velocity.

4.7 Quasi-Normal Theory: Markovian Modification

It is possible to make a simple, though crude, modification of (4.30) that
climinates many of the deficiencies of the quasi-normal theory discussed in
§§4.4, 4.6. The modification is

-i 2 _l . Y .
[a;*z”k]E‘k’ 0 =1 ([ dpdg otk p, g 0k g
&

- 2k%a(k, p, QE(p, 1)E(g, 1) — E(k, 1) [p*b(k, p, 9)E(g, 1)

1This effect of nonlinearity was apparently first realized by Lord Kelvin (18'87). Kelvin
termed the effect “vitiating rearrangement”, but we prefer “‘nonlinear scrambling”, the latter
term apparently due to S. C. Crow.
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+ g*b(k, g, p)E(p, ) ]} (4.492)
ok, p, g; 1) = f ' exp[— f ' {n(k, 1) + n(p, r) + 7(g, N}dr]ds,
’ ’ (4.45b)

where n(k) is an “‘eddy viscosity” coefficient included to account for the
effects of nonlinear scrambling. The form of (k) is discussed below. In
addition to the inclusion of n(k), there is another important modification of .
(4.30) included in (4.49). The energy spectra evaluated at the intermediate
time s in the memory integral on the right-hand side of (4.30) are evaluated
at the current time 7 in (4.49).1 Both these modifications of (4.30) are made -
a posteriori and lack fundamental justification. Our purpose in discussing
(4.49) is not to propose it as a basic theory of turbulence but rather to
illustrate the sort of effects that must be included in a satisfactory theory.

It is not difficult to show that (4.49) preserves the realizability of E(k, ),
whatever be g(k). In particular, E(k, t) remains nonnegative for ¢ > 0 if
E(k, 0) is nonnegative. For assume that E(k,, t,) = 0 while E(k, t) > O for
all k and all ¢ < ¢,. It follows from (4.49) and the nonnegativity of a(k, p, q)
that 9E(k,, t)/t|,..., > O, so that E(k,, t) > O for ¢ > ¢,. Similarly, for the
theory of anisotropic turbulence obtained from (4.17) and (4.18)in the same
way that (4.49) is obtained from (4.30), it may be shown that the realizability
inequality (2.23) is maintained during time evolution.

The feature of (4.49) that preserves realizability of the solutions is the
dependence of 2E(k, 1)/t only on current values of the energy spectrum.
When E(k, t) approaches an asymptoticstate, (4.49) predicts that dE (k, t)/ ot
becomes small, even at large Reynolds number. In contrast to the behavior
of solutions to (4.30) discussed in the last section, there is no significant
overshoot of an asymptotic state by solutions of (4.49). It is the property
that the rate of change of the energy spectrum depends only on the current
values of the energy spectrum that suggests calling (4.49) the Markovian
quasi-normal theory.

Another feature of (4.49) is that its solutions approach an asymptotic
state. This behavior may qualitatively be understood by considering the
nature of the transfer term on the right-hand side of (4.49). Since a(k, p, )
is nonnegative, the term involving @ represents a positive flow of energy to
mode k. Also, examination of Fig. 4.3 shows that b(k, p, q) is typically posi-
tive, so that the terms in (4.49) involving b represent a typically negative
flow of energy to k. The net flow is the sum of these absorption and emission

+1t follows from (4.49b) that

de

57 =1~ [k ) + n(p, 0) + nlg, )6

so that (4.49) does not in fact involve any memory integrals in t.
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terms. The quantity in curly brackets in (4.49) may be written

E(q, N(Ep,t) Ek1)
k’pq‘b(k P9 [ e - ]+

+ b(k, ¢, p) E(;:, t)[E(z, n_ El(c]f t)] ]
7 Lo

The form of this term and the fact that b(k, p, g)is typically positive suggests
that, aside from effects of molecular viscosity, the energy spectrum tends
toward an equipartition state in which E(k) oc k2 Furthermore, the structure
of the emission and absorption terms shows that equipartition is maintained
stably against small perturbations, again neglecting viscous effects. The
approach toward equipartition has been verified by numerical integrations
(not reported here) of the inviscid form of (4.49), and is in accord with the
detailed description of inviscid equipartition states given in §5.2.

With nonzero viscosity, no matter how small, excitation in high wave-
numbers is depleted by viscous action and equipartition is not attainable.
It follows from the structure of the transfer term that there is energy flow
from strongly excited low-wavenumber modes to weakly excited high-
wavenumber modes. The balance between viscous dissipation at large
wavenumbers and the tendency of the transfer terms to establish equiparti-
tion determines the form of a quasi-steady asymptotic state. Further, since
the emission terms in (4.49) are proportional to E{(k, f) but the absorption
term is not, the asymptotic state is stable. For if £(k) is increased locally
above the value appropriate to wavenumber k ir the asymptotic state, the
emission terms will be increased appreciably while the absorption term will
be little affected, showing thattheasymptotic state tends to maintain itself.

The properties of realizability and approach to an asymptotic state are
demonstrated in an elementary way by showing that (4.49) is the exact
equation for the ensemble-average energy spectrum of a model dynamical
system. The present model is closely related to one that will be discussed
in §6.2 in connection with the direct-interaction theory. Models of the kind
discussed here have been given by Phythian (1969), Kraichnan (1970a),
Leith (1971), and Herring and Kraichnan (1972). In the case of (4.49), the
model is the Langevin equation

ad,(k, t)
ot

= —plk, .k, 1) + g.(k, 1), (4.50)

where A (k, #) is a hypothetical stochastic variable satisfying
E(kt)
4n k?

p(k, t) is a nonstochastic damping to be specified below, and q(k, #) is a-
white-noise stochastic variable also chosen below. The variable 0(k, ¢) is a

<, (k, )idy(p, 1)) = P(k) = 8(k + p), (4.51)
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mathematical artifice that should not be confused with the Fourier coeffi-
cients u(k, ¢). Since p(k, 1) is nonrandom, it follows from (4.50), (4.51) that

BEED - oy 0BG 1 + Q1,0 (4.52a)
<q.(k, Dd,(p, ') Gk 8k +p). (4.52b)
4 k2

Further, since the solution to (4.50) is

i Ak, 1) = G(k; ¢, 0) 4,(k, 0) + j.:' G(k; 1, 5)g.(k, s)ds,
where

Gk; t, 5) = exp[— f (k. r) dr] . (4.532)
it follows that |

O(k; 1, 1) = Gk; 1, 0)Q(k; 1, 0) + fo "Glk; 1, )F(k; 1, s)ds  (4.53b)

<q“(k‘ t)qrx(p, S)) = E%]tc’z—'gz

In order to recover (4.49) from (4.52), (4.53), the following choices of
Wk, 1), q(k, t) and a(k, 0) are made. The choice

Wk, 1) = vk* + %fbf dp dg kp~'q~'&k, p, q; 1) bk, p, Q)E(g, 1)
(4.54)

ensures that (4.52) reproduces the viscous term and the last two terms on
the right-hand side of (4.49a). The dependence of p(k, 1) on E(q, ¢) may
seem unusual-—for clarity, this dependence is explained further below.
The damping factor (k, r) is a kind of eddy viscosity coefficient. In fact,
a self-consistent theory without arbitrary constants or functions is obtained
if p{k, 1) = n(k, 1) so that (4.49b) is replaced by

ok p, ;1) = [ expl~ " Wk 1) + lp. r) + g, M) ar) s,
(4.55)

The resulting integral equation (4.54) together with (4.49a) determines
the functions y(k, r) and E(k, r)—this type of self-consistent theory s closely
related to those of Edwards (1964) and Herring (1965, 1966). We explore
this self-consistent theory further in §4.9. Hoawever, the only truly self-
consistent theory developed to date is the direct-interaction approximation
to be discussed in Section VI. In §4.8, we regress by investigation of semi-
empirical formulas for n(k, ¢) in (4.49b) to specify &k, p, g; 1).

sk + p). (4.53¢c)
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The random force q(k, ¢) is chosen to be proportional to the white noise
process a(t), definéd as a Gaussian variable with {a(t)) = 0, <a(t)a(s)) =
8(t — s). It is also necessary to introduce two statistically independent fields
9(k, ¢) and W(k, r) that both satisfy (4.51) with the same E(k, 1) as a(k, ?).
The required choice of q (k, ) is

0.0 1) = 1P,y @) [ a(t) [k p, 2; ]79,(0, 1) W (q, ) dp,  (4.56)

where q = —k—p. It follows from (4.27), (4.29), (4.51) and the statistical
independence of ¢ and W that

Fkit,$) =2 [[dpdgkp-ig- 6k, p, g; Dak p, DE(p, DE(@, 1)

- 8(t — s).

Finally, @(k, 0) is chosen statistically independent of q(k, ) so that Q(k;
¢, 0) = 0. With these choices of p(k, t), q(k, #), and a(k, 0), the energy equa-
tion (4.49a) follows from (4.52), (4.53).t This model gives a direct demonstra-
tion that E(k, ) is realizable; in fact, (4.51) shows that E(k, 1) is realizable
as the ensemble-average energy-spectrum of the random process a(k, ?).

The dependence of the terms of the Langevin equation (4.50) on the
energy spectrum E(k, ¢) requires some explanation. Perhaps the most
straightforward way of viewing the model is as a scheme for stepping E(k, 1)
forward in time from ¢ to ¢ + At At time ¢, E(k, t) is assumed known so
that p(k, ¢) is known and the random force q(k, ¢) may be constructed for
each realization of the ensemble. Then (4.50) may be used to step a(k, 1)
forward in time to give a(k, ¢ + A?) and thus E(k, t + At) after ensemble
averaging.

The model (4.50) involves two competing terms. The term proportional
to a(k, ¢) involves eddy-viscous and molecular-viscous dissipation of energy
in mode k, while the random force q(k, ¢) provides a diffusive input of
energy into mode k from all triad interactions. The latter interpretation of
the effect of q(k, ¢) is justified because Q(k; ¢, ) is nonnegative so that it
represents an input of energy into mode k. The nature of the stochastic
balance expressed in (4.50) between emission (viscous) and absorption
(diffusive) terms suggests strongly that the Markovian model exhibits
plausible relaxation to an asymptotic state for typical non-negative n(k).

4.8 Semi-Local Inertial-Range Structure

In this section, we consider the inertial-range structure of turbulence theo-
ries whose energy equation is of the form (4.49a). The results of this

t1t is assumed that [ 8(:)dz = 1/2.
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investigation are widely applicable and are not restricted to the Markovian
model discussed in the §4.7. Since an inertial range is (nearly) statistically
stationary and (nearly) inviscid, it follows that the inertial-range form of
(4.49a) is :

5 [ f dp da 0l p, Dkp-1q~ 2allp, DEGEGa)

—E(k)[ pb(k, p, 9)E(q) + q*b(k, g, p)E(p)]} = O. (4.57)

We assume that E(k) and 6(k, p, q) satisfy power laws in the inertial range
so that

E(k) o k*, 6(ak, ap, aq) = a-"0(k, p, q) (4.58)

and that 6(k, p, q) = 6(p, q, k) = 6(q,p, k) = ...
The principal result is that if (4.58) holds with |m| < 2 then (4.57) is
satisfied in the inertial range when

n=2—1im (4.59)

Under these conditions, we say that there is a semi-local inertial range
(Orszag and Kruskal, 1968). Orszag and Kruskal derived (4.59) by considera-
tion of the energy transfer through mode k. Here we verify directly that
(4.58) with (4.59) satisfies (4.57). The symmetry of (4.57) in p and g to-
gether with (4.38) implies that (4.57) is equivalent to

N(k) = ff dp dqo(k, p, 9)kp—'q~'b(k, p, 9)E(q)[K*E(p) — p*E(k)]

A

The proof of (4.60) is accomplished by the change of variables z = k%p,
w = kq/p. Since dp dg = k’z-3dzdw, it follows from (4.37), (4.58), and (4.60)
that

NG = [ dzdwkez-36(k, k¥ z, kw2 k2w 2%k, K¥/z, kwiz)

- E(kw/ 2)[RE(RY 2) — k*z-2E(k)]
= [ dzdw (k/2)-m-rw1 6z, k, Wbz, k, kwl 2)E(w)

- [k2-"zrE(k) — ké-"z-2+"E(z)]
ff dz dw kz-'w-'6(k, z, w)b(k, z, w)E(w)

- (2l ky-++m[ 2E(K) — K2E(z)]
~N(K) i n=2-}m
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The requirement |m| < 2 is necessary to ensure that the integral (4.57) con-
verges with the inertial range form (4.58). It is assumed that 8(k, p, ¢) =
O(1) as k —» 0 and 6(k, p, g) = O(k~") as k —» oo, which follow from the
interpretation of @ as a triple moment correlation time (Orszag and Kruskal,
1968). The convergence of the integrals (4.57) in the inertial range implies
that energy transfer is accomplished locally in wave-space, as required by
the description of the inertial range given in §3.1. If the integrals (4.57)
diverged with (4.58), it would imply a significant effect of other regions of
the spectrum on the inertial-range dynamics. In this case, the actual finite
value of the integral (4.57) would have to be computed using the exact
energy spectrum, not (4.58), including the energy containing range where
(4.58) does not hold. Convergence of (4.57) in the inertial range implies
that inertial range energy transfer depends only on inertial-range spectra
so that energy cascade is local.

In the Kolmogorov inertial range of §3.1, the triple-moment correlation
time 6(k, p, g) must, by dimensional analysis, satisfy (4.58) with m = 2/3
[ef. (3.4)], so that (4.59) gives E(k) co k=", as it should. This inertial range
is an example of a completely local cascade, in the sense that all single-time
cumulant information is transferred locally in wave-space (Orszag and
Kruskal, 1968). However, the result (4.59) is more general, in the sense that
it requires only local energy transfer. It can be used to determine the
inertial-range spectra for turbulence theories of the form (4.49a) which
do not yield the inertial-range time (3.4).

The simplest choice of 5(k) in the Markovian model of §4.7 is (k) =
vk? in which case nonlinear scrambling is neglected except in so far as
it suggests the replacement of E(k, s) on the right-hand side of (4.30) by
E(k, t) in (4.49a). With this choice of 5(k), there are two possible inertial-
range spectral laws according to whether ¢t <« (vk*)~'ort » (vk?) -!for
k in the inertial range (Tatsumi, 1960). If 1 » (vk2)-!, then &k, p, q; 1) = ¢
fork ~ p ~ g. It follows that m = 0 in (4.58) so E(k) co k~% In thislimit, the
theory reduces to the Markovian random-coupling model recently
investigated by Frisch et al. (1973). .

In the limit  » (wk)-, 0(k, p, ¢; 1) ~[v(k? + p? + ¢} ] ' fork ~p ~ g,
so that m = 2 in (4.58). It follows that E(k) co k-1, though logarithmic cor-
rections should be expected because m lies at the boundary of the region
of convergence of (4.57).

As discussed in §3.2, inertial range spectra proportional to k-! or k-2
are not consistent with experiment, which should not be unexpected con-
sidering the severity of the assumption on 7(k). The trouble is that the
inertial range time (3.4) is not obtained so that although the cascade is
local in wave-space the wrong power law is obtained. The choice (k) =
vk? is more appropriate to Burgers’ model turbulence where there is no
inviscid relaxation effect as pressure provides on three-dimensional
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turbulence (cf. §4.9). In fact, E(k) oo k-?is believed correct for the inertial
range of Burgers’ turbulence and (4.49) with n(k) = vk?should give qualit-
atively correct results (Kraichnan, 1968a).

For three-dimensional turbulence, the Kolmogorov k-¥lawis recovered
by the choice

n(k, £) = vk? + b[K3E(k, )] ©(4.61)

in (4.49b). With this dimensionally correct choice of y(k), it follows that
(3.3) is recovered with (Orszag, 1967)

bCz¥ = 0-19. (4.62)

In order to reproduce the observed value C, = 1.5, it follows that b = 0.35.
Using this value of b, numerical calculations of (4.49), (4.61) have been
made that are in very good agreement with available experimental results.
This form of the theory has been investigated in detail by Leith (1971) who
terms it the eddy-damped Markovian approximation.

4.9 The Test-Field Model

In §4.7, it was shown that the self-consistent Markovian model (4.49a) with
(4.54) and (4.55) gives a realizable theory of turbulence similar to the theories
of Edwards (1964) and Herring (1965, 1966).

In the inertial range, (4.49a) and (4.54) may be approximated noting that

E(k, ) =E(k), pk t)=pk), vk? < p(k),
ok, p, ¢; 1) = [p(k) + (p) + p(@)]~!
for inertial range wavenumbers. In this case, (4.54) becomes

plk) = % f f dpdq kp q-'[1(k) + ¥(p) + (q)]-'blk, p, DE(g).  (4.63)

The dominant contribution to the right-hand side of (4.63) comes from
q ~ L, i.e. the energy-containing eddies. In fact, if ¢ « k, p then

blk,p,q) =1 -2 4.64)

by (4.32) with x ~ —y, z = 1. If the assumption is made (to be checked
later) that 3{g) <« p(k) when g < k, then the dominant form of (4.63) in

the inertial range is
1 1
(k) = = vi —< k% 4.65
YR = 5 v s 465

In fact, the contribution to the right-hand side of (4.63) from wavenumbers
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q ~ kis clearly at most of order

——KBE(k) € —= V2, Kk?

