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1 
Fundamentals 
    
  This first chapter reviews the fundamental principles of fluid mechanics, emphasizing 
the relationship between the underlying microscopic description of the fluid as a swarm 
of molecules, and the much more useful (but less genuine) macroscopic description as a 
set of continuous fields.  Although it is certainly possible to study fluids without 
recognizing their true particulate nature, such an approach avoids important ideas about 
averaging that are needed later on, especially in the study of turbulence.  It is best to 
encounter these ideas at the earliest opportunity.    
 Moreover, even if one adopts a strictly macroscopic viewpoint, as we eventually 
shall, one still has the choice between Eulerian and Lagrangian field theories.  The 
Eulerian theory is the more useful and succinct, and most textbooks employ it 
exclusively.   However, the Lagrangian theory, which regards the fluid as a continuous 
field of particles, is the more complete and illuminating, and it represents a natural 
extension of the ideas associated with the underlying molecular dynamics to the 
macroscopic level of description. 
 All fluids are composed of molecules.  We shall regard these molecules as point 
masses that exactly obey Newton’s laws of motion.  This assumption is not precisely 
correct; the molecular motions are really governed by quantum mechanics.  However, 
quantum effects are frequently unimportant, and the main ideas we want to develop are 
anyway independent of the precise nature of the underlying molecular dynamics.  It only 
matters that there be an exact underlying molecular dynamics, so that one could in 
principle predict the behavior of the whole fluid by solving the equations governing all of 
its molecules. 
 It is of course utterly impractical to follow the motion of every molecule, because 
even the smallest volume of fluid contains an immense number of molecules.  We are 
immediately forced to consider dynamical quantities that represent averages over many 
molecules.  For example, the velocity v(x,y,z,t) at location (x,y,z) and time t is defined as a 
mass-weighted average, 
   

  v x,y, z,t( ) =
mivi

i
∑

mi
i
∑ , (0.1)  

 
in which the sums run over all the molecules in a small volume δV centered on (x,y,z).  
Here,  mi  is the mass of the i-th molecule, and vi(t) is its velocity.   However, the 
definition (0.1) makes sense only if the volume δV is neither too large nor too small.  If 
δV  is too small, then it contains too few molecules to give a meaningful average.  If, on 
the other hand, δV is too large, then the average (0.1) smoothes out significant features of 
the velocity field.  In fact, the definition (0.1) makes sense only if v(x,y,z,t) is 
independent of the size of δV for a considerable range of sizes, that is, only if the smallest 
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scale L over which the velocity field varies appreciably is much larger than the average 
separation λ  between molecules, 
 
  λ << L . (0.2)  
 
In the ocean, L  is typically several millimeters or more, while λ  is only about 10-8 cm.  
Thus seawater easily satisfies the necessary condition (0.2) for (0.1) to make sense.  We 
shall see that condition (0.2) recurs frequently as we attempt to derive equations for 
v(x,y,z,t) and the other macroscopic fields. 
 There are two general methods for deriving the equations governing macroscopic 
variables like v(x,y,z,t).  The first, which we shall call the averaging method, is by direct 
averaging of the equations governing the point masses.  Unfortunately, this method leads 
to equations that are exact but mathematically unclosed until further assumptions are 
invoked. These further assumptions require the methods of kinetic theory and non-
equilibrium statistical mechanics. 
  The second general method is the more traditional.  It treats the fluid as if it really 
were a continuous distribution of mass in space, and it derives the macroscopic equations 
by analogy with the equations for point masses.  The success of this second general 
method can be gauged by the fact that fluid mechanics was a highly developed subject 
long before the existence of atoms and molecules was generally accepted, at the 
beginning of the twentieth century.  For the most part, we shall follow the traditional 
method, although the analogy with particle mechanics will be even closer than in the 
usual presentation.  However, we shall also follow the averaging method for a way, in 
order to appreciate the fundamental difficulties that arise when an exact but complicated 
dynamics is “simplified” by averaging.  We shall encounter these same fundamental 
difficulties in our later study of turbulence, where they cannot be so easily circumvented. 
 