@ PED < 5 e

the latter being the contribution of ¢ ~ L. The above inequality is equi-
valent to kE (k) < vZ,, which holds bccause the inertial range contains
negligible energy of the flow (cf. §3.1). It follows from (4.65) that

p(R) = \—‘5 Vomek (4.66)

so that »(g) <« p(k) for ¢ < kand that m = 1 in (4.58) for 0(k, p, g). Con-
sequently, (4.59) implies that the inertial range spectrum is :

E(k) = C ey k- (4.67)

where the appropriate dimensional factors have been included.
As discussed in §3.2, the inertial range spectrum (4.66) is inconsistent with
" both experiment and the Kolmogorov spectrum (3.3). The origin of this
discrepancy is the result

0k, p, ) = V2vil(k + p + )

for inertial range wavenumbers. Thus 8(k, p, g) scales like the sweeping time
7,(k) = (kv,)~' rather than the inertial range time (3.4). The trouble is
that @ determined by (4.54), (4.55) is not a measure of the time scale for
internal distortion of an inertial range eddy. In §4.7, an interpretation of
(4.49a) was given in terms of absorption (diffusion) and emission (dis-
sipation) in mode k by interaction with modes p, g. In (4.54), the eddy-damp-
ing rate p(k, t)E(k, t) is set equal to the emission terms in (4.49a). However,
although these emission terms arc dominated by energy-containing modes
g < k, as in (4.65), there is a near cancellation with the absorption terms
in (4.49a) with ¢ < k. The use of (4.54) as an intrinsic rate of distortion of
an inertial range eddy greatly overestimates the distortion rate and thereby
leads to inconsistency with the Kolmogorov theory, the latter requiring
little internal distortion of inertial range eddies by large scale shear.

One crude way to restore the Kolmogorov spectrum within the self-
consistent model is to perform the wavevector integration in (4.63) only
over wavenumbers p, ¢ » Ck. This artificial restriction ensures that dimen-
sional analysis may be used to estimate 9(k, p, ¢) in the inertial range, with
the result m = 2/3 in (4.58) and the spectrum (3.3). Unfortunately, the
results of this trunction procedure depend rather sensitively on the cutoff
C (Kraichnan, 1964b). [In effect, this procedure artificially imposes statisti-
cal Galilean invariance on the modet (cf. §6.5).]

In order to derive systematically a self-consistent theory without serious
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overestimation of internal distortion rates, Kraichnan (1971a) proposed the
following scheme, called the test field model. Kraichnan observed that in
a Lagrangian coordinate frame (moving with the local fluid velocity),
internal distortion of an inertial range eddy is due to the pressure force,
since viscous forces and external stirring forces are not significant at inertial
range scales (cf. §6.5).1 However, there are significant complications in
working through the theory in a Lagrangian frame. Thus Kraichnan
proposed to work the theory in an Fulerian frame. He noted that one way
to gauge the effect of pressure in an Eulerian frame is simply to turn it off,
so that compressive parts of the velocity field are generated from the solen-
oidal (incompressible) part of the field. Kraichnan suggested that a measure
of the inherent rate of distortion due to the pressure is given by the rate of
transfer between solenoidal and compressive parts of the velocity field in
the absence of pressure. Kraichnan proposed a scheme for computing this
rate by introduction of a “test field” governed by pressure-less dynamics.

The analysis leading to the test-field model equations will not be re-
produced here (see Kraichnan, 1971a, and Herring and Kraichnan, 1972).
The resulting equations for isotropic turbulence are (4.49a) with

6k, p, q; 1) = -(: exp[— j:' 'k, 1) + p(p, V) + (g, ) dr]ds
(4.68)

0%k, p, q; t) = .f exp[—- f,‘ ek, 1) + (o, 1) + ¥*(g, r)) dr]ds,
(4.69)

where

1
pe 1) =g [ [ dp dgkpg-b%k, p, 9)0%p, 4. ki D)E(g, 1
’ (4.70)
potk, 1) = g2 [ [ dp dg kpg-16%(k, p, 9)6°(k, p, 4 DE(g, D). (471)
a

Here

1 , 1
bk, p, 4) = 5 kipn Py (@ P K}/ kP =5 (1 = )1 = 27, (472)

tHere lies the essential difference between Burgers’ model turbulence (Burgers, 1948)
and NavierStokes turbulence. In Burgers’ model, there is no pressure relaxation so that
the rate of internal distortion of an inertial range eddy is small, being controlled by the
large-scale distortion of the flow. The result is that m = 0%in (4.58) leading to E(k) oo k~2in
the inertial range. In Navier-Stokes turbulence, high-frequency inertial-range pressure
fluctuations Limit the buildup of correlations, giving a Kolmogorov inertial range.
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where y, z are the cosines of the angles opposite p, g, respectively, in the
triangle %, p, g. Also, the arbitrary constant factor g is not determined by
the theory and must be fit by comparison with experiment.

Since the test-field model falis within the general class of Langevin models
(4.50), realizability is guaranteed. Also, it may be shown that the model is
consistent with the Kolmogorov theory of §3.1. The Kolmogorovspectrum
follows because

bk, p, @) ~4g%k (1 — y?) (4.73)

when ¢ < k, so that the contribution of small ¢ to (4.70), (4.71) is propor-
tional to the enstrophy in large scales [ g2E(g), which is small in the energy-
containing range ] rather than E(g) which dominates the contribution (4.65)
when (4.54) is applied. In the inertial range, viscous damping is negligible
and

0k, p, 9) = [y*(k) + p(p) + p*(9) ],
0%k, p, @) = [¥*(R) + y*(p) + p*(9) ]~
so that dimensional analysis gives
E(k) = CTFMgZIJ E2/3 k-5/3’ .y.t(k) — ATFMg‘U] Ell:i k2/3’ .Vc(k) —
Alpp g e P k¥ (4.74)

Dimensional analysis is applicable because inertial range modes dominate
all contributions in (4.68)—(4.71). The constants Crey, A rys A ey are evalu-
ated by numerical integration of (4.68)—~(4.71) with the result (Kraichnan,
1971b) :

Crew = 1342, App, = 0343 A%, = 0742, (4.75)
It follows that the inertial-range spectrum (3.3) is obtained with
Cy = 1-342g%3 (4.76)

Thus, the test-field model with g = 1.064 (recommended by Kraichnan) gives
Cy = 140, which is in good agreement with experiment.

Numerical solutions of the test-field model for decaying two- and three-
dimensional turbulence are discussed in §6.6 [the test-field equations for
two-dimensions are given by Kraichnan (1971a)]. It is found that the test
field results withg ~ 1-1.5inthree dimensions and g ~ 0.6-1.0in two dimen-
sions are in very good agreement with numerical experiments (Orszag and
Patterson, 1972, Herring et al., 1974).

Kraichnan (1972) has given the generalization of the test-field modelto
inhomogeneous turbulence. The generalization is complicated, but Kraich-
nan proposes some simplifications that should make numerical solutions of
the equations economical. It is a moot point whether the resulting equations
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are significantly better than obtained by a semi-empirical choice of damping
factor n(k, t) as in §4.8. However, theories of the general type of those dis-
cussed in the last three Sections under the general heading of eddy-damped
Markovian approximations seem to be the simplest analytical theories of
turbulence that give plausible results. They are sufficiently simple that they
can be applied directly to a wide variety of inhomogeneous turbulence,
so their practical application should be expected to increase in the future.

Y The Statistical Mechanics of Turbulence

5.1 [n;roduction

There are two essential features of the statistical behavior of solutions of the
Navier—Stokes equations. First, there exist an infinite number of degrees of
freedom (per unit volume of fluid). Second, individual degrees of freedom
(Fourier components) can exhibit complicated behavior and **phase mix”’,
as illustrated in §1.4. The latter effect is the heart of both turbulence and
equilibrium statistical mechanics and will be examined here. The large
number of degrees of freedom is also important in a sense to be explained
below.

It is convenient to deal first with a finite mode analog of the Navier-Stokes
equations (2.31). If the fluid is imagined confined to a cube of side L with
periodic boundary conditions applied on all sides, the velocity field is
expansible as

v(x, t) = Yu(k, e’ 5.1

where the sum is over all k of the form k = (22/L)n where n has integer
components. The Navier—Stokes equations become

[% . vk{l wlk, ) = —LP,, () 3 e, 06 =) (52)

A finite-mode model is obtained if the sums in (5.1) and (5.2) are truncated
to|k| <« K by the constraint

uk, ) =0 (Jk| > K).
The result is the *“‘cutoff” Navier-Stokes equation

[% + ukz] ualk, 1) = =5 Pop, () Seitys Oy (k = . ), (5.3)

where Z; indicates sum over all wavevectors p satisfying [p| <« K and
Ik —p}] « K.



324 STEVEN A. ORSZAG

It may easily be verified that, when v = 0, (5.3) conserves kinetic energy,

2 = 5.4
77 ol = (s4)

Even when v > 0, the rate of energy dissipation eK(t) is severly limited by the
spectral cutoff K. In fact, it is easy to show that”

Y luk, )] = —&(2)

at 2 wi<x 5.5
0 « &(t) = v Z k’[u(k DI < vk?* 3 Juk, 1)|?
R34
so that (5.5) implies, since €,(t) > 0,
0 <« e(t) < vK? Y |u(k, 0)|2 (5.6§

k| <K

Consequently, €, = ((v) as v - 0,.in contyast tothe result (2.49) that e =0(1}
as v » 0 in turbulence. In other words, the limits v —» 0 and K —~ oo do not’
commute...

This result has important .consequences for numerical simulations’ oﬂ
turbulence, which must use some kind of finite discretized approxunauon to;
the Navier—Stokes equations. In order to simulate properly the dynarmcs of
the energy-containing range, it is necessary that the simulation give accurate
values of e(z). This requires inclusion of all scales that contribute apprcc13
ably to eor, applying the theory of §3.1,K » k,. Sincek, L, = O(R¥) wheré¢
R = Vo, L,/ v, it follows that the range of scales that must be included scales

as R¥4, Since space is three-dimensional, the number of degrees of frccdonl
that must be retained scales as R%*(cc RY?). This growth with R limits direct
numerical simulation to rather moderate Reynolds numbers. On the other:
hand, (5.6) implies that if k, 2 K, the damping is weak and the behavior of
the system differs drastically from turbulence. In the limit, K < k,, the be
havior of the system resembles weakly-damped cquilibrium statistical
mechanics. A faithful simulation of turbulence is obtained only whenk
K 2 kd-

5.2 Inviscid Equipartition Ensembles

The formal dynamical property of existence of inviscid equipartition en-
sembles follows by application of Gibbs’ statistical mechanics to the cutoff:
Navier—Stokes equation (5.3) with » = 0 [Hopf, 1952; Lee, 1952; Kraichnan$,
1958]. The essential fact that must be established here is that Liouville'’s



STATISTICAL THEORY OF TURBULENCE 325

theorem is satisfied by (5.3). Using this and the property of conservation of
energy (5.4), the existence of equipartition ensembles follows easily. f

Liouville’s theorem may be verified by first resolving u(k, 1) into its real
_and imaginary parts,

u,(k, 1) = d,(k, 1) + ib,(k, 1) 5.7
50 that incompressibility and reality imply, respectively, ' _

kd. (k1) =k,b,(k,1)=0 (5.8)

4,k 1) = 4,(-k,2), b,k 1) = —b,(—k, 1). (5.9)

On account of (5.8) and (5.9), not all Fourier components areindependent. In
order to find a suitable set of independent components, we introduce two
orthogona.l unit vectors, n,(k) and n,(k), in the plane whose normal is k, so
hat k, n,(k), n,(k) form an orthogonal triad. Then, for each k, mdcpcndcnt
componcnts of 4(k, ¢), b(k, ¢) are defined by

a,k 1) =nK- ik 1) (r =12)
: (5.10)
b,(k, ) =n,(k)-b(k, 1)

The components (5.10) are not all independent functions of k because (5.9)
mixst hold. A complete set of independent components a,, b.(r = 1, 2) cor-
rcsponds to the set of wavevectors I, = |k|]|k| < Kandk, > Oork =0,
k; >0o0rk, =k, =0, k; > 0). It is sometimes more convenient to use as
independent variables ,(k, #) and «,(—k, t) regarded as independent, rather
than the a,, b, amplitudes of the set 7.

£ The cutoff Navier-Stokes equation (5.3) may be rewritten in terms of

a,(k, 1), b,(k, t) [k € I, r = 1, 2]to give equations for 4,(k, 1) = da,(k, 1)/ 5t
and b,(k, ¢). It may be verified that when v = 0

da,k, 1)  ab(k, )] _ :
’ l‘gk ’;' [aar(k’ t) + ab,(k, t)] =0. (5.11)

iEquation (5.11) is the essential content of Liouville’s theorem and possesses
a simple physical interpretation developed below.

.. We introduce a phase space I' defined as an N-dimensional Euclidean
space, where N is four times the number of elements of I, with the N co-
lbrdinatcs of a point P € I'being the excitations in the N independent a,(k),
b,(k). At each instant of time, the state of a solution to the cutoff Navier—
Stokes equations, i.e., the amplitudes a,(k), b,(k) [k € I, r = 1,2],is speci-
fied by a point P € TI'. The complete time evolution of a solution to (5.3) is

._:‘:'.'-‘ .
5
.

-“tUnless stated otherwise, the discussion in §§5.2-5.9 applies only to inviscid » = 0
dynarmcs
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depicted by a continuous sequence of pointsin I',i.e.,a curve in phase space.
An ensemble of realizations, each of which satisfies (5.3), is represented at
each instant of time by a cluster of points in phase space. The evolution of
the ensemble in time is represented by evolution of the cluster in phase
space. The important fact the follows from (5.11)is that, during evolution of
an ensemble of solutions to (5.3), the volume.of the phase-space cluster
representing the ensemble remains invariant. This result follows because an
infinitesimal phase-space volume element is expanded from time O to time
t by the magnitude of the Jacobian J(t}{a,(k,0), b,(k,0)}) of the transforma-
tion from a,(k, 0), b,(k, 0) [k € I, r = 1,2]to a,(k, 1), b,(k, 1) [k € I,
r = 1, 2]. The Jacobian J is identically unity for all ¢ and all starting values
since J(¢ + At|{a,(k, 0)b,(k, 0)}) = J(¢t|{a,(k, 0), b,(k, 0)}) J(At|{a,(k, 1),
b,(k, H)}) and J(Atl|la,, b,}) = 1 + 0 (Ar?), the latter result following from
J©| {a,, b,}) = 1 and dJ(O| {a,, b,})/dz = 0 by (5.11).

While (5.11) is the essential content of Liouville’s theorem, it is more usual
to formulate the theorem using the complete probability distribution func-
tion of the velocity field. We introduce the single-time probability distribu-
tion F(la(k, 1), b,(k, )|k € I, r = 1, 2}; 1) defined in the usual way as the
probability distribution for the cluster points of an ensemble in the phase
space I. It-is sometimes convenient to consider F as a function of indepen-
dent u,(k, ), according to the convention given previously. It is assumed that
F is normalized to unity so that {F du, = 1, where the volume element in
phase space is givcn by

dug = 1'! I'{ da, (k) db, (k). (5.12)
'K rw
Any single-time (simultaneous) moment of the velocity field is expressible
as an integral of F. Realizability of the ensemble requires F » 0. In the
limits L — oo (L is the periodicity length) or K - oo, integrals of Finvolve
functional integration over an infinite number of degrees of freedom and
their general evaluation is troublesome.
Conservation of probability in phase space requires that F satisfy

+ 3 lamemn g 6mn] -0

at kely rel
With (5.11), there obtains Liouville’s theorem

dF oF '
T=at 2 ) ["“‘)a (k)+b(k)ab(k)] =0 (5.13)

kelg r=l

Here d/d:¢ is the convective derivative along an orbit in phase space, an
“orbit” being a complete flow evolving accordingto (5.3). The interpretation
of (5.13) is that the density Fremains constant along an orbit in phase space.

The general time-independent solution of (5.13) is a function of the con-
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stants of motion of (5.3). If (5.3) involves N independent components, then
there are N — 1 independent integrals C,({a,, b,}),n =1,...,N — |, thatdo
not involve time explicitly and satisfy dC,/dz = 0 whenever a,, b,} satisfy
(5.3). The Nth integral of motion corresponds to theirrelevant origin of time
in (5.3). Since Fis constant along orbits in phase space, while {C,} is the
largest set of independent quantities that are constant along orbits and do
not involve time explicitly, if follows that if Fis stationary then Fmust bea
function of {C,}. Theresult that time-independent solutions of (5.13) depend
only on {C,} is sometimes called Jeans’ theorem.
One integral of motion is particularly important, viz., the energy

.

E= 3 3 (a0 +b®7] (5.14)

kely r=1

which is conserved by (5.3). Therefore, F = f(E), with arbitrary f, is a time-
independent solution of (5.13) that describes an equilibrium ensemble of
solutions to (5.3) invariant under time evolution. A special, but important,
choice of fis an exponential giving the Gaussian equipartition ensemble

F = WNexp[-E/C] (5.15)

where .4 is a normalizing constant and Cis an arbitrary constant. The dis-
tribution (5.15) has the property

ugk, Duy(—k, 1)) = CP,,K) (Jk| < K). (5.16)

The factor P, (k) preserves incompressibility. Equation (5.16) justifies refer-
ring to (5.15) as an equipartition ensemble, since each mode has equal energy
associated with it. Similarly, it may be verified from (5.15) that all higher-
order cumulants are identically zero. A little algebra shows that the ap-
propriately cutoff hierarchy of cumulant equations given in §2.4 aresatisfied
by S,,(k) = CP,4(k) for |k| « K with all cumulants of order three and higher
identically zero.

In the limit K — oo, the equipartition ensemble has quite singular proper-
ties. The total energy density diverges at large wavenumber as K — o (an
“ultraviolet catastrophe”). Also, as K — oo, the velocity-correlation tensor
R_,(r) is asymptotically proportional to [478,,8(t) + (8¥ar,or,) (1/1)].
These singularities are further evidence that v » 0 and K — <o do not com-
mute. The proper formulation of equipartition ensembles is in terms of the
cutoff Navier-Stokes equations.

The Gaussian equipartition ensemble (5.15) is not as special as it may at
first seem. Two complementary arguments support the importance of (5.15).
The first argument, which is really a hypothesis, s that the phase-space flow
is ergodic on surfaces of constant energy. If F varies smoothly as a function
of its phase-space coordinates and is time-independent, then it follows that
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F must be a function of only the time-independent isolating integrals. Thus,
if E is the only isolating integral, then F = f(E).

The second point concerns the fact that, with alarge number Nof degrees
of freedom (N oc K3L3), a large class of plausible phase-space distributions
have low-order moments that are indistinguishable from the low-order
moments of the Gaussian distribution (5.15). ‘This result is just a special
case of the central limit theorem (Khinchin, 1949). It should be noted that
the first argument, i.e. ergodicity, requires only that N be large enough that
(5.3) with v = 0 is ergodic on constant energy surfaces, while the second
result, i.e. the central limit theorem, requires that N - co.

The ergodicity properties of the inviscid cutoff Navier—Stokes equations
have been studied by numerical solution of (5.3). Some results of a three-
dimensional computer experiment (Orszag and Patterson, 1972) with K = 16
involving 4,096 Fourier modes to represent each velocity component are
plotted in Fig. 5.1. In the figure, U(k,)is the average modal energy [u(k)|2
for kin the band ky — 1 « |k| < k, + 1. Arbitrary initial energy distributions
should evolve towards the equipartition spectrum (5.16) as t - o if the
system mixes. The numerical results plotted in Fig. 5.1 are consistent with
this behavior, but they are by no means conclusive.

The situation in two-dimensions is somewhat more complicated. The
system (5.3) then has at least two isolating integrals of motion, energy (5.4)
and enstrophy Q = Zk*E(k, t). As noted in §3.4, the two-dimensional Euler
equations have an infinity of other simple integrals of motion. However,
most @(f not all) of these are lost by the spectral truncation imposed on (5.3).
If energy and enstrophy are the only remaining isolating integrals, then the
limiting distribution, analogous to (5.15), is

F = A exp(—E/C - Q/D),

where C and D are arbitrary constants and .V is a normalizing constant. It
follows that (Kraichnan, 1967)

e

{u (K, Duy(-k, 1)) = Dl Py (k). (5.17)
Arbitrary initial energy distributions should evolve towards equilibrium
spectra of this form as ¢ ~ oo if the two-dimensional system mixes. Fox and
Orszag (1973) report numerical simulations with (128)2 modes to test this
behavior. Their results are consistent with approach to the equilibrium
spectrum (5.17) as t — oo.

Thompson (1972, 1973) has considered the equilibria of forced two-
dimensional turbulence. He finds a k- *energy spectrum at high wavenumber
and a k! spectrum at low wavenumbers.

Kraichnan (1974b) has studied the self-consistency of the two dimensional
equilibria (5.17) and their relation to inviscid discrete-vortex models (Joyce
and Montgomery, 1973; Edwards and Taylor, 1974).
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Figure 5.1 Evolution of modal energy spectra U(k) = E(k)/2nk?vs k. Here the cutoff K = 16
and v = 0. The initial energy spectrum is zero, except in the wavenumber band 4 « k < 6.
Gaussian random initial conditions, constructed as indicated at the end of §2.3, are used, with
Vems (0) = 0-9428, L, (0) = 04956, (For further details, see Orszag and Patterson, 1972.)

Finally, it should be emphasized that the equilibrium spectra (5.16) and
(5.17) have little direct connection with turbulence. They relate only to a
dissipation-free system to which classical equilibrium statistical mechanics
applies, while turbulence is a critically damped system to which equilibrium
statistics does not apply. Ruelle and Takens (1971) have recently made pro-
gress in developing a theory of ergodic behavior appropriate to dissipative
systems like turbulence, based on their notion of ‘“strange attractors”.

5.3 The Fluctuation-Dissipation Theorem

The fluctuation-dissipation theorem (Callen and Greene, 1952; Kubo, 1959;
Kraichnan, 1958) relates the fluctuations of a conservative dynamic system
in equilibrium to the generalized susceptibility of the system to an external
force. The remarkable feature of the theorem is that it equates a property of
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equilibrium, viz. fluctuations, with an irreversible process, viz. the relaxation

(dissipation) of a perturbation. We prove the theorem for a general dynami-

cal system with quadratic integral of motion, following Kraichnan (1958).

The proof is given in detail here not because turbulence isin statistical equi-

librium which it is not, but because the result points out the fundamental

importance of Green’s functions in nonequilibrium statistical mechanics.
Consider two unrelated conservative systems satisfying

dx,
dr

witha =1,...,Nandn = 1, ..., M. Itis supposed that these systems satisfy
Liouville’s theorem

N aX, M Y,

dy,
) =1,0,0) (5.18)

e =0
2% 2%, N
and conserve energy,
E,=-;-Ex§ dE' =YxX,=0
1 dE.
= '2‘2_1’,2. —"2 =ZrY. =0

Let x(z) be a solution of (5.18). Now consider a system that differs from
(5.18) by an infinitesimal external force 8f(¢) that vanishes rapidly ast -+ — oo,
so there exists a solution of the modified system

= X,(x', 1) + 8£.(t)

with lim x,(#)/x,(f) = 1. If o is infinitesimal, the perturbation &x(¢) =
x(t) — x(t) is nearly related to &f, at least for finite ¢. Therefore, it is
possible to introduce the generalized susceptibility g,(z, t) defined by

.0 =3 f Zap(ts ), (0" A1 + o(| OF ). (5:20)
‘w #u -0

Causality requires that &x,(¢) depend only on 8f(t%) for ¢* « t, so that
g.5(t, 1) = Ofort < ¢t Also, the special choice &, (1) = ea,,,s(t ~ t)with
¢ infinitesimal gives 8x,(?) = eg,,(t, t'). Therefore, €g,,(t, t') is the response
of x, at time ¢ to a small perturbation of strength ¢ introduced in x, attime
¢*. In particular, it follows that g,,(¢' + 0, t') = §,,. In view of this interpreta-
tion, it is natural to call g,,(z, ') the infinitesimal-impulse-response tensor
(Kraichnan, 1958). It is also called the Green's function. Similarly, we intro-
duce the generalized susceptibility 4,,(z, t') as the response in y,(z) to an

infinitesimal perturbation in y,,(¢").
It is important to note that g,,(t, t') [h,.(1, ') ] depends implicitly on the
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particular solution x(¢) [y(t)] of (5.18) thatis perturbed, since X(x, ) [ Y(, t)]
is not necessarily linear in x[y].

The fluctuation-dissipation theorem states that, in equilibrium,
CaO)xp (0 = Clgylts Dyt > 1 (-21)

with C independent of a, 8, 1, t'. Before proving (5.21), it is helpful to
consider the following heuristic argument. Definie {x}, '|x,, t>as the average '
valuc of x, at time ¢ given that x,(¢) = x, precisely. The expectation

L tx,, t) is called the regression of x_ (Callen and Greene, 1952). Now,
for t > t', it follows from the foregoing dcﬁnmon that

Cen(e)x, (1) = fxfx;, t']x,, > py(xp) dx;,

where p,(x;) is the probability distribution of x, allowing Xy ¥ # p,tobe
arbitrary. The distribution p,(x,) is independent of time in equilibrium.
But {x;, t'|x,, £ may be computed by imposing some kind of force on the
system (5.18) to ensure that x,(s) = x}fors « t. If the force is lifted at ¢/,
the average value of x, observed at time ¢ is {x;, ¢'|x,, £). However, the
effect of removing a force at time ¢/ is clearly related to the Green’s
function, so that there is basis to expect a relation such as (5.21).

We begin the proof of (5.21) by introducing an ensemble of realizations of
the systems (5.18). Suppose that the time-independent phase-space distri-
butions of systems x, y are, respectively,

H(x) = Nyexp(—E,/C),  fiy) = Ny exp(—E,/C), (5.22)

where N, and N, are normalization factors. The distributions (5.22) are
realized, for example, if x, y are thermodynamic systems in equilibrium at
the same temperature T (with the choice C = kT, where k is Boltzmann’s
constant). Since the x and y systems are independent of each other, the
time-independent phase-space distribution in the product phase-space
x ®y of x and y together is

F(x,y) = KA = NNy e[ (B, + E;)/C) (5.23)

The density F(x, y)is the Gaussian equipartition ensemble for the composite
system with total energy £ = E, + E,, as is appropriate for two noninter-
acting systems inisolation. In (5.21), and in the following, ensemble averages
are intended over these ensembles.

With these formal preliminaries attended to, we introduce a conservative
coupling between the x and y systems so that (5.18) is altered to

t,=X 0 +e S anOnt)  (a=1...,N)
=1 .

he=H ) = € 3 anx)  (1=1..., M), (5.24)

a=l
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the proof of (5.21). It is only for these ensembles that the composition law
(5.23) yields an ensemble invariant under the perturbation (5.24).

The fluctuation-dissipation theorem is a generalization of a classical
theorem due to Nyquist (1928) concerning the thermal noise in an electrical
resistance. Nyquist showed that, at temperature 7,

VD = 2kTRAw,
n

where V is the open-circuit voltage fluctuation across the resistance R and
Awis thefrequency bandwidth across which the noiseis measured. Takahasi
(1952) examines closely the relation between the fluctuation-dissipation
theorem and Nyquist's theorem.

5.4 Equilibrium Properties of Cumulant-Discard Closures

The inviscid cutoff Navier-Stokes equations lead to a hierarchy of equations
for statistical cumulants that is obtained from the heirarchy of §2.4 by the
replacement of wavevector integrals by wavevector sums and the restriction
of all wavevectors to the region |k| « X. Cumulant-discard closures of this
modified hierarchy are obtained as in §4.4 by neglecting the effect of all
cumulants above a certain order. For example, the quasinormal closure is

-t Dt (K, D> = — P,y (1) T )tk — Py~
+ 5Py () B <o (K)2, P, (—k — p)) (5.30)

%(ua(k! t)up(p! t)uy(q’ t)) =

—iP o (K)<uy(P)u, (—p)><u,(Qu,(—q)
—iP,,, (p)<u (K)u, (—k) <u,(@)u,(—q)> —
— iP,,(q)<u, (K)u,(~k)><u,(P)u,(-p) (5.31)

wherek +p +q =0.
All these cumulant-discard closures possess time-independent Gaussian
equipartition solutions satisfying
<uu(ka t)up(—k’ t)) = Cpap(k)
Su (k, u,(p, t). .. u g, 1)) =0,

where Cis a constant independent of o, 8,k,and t,andk +p +.--+¢ =0
but no nontrivial subset of {k, p, ..., q} sums to zero.

(5.32)



STATISTICAL THEORY OF TURBULENCE 335

Consider an arbitrary integrable initial ensemble. If (5.3) is mixing, and
we assume it is for KL sufficiently large, then it follows that averages over
the ensemble approach equilibrium. If the number of degrees of freedom
retained in (5.3) is very large, then, according to the argument of §5.2,low-
order moments should approach Gaussian equilibrium values. This latter
property is not needed for the argument to follow. Instead, the important
fact is that the equilibrium state, with an arbitrary number of degrees of
freedom, is such that all odd-order moments (and cumulants) are zero. The
latter fact follows since the distribution function in equilibrium is a function
of energy E alone, but E is a symmetric function of {u,(k)} while odd-order
moments are odd functions.

It will be shown that cumulant-discard closures, in particular, the quasi-
normal theory, are not consistent with approach to the equilibrium state
(5.32) and the notion of ensemble average. The crucial fact is that cumulant-
discard closures for the hierarchy derived from the inviscid cutoff Navier—
Stokes equations are time reversible. Time reversibility means that the
transformation

- —t
Cu, (K)uy (K> = Cu,(K)uy (k)
Cu,(K)ug(p)u,(@)) - ~Su,(K)u,y(p)u,(a)> (5.33)

etc., where all odd-order moments change sign while even-order moments
remain unchanged, leaves the closure equations invariant. We carry through
the argument for the quasi-normal closure, but the same argument applies
to closures of every finite order. Suppose that (5.30), (5.31) is solved with
nonequilibrium initial values for second- and third-order moments at ¢ = 0.
If the quasi-normal closure implies approach to equilibrium, there will exist,
for arbitrarily small § > 0, a time ¢, when

|<ua(k, ’o)up(P, ’o)uy(q, t0)>l<8

for all retained k, p, q, a, B, . Att = t,, we apply the smallperturbation
A<ua(k! tO)uls(—'ki t())) = O
A<ua(k’ to)u[l(pa to)u,,(q, to)> = —2<ua(k’ to)up(Ps to)u,.(q, to))

so that the perturbed values of second- and third-order moments are
<un(k1 tO)u[)('—kv t0)>, = <ua(kv to)u#(—k, t()))
<ll"(](, to)uﬁ(p’ to)uy(qv ’o))' = _<un(](1 to)uﬂ(l’, to)u,-(qy t0)>,

where the prime denotes perturbed value. The time reversibility of (5.30),
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(5.31) implies that .
Su (k, Bu(—k, 1)) = u,(k, 2t — uy(—k, 2t — 1))
o, Dugp, Duy(g, 1) =
—Su, (K, 2ty — Duyp, 2t — u,lq, 2t — 1)) (5.34)

as may be verified by substitution. The perturbed system evolves from ¢,to

. 2ty as the mirror image of the evolution of the unperturbed system from 0
to ¢,. According to (5.34), the perturbed solution unwinds from ¢, to 2¢,,
so that at ¢ = 2¢, the perturbed second-order cumulant equals its initial
unperturbed value, while the perturbed third-order moment equals the nega»
tive of its initial unperturbed value. The conclusion follows that, since the
initial conditions at ¢t = 0 are quite arbitrary, either (5.30), (5.31) do not
give approach to equilibrium or they give approach to equilibrium but are
unstable. The latter possibility is not satisfactory, since (5.30), (5.31)
are equations for ensemble averages. Ensemble averages should not be
extremely sensitive and should not exhibit the instabilities that plague
individual realizations—otherwise, someone might get the idea to ensemble
average the “turbulence” exhibited by the ensemble averages, etc., ad
infinitum, .

The argument given above is sufficientlybasictothesubject thatitdeserves
a name: the statistical reversibility argument. Some comments are in order
concerning the present version of the argument. For one thing, the perturba-
tion applied at ¢ = ¢, is justifiably small because the number of perturbed
quantities is finite when the number of modes and the order of closure are
both finite. Under certain conditions explained in later sections, the restric-
tion on the number of modes may be lifted. The finiteness of the-number of
perturbed third-order moments also guarantees the existence of a finite ¢, -
when they are all smaller than §, if there is approach to equilibrium.

Numerical solution of (5.30), (5.31) shows that equipartition of energy is
not approached as ¢t - oo, the typical behavior being finite persistent oscilla-
tions about equilibrium (Orszag, 1970c). Other similar troubles of the quasi-
normal theory are discussed by Orszag (1970c).

The cause of these troubles is qualitative and very basic: Relaxation times
Jor small departures from equilibrium should be determined by the random
motions in the equilibrium state, not by the departure from equilibrium. As
discussed in Section IV, the memory integral in (4.30) should involve a
dynamical cutoff when R is large, in order to represent properly the effect of
the destruction of correlations by nonlinear scrambling in the random con-
vection field. In actual turbulence, departures from equilibrium are large,
but it should not be expected that the troubles incurred by cumulant-
discard closure’s misrepresentation of motions in the equilibrium state will
disappear.
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The critique of cumulant discard closures presented in this Section is
important because it emphasizes the fundamental nature of the difficulties
with the quasi-normal theory that were pointed out in Section IV. The
difficulties persist to all orders of closure. On the other hand, itis not known
whether higher-order cumulant-discard closures lead to negative energy-
densities in the manner of the quasi-theory [but see the numerical study for
Burgers’ equation by Tanaka (1969) ].

5.5 Stochastic Relaxation

In the next several sections, we attempt to explain the origin of irreversible
dynamical effects in the hierarchy equations. The problemis made particul-
arly acute by the following formal extension of the statistical reversibility
argument presented in §5.4. It is easily verified that the hierarchy equations
for the inviscid cutoff Navier—Stokes system (5.3) are formally time-revers-
ible. In fact, transforming all odd-order moments (and cumulants) into the
negatives of themselves, while keeping all even-order moments unchanged
fef. (5.3)], reverses the evolution of each and every equation of the inviscid
hierarchy. It was mentioned in §5.4 that, at equilibrium, all odd-order
moments are zero. Therefore, if the hierarchy predicts evolution to equili-
brium, as it should, and if there exists a time 7, when all odd-order moments
are smaller than some arbitrarily small predetermined number &, we can
apply the “perturbation™ that changes the sign of all odd-order moments
while keeping even-order moments unchanged. The effect of this “perturba-
tion” is to reverse the evolution of the complete set of hierarchy equations.
The perturbed moments at ¢ = 2t, equal, except-for a possible change of
sign, the unperturbed moments at ¢+ = 0, which are arbitrary. It seems to
follow that either the complete unclosed hierarchy equations cannot predict
evolution to equilibrium or the hierarchy equations are unstable. Thisisa
most embarrasing conclusion, since approach to equilibrium is expected on
the basis of ergodicity arguments while the purpose of the ensemble is
to obtain average quantities that are nor extremely sensitive to perturba-
tions.