1.  Eulerian and Lagrangian descriptions 
 
 For the moment, then, we regard our fluid as a continuum — a continuous distribution 
of mass in space.  There are two common descriptions of continuum motion.  In the 
Eulerian  description, the independent variables are the space coordinates x=(x,y,z) and 
the time t.  The dependent variables include the velocity v(x,y,z,t), the mass density 
ρ(x,y,z,t),  and the pressure p(x,y,z,t). 
 In the Lagrangian  description, the independent variables are a set of particle labels 
a=(a,b,c), and the time τ =t.  The dependent variables are the coordinates 
 
  x(a,b,c,τ),   y(a,b,c,τ),   z(a,b,c,τ), (1.1)  
 
at time τ, of the fluid particle identified by (a,b,c).  The particle labels vary continuously 
throughout the fluid, but the values of (a,b,c) on each fluid particle remain fixed as the 
fluid particle moves from place to place.  By fluid particle we now mean a tiny piece of 
the imaginary continuum, not a molecule!    
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 The time derivative ∂/∂τ  is taken with (a,b,c) held fixed.  Similarly ∂/∂t implies that 
(x,y,z) are held fixed.  Thus ∂F/∂τ  is the rate of change in (arbitrary quantity) F measured 
by an observer following a fluid particle.  In other words, 
 

  ∂F
∂τ

≡
DF
Dt

 (1.2) 

 
is the usual substantial derivative. 
  We can think of a label space with coordinates (a,b,c), and a location space with 
coordinates (x,y,z).  Then the fluid motion (1.1) is a time-dependent mapping between 
these two spaces.  Alternatively, we can think of the label variables (a,b,c) as curvilinear 
coordinates in location space.  The fluid motion drags these curvilinear coordinates 
through location space. 
 The label variables (a,b,c) can be arbitrarily assigned.  Commonly, the a are defined 
to be the x-location of the corresponding fluid particle at a reference time τ =0.  We shall 
make a different, more convenient definition.  But no matter how defined, each fluid 
particle keeps the same values of (a,b,c) for all time. 
 The derivatives with respect to Eulerian and Lagrangian coordinates are related by the 
chain rule.  For example, 
 

  

� 

∂F
∂τ

=
∂F
∂t

∂t
∂τ

+
∂F
∂x

∂x
∂τ

+
∂F
∂y

∂y
∂τ

+
∂F
∂z

∂z
∂τ

, (1.3) 

 
for any quantity F that can be regarded as a function of (x,y,z,t) or (a,b,c,τ).  But the 
substantial derivatives of (x,y,z) are, by definition, the components of the velocity, 
 

  v ≡ ∂x
∂τ
, ∂y
∂τ
, ∂z
∂τ

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ≡ u,v,w( ) . (1.4) 

 
Thus (1.3) becomes 
 

  ∂F
∂τ

=
∂F
∂t

+ u ∂F
∂x

+ v∂F
∂y

+ w ∂F
∂z

=
∂F
∂t

+ v ⋅ ∇F . (1.5) 

 
Eqn. (1.5) is the familiar formula for the substantial derivative. 
 
2.  Mass conservation 
 
 We can assign the labeling coordinates (a,b,c) so that  
 
  dVabc = d mass( ) , (2.1) 
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where dVabc = da db dc  is an infinitesimal volume in a-space, and d(mass) is the 
enclosed mass.1  Since the labeling coordinates move with the fluid, (2.1) holds at all 
subsequent times.  By definition, 
 
  d mass( ) = ρ dVxyz , (2.2) 
 
where ρ  is the mass density, and dVxyz  = dx dy dz  is the volume in x-space 
corresponding to dVabc .  Thus, remembering that 
 

  dVabc
dVxyz

=
∂ a,b,c( )
∂ x,y, z( ) , (2.3) 

 
we find that 
 

  ρ =
∂ a,b,c( )
∂ x, y,z( ) ≡

∂ a( )
∂ x( ) . (2.4) 

 
Eqns. (1.4) and (2.4) define the Eulerian dependent variables v(x,t) and ρ(x,t) in terms of 
the Lagrangian dependent variables x(a,τ).  The corresponding definition of p(x,t) will 
emerge later on. 
 Next, define the specific volume 
 