Of course, the trouble is that the statistical reversibility argument is in-
correct when applied to the unclosed hierarchy. There are two reasons: first,
there does not necessarily exist an instant ¢, when all odd-order moments are
arbitrarily small; and, second, even if such a ¢, did exist, changing the sign
of the infinite number of odd-order moments is not necessarily a small per-
turbation, no matter how small 5. These two,_ criticisms of the statistical
reversibility argument applied to the complctc hierarchy are illustrated by
the following very simple example.

Consider the problem of determining the average behavior of arandom
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harmonic oscillator (Kraichnan, 1961)

d ,
8 i, (539
where b is a zero-mean random variable with probability distribution P(b).
Since b is random, g¢,(f) = e~ fluctuates. If P(b) is Gaussian, i.e., if P(b) =
2n < b? >)-"exp(—~b¥2 < b? >), then

G() =4q,(0)), = f g,()P(b)db, = exp(—KbDr?). (5.36)

The fact that G(f) - Oas|t|— coisa consequence of the Riemann-Lebesgue
lemma and, therefore, holds true for any integrable distribution P(d).
Equation (5.35) is time reversible under the transformation ¢ - —¢,
b - —b, but G(t) exhibits irreversible decay towards 0 as|z| -+ co. Clearly,
each realization does not relax to Oas |¢| - oo;irreversible relaxation appears
only after ensemble averaging.

The random harmonic oscillator problem may be treated in the usual
way by constructing moment equations. Defining G,(t) = <b"q,(t) >,
it follows that

E&nt_(’_) - —iG,, (1) (5.37)

for all nonnegative integers n. The system (5.37) is an unclosed hierarchy of
equations for the moments G,.t This hierarchy is formally time-reversible
under the transformation ¢ » —t, G, - (—1)"G,. The only possible way that
the solutions to be hierarchy equations can exhibit irreversible behavior
is by a flow of information through the entire sequence of moments (or
cumulants). Since ‘G, () is a single-time average of the random field g,(z),
there is no explicit memory of past dynamical behavior in terms of current
values of the moments. The source of dynamical memory is a cooperative
flow of information through the entire sequence of cumulants. This “cumu-
lant-space” flow produces correlations ‘that drive the system irreversibly
to equilibrium.

If the flow of information from G, ,, to G, through (5.37) isdisturbed bya
reversible closure, then irreversible relaxation is lost. For example, the
closure obtained by arbitrarily setting G, = 0 for some N and using (5.37)
forn =1,..., N — | gives the solution
N-1 1

G)(= G() = X

nw0 !

(= it)" (b (5.38)

tA closure problem arises even though (5.35) is linear in the dynamical variable g,, because
(5.35) is nonlinear in the stochastic variables b and g,,.
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since G,(0) = <b", n=1, ..., N — 1. The solution (5.38) includes the
first N terms of the Taylor series expansion of the exact solution (5.36). All
these closures give solutions that diverge as |¢| - oo and, of course, do not
relax irreversibly to zero. Similarly, the cumulant-discard closures for the
hierarchy (5.37) with Gaussian b are given successively by

Gy(1) = <b? Gy(1) (5.39a)
Gy(1) = 3D G (1) (5.39b)
Gy(1) = 6<% G,(1) — Kb Gy(1) (5.39¢c)

and so on. It is apparent from the statistical reversibility argument that
none of the closures (5.39) can give relaxation to equilibrium. For example,
the closure (5.39a) gives G(r) = cos ({(b2)>¥21) which oscillates indefinitely.
In order to get plausible relaxation from a closure, the closure must be
irreversible and this means taking into account the effect of cumulants of
a]l orders.

The fact that the statistical reversibility argument cannot be applied to the
unclosed hierarchy is seen as follows. For Gaussian P(b),

G,(t) = i" adt_"n ¢ -1 (5.40)

so that G,(r) does not tend to zero as ¢ — oo uniformly in ». In fact, it may be
shown that

G, (b2 (4n + 2)2) ~
(= §)"(27) 2323 P(3) - 1{b2YN2 € - V2Bn+1) yy V2n 4 116

so that max | G, (t)|becomes unbounded as ¢ -+ co. Therefore the “perturba-
tion” considered in the extension of the statistical reversibility argument
given at the beginning of this section is nor small.

The process by which ensemble averages relax towards equilibrium
through the existence of an infinite unclosed hierarchy may be called
stochastic relaxation. For the random harmonic oscillator probllem, sto-
chastic relaxation is the only possible mechanism available to drive G(¢)
irreversibly to zero. Stochastic relaxation represents the principal new
physics involved in the closure problem—it js the way the hierarchy re-
presents nonlinear scrambling at large Reynolds number. Obviously, its pro-
per treatment is fundamental to a satisfactory theory of turbulence.
However, stochastic relaxation is rather unusual and has not received much
attention in the literature in comparison with the other kinds of irreversible
behavior discussed in the next section. The reaSon is simple: stochastic
relaxation is not important in weakly-nonlinear dispersive systems that
may be treated by multiple-scale perturbation theory and these latter
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systems have been the subject of most contemporary research in the field of
noneguilibrium. statistical mechanics.

5.6 Mechanisms of Irreversible Relaxation

There. are several ways that irreversible relaxation to equilibrium (or,:
more generally, relaxation to an asymptotic state of the kind argued forin’
§1.3) can occur. First, there is the possibility that every realization of the"
ensemble irreversibly relaxes to equilibrium (withour averaging). This
possibility will be termed explicit irreversibility. For example, consider the
system obtained by neglecting the nonlinear terms of (5.2)

[5 + vk’] u,k, 1) = 0. (541

The solution is
u,(k, t) = u,(k, 0) e~

so that the Fourier amplitudes of all realizations decay irreversibly to zero
as t - oo. Formally, (5.41) is explicitly irreversible since changing 7 into —¢
changes the form of the equation [since it is not possible to change the sign
of v without violating » > 0]. Since each realization of an explicitly irrevers-
ible equation relaxes, averages over an arbitrary ensemble also show ir-:
reversible relaxation. In problems of this type, nothing is gained by:
averaging, except perhaps if it is necessary to average over fine-grained’
structure present at the initial instant. Significant new fine-grained structure
does not develop. An example of explicitly irreversible dynamics is low-
Reynolds-number turbulence which satisfies (5.41) to lowest order (§4.3)."

In the cases of interest here, explicit irreversibility is not the principal -
cause of approach to an asymptotic statistical state. For example, (5.2) is,
explicitly irreversible due to the presence of viscosity. However, the viscous
decay time is (vk?)-!, which is enormous if vis small and k is not too large.-
On the other hand, nonlinear scrambling is the important relaxation
mechanism at large Reynolds numbers.

Since (5.2) is manifestly time-reversible aside from the viscous term
[t = —t, u,(k) » —u,(k) transforms the viscosity-independent terms into
themselves ] no other cause of explicit irreversibility is available to produce
the required relaxation at large R. As discussed in Section 1, irreversible.
effects appear when the fine-grained structure developed by individual
realizations is ensemble averaged. Thus, there is a second type of irreversi-
bility in which individual realizations do not behave irreversibly, but in
which statistically-averaged properties behave as if they do.

With explicitly reversible dynamics, the irreversible behavior of ensembie’
averages is a product of initial conditions. That is, the moment at which
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the initial conditions are given is the “past” while the flow evolves into the
“future”. We define a symmetric ensemble to be such that, at the initial”
instant ¢ = ¢, v(x) and —v(x) are given the same weight for all realizations
v(x) of the ensemble. Any zero-mean Gaussian ensemble is symmetric.
Assuming that the initial ensemble is symmetric, explicit reversibility of
the underlying dynamics implies that averages evolve in the same way for
t —ty— —oo as for t — 15— 0. Relaxation implies that ensemble averages
approach equilibrium values as | — £5]| > +co. In other words, relaxation
in the “future” means that ¢, is “later” than ,if t;, > 1, = tyort, < 1, S ¢,
The similar evolution for r — ¢, + coand ¢ — 7, —» coindicatestime symmetry.
On the other hand, irreversible relaxation as |z — ¢,| — oo implies that for
any t, # 1, ensemble averages evolve in a different way for ¢ — ¢, > Othan
for ¢ —t, < 0. Evidently, an ensemble symmetric at ¢ = 7, is not symmetric
for ¢t # 1.

Clearly, time reversibility of the underlying dynamics precludes mono-
tonic approach to an asymptotic state for arbitrary ensembles. If some
ensemble approaches an asymptotic state monotonically as ¢ — ¢y - o, as
exhibited by, say, an *“‘H-theorem”, the time-reversed ensemble obtained
by reversing the velocity of each realization of the given ensemble at time
1, > ty does not exhibit monotonic relaxation. In fact, at ¢ =¢, + (¢, — ¢,),
the time-reversed ensemble is obtained from the given initial ensemble
(t =t,) by reversing all velocities. Thus, the time-reversed ensemble at
t =2t, — t, is almost surely not closer to an asymptotic state than at¢ =¢,.
It follows from this argument that the strongest statement we can hopeto
make is that typical ensembles exhibit regular approach to an asymptotic
state.

The purpose of ensemble averaging is to remove the fine-grained struc-
ture of the individual realizations. In order to be successful, the ensemble
must not be too trivial. If we label realizations as in §1.3 by a parameter
o and choose the distribution function to be

1 ¥
P(a) = m Y e — ) (5.42)

i.e., an ensemble of N distinct realizations, ensemble averages of quantities
with fine-grained structure will still have fine-grained structure. With (5.42),
an ensemble average is just a finite arithmetic mean over the Nrealizations.
In order for an ensemble to smooth fine-grained structure, P(a) cannot
consist of a finite number of line spectra. Rather, P(a) must have some
nontrivial structure, such as bands ay, < @ < «, where P(a) > O for all @
in the band. For such “smoothing” ensembles, irreversible relaxation may
be anticipated.

As stated above, the evolution of an ensemble-averaged quantity
reverses its evolution if every realization of the ensemble is time reversed.
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However, for a smoothing ensemble, this reversal requires than an'
infinite number of realizations be time reversed and this is not expected;
to be a typical result of evolution. This point is perhaps made more’
clearly by considering Poincaré's recurrence theorem. The Pomcarét
recurrence theorem (Chandrisekhar, 1943, Appendix V) states that if ;1?
finite-mode system (actually, any system with a constant-energy surface;q
of finite mea.sure) passes through the sequence of phase-space pomtss
Py, Py, ..., P, at the time 1,, 1,, ..., t,, respectively, then for any & >
and almost every P, there exis:s a time T such that |P; — P,| < &fori =%
0,..., n where Pjis the state of the system at f = 1, + T. Consequently}
those properties of a finite-mode system that depend ou the state of a reahza“g
tion at a finite number of times cannot relax to equilibrium and, in faci%
have arbitrarily close recurrences to their initial values arbitrarily often?g
However, while nonsmoothing ensembles such as (5.42) must preserve thé

property of arbitrarily close recurrences for averages, smoothing ensembles;
may exhibit relaxation. The point is that a smoothing ensembleis analogous,
to a system with an infinite number of dearees of freedom, corresponding to
the possible choices of a. While the Poincaré recurrence time T is ﬁmte'
for each realization of a smoothing ensemble for a finite mode system, there;
is no time when all the realizations need recur together. For example;

each realization of the random harmonic oscillator problem (5.35) hag

an exact recurrence time 2»/|b|, but there is no time when all the realiz4: ?
tions corresponding to a smooth distribution of b’s recur together. Con‘L
sequently, G(r) exhibits irreversible relaxation to 0 despite the recurrences
of g, (7).

Since the formal structure of the cumulant- -hierarchy equations does not?
depend on the ensemble, it follows from the existence of nonsmoothing!
ensembles that the hierarchy equations by themselves cannot give ap‘;%
proach to equilibrium. Evidently, the initial conditions for cumulants of
all orders provide the information necessary to distinguish a smoothing
ensemble from an ensemble of the form (5.42). '

Assuming that irreversible behavior results for the ensemble undey
consideration, the problem remains of explaining the source of the relaxas
tion in the language of the hierarchy equations. The point is that irreversible
behavior may result whenever information can get lost. For the hierarchy
of §2.4 with v so small that explicit irreversibility is not important, thg
possible sources of irreversible behavior are (i) a2 flow of informatio;
through the hierarchy from nth-order to (n + 1)-order to “inﬁnite-ordeﬁ’%
cumulants, (ii) the continuous range of the wavevector integrations 1%
(2.32), (2.33), and (jii) the infinite range of wavevector integration
in (2.32), (2.33). Case (i), the flow of information through ‘“‘cumulanf¥
space” by means of an unclosed hierarchy, is stochastic relaxation thaf
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was discussed in §5.6. In case (ii), information is lost in the averaging process .
implied by integration, or more abstractly, in infinitesimal volume elements
in k-space. This mechanism, which we call dynamical incoherence, is discussed
briefly below. In case (iii), the possibility is that energy transfer to infinite
wavenumber is accompanied by loss of information. This latter process will
be called cascade relaxation. Notice that the three possible sources of ir-
reversibility in the cumulant hierarchy are the “infinities” and “infinitesi-
mals’ associated with the hierarchy. It is only at an infinity (in wavenumber
or “cumulant” space) or at an infinitesimal (wavevector-integration
element) that information can get permanently and irrevocably lost, with the
result irrgversible relaxation.

Dynamical incoherence involves the loss of information by integration of
a rapidly oscillating function, the prototype of which is the Riemann—
Lebesque lemma

lim [ riemdr =0

for any integrable function f. Another example is Landau damping of plasma
waves. Dynamical incoherence is the dominant mechanism of irreversibility
in systems of weakly-nonlinear dispersive waves (Hasselmann, 1962; Benney
and Saffman, 1966) and weakly interacting kinetic systems (Balescu, 1963).
For these systems, closed kinetic equations for cumulants are derivable
without closure assumptions in the asymptotic limit where a generalized
Reynolds number (coupling constant) is small. These kinetic equations are
derivable either by multiple-scale perturbation theory (Benney and Saff-
man, 1966) or partial summation of the “most divergent” terms of formal
perturbation theory (Balescu, 1963).

In the case of approach to equipartition by solutions of the hierarchy
equations for the inviscid, cutoff, Navier-Stokes equations, the only pos-
sible source of irreversible behavior is stochastic relaxation. With finite
periodicity-box volume, the modes of the cutoff equations are discrete so
that dynamical incoherence is impossible. Further, the cutoff prevents cas-
cade relaxation, so that the only alternative is that relaxation is due to
stochastic relaxation. In the limit of infinite periodicity-box volume
[L - oo], the set of permitted wavevectors becomes dense in the region
lk] « K, so that dynamical incoherence cannot be ruled out a priori. How-
ever, since cumulants are averages which should remain smooth functions of
their arguments, no information is irrevocably lost upon integration.
Consequently, even in the limit L — co, relaxation to equipartition can only
be effected by stochastic relaxation,

- Inthe case of approach to an asymptotic statistical state by solutions of the
cumulant hierarchy for the Navier~Stokes equations, all three mechanisms
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of irreversible behavior are possible a priori. However, dynamical incoher:
ence can be ruled out because the cumulants for the Navier-Stokes
equations, in common with the cumulants for the cutoff equations, must bé’:
smooth functions of wavevector. It is not so easy to rule out cascade relaxa®
tion as an important mechanism. In fact, energy cascade is important in
determining the kind of asymptotic statistical state that develops, as
should be amply clear from the discussion of Sections II, IIL

The mechanism involved in cascade relaxation may be put roughly as'
follows. An arrow of time, i.e., a characteristic that distinguishes futuféﬁ
from past, is provided by the rate of energy transfer which is typically
outwards in Fourier space. At any given instant, the ensemble obtained by
time-reversing all realizations of the given ensemble has energy transfei_‘aa
inwards. Since outwards transfer follows from the general argument givei:
below, the reversed ensemble is not expected in typical evolution, aﬁ;;
irreversible relaxation may be exhibited. Energy flow typically outwards i}
deduced from the eventual importance of viscosity at very large wave!
numbers. Viscous action at large k means that high wavenumbers aré
typically excited less than is required for equipartition with low waves
numbers. However, since the ergodic (mixing) nature of nonlinear intexf::;_:
action tends toward equipartition, energy flow typically outwards ihﬁ
Fourier space results. Otherwise said, the mechanism of cascade relaxati_oiii
is simply that fluctuations are transferred by nonlinear interaction t<§
large k where they may easily be dissipated by viscosity.

At this time, it is not possible to state with certainty the relative effective%
ness of cascade relaxation versus stochastic relaxation. However, it
seems most likely that cascade relaxation is the secondary effect. Ifcascadgf
relaxation were dominant over stochastic relaxation in the hierarchy, theré
would seem no need to introduce ensembles, because the possibility for
cascade relaxation exists already with the infinite range of wavenumbers
included in the Navier-Stokes equations. For example, if shutting off
stochastic relaxation by imposing a formally reversible closure can give 4
plausible turbulence theory, then it: would seem that cascade relaxatioﬁ
should also succeed in preventing individual realizations of the Navier=
Stokes equations from becoming unstable and thence turbulent. However}
the most telling argument against the dominance of cascade relaxation f§r
that, in practice, imposing formally reversible closures on the hierarch
leads to results that are, in general, disastrous (Orszag, 1966). :

In summary, it appears that a turbulence theory must properly accountj
for stochastic relaxation, in the sense that a satisfactory, even thougﬁ
approximate, theory must account for effects of cumulants of all order§
It appears that without stochastic relaxation, a turbulence theory wi
itself exhibit “turbulence”, i.e., the low-order moments of the theory wxl}
not relax to a (statistically) stable asymptotic state.
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VI The Direct-Interaction Approximation

6.1 Direct-Interaction Approximation

The direct-interaction approximation (DIA), developed by Kraichnan
(1958, 1959), is the only fully self-consistent analytical turbulence theory
yet discovered. While its predictions do not accord with experiment at
very high Reynolds numbers, the insights that it has given into the nature
of turbulence are many and important. It is the only theory to account for
nonlinear scrambling and stochastic relaxation in a fundamental way.
We first derive the approximation using the model dynamical equation
% + oy = YAp Yy 6.1
t ix

instead of the Navier-Stokes equations. Incompressibility, symmetry, and
conservation of energy by nonlinear interaction require that the interaction

coefficients satisfy, respectively,

A; =0 (6.1a)
Ay = Ay (6.2b)
Ap + Ay + Ay =0, . (6.2c)

The Navier-Stokes equations can be reduced to a model of this form using
the polarization vector representation of the velocity field developed in
§5.2 to eliminate the longitudinal (compressive) degrees of freedom.

On the basis of the discussion of Sections IV and V, it is plausible to
assert that the effect of the sea of excited Fourier modes (or eddies) on a
given mode is to give both an effective eddy dissipation of the energy out of
the mode and an effective eddy diffusion of energy into the mode. Therefore,
it reasonable to try to account explicitly for these effects by separating out
an explicit eddy-viscous term on both sides of (6.1):

d 1
T et [y ds =

A+ [ e as), 63
Jk 0

where 1 is a formal perturbation parameter that will be set equal to 1 later.
The eddy-damping factor #,(z, s), which is assumed non-random, will be
determined below. It is also assumed that the initial values y,(0) are Gaus-
sianly distributed with zero mean and that y,(r) may be expanded as

2O = Y9 + D) + AO() + -, (6.4)
where y™(0) = y,(0) and y®(0) = 0forn » 1.
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Substitution of the formal expansion (6.4) into (6.3) and equating coef-
ficients of like powers of A gives

© ' '
Loy + [y ds =0 63)
dy(‘l) | ! : A
=L 4+ pyP + | 50, )ys)ds = q,(t), (6.6)
de o
where
!
g8 = {,‘Auky‘,"’(t)y‘ﬂ’(t) + fo e, $)yO(s) ds. ©.7
Ji

If the (nonrandom) Green’s function G,(z, t') is defined by

M + v,G(t, ') + fl n(t, 5)G(s,t')ds =0 (t >1)
at ;
(6.82)
G +0,1) =1 (6.8b)
Gt =0 (t<1t) (6.8¢)

it follows that the solution to (6.5) is expressible as

yPn) = G2, 0)y,(0).

Consequently, y(9(¢) is Gaussian for all 1. Also, the solution to (6.6) withi
yP(©0) = 0 becomes

we= [ "Gt 5) g,(s) ds. (6.9)
0
The two-time correlation Y,(¢, ¢*) is defined by
Y, (8, 1) = (@) (6.10)
If A is small (which it is not!), it follows that
Yt 1)~ < yOE)yOuyy 6.11)

It follows from (6.3) and (6.10) that

aY,gt,__,.) + oY) + fo ni{t, s) Yi(s, 1) ds
= ALZ Ap G OROREN + f e, Y (s, 1) ds ) 6.12)
o

The equations of the theory are completed by using lowest-order pertur:
bation theory to evaluate the right-hand side of (6.12) and choosing
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n,(t, 5) to cancel exactly all the eddy viscous terms that appear. To first order
in A,

GOy @Oy ) = GPOyR@y P> + AyPE) y Q) y (1))
+ AP PEOYPEN + APEYREYPEN + 0(42). (6.13)

The first term on the right is zero since y©@is zero-mean Guassian. Using
(6.9) and (6.11), it follows from the Gaussian property of y© that

PP = [ Gt Ka e PEwPE ds,
= [ G0, 9) Z A, YW NP ds
Pq
+ [ ds [7 drG,t, s)myts, AKIOEPPOYOE,
b o A\ j\>s J i

~ 24y o’ G/(t, )Y (s, DY,(s, 1) ds. (6.14)
Similar evaluation of the other terms in (6.13) gives, to first order in A,

LOROPEN = 2245 [ 61, HYils, DY fs, 1) ds

+ 204, j; "Gylt, )Y (s, DY (s, 1) ds

+ 274, fo “GAt, $)Y (s, DY (s, 1) ds. (6.15)

The first two terms on the right-hand side of (6.15) are of the form f(',

n(t, 8)Y,(s, t) ds of the last term on the right-hand side of (6.12). Con-

sequently, they give the eddy viscous effect we have sought and may be
cancelled on the right-hand side of (6.12) by setting

0t 5) = —4 X A, A, Gt )Y, (s, 0). (6.16)
Jjk

where we have set A = | and given up the pretense of perturbation expan-
sion. With (6.16), (6.12) becomes
7 11
M) Ly ) + [ ndt, 9 s, 1) ds
at A

=23 (4, fo " G, DY s, Y (s, 1) ds. 6.17)
Jk

The equations of the DIA are (6.8) (6.16), and (6.17).
The DIA equations for isotropic turbulence follow by identification of
the terms of the mode! (6.1) with those of the Navier-Stokes equations (2.31)
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[or (5.1)] using the two-time energy spectrum E(k; ¢, t') defined by

s Duyp, 10> = ZEB 1 65 1)

and the isotropic Green’s function G(k; 1, t*), which is related to the Green’s
function G,,(k; ¢, ¢') (discussed below) by
Gok; 2, 1) = P(K)G(k; 1, 1).

The DIA equations for isotropic turbulence are, by analogy to (6.8), (6.16),
(6.17), respectively,

a_"t Glk: 1, 1) + vk2Glks 1, 1) + f ks 1, )Gk 5, 1 ds =0 (¢ > 1)

(6.18)
f5) =k k : :
ntk;t,5) =5 [[ dpdg g op 0GpiLNEGs ) . 619
a
iE(ki L) + vk E(k 1, 1) + f' n(k; t, )E(k; s, t) ds
ot A
=% ! dp dql-f;’a(k, ) fo " dsGlk; 1, ) Bp; s, DE(g; 5, 1),
(6.20)

where G(k; ¢’ + 0, ') = 1 and the other notation follows that of §§ 4.4, 4.5,

The Green’s functions associated with the eddy damping are an essential
feature of the DIA. These functions may also beintroduced in analogy with
(5.20). Imagine that an infinitesimal force &f,(k, ) vanishing for t < #,
for some ¢,, is imposed on the right-hand side of (2.31).1 Then the per-
turbation su(k, 7) = u4k, r) — u(k, ), where uw'(k, t) = u(k, r) for ¢ < ¢,
should be linearly related to &f :

su,c,1) = [ ds [dp G0k, 155, )87,05) + o(]aT]), (6.21)

where G,, is independent of &f. The Fourier transform of (6.21) gives the
corresponding expression in X -space:

sv 1) = [ ds [ dy £,(x, 15y, )6hy(Y, 5),

fo

tActually, the pressure is modified by the longitudinal part of 5f so that P, 5K 85k, t)
is the term that should be added to the right-hand side of (2.31).
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where 8v and sh are the Fourier transforms of su and &f, respectively, and

£, 13V, 8) = (2 o = [ dk [ dpG.,k, 1;p, spenn-w, (6.22)

Thus, £,,(%, £; ¥, 5) is the response in v, at X, ¢ to a unit impulse perturbation
applied to v, at x/, . Homogeneity implies {£,,(x, £; y, 5)> is a function
of x-y, so that (6.22) gives

(G, 4k, £;p,5)) = G,(k; 1, 5)8(k ~ p). (6.23)

Finally, the derivation of the DIA given in this section is little more
than a heuristic plausibility argument in their favor. Therefore, it is import-
ant to investigate the properties of the DIA as well as other more justifiable
derivations, as will be done in the next few Sections.

6.2 Consistency Properties of the Direct-Interaction Equations

The DIA equations (6.16)—(6.20) reduce to the quasi-normal equation (4.30)
with the replacements

Gll; 1,,1,) = €%~ E(k; 1,,1.) = e~*0~1OE(k, , 1.),
(6.24)

where 1, « t,, upon noting that dE(k, 1)/ot = 20E(k; t, t)/at|,._,. The
difference between the quasi-normal and DIA theories lies in their treat-
ments of past dynamical evolution. The effect of nonlinear scrambling is
accounted for in the DIA by the Green'’s function, while it is not accounted
for in the quasi-normal theory.

The spectrally cutoff versions of the DIA equations are consistent with
the inviscid equipartition ensembles discussed in Section V and the ir-
reversible relaxation of arhitrary initial states to it as 1 — oo. In fact, the
fluctuation-dissipation property

Y1) = CGt,, 1) (1, < 1,) (6.25)

with arbitrary modal energy C satisfies (6.8), (6.16), (6.17) with v, = 0
provided the initial time O is moved to the infinite past (so equilibrium can
be achieved) and G,(t, t") = G,(z — t') satisfies

300 _ ac ZAnds | " Gt — )Gyt — 5)Gs) ds. (6.26)

Similarly, the DIA for the inviscid cutoff Navxer—Stokes equations yields
equipartition ensembles with

E(k;1,,1.)

- : <t (6.2
222l = Gl 1,01 (1, < 1) (6.27)

U(k,t>,t() =
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where U(k; ¢, 1 ) is the modal energy spectrum. The irreversible relaxation
of arbitrary initial states to an equilibrium of the form (6.27) may be proved
for the DIA as indicated in §6.3, but is illustrated here by the numerical
results plotted in Fig. 6.1 (Kraichnan, 1964a). These results are consistent
with relaxation to equilibrium as ¢t -+ o, i.e. U(k; 1, 7) - Cast - co.
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Figure 6.1 Approach to equipartition of inviscid truncated system in the DIA theory. The
initial conditions are chosen so that the modal energy spectrum is zero except in the quarter-
octave band centered on k = 4.75683. The initial values of vy, L, are 1.0,0-495329, respective-
ly. (For further details, see Kraichnan 1964a.)

Other consistency properties of the DIA equations include (formal)
conservation of energy by nonlinear interaction in the sense that (2.35)
holds. Also, expansion of E(k, ) given by the DIA into series of powers
of time ¢ or powers of Reynolds number R agree with the exact expansion
of E(k, t) developed from Gaussian initial conditions through terms of
order ¢3 and R3, respectively (but not beyond).

The most important consistency property of the DIA is the guaranteed
realizability of its solutions as averages of a real dynamical process. In
particular, it follows that E(k; ¢, ) is non-negative for all ¢ if it is so initially
and that )

E(k; t, 1) « E(k; t, )E(k; t', t").
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Realizability is demonstrated by explicit construction of a Langevin statis-
tical model whose exact solution satisfies the DIA equations (Phythian,
1969; Kraichnan, 1970a; Leith, 1971). The model, analogous to (4.50), is

‘9”(" Dy wuk, 1) + f n(k; 1, syulk, 5) ds = q(k, 1), (6.28)

where q(k; t, 5) is given by (6.19), ¢g(k, 1) is a random process with co-
variance

a4 9> = 5 [ dp d0-= atk p. (i 5, 0E@s 5, (629)

and {k, t) is a random variable satisfying E(k, ) = (1/2) <u(k, r)*) and such
that u(k, 0) is statistically independent of g(k, 1) for all ¢. The equivalence
of (6.28), (6.29) with (6.18)—(6.20) is easily demonstrated after noting that
the solution of (6.28) is

ulk, 1) = G(k; 1, 0)u(k, 0) + fo Glk; 1, $)q(k, 5) ds
50 that

%E(k; o)+ REGG 1) + [ "otk t, E(k; 5, 1) ds
, )

=Lamwmwwwwu

It only remains to show that q(k, r) satisfying (6.29) is realizable. This is
done, recalling the “bootstrap” process explained in § 4.7 to march from
ttot + At, by observing that

alk ) = [ a5 \f““”amww—mo

gives (6.29). Here (4.29) and (4.36) are used, k = |k |, and {and §’are chosen
to be statistically independent of each other and the initial u(k, 0) distribu-
tion and to satisfy

Gk, D§(p, 5> = <Gk, DD, ) = E(k; 1, s)5(k — p).

6.3 Random Coupling Model

Kraichnan (1961) devised a most remarkable model representation of the
DIA equations. This “random coupling model” is, for (6.1), the system

dy

5 o= ZA ViV (6.30)
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where 4, = +A,, with the choice of sign varying randomly from distinct
triad 4, j, k to triad. The choice of sign in 4’is constant for all permutations
of i, J, kin order that energy conservation (6.2¢) be maintained. The choice
of sign is also time independent. Kraichnan showed that the DIA equations
(6.8), (6.16), and (6.17) are the exact equations for the evolution of Gi(t,1) =
Caye)/8f(e) [cf. (6.21)] and Y2, ') = {y,(1)y,(¢')), respectively.

Since the DIA equations are exact for (6.30), it follows that they are (a)
realizable, (b) integrable, and (c) consistent with stochastic relaxation.
Realizability was discussed above. Integrability requires, among other
things,

2y 2y 6.31
or l(t,t,)—'aTa—t’ (2, ). (6.31)

The importance of (6.31) is that it guarantees that the results for Y (z, t’)
are independent of the path in the 7, ¢ plane used to integrate the equations.
The DIA is consistent with stochastic relaxation because the model (6.30)
for which it is exact includes an infinity of interacting degrees of freedom
and is such that an isolating integral of motion in addition to energy is even
less likely than for (6.1).

It should be emphasized that the random coupling model (6.30) is an
entirely different kind of approximation to the exact dynamics than is
the more familiar random phase approximation (Bohm and Pines, 1953).
The former requires only that the phase (sign) of the coupling constant
A}, be random and uncorrelated, and then treats the resulting dynamics -
exactly. On the other hand, the random phase approximation requires that
the phases of the solution y, be random and uncorrelated. For the turbulence
problem, the random phase approximation yields the quasi-normal theory,
which we have seen to be unsatisfactory.

The proof that (6.30) is 2 model for the DIA is based on the diagrammatic
perturbation methods outlined in the next Section. However, the proof
of equivalence of the random coupling model and the DIA will not be given
here. The interested reader should consult the original paper by Kraichnan
(1961).

6.4 Diagram Methods

The idea of diagram methods and their relation to the DIA is best explained
for the dynamically-linear stochastic model

@%ﬁ = —ib()qlt, 1) gty 1) = L. (6.32)
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where b(t) is 2 zero-mean Gaussian random vatiable with covariance-
B()b(s)> = 1t — s).

The case I'(t) = I(0) = <b*) in which b(t) = b(0) was discussed in §5.5.
The exact solution to (6.32) is

G(t — 1) = G(t, 1) = {q(t, 1)) = exp [_% f ds f drr(s - r)].

(6.33)
This random oscillator problem is homologous, with reference to diagram
structure, to linear wave propagation problems (Frisch, 1968).
A diagrammatic treatment of (6.32) may be based on the Neumann (per-
turbation) series

gt 1) = H@ 1) - i [ " H(t, $)b(s)H(s, 1) ds

+(=ip [ " ds [ " drH(E, $)b)H(s, AbAH(, 1), (6.34)

where H(t,t)) = 1ift > ¢,0ifr < ¢’ Thisseries is represented by the dlagram
expansion shown in Fig. 6.2, where 7 ¢’ deplcts the “bare propagator”
H(t, t'), o depicts the *“bare vertex” —i, and | depicts b(f). Intermediate
times in the diagrams are assumed to be integrated between their limits.

| L
i | I
q(t,t')= + 4 + ' 4  t eeee
t t' t s t' t s r t
Figure 6.2 Diagrammatic representation of the Neumann series (6.34) for the solution of
(6.32).

The only stochastic element on the right-hand side of (6.34) is b(-), so
that the Gaussian property may be used to evaluate the average of each
term of the series. The result of averaging over the Gaussian ensemble
is shown in diagrammatic form in Fig. 6.3. A dashed line connecting time
s to time r indicates the factor {b(s)b(r)> = I'(s — #), while the heavy solid
line ¢ ¢ represents the “‘renormalized” propagator G(t, t). The series
depicted in Fig. 6.3 has the analytic form, with term by term correspondence,

G(t, t) = H(t, 1) + (—i)? f" dsf ' drH(t, s)H(s, NH(r, t)I(s — 1)

+ (—i)* f " ds f " dr f " du f " dvHL, OH(s, NH(r, H(u, WHE, £)

[ — A —v) + Ns —=WM(r — ) + Ns —)I(r =H] + -+
(6.35)
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Figure 6.3 Bare diagram exﬁansion for G(t, t') = {g(t, t")> with Gaussian b(¢). This diagram
expansion is equivalent to the series (6.35).