  α ≡
1
ρ
=
∂ x,y,x( )
∂ a,b,c( ) ≡

∂ x( )
∂ a( ) . (2.5) 

 
The substantial derivative of (2.5) is 
 

  

∂α
∂τ

=
∂
∂τ

∂ x,y, z( )
∂ a,b,c( )

=
∂ u,y,z( )
∂ a,b,c( ) +

∂ x,v, z( )
∂ a,b, c( ) +

∂ x, y,w( )
∂ a,b,c( )

= α
∂ u, y,z( )
∂ x, y, z( )

+ ∂ x,v,z( )
∂ x, y,z( )

+
∂ x,y,w( )
∂ x, y, z( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

= α
∂u
∂x

+
∂v
∂y

+
∂w
∂z

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ .

 (2.6) 

 
That is, 
 

  Dα
Dt

= α∇⋅ v. (2.7) 
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We can rewrite (2.7) in the more familiar form, 
 
  Dρ

Dt
+ ρ∇⋅ v = 0.  (2.8) 

 
Thus the usual equation for mass conservation results from our requirement that fixed 
volumes in (a,b,c)-space always contain the same mass. 
 To complete our continuum equations, we need an equation for the conservation of 
momentum.  For this, we adopt the somewhat unusual approach of invoking Hamilton’s 
principle of least action.  This approach has several of advantages over the more standard 
derivation.  Here we mention only two.  First, the Hamiltonian derivation demonstrates 
the strength of the analogy between continuum mechanics and particle mechanics.  
Second, mechanics and thermodynamics enter the Hamiltonian formulation on the same 
footing:  In both cases, we prescribe the dynamics by specifying how energy depends on 
variables that define the state of the system.  The resulting forces — both mechanical and 
thermodynamic— are then the derivatives of the energy with respect to these variables.  
Only entropy and the concept of thermodynamic equilibrium separate thermodynamics 
from mechanics. 
 The following two sections offer a very brief review of Hamiltonian particle 
mechanics.2 
 
3.  Functionals and variational principles 
 
  A functional is a number that depends on the values taken by a function within some 
range of its argument.  For example, let  x(t)  be any function defined on  t1<t<t2.  Then 
 

  F x(t)[ ] = 1
2

dx
dt

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2

− x2
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ t1

t2

∫ dt  (3.1) 

 
is a functional depending on x(t).   
 The calculus of variations addresses the following question:   For what functions x(t)  
is the functional F[x(t)] stationary?  More precisely:  For what x(t) is F unchanged by 
small, arbitrary changes in x(t) that vanish at  t=t1  and t2 ? 
 Suppose that x(t) is changed to x(t)+δx(t), where δx(t) is everywhere small, and 
δx(t1)=δx(t2)=0.  Then F changes from (3.1) to  
 

  

1
2

dx
dt

+
dδx
dt

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2

− x +δx( )2
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ t1

t2

∫ dt

≈ 1
2

dx
dt

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2

+ 2 dx
dt
dδx
dt

− x2 − 2xδx
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ t1

t2

∫ dt  (3.2) 

 
where terms of order (δx)2 have been neglected.  The change in  F is therefore 
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  δF =
dx
dt
dδx
dt

− xδx⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
dt

t1

t2

∫ = −
d2x
dt2

− x
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
δx dt

t1

t2

∫ , (3.3) 

 
after integration by parts.  For F to be stationary, δF must be zero.  But since δx(t) is 
arbitrary, its coefficient in the integrand of (3.3) must vanish.  Therefore 
 

  d2x
dt2

+ x = 0 , (3.4) 

 
and only those x(t) satisfying (3.4) correspond to stationary values of F.  The differential 
equation (3.4) is said to be equivalent to the variational principle δF=0. 
 