The various analytical theories of turbulence have analogs for the problem
at hand which correspond to partial resummations (or contractions or re-
normalizations) of the series (6.35). For example, the sum of the string -
of diagrams shown in Fig. 6.4a satisfies the integral equation depicted in
Fig. 6.4b: '

Ganlts 1) = H(t, ) + (i) [ ds [ drH(t, HGs, 1) Gulr, 1)1(s ~ 1)
4 (N
(6.36)
If a Neumann series is constructed by iteration of he right-hand side of
(6.36), the resulting series expansion has the diagra: .matic representation
of Fig. 6.4a.
The partial summation GQN(t, t') is precisely the same as the quasi-normal

1

QN e o .. -
—— B e -—‘—b— 3

fal ot Tt RS rarra A rarravasCh S
QN -~ QN

(b) oe—— T e 4 — —

t t

Figure 6.4 (a) Bare diagram representation of the quasi-normal approximation. (b) Resum-
mation of the series of (a), resulting in the integral equation (6.36).

t ottt s r
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approximation. In fact, the closure (5.55) gives

dGon() _ f It — 5)Gu(s) ds, (6.37)
dr
which is equivalent to (6.36), noting that Gy (r — t') = Gou(t, ) is afunction
of 1 — 1" alone because of the statistical stationarity of the random process
. b().
The solution to (6.36) is best effected by Laplace transformation; it
follows that

a+ico l
Gon(t) = Trf,, WP FI (6.38)

where I'(p) is the Laplace transform of I'(f) and the path of integration is
to the right of the singularities of the integrand. If

r() = <b>e
then, setting a? = v-2 — 4{b?), it follows that

Gonlt) = il:e—mv[(a + ey 4 (o - De _n}z.,,} (6.39)
On the other hand, the exact solution (6.33) is

G(1) = exp[— DT — 2 + 72e )] (6.40)
R =<{bD"1 « 1, then & = 7' — 2¢{b?> 4+ O(R*z~") so that

Gon(D) = €41 + O(R? + Rtz")), (6.41)
while

G(r) = e~¢[1 + O(RY)]. (6.42)

Consequently, Gon(f) = G(r) for all ¢ if R <« 1, and the relative error is
small if 1 « 7/R% Rmay be interpreted as a generalized Reynolds number.
The conclusion is that the quasi-normal theory is asymptotically valid for
all t if R « 1. This situation should be contrasted with the perturbation
series solution which, to second order, consists of the first two terms on the
right-hand side of (6.35), viz.

Gpcrx(t) =1- j; dSJ; drI‘(s — r) =1- (bZXt'r - 72 + TZC"/").
(6.43)

When R « 1, G,..(t) = G(¢) only with the additional restriction R%t/z < 1.
In contrast to the quasi-normal approximation, the perturbation series
is not uniformly valid in ¢ when R is small.
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When R — oo, the quasi-normal approximation (6.39) gives, for ¢t «
R2<b2>-ll1’

Gon(?) = e~ VXWERcos(Cb?)'12) E +0 (%)] (6.44) -
while the exact solution (6.40) satisfies
G(t) = e-Vxe» (6.45)

. for 1 €« R(b*>-'2 The quasi-normal solution (6.44) oscillates on the time
scale {b*>-2 and only approaches zero on the time scale R(b?*>-'7 in
contrast to the exact solution which approaches zero on the time scale
{b*>-\2, The behavior of the quasi-normal approximation is qualitatively
wrong when R — oo, as already found in Sec. 5.5 (for the case R = oo).
Frisch and Bourret (1970) find that, for a variety of I'(r), Go is accurate to
within 5% for R « 1/10 and Gy, is qualitatively incorrect for R » 1/4.

The series (6.35) can be contracted to the “irreducible” diagram expan-
sion shown in Fig. 6.5. Here a diagram is said to be reducible if it can be
contracted by the replacement shown in Fig. 6.6 to a diagram with fewer
vertices. For example, the third and fourth diagrams on the right-hand side
of the equation depicted in Fig. 6.2 are reducible, while the fifth diagram on
the right is irreducible. The second diagram on the right in Fig. 6.2 is defined
to be irreducibie even though it may be contracted. The explicit form of the
first two terms of the diagram expansion of Fig. 6.5 is '

GG, ) = H(t, t) + (—i)? f ds f drH(t, 5)G(s, HG(r, INT(s = 7) + ----
(6.46)

The equivalence of the diagram expansion shown in Fig. 6.5 to that of
Fig. 6.2 isdemonstrated by iterative expansion of the renormalized diagrams
into a series of “bare” (uncontracted) diagrams.

The DIA corresponds to retaining only the first two diagrams on the right-
hand side of Fig. 6.5, so that the equation for G{¢, t’) is (6.46) neglecting
all but the terms shown explicitly. The bare diagram expansion of the DIA

Al
yi \\
1 - L} + [}
t 1 t t t s r t
_— T ey e — —
+ < N
t s r u v t
<+ eoee

»

Figure 6.5 Irreducible diagram expansion of G(t, ). The explicit form of this diagram series
is given in (6.46).
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o~

—_— 3

Figure 6.6 Replacement used to define a reducible diagram. If any part of a diagram can be
removed by the contraction shown in this figure, the diagram is reducible.

is shown in Fig. 6.7; all diagrams consisting of series and “towers” of
“bubble” diagrams are included, but all “crossing” diagrams, like the
fifth on the right in Fig. 6.2, are excluded. It follows from (6.46) that

' ’
dGon() _ _ [ Pt = 5)Goult - )Gon(©) ds. (6.47)
d: o
DIA - — =\
—— = e e L i + o000
t t' t t' ts et ts ru vt tsruv t

Figure 6.7 Bare diagram expansion of G(t, t’) in the direct-interaction approximation.

The closed form analytical solution of (6.47) is not known even for the
special case I'(f) = <{b*)e~". However, if R < 1, it can be shown that
Gpi (1) = G(1) for all 1. Rigorous proofs can be given (Frisch and Bourret,
1970), but the simplest argument is that, when R < 1, the time integral in
(6.47) can be approximated by I'(t — 5) Gpi, (2 — 5) = I'(t — 5) since Gpy, ()
deviates from 1 only on the time scale 7/R? while I'(r)-approaches zero in
the time scale 7. Thus,

d_ngtAﬂ ~— fo It - HGpu(s)ds (R < 1)

which is precisely (6.37), so that Gp,(f) ® Gou(r) = G(f) when R < 1.
On the-other hand, when R = o, (6.47) reduces to ’

dr
whose solution (found by Laplace transformation) is (Kraichnan, 1961)

J, 26D
Gpi (1) = —(TIST)%T)’

dGon(® _ @D f‘ Gpialt — 5)Gpy (s) ds, (6.48)

v

(6.49)

where J, is the Bessel function of order 1. While (6.49) does differ quantit-
atively from the exact result (6.45), it shares the important qualitative feature
with (6.45) that both approach zero on the time scale {b*)>-"2 Frisch and
Bourret (1970) solved (6.47) numerically for a variety of I'(z). They found
that Gy, is in error by less than 5% if R « 1/2, and that Gp, and G
behave in a qualitatively similar way for all R. It may be concluded that
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the DIA is a significant qualitative, if not quantitative, improvement over
cumulant-discard approximations.

The DIA equation (6.47) also follows from the random coupling model
for the system (6.32). The details of this construction are given by Kraichnar
(1961), who uses random couplings of M identical system satisfying (6.32)
to generate a macrosystem for which the average Green’s function Gpy, (1)
satisfies (6.47) in the limit M — co. Since therandom coupling model involves
couplings of a large number of systems, stochastic relaxation is guaranteed
in the DIA. Similar random coupling models are possible for a very wide
variety of stochastic systems. In terms of diagrams, all diagrams except the
DIA diagrams shownin Fig. 6.7 vanish in therandom ¢oupling model.

The success of the DIA may give hope that successive truncations of the
renormalized diagram expansion of Fig. 6.5 give approximations that con-
verge rapidly to G(f). Unfortunately, this is not the case. All higher-order
truncations of the series in Fig. 6.5 give unsatisfactory approximations to
G(t), as shown by Kraichnan (1961). If all the terms shown explicitly in
Fig. 6.5 are retained, the equation for G(f) becomes, in the limit R — oo,

%TG =.—(b?) G*G + BDGHG*(G*G)), (6.50) -
where * denotes convolution, with G(0) = 1. The Laplace transform g(p)
of G(¢) satisfies

pg(p) — 1 = —<bW g(p)? + b*>g(p)’
so that _
g0 =1 +V3)20%.

It follows that [; G(r) d¢ cannot be real and finite. In fact, the solution to
(6.50) grows faster than any power of tas ¢ — oo.

The difficulty with higher-order (“indirect interaction’) approximations
obtained from the renormalized series shown in Fig. 6.5 is not that surprising
since the Laplace transform of the renormalized series diverges (as does
the Laplace transform of the bare series) when R = co. It may be shown
that the number of diagrams in the renormalized series with 2n vertices
is asymptotically 1/e times the number of diagrams in the bare-diagram
series of Fig. 6.3. Since each diagram has a value independent of its topology
(and dependent only on ¢, ¢’ and the number of vertices) when R = oo, it
follows that the bare and renormalized series diverge together (Kraichnan,
1970b). The higher-order truncations of the renormalized series of Fig. 6.5
are evidently not realizable by model dynamics.

An improvement on the DIA is obtained by a vertex consolidation of
the series of Fig. 6.5. An exact equation for G(t, t') is given by the diagram
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equation shown in Fig. 6.8; here the renormalized vertex ,®,,, denoted by
—iV(2, s, t'), is defined by the diagram series of Fig. 6.9. The explicit form
of the equation depicted in Fig. 6.8 is

G, 1) = H(t, 1) -f ds f dr f dv f du H(, 5)G(s, HV(r, v, &)

G, 1) (s — v). (6.51)

The problem of approximating G(¢) is then reduced to the problem of
approximating the vertex —iV(t, s, ), whose bare diagram expansion
depicted in Fig. 6.9 is given explicitly through the first three terms on the
right by

—iV(t, s, 1) = —is(t — s)8(s - 1) + if‘ dr f duH(t, r)s(r — 5)
8(s — wyH(u, 11 (e — 1) —i | " dr f " du f " dv ) " dw H(, NH(r, 1)

S(u — 5)8(s — V) H(v, wyH(w, AT (t ~ tYT(r — w) + --++, (6.52)

where it is assumed that-[; 8(x)dx = 1 for all ¢ > 0, =Ofor all ¢ < 0. Eq.
(6.51) follows by classifying all bare diagrams serially from left to right
within the diagram into bare propagator (H), propagator (G), vertex (V)
“tied” to the leftmost H, and propagator (G) components. This decomposi-
tion of any diagram is unique, so no double counting of diagrams results.
If the vertex is (6.51) is replaced by the bare vertex, the DIA results. Higher
approximations are gotten as follows.

== + 0

t t' t t ot s r u t

Figure 6.8 Exact integral equation for G(t, t) in terms of the renormalized vertex —iV(r, v, u).
The explicit form of this equation is (6.51).
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Figure 6.9 Bare diagram expansion of the renormalized vertex. The explicit form of thls series
is given in (6.52).
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The vertex seriesin Fig. 6.9 may be resummed into the renormalized series
shown in Fig. 6.10. Again, each diagram in Fig. 6.9 is uniquely classified
to one of the “irreducible” vertex diagrams of Fig. 6.10 by consideration
of its structure serially from left to right. Here “irreducible”” means a vertex
diagram that can not be contracted by the replacements shown in Figs.
6.6 or 6.11. The only irreducible diagrams on the right of Fig. 6.9 are the
first, second (by assumption), and sixth.

-— //—Y—\\
s s //,s\\w // v, s Na \¢
® = o + —M +-—W + ...
tt tt t ruvt t ruwxyz bt

Figure 6.10 Irreducible diagram expansion of the renormalized vertex. Here a diagram is
irreducible if it cannot be contracted by either of the replacements shown in Figs. 6.6 or6.11.

I—O—L —— .

Figure 6.11 Replacement used to define a reducible vertex diagram. If any part of a diagram
can be removed by the contraction shown in this figure, the diagram is reducible.

Kraichnan’s (1961) “second stochastic model” is obtained by retaining
only the first two terms on the right side of Fig. 6.10. The resulting equation
for the vertex is

Vit, 5, 0) = ot — )56 — 1) ~ [ ar [ qu [ dv [ dw
G, NV(r, s, u) Gu, WV(v, w, 1YLt — w). (6.53)

The solution to the coupled equations (6.51), (6.53) is in excellent agreement
with the exact solution (6.33) even at R = oo (Kraichnan, 1961). As such, it
gives a substantial improvement over the DIA. However, the present vertex
consolidation has a number of practical and philosophical drawbacks, in-
cluding the apparent nonexistence of a model system yielding (6.51), (6.53)
exactly, so that realizability can not be guaranteed. Also, no higher-order
truncation of the series in Fig. 6.10 gives plausible approximations to G(¢)
at large R. The latter trouble relates to the fact that the number of irreducible
vertex diagrams with 2n + 1 vertices is asymptotically 1/e? of the total
number of bare vertex diagrams with 2n + 1 vertices as n - oo.
Extensions of the diagram methods surveyed here have been made to the
nonlinear dynamics of the Navier-Stokes equations (Kraichnan, 1961;
Wyld, 1961; Nakano, 1972; Martin, Siggia, and Rose, 1974; and others).
Some care is required to avoid double counting problems, which Wyld’s
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expressions suffer from. Extensions may also be made to a variety of other
dynamical systems (cf. Morton and Corrsin, 1970 for some applications to
nonlinear oscillator problems). Finally, vertex modifications may be in-
cluded. However, although the DIA has been amenable to numerical study
(cf. Sec. 6.6), the equations of the vertex consolidation are so formidable
that numerical solution has not yet been attempted even for the simplest
cases of homogeneous turbulence. One additional reason for the lack of .
interest in vertex-consolidated models is that it is known (cf. §6.5)thatthey
can not be consistent with the high-Reynolds-number inertial range
dynamics of the k=33 law,

6.5 Inertial-Range Dynamics of the DIA

The DIA equations (6.18)—(6.20) were analyzed at large Reynolds numbers
by Kraichnan (1959). Consider a large wavenumber satisfying kL, » 1. For
such a wavenumber, the turbulence may be assumed in a statistically
stationary state, so that

E(k;1,1) = E(k, |t —t']), Glk; 8, t') = G(k, |t — t']). 6.59

The dominant contribution to the eddy damping (6.19) for k comes from
gL, ~ 1,i.e. the energy-containing eddies. In fact, it follows from (4.64) that
the dominant contribution to (6.19) is

n(k; 1, 5) = k32, G(k, t — 5). (6.55)

It is assumed that E(g; s, f) = E(q)for g ~ L;'and |t — 5| less than the decay
time of G( k, 7). With (6.55), (6.18) becomes

%ﬂ + vk? Gk, 1) + k2, f "Gk, 7 - 5)G(k, ) ds = 0. (6.56)
Q

The solution satisfying G(k, 0) = 1 is [cf. (6.49)]
e~ J) (ZkvrmsT) .
rmsT

In the inertial range, direct viscous effects are unimportant so that G(k, 7) =
J, kv, 7)/ (kv 7). The important result follows thit the characteristic time
for G(k, 7) to approach is 1/kv,,,, viz. the sweeping time (k) defined in §3.1.

Similar approximations on (6.20) yield the result that, in the inertial range,

E(k; t, 1) = E(k, [t — 2']) = ER)r(kvem |t — 2']), (6.58)

where r(s), the inertial-range time-correlation function, can be shown to
hzave vanishing Fourier transform outside the interval [ —2,2]; thatis, r(s) =
JZ5 r(v) exp(ivs) dv. Hence, E(k, ) approaches zero in the time scale 7,(k),
showing that Fourier modes become decorrelated with themselves after the
sweeping time.

Gk, 7) = 6.57)
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An equation for E(k; ¢, t) follows from (6.20) by setting t ="

[-"- + 2vk2]E(k; L) +2 [ ok 6, 9B ,1) ds
ot 0

3 ' ' ’
= ff dp dq:—qa(k, p, q)f ds G(k; 1, sYE(p' s, )E(q; s, 1). (6.59)
(]
a
In the inertial range, this equation can be written in the form (4.57) with

o.p,9) = [ " Gk, 5)r(pv.m5)P(qu,e,s) ds (6.60)

so that the theory of §4.8 applies. Since 6(k, p, g) is dominated by the
sweeping time ,(k), it follows that m = 1 in (4.57), so that (4.58) gives n =
3/2. Introducing the proper dimensional scaling, it follows that the inertial
range spectrum of the DIA is

E(k) = Cow €"vigk¥2 (6.61)

As discussed in §3.2, the spectrum is not consistent with experimental
results for high Reynolds number turbulence. This is the main failing of the
DIA. The origin of the failure of the DIA intheinertialrangeis the fact that
the energy equation (6.59) is governed by the sweeping time <, (k), so that the
argument of §4.8 gives a k-32 law. It is of some importance to understand
how the sweeping time enters the direct-interaction approximation and
thereby understand how the approximation breaks down. The following
argument is directed at this goal.

Suppose that a verydow-wavenumber disturbarce is superposed on a
given state of turbulence. It is supposed for convenience that the very-low-
wavenumber excitation is statistically isotropic so that it may be described
by its energy spectrum Ey(k), which is supposed confined to wavenumbers
less than k. It is further supposed that the field described by Ey(k) is, at
t = 0, Gaussian and statistically independent of the undisturbed turbulence.
The effect of the disturbance field on the given turbulence is then considered
in the asymptotic limit k, —» 0 and

3._ -
3= fo Eq(k) dk, = 0(1).