4.  Hamilton's principle for point masses 
 
 Now consider a system composed of N point-particles with masses mi (i =1 to N) and 
locations xi(t).  Let V(x1, ... ,xN)  be the potential energy of the system.  If, for example, 
the N  point masses all have equal electric charge q, then 
 

  V =
q2

xi − x j

.
i> j
∑  (4.1) 

 
Whatever V,  Newton’s law of motion is  
 

  mi
d 2xi
dt 2

= −
∂V
∂xi

. (4.2) 

 
 Hamilton’s principle is the variational principle equivalent to Newton’s law.  It states 
that the action   
  
  A ≡ Ldt

t1

t2

∫ ,  (4.3) 

 
is stationary, where the Lagrangian 
 
  L ≡ T − V , (4.4) 
 
is the difference between the kinetic energy T and the potential energy V of the system.  
For the collection of point masses, 
 

  T = 1
2 mi

i
∑ dx i

dt
⋅
dx i
dt

, (4.5) 

 
where the summation runs over all the molecules.  Hamilton’s principle thus states that  
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  0 = δ 1
2 mi

dxi
dt

⋅
dx i
dt

− V
i
∑⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ t1

t2

∫ dt  (4.6) 

 
for arbitrary, independent variations {δxi(t),δyi(t),δzi(t)} that vanish at t1 and t2.  Since  
δxi(t1)=δxi(t2)=0, (4.6) implies that 
 

  0 = −mj

d2x j

dt 2
−
∂V
∂x j

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ t1

t2

∫ ⋅δx j dt , (4.7) 

 
for all j.  Newton’s law (4.2) then follows by the arbitrariness of δxj(t). 
 
5.  Hamilton’s principle for a barotropic fluid 
 
 The only difference between the system of point masses and the fluid continuum is 
that, in the continuum, the mass is distributed continuously in space.  Therefore, we must 
replace 
 
  mi

i
∑  (5.1) 

 
by 
 
  d(mass) = da dbdc∫∫∫∫∫∫ , (5.2) 
 
and (4.5) becomes 
 

  T = 1
2 dadb dc ∂x

∂τ
⋅
∂x
∂τ∫∫∫ . (5.3) 

 
 In the fluid, the potential energy arises from external and interparticle forces that 
depend only on the particle locations x(a,b,c,τ).  The simplest assumption is that these 
particle locations enter the potential energy V  in the special form 
 
  V = da dbdc {∫∫∫ E(α ) + φ(x )}, (5.4) 
 
where 
 

  α ≡
1
ρ
=
∂(x, y,z)
∂(a,b,c)

 (5.5) 
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is the specific volume, and the specific internal energy E(α) and external potential 
φ(x(a,τ)) are prescribed functions of their respective arguments.   That is, the internal 
energy E depends only on the amount by which the fluid has been compressed (as 
measured by the Jacobian (5.5)) and the external potential φ, typically representing 
gravity, depends only on the fluid-particle locations x(a,τ) (and not, say, on their 
derivatives).  The precise form of E(α) depends on the type of fluid being considered.  
We shall show that Hamilton’s principle and the hypothesis (5.4) with given E(α) and 
φ(x), yield the momentum equation for an ideal (barotropic) fluid. 
 According to Hamilton’s principle, the action 
 

  

dτ∫ T − V( ) =

dτ∫ da 1
2
∂x
∂τ

⋅ ∂x
∂τ

− E ∂ x( )
∂ a( )
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ −φ x a,τ( )( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ∫∫∫
 (5.6) 

 
must be stationary with respect to arbitrary variations δx(a,b,c,τ) in the locations of the 
fluid particles.  The integral in (5.6) is over the whole mass of the fluid, a fixed volume in 
a-space.  We suppose that the fluid has two kinds of boundaries:  rigid boundaries, with 
outward unit normal n, at which the fluid velocity in the normal direction must vanish 
(∂x/∂τ ⋅ n = 0), and at which the fluid-particle variations are correspondingly constrained 
(δx ⋅ n = 0);  and free-surface boundaries, at which δx is wholly unconstrained. 
 By direct calculation, the change in (5.6) produced by the variation δx(a,b,c,τ)  in the 
fluid-particle locations, is: 
 

  
dτ da ∂x

∂τ
⋅
∂δx
∂τ

−
dE
dα

δα −
∂φ
∂x

⋅δx⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ ∫∫∫∫

= dτ da − ∂ 2x
∂τ 2

⋅δx − dE
dα

δ ∂ x( )
∂ a( )

− ∂φ
∂x

⋅δx
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ ∫∫∫∫

 (5.7) 