It is clear that, as k, — 0, the very-low-wavenumber excitation approaches
uniform convection over larger and larger scales, and longer and longer
times. For finite time of evolution, the effect of the very weak shear asso-
ciated with Ey(k) should be well approximated by the effect of uniform con-
vection. Since the superposed field is statistically independent of the given
turbulence, and since uniform convection cannot distort an eddy and trans-
fer energy, spectral properties should be undisturbed.
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This latter result is investigated formally by approximating the effect of
Ey(k) by a random uniform convecting velocity with rms velocity 3v. The
effect of a uniform velocity Us(k) on (2.31) is to add —i(k -U)u_(k, ?) to its
right-hand side. The effect of this term on a solution of (2.31) is to replace
u(k, 1) by

u.(k, t) = u,(k, 1) exp(—ik - Up). (6.62)

Thus, the effect of uniform convection is merely a phase change, as is also
apparent from (2.14). If averages with respect to U are denoted by [],
reserving { )for averages with respect to the undisturbed turbulence, then

[<u, (&, e-*Luy(p, e~V . u (g, Ne-" V)] =

o (k, Duy(p, 1) ... u (g, 1)) (6.63)

since the moments are zero unless k + p + - - + q = 0. Therefore, the effect
of random uniform convection on single-time moments and cumulants
vanishes. This staristical Galilean invariance is the basis for the neglect of the
dynamical effect of large scales on small scales in the Kolmogorov theory
of §3.1.

On the other hand, many-time moments are affected by large-scale con-
vection. For example, the effect of random uniform convection on the two-
time energy-spectrum tensor is

[Cu (&, Duy(p, 1] = <ufk, Du,@, 1) [exp(—ik - Ut - 1))]
= Cu,(k, t)u,(p, 1)) exp[ vkt — 197]  (6.64)

which is certainly not negligible. In fact, large scale convection affects the
correlation (6.64) in the time scale 72(k) = (kv,) -*. Similarly, it may be shown
that random uniform convection should affect the Green’s function G(k;?,
t') on the time scale t — 1 ~ 78(k).

Consequently, the results (6.57), (6.58) for the Green’s function and time-
correlation function, respectively, in the DIA are qualitatively correct,
especially with regard to their characteristic time scale. On the other hand,
these sweeping times should not enter the equation for the single-time
energy E(k; t, 1), which they do in (6.59) for the DIA. The trouble is that
(6.30), for which DIA. is exact, is not invariant to a random Galilean trans-
formation in large scales, even if (6.1) is so invariant. In fact, the coupling
coefficients 47, fluctuate randomly from triad to triad whereas Galilean
invariance to large (but not infinite) scale requires that the coupling co-
efficients approach a constant times the wavevector as k — 0.

The difficulty of DIA with time scales besets any self-consistent theory
that deals with many-time moments in an €ssentially perturbative way in
Eulerian coordinates. For example, the vertex renormalizations discussed in
§6.4 are also inconsistent with the Kolmogorov theory of §3.1, for the same
reason that the sweeping time scale enters the single-time energy dynamics.
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One way to avoid this problem with DIA is to rework the entire theoryin
Lagrangian coordinates. In this way it is possible to account explicitly for the
absence of effects of large-scale convection on small scales within low-
order perturbation treatments. In a remarkable series of papers, Kraichnan
(1965b, 1966b) developed the Lagrangian history-direct interaction (LHDI)
approximation. The heart of this theory is a generalized Lagrangian velocity
field v(x, 7|r), defined as the velocity measured at time r for the fluid particle
that passed through x at time ¢. The time 7 is called the measuring time, while
the time ¢ is called the labelling time. The usual Lagrangian velocity w(a, r),
defined as the velocity measured at time r for the fluid particle that was ata
at the initial instant ¢ = 0, is merely w(a, 7) = v(a, 0| 7). The advantage of the
generalized Lagrangian velocity is that it satisfies simpler differential equa-
tions than w(a, 7). In fact, the equation satisfied by v(x, | ) as a function of
its labelling coordinates is

g—t-v(x, 0P + v(x, £)- 90, 2]7) = 0. (6.65)

Here v(x, 1) = v(x, t]f) is the usual Eulerian velocity measured at x, r. Eq.
{6.65) follows because the velocity measured at time  is independent of the
labelling coordinate along the path line of the fluid particle passing through
X, t; {6.65) states that the measured velocity does not change as the fluid
particle executes its path, when the measuring time is constant.
Unfortunately, the resulting LHDI approximation is exceedingly com-
plicated and of dubious fundamental validity. The problem is that in the
course of reworking the theory in Lagrangian coordinates, Kraichnan was
able to achieve statistical Galilean invariance but he was not able to maintain
contact with the random coupling model. Thus, there is no fundamental
guarantee that the results of the LHDI theory are self-consistent or realiz-
able. Nevertheless, numerical integration of the LHDI equations gives
results in excellent agreement with experiment for the velocity field (Kraich-
nan, 1966b). There is evidence that the predictions of LHDI are not so
satisfactory in the case of passive scalar convection (Kraichnan, 1966c,
1968b), in the sense that LHDI overestimates scalar transport efficiency
because, in the absence of molecular diffusivity, Lagrangian scalar cor-
relations persist longer than Eulerian scalar transport correlations.

6.6 Comparison with Experiment

Herring and Kraichnan (1972) give extensive comparisons of the test-field
model (§4.9) and the DIA with laboratory experiments and numerical
simulations of moderate Reynolds number homogeneous turbulence, as
-performed by Orszag and Patterson (1972). The choice g = 1.2 gives the
best fit of the test-field model with the numerical experiments.
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In Fig. 6.12, we show the comparison of the DIA with the homogeneous
turbulence numerical simulations of Orszag and Patterson. At these
moderate Reynolds numbers, DIA does a good job of predicting the flow
evolution, except for the skewness S, which is significantly underestimated
by the DIA. The latter result is consistent with the general notions of the
accuracy of the DIA, since the skewnessis a nondimensional measure of the
efficiency of energy transfer and energy transfer is inhibited in the DIA.
This inhibition is due to the cutoff in the buildup of triple correlations after
the sweeping time.

It is interesting to compare the computational effort to compute with the
DIA, the test-field model, and direct numerical solution of the Navier—
Stokes equations. For homogeneous turbulence, the test-field equations are
the most efficient to integrate because (a) they are ordinary differential
equations in time in contrast to the DIA equations that are integro-dif-
ferential equations in time, and (b) discretization points may be spaced
logarithmically in wave-space as discussed in §4.5,in contrast to direct simu-
lation that requires inclusion of all modes (but see Lorenz, 1972, for an

- interesting attempt to include only a sparse distribution of modesin a direct
simulation). At grid turbulence Reynolds numbers R, ~ 50, numerical
solution of the DIA equations is perhaps only an order of magnitude more
efficient than direct numerical solution of the Navier—Stokes equations.
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Figure 6.13 Nondimensionalized one-dimensional spectrum function k%2 ¢, (k) in the inertial
and dissipation ranges as computed by the LHDI approximation (solid curve) and compared
with the October 1959 data of Grant, Stewart and Moilliet (1962). Here k,is given by (3.2) and
¢, (k) is related to the isotropic energy spectrum E(k) by E(k) = k3d/dk [17kd/dk #1(k)]. For
further details, see Kraichnan (1966b).
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However, at these Reynolds numbers, direct simulation is quite competitive
if the turbulence is anisotropic and, especially, inhomogeneous. At higher
Reynolds numbers, the work estimates for direct numerical simulation show
that the number of computer operations required grows as R§. Con-
sequently, since the work for DIA or the test-field model grows more
slowly with Reynolds number (Kraichnan, 1972), numerical solution of the
analytical theories is much more efficient than numerical solution of the -
Navier-Stokes equations (but see below). ;

In Fig. 6.13, we plot the equilibrium range (inertial and dissipation) range
spectra determined by the LHDI approximation as compared with high
Reynolds number geophysical data. The results of the test-field model and
the eddy-damped Markovian approximation are quite similar.

Herring et al. (1974) compare the results of numerical simulations of two-
dimensional turbulence with the predictions of the DIA and the test-field
model. In Fig. 6.14 we plot the enstrophy dissipation spectrum k*E(k) vs k
for the DIA and the test-field model with g = 0.65, 1.0 as well as numerical
simulation data. It is apparent that the DIA fails badly in this case. The
reason for this failure can also be traced to the incorrect time scales of the
DIA. As pointed out in §3.4, the inertial range time in two dimensions is
constant, whereas the DIA enstrophy transfer is still affected by the
sweeping time (kv,,,,,) ~*. Since the analog of (4.59) for an enstrophy-cascade
inertial range is n = 3 — m/2, where nis the power-law exponent of E(k) and -
m is the power-law exponent of the characteristic time scale, it follows that
the DIA gives an enstrophy-transfer inertial range in two dimensions with
E(k) oc k=572 The inertial range spectrum in two dimensions is actually a log-
corrected k-2 law, so that DIA is off by k'?; this should be contrasted with
three dimensions where the DIA k-*?2 inertial range law is only off by kV¢
from k-*3 In other words, the DIA error is larger in two than in three space
dimensions, so that the poor results plotted in Fig. 6.14 are plausible. On the
other hand, the test-field model, which accounts properly for thedynamical
time scales, does a much better job of predicting the evolution of these two-
dimensional turbulent flows.

Finally, we mention an intriguing possibility pointed out by Orszag and
Israeli (1974) and Herring et al. (1974), viz. that numerical simulation of
turbulence may be workable at moderate Reynolds numbers for the simula-
tion of very high Reynolds number flows. It has been observed in numerical
simulations that there is a very strong degree of Reynolds number indepen-
dence in the fiows. Tt appears that if one is interested only in wavenumbers
k < K, it may be sufficient to simulate a fiow whose energy dissipation
spectrum in three dimensions [enstrophy dissipation spectrum in two dimen-
sions] peaks at a wavenumber somewhat larger than X, even though the
Reynolds number of the latter flow may bt several orders of magnitude
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Figure 6.14 Enstrophy dissipation spectrum k*E(k) vs & for two-dimensional turbulence
numerical experiments and theories. The data points are the results of numerical simulations,
while the curves labelled TFM (g) are for the test-field model (§4.9) with the indicated value of
g and that labelled DIA is for the direct-interaction approximation. The initial energy
spectrum is E (k) = 4k exp (—3k), while » = 0.0025. The length scale L, given by (3.32) is initially
L,(0) = 0-7388, while vz (0) = (1-5)"/? == 1-225 and R(0) = Vs Ly/v = 362. The plots are
at ¢ = 0-8, which is well into the evolution of this flow. Further details are given by Herring
et al. (1974).

less than the flow of interest. The scales k < K should be Reynolds number
independent. It follows that the amount of computational work necessary
to do a direct numerical simulation of a turbulent flow may not grow as fast
as RY. This exciting possibility must beleft to be judged in the future.

References

Bass, J. (1949) Sur les bases mathématiques de la théorie de la turbulence d'Heisenberg.
C.R. Acad. Sci., Paris, 228, 228-229.

Baslecu, R. (1963) Statistical Mechanics of Charged Particles. Interscience.

Batchelor, G. K. (1953) The Theory of Homogeneous Turbulence. Cambridge University Press.

Batchelor, G. K. (1969) Computation of the energy spectrum in homogencous two-dimen-

sional turbulence. Phys. Fluids (Suppl. 2) 12, 233-239.

Batchelor, G. K. and Proudman, I. (1956) The large-scale structure of homogeneous tur-

bulence. Phil. Trans. Roy. Soc. A248, 369-405.



STATISTICAL THEORY OF TURBULENCE 369

Batchelor, G. K. and Townsend, A. A. (1947) Decay of vorlicity in isotropic turbulence.
Proc. Roy. Soc. A191, 534-550.

Batchelor, G. K. and Townsend, A. A. (1949) The nature of turbulent motion at large wave-
numbers. Proc. Roy. Soc. A199, 238-255.

Batchelor, G. K. and Townsend, A. A. (1956) Turbulent diffusion. Surveys in Mechanics,
352-399. Cambridge University Press.

Benney, D. J. and Lange, C. G. (1970) The asymptotics of nonlinear diffusion. Stud. in Appl.
Math. 49, 1-19.

Benney, D. J. and Saffman, P. G. (1966) Nonlinear ineractions of random waves in a disper-

. sive medium, Proc. Roy. Soc. A289, 301-320.

Betchov, R. (1956) An inequality concerning the production of vorticity in isotropic tur-
bulence. J. Fluid Mech. 1, 497-504.

Bohm, D. and Pines, D. (1953) A collective description of electron interactions: III. Coulomb
interactions in a degenerate electron gas. Phys. Rev. 92, 609-625.

Burgers, J. M. (1948) A mathematical model illustrating the theory of turbulence. Advances
in Mechanics, 1, 171-199.

Busse, F. H. (1970) Bounds for turbulent shear flow. J. Fluid Mech. 41, 219-240.

Calien, H. B. and Greene, R. F. (1952) On a theorem of irreversible thermodynamics. Phys.
Rev. 86, 702-710.

Chandrasekhar, S. (1943) Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15,
1-89.

Charney, J. G. (1971) Geostrophic turbulence. J. Armos. Sci. 28, 1087-1095.

Cocke, W. J. (1969) Turbulent hydrodynamic line stretching: consequences of isotropy.
Phys. Fiuids 12, 2488-2492.

Comte-Bellot, G. and Corrsin, S. (1966) The use of a contraction to improve the isotropy
of grid-generated turbulence. J. Fluid Mech. 24, 657-682.

Corrsin, S. (1962) Turbulent dissipation fluctuations. Phys. Flutds 5, 1301-1302.

Corrsin, S. (1963) Turbulence: experimental methods. Handbuch der Physik, Fluid Dynamics I1,
vol. VIII/2, 524-590. Springer-Verlag.

Deardorff, J. W. (1970) A numerical study of three-dimensional turbulent channel flow at large
Reynolds numbers. J. Fluld Mech. 41, 453-480.

Ebin, D. G. and Marsden, J. (1970) Groups of diffeomorphisms and the motion of an in-
compressible fluid. Ann. of Math. 92, 102-163.

Edwards, S. F. (1964) The statistical dynamics of homogeneous turbulence. J. Fluid Mech.
18, 239-273.

Edwards, S. F. and Taylor, J. B. (1974) Negative temperature states of two-dimensional
plasmas and vortex fluids. Proc. Roy. Soc. A336, 257-271.

Ellison, T. H. (1962) The universal small-scale spectrum of turbulence at high Reynolds
number. Mécanigue de la Turbulence, 113-121. Paris: CN.R.S.

Fox, D. G. and Orszag, S. A. (1973) Inviscid dynamics of two-dimensional turbulence. Phys.
Fluids 16, 169-171.

Frenkiel, F. N. and Klebanoff, P. S. (1967) Higher-order correlations in a turbulent fluid.
Phys. Fluids 10, 507~520,

Frisch, U. (1968) Wave propagation in random media. Probabilistic Methods in Applied
Mathematics, 75~197. Academic Press.

Frisch, U, and Bourret, R. (1970) Parastochastics. J. Math. Phys. 11, 364-390.

Frisch, U., Lesieur, M. and Brissaud, A. (1973) Qualitative problems in fully developed tur-
bulence: a soluble model. To be published.

Gibson, C. H. and Masiello, P. J. (1972) Observations gf the variability of dissipation rates
of turbulent velocity and temperature fields. Statistical Models and Turbulence, 421-453.
Springer-Verlag.



370 . STEVEN A. ORSZAG

Gibson, C. H., Stegun, G. R. and Williams, R. B. (1970) Statistics of the fine structure of tur-
bulent velocity and temperature fields measured at high Reynolds number. J. Fluid Mech.
41, 153-167.

Goldstein, S. (1940) Three-dimensional vortex motion in a viscous fluid. Phil. Magazine 30,
85-102.

Gortler, H. (1940) Uber eine dreidimensionale Instabilitdt laminarer Grenzschichten an
konkaven Wanden. Nacht. Ges. Will. Gortingen 2, 1-26,

Grant, H. L., Stewart, R. W, and Moilliet, A. (1962) Turbulence spectra from a tidal
channel. J. Fluid Mech. 12, 241-268.

Gurvich, A. S. and Yaglom, A. M. (1967) Breakdown of eddies and probability distributions
for small-scale turbulence. Phys. Filuids 10, S59-S65.

Halmos, P. R. (1956) Lectures on Ergodic Theory. New York: Chelsea.

Hasselmann, K. (1962) On the nonlinear energy transfer in a gravity wave spectrum. J. Fluid
Mech. 12, 481-500.

Heisenberg, W. (1948) Zur statistischen Theorie der Turbulenz. Z. Phys. 124, 628-657.

Herring, J. R. (1963) Investigation of problems in thermal convection. J. Atmos. Sei. 20,
325-338.

Herring, J. R. (1965) Self-consistent-field approach to turbulence theory. Phys. Fluids 8,
2219-2225.

Herring, J. R. (1966) Self-consistent-field approach to nonstationary turbulence. Phys.
Flutds 9, 2106-2110.

Herring, J. R. and Kraichnan, R. H. (1972) Comparison of some approximations for iso-
tropic turbulence. Statistical Models and Turbulence, 148-194. Springer-Verlag.

Herring, J. R., Orszag, S. A., Kraichnan, R. H. and Fox, D. G. (1974) Decay of two-dimen-
sional homogenecous turbulence. J. Fluid Mech. 66, 417-444.

Hopf, E. (1952) Statistical hydromechanics and functional calculus. J. Rational Mech. Anal.
1, 87~123.

Howard, L. N, (1972) Bounds on flow quantities. Ann. Rev. Fluid Mech. 4, 473—-494.

Joyce, G. and Montgomery, D. (1973) Negative temperature states for the two-dimensional
guiding-centre plasma. J. Plasma Phys. 10, 107-121.

Julian, P. R., Washington, W. M., Hembree, L. and Ridley, C. (1970) On the spectral dis-
tribution of large-scale atmospheric kinetic energy. J. Atmos. Sci. 27, 376-387.

Kelvin, Lord (Sir William Thomson) (1887) On the propagation of laminar motion through
a turbulently moving inviscid liquid. Phil. Magazine 24, 342-353.

Khinchin, A. L (1949) Mathemaiical Foundations of Statistical Mechanics. New York: Dover.

Kolmogorov, A. N. (1941a) The local structure of turbulence in incompressi-le viscous
fluid for very large Reynolds numbers. C. R. dcad. Sci., U.R.S.S. 30, 301-305. rA]so
Sovlet Physics-Uspekhi 10, 734736 (1968).]

Kolmogorov, A. N. (1941b) On degeneration of isotropic turbulence in an mcompressxble
viscous liquid. C. R. Acad. Sci., U.R.S.S. 31, 538-540.

Kolmogorov, A.'N. (1941c¢) Dissipation of energy in locally isotropic turbulence. C. R. Acad.
Sci., UR.S.S. 32, 16-18.

Kolmogorov, A. N. (1962) A refinement of previous hypotheses concerning the local struc-
ture of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid
Mech. 12, 82-85.

Kovasznay, L. 8. G. (1948) Spectrum of locally isotropic turbulence. J. Aero. Sci. 15,
745-753.

Kraichnan, R. H. (1958) Irreversible statistical mechanics of incompressibie hydromagnetic
turbulence. Phys. Rev. 109, 1407-1422.

Kraichnan, R. H. (1959) The structure of isotropic turbulence at very high Reynolds
numbers. J. Fluid Mech. 5, 497-543.



STATISTICAL THEORY OF TURBULENCE 37

Kraichnan, R. H. (1961) Dynamics of nonlinear stochastic systems. J. Marh. Phys. 2, 124~148.
Erratum: 3, 205 (1962). .

Kraichnan, R. H. (1962) Turbulent thermal convection at arbitrary Prandtl number. Phys.
Fluids 5, 1374-1389.

Kraichnan, R. H. (1964a) Decay of isotropic turbulence in the direct-interaction approxi~
mation. Phys. Fluids 7, 1030-1048.

Kraichnan, R. H. (1964b) Kolmogorov's hypotheses and Eulerian turbulence theory. Phys.
Fluids 7, 1723-1734.

Kraichnan, R. H. (1965a) Inertial-range spectrum of hydromagnetic turbulence. Phys. I"Inads'
8, 1385-1387.

Kraichnan, R. H. (1965b) Lagrangian-history closure approximation for turbulence. Phys.
Fluids 8, 575-598.

Kraichnan, R. H. (1966a) Invariance principles and approximation in turbulence dynamics.
Dynémics of Fluids and Plasmas, 239-255. Academic Press.

Kraichnan, R. H. (1966b) Isotropic turbulence and inertial-range structure. Phys. Fluids
9, 1728-1752.

Kraichnan, R. H. (1966c) Dispersion of particle pairs in homogeneous turbulence. Phys.
Fluids 9, 1937-1943.

Kraichnan, R. H. (1967) Inertial ranges in two-dimensional turbulence. Phys. Fluids 10,
1417-1423.

Kraichnan, R. H. (1968a) Lagrangian-history statistical theory for Burgers' equation. Phys.
Fluids 11, 266-277.

Kraichnan, R. H. (1968b) Small-scale structure of a scalar field convected by turbulence.
Phys. Fluids 11, 945-953.

Kraichnan, R. H. (1970a) Convergents to turbulence functions. J. Fluid Mech. 41, 189-217.

Kraichnan, R. H. (1970b) Turbulent diffusion: evaluation of primitive and renormalized
perturbation series by Pade approximants and by expansion of Stieltjes transforms into
contributions from continuous orthogonal functions. The Pade Approximant in Theoretical
Physics, 129-170. Academic Press.

Kraichnan, R. H. (1971a) An almost-Markovian Galilean-invariant turbulence model,.
J. Fluid Mech. 47, 513-524.

Kraichnan, R. H. (1971b) Inertial-range transfer in two- and three-dimensional turbulence.
J. Fluid Mech. 47, 525-535.

Kraichnan, R. H. (1972) Test-field model for inhomogeneous turbulence. J. Fluid Mech.
56, 287-304.

Kraichnan, R. H. (19742) On Kolmogorov's inertial-range theories. J. Fluid Mech. 62,
305-330.

Kraichnan, R. H. (1974b) Statistical dynamics of two-dimensionat flow. To be published.

Kraichnan, R. H. and Spiegel, E. A. (1962) Model for energy transfer in isotropic tur-
bulence. Phys. Fluids 5, 583-588.

Kubo, R. (1959) Some aspects of the statistical-mechanical theory of irreversible processes.
‘Lectures in Theoretical Physics, vol. 1. Interscience.

Kuo, A. Y. and Corrsin, S. (1971) Experiments on internal intermittency and fine-structure
distribution functions in fully turbulent fluid. J. Fluid Mech. 50, 285-319.

Kuo, A. Y. and Corrsin, S. (1972) Experiment on the gecometry of the fine-structure regions
in fully turbulent fluid. J. Fluid Mech. 56, 447-479.

Ladyzhenskaya, O. A. (1963) The Mathematical Theory of Viscous Incompressible Flow (st
ed.) New York: Gordon and Breach [2nd ed., 1969].

Landau, L. D. and Lifschitz, E. M. (1959} Fluid Mechamcs Addison-Wesley.

Lee, T. D. (1952) On some statistical properties of hydrddynamical and magneto-hydro-
dynamical fields. Q. Appl. Math. 10, 69--74. )



372 STEVEN A. ORSZAG

Leith, C. E. (1967) Diffusion approximation to inertial energy transfer in isotropic turbus=
lence. Phys. Fluids 10, 1409-1416.,

Leith, C. B. (1968) Diffusion approximation for two-dimensional turbulence. Phys. Fluids

~ 11,671-673.

Leith, C. E. (1971) Atmospheric predictability and two-dimensional turbulence. J. Atmos.
Set. 28, 145-161.

Leith, C. E. and Kraichnan, R. H. (1972) Predictability 'of turbulent flows. J. Atmos. Sci,
29, 1041-1058.

Lighthill, M. J. (1958) Fourier Analysis and Generalized Functions. Cambridge Umversnty
Press.

Lilly, D. K. (1971) Numerical simulation of developing and decaying two-dimensional tur-
bulence. J. Fluid Mech. 45, 395-415.

Lin, C. C. (1948) Note on the law of decay of isotropic turbulence, Proc. Nat. Acad. Sci.,
U.S.A. 34, 230-233.

Lin, C. C. and Reid, W. H. (1963) Turbulent flow, theoretical aspects. Handbuch der Physik,
Fluld Dynamics II, vol. VII1/2, 438-523. Springer-Verlag.

Loitsiansky, L. G. (1939) Some basic laws of isotropic turbulent flow. Rep. Cent, Aero
Hydodyn. Inst. (Moscow), no. 440, 3-23, (Translated as Tech. Memor. Nat. Adv. Comm.
Aero., Wash., no. 1079.)

Lorenz, E. N. (1972) Low-order models representing realizations of turbulence. J. Fiuid
Mech. 55, 545-563.

Lumley, J. L. (1964) The spectrum of nearly inertial turbulence in a stably stratified fluid.
J. Atmos. Sci. 21, 99-102.

Lumley, J. L. (1970) Stochastic Tools in Turbulence. Academic Press.

Lumley, J. L. (1972) Application of central limit theorems to turbulence problems. Statis-
tical Models and Turbulence, 1-26. Springer-Verlag.

Lundgren, T. S. (1967) Distribution functions in the statistical theory of turbulence. Phys.
Fluids 10, 969-975.

Mandclbrot, B. B. (1974) Intermittent turbulence in self-similar cascades. J. Fluid Mech. 62,
331-358. .

Martin, P. C,, Siggia, E. D. and Rose, H. A. (1974) Statistical dynamics of classical systems.
Phys. Rev. A8, 423-437.

Millionshtchikov, M. (1941) On the theory of homogeneous isotropic turbuience. C. R. Acad.
Sci., U.R.S.8.32,615-618.

Moffatt, H. K. (1976) Lectures on the dynamo problem. This volume.

Monin, A. C. and Yaglom, A. M. (1967) Statistical Fluid Mechanics, vol. 2 (in Russian).
Moscow: Nauka Press.

Menin, A. C. and Yaglom, A. M. (lWl)SmtlsricaI Fluid Mechanics, vol. 1. Cambridge: MIT
Press.

Morton, J. B. and Corrsin, S. (1970) Consolidated expansions for estimating the response
of a randomly driven nonlinear oscillator, J. Stat. Phys. 2, 153-194.

Nakano, T. (1972) A theory of homogeneous, isotropic turbulence of incompressible fluids.

* Ann. Phys. 73, 326~371.

Novikov, E. A. (1971) Intermittency and scale similarity in the structure of a turbulent
flow. Appl. Math. Mech. 35, 231-241. (Prikl. Math. Mech. 35, 266-271.)

Nyquist, H. (1928) Thermal agitation of electric charge in conductors. Phys. Rev. 32,
110.

Obukhov, A. M. (1941) On the distribution of energy in the spectrum of a turbulent flow.
C. R. Acad. Sci., UR.S.S. 32, 19-21.

Obukhov, A. M. (1962) Some specific features of atmospheric turbulence. J. Fluid Mech.
12, 77-81. (Also J. Geophys. Res. 67, 3011-3014.)



STATISTICAL THEORY OF TURBULENCE 373

Ogura, Y. (1963) A consequence of the zero-fourth-cumulant approximation in the deeay
of isotropic turbulence. J. Fluid Mech. 16, 33-40.

Onsager, L. (1945) The distribution of energy in turbulence. Phys. Rev. 68, 286.

Onsager, L. (1949) Statistical hydrodynamics. Nuovo Cimento (Suppl.) 6, 279~-287.

Orszag, S. A. (1966) Dynamics of Fluid Turbulence. Princeton: Piasma Physics Laboratory
Report PPL-AF-13. ’

Orszag, S. A. (1967) Approximate calculation of the Kolmogorov-Obukhov constant. Phys.,
Fluids 10, 454-455.

Orszag, S. A. (1969) Representation of isotropic turbulence by scalar functions. Stud. in
Appl. Math. 48, 275-275.

Orszag, S. A. (1970a) Comments on “Turbulent hydrodynamic line stretching: consequences
of isotropy.” Phys. Fluids 13, 2203-2204.

Orszag,S. A. (1970b) Indeterminacy of the moment problem for intermittent turbulence.
Phys. Fluids 13, 2211-2212.

Orszag, S. A. (1970c) Analytical theories of turbulence. J. Fluid Mech. 41, 363-386.

Orszag, S. A. and Fateman, R. J. (1974) The Taylor-Green vortex.

Orszag, S. A. and Israeli, M. (1974) Numerical simulation of viscous mcompressnble flows.
Ann. Rev. Fluid Mech. 6, 281-318.

Orszag, S. A. and Kruskal, M. D. (1968) Formulation of the theory of turbulence. Phys.
Fiuids 11, 43-60.

Orszag, S. A. and Patterson, G. S. (1972) Numerical simulation of three~dimensional homo-
geneous isotropic turbulence. Phys. Rev. Letters 28, 76-79. (Also Statistical Modeis and
Turbulence, 127-147. Springer-Verlag.)

Orszag, S. A. and Raila, D. S. (1973) Test of spectral energy transfer models and turbulence
decay. Phys. Fluids 16, 172-173.

Phillips, O. M. (1966) The Dynamics of the Upper Ocean. Cambridge University Press.

Phythian, R. (1969) Self-consistent perturbation series for stationary homogencous tur-
bulence. J. Phys. (Gen. Phys.) A2, 181192,

Proudman, I and Reid, W. H. (1954) On the decay of a normally distributed and homo-
geneous turbulent velocity field. Phil. Trans. Roy. Soc. A247, 163-189.

Reissner, E. (1938) Note on the statistical theory of turbulence Proc. 5th Int. Congr. Appl.
Mech., 359.

Robertson, H. P. (1940) The invariant theory of isotropic turbulence. Proc. Camb. Phil. Soc.
36, 209-223.

Ruclle, D. and Takens, F. (1971) On the nature of turbulence. Comm. Math. Phys. 20,
167-192.

Saffman, P. G. (1967a) The large-scale structure of homogeneous turbulence. J. Fluid Mech.
27, 581-593.

Saffman, P. G. (1967b) Note on decay of homogeneous turbulence. Phys. Fluids 10, 1349.

Saffman, P. G. (1968) Lectures in homogeneous turbulence. Topics in Nonlinear Physics,
485-614. Springer-Verlag.

Saffman, P. G. (1970) Dependence on Reynolds number of high-order moments of velocity
derivatives in isotropic turbulence. Phys. Fluids 13, 2193-2194.

Saffman, P. G. (1971) A note on the spectrum and decay of random two-dimensional vor-
ticity distributions at large Reynolds number. Stud. in Appl. Math. 50, 377--383.

Shur, G. N. (1962) Experimental investigations of the energy spectrum of atmospheric
turbulence. Trudy T. S.; A.0. 43, 79-90.

Simmons, L. F. G. and Salter, C. (1934) Experimental investigation and analysis of the
velocity variations in turbulent flow. Proc. Roy. Soc. A1145, 212-234.

Smagorinsky, J. (1963) General circulation experiments with the primitive cqunhons L The
basic experiment. Mon. Weath. Rev. 91, 99-165,



374 STEVEN A. ORSZAG

Stewart, R. W., Wilson, J. R. and Burling, R. W. (1970) Some statistical properties of small«
scale turbulence in an atmospheric boundary layer. J. Fluid Mech. 41, 141-152.

Takahasi, H. (1952) Generalized theory of thermal fluctuations. J. Phys. Soc., Japan7
439-446.

Tanaka, H. (1969) 0-5th cumulant approximation of mvxscxd Burgers turbulence. J. Meteor
Soc., Japan 41, 3713-383. ‘

Tatarskii, V. L (1962) Application of quantum field theéry methods to the problem of
degencration of homogencous turbulence. Sovier Physics-JETP 15, 961-967.

Tatsumi, T. (1957) The theory of decay process of incompressible homogeneous turbulence.
Proc. Roy. Soc. A239, 16-45. .

Tatsumi, T. (1960) Energy spectra in magneto-fluid dynamic turbulence. Rev. Mod. Phys."
32, 807.

Taylor, G. I. (1923) Stability of a viscous liquid contained between two rotating cylinders.
Phil. Trans. Roy. Soc. A223, 289-343.

Taylor, G. L (1938) Production and dissipation of vorticity in a turbulent fluid. Proc. Roy. .
Soc. A164, 15-23.

Taylor, G. L and Green, A. E. (1937) Mechanism of the production of small eddies from .
large ones. Proc. Roy. Soc. A158, 499-521]. )

Tennekes, H. (1968) Simple model for the small-scale structure of turbulence. Phys. Fluids
11, 669-671.

Tennpekes, H. and Wyngaard, J. C. (1972) The intermittent small-scale structure of turbulence;
data-processing hazards. J. Fluid Mech. 55, 93-103.

Thompson, P. D. (1972) Some exact statistics of two-dimensional viscous flow with random
forcing. J. Fluid Mech. 55, 711-717.

Thompson, P. D. (1973) The equilibium energy spectrum of randomly forced two-
dimensional turbulence. J. 4tmos. Sci. 30, 1593-1598. .

Townsend, A. A. (1951) On the fine-scale structure of turbulence. Proc. Roy. Soc. A208,
534-542.

Van Atta, C. W. (1974) Sampling techniques in turbulence measurements. Ann. Rev. Fluid
Mech. 6, 75-91.

Van Atta, C. W. and Park, J. (1972) Statistical self-similarity and inertial subrange turbulence.
Statistical Models and Turbulence, 402-426. Springer-Verlag.

von Kdrmdn, T. (1948) Sur la théorie statistique de la turbulence. C. R. Acad. Sci., Paris
226, 2108-2114.

von Kdrmdn, T. and Howarth, L. {1938) On the statistical theory of isotropic turbulence.
Proc. Roy. Soc. A164, 192215,

von Weizsdcker, C. F, (1948) Das Spektrum der Turbulenz bei grossen Reynolds'schen
Zahlen. Z Phys. 124, 614-627.

Whittaker, E. T. and Watson, G. N. (1927) A Course of Modern Analysis (4th ed.), Cambridge
University Press.

Wiener, N. (1930) Generalized harmonic analysis. Acta Math. 55, 117-258

Wyld, H. W, (1961) Formulation of the theory of turbulence in an incompressible fluid.
Ann. Phys. 14, 143~165.

Wyngaard, J. C. and Pao, Y. H. (1972) Some measurements of the fine structure of large
Reynolds number turbulence. Statistical Models and Turbulence, 384—401. Springer-
Verlag.

Wyngaard, J. C. and Tennekes, H. (1970) Measurements of the small-scale structure of
turbulence at moderate Reynolds numbers. Phys. Fluids 13, 1962-1969. .

Yaglom, A. M. (1966) The influence of fluctuations in energy dissipation on the shape of
turbulence characteristics in the inertial interval. Sovier Physics-Doklady 11, 26~29.