 
But for any quantity F, 
 

  

da Fδ ∂ x, y,z( )
∂ a,b,c( )∫∫∫

= da F ∂ δx,y,z( )
∂ a,b,c( ) +

∂ x,δy,z( )
∂ a,b,c( ) +

∂ x, y,δz( )
∂ a,b,c( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ∫∫∫

= dx F ∂ δx,y, z( )
∂ x, y, z( )

+
∂ x,δy,z( )
∂ x, y,z( )

+
∂ x, y,δz( )
∂ x, y, z( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ∫∫∫

= dx F ∇⋅ δx∫∫∫

 (5.8) 

 
By the divergence theorem, this is 
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  dx −∇F ⋅δx[ ]∫∫∫ + dA Fδx ⋅n[ ]∫∫ , (5.9) 
 
where the second term is an integration over the boundary of the fluid.  Note, however, 
that the rigid portion of the boundary makes no contribution to this integral, because 
δx⋅n=0 at rigid boundaries.  Setting F = −dE / dα , and using (5.8-9) in (5.7), we see that 
Hamilton’s principle implies that 
 

  dx ρ −
∂ 2x
∂τ 2

−
∂φ
∂x

−
1
ρ
∂p
∂x

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ∫∫∫ ⋅δx + dA pδx ⋅n∫∫ = 0 , (5.10) 

 
where 
 
  p ≡ −

dE(α)
dα

. (5.11) 

 
Then, remembering that δx is arbitrary, we conclude from (5.10) that 
 

  ∂ 2x
∂τ 2

= −
1
ρ
∂p
∂x

−
∂φ
∂x

, (5.12) 

 
and that  p=0 at the free-surface boundaries.  From (5.12) we see that p must be the 
pressure.  Then (5.11) agrees with a familiar equation from thermodynamics.  According 
to (5.11), the pressure is positive if the fluid resists compression, that is, if energy must be 
supplied to reduce the volume. 
 
6.  Nonhomentropic flow 
 
 The assumption that the internal energy E increases only through compression is too 
restrictive.  We know that the addition of heat can also increase the internal energy.   The 
simplest conceivable generalization of E=E(α)  is 
 
  E = E α,η( )  (6.1) 
 
where η  is an additional parameter, which we call specific entropy.  The differential of 
(6.1) is 
 

  
dE = ∂E α ,η( )

∂α
dα + ∂E α,η( )

∂η
dη

= −p dα + T dη
 (6.2) 

 
where now 
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  p ≡ −
∂E α,η( )

∂α
, (6.3) 

 
and 
 

  T ≡
∂E α,η( )

∂η
 (6.4) 

 
is the temperature.  We recognize the term  -p dα  in (6.2) as the change in energy (per 
unit mass) caused by mechanical compression.  It follows that  T dη  must be the change 
in energy caused by heating. If no heat is added to the fluid or transferred between fluid 
particles, then dη =0, and the entropy of each fluid particle does not change.  That is, 
 
  η = η a,b,c( ), ∂η / ∂τ = 0 . (6.5) 
 
We can then regard the entropy η(a,b,c) as a prescribed function of the fluid-particle 
identity, determined by the initial conditions. 
 Since the entropy η(a,b,c) is unaffected by changes in the dependence of x on (a,τ), 
Hamilton’s principle, 
 

  0 = δ dτ∫ da 1
2
∂x
∂τ

⋅
∂x
∂τ

− E ∂ x( )
∂ a( ) ,η a( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − φ x a,τ( )( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ∫∫∫  (6.6) 

 
yields the same momentum equation (5.12) as before, but with p defined as the partial 
derivative (6.3), with entropy held constant.  Equations (6.3) and (6.4) agree with the 
usual thermodynamic definitions of pressure and temperature, respectively.  However, it 
remains to be shown that the temperature defined by (6.4) has the properties associated 
with temperature. 
 The existence of a  fundamental relation  (6.1), at thermodyamic equilibrium, 
between E, α, and η  is one of the basic postulates in the formulation of thermodynamics 
developed by Gibbs, Tisza, and Callen.3  (We shall introduce the other postulates when 
we discuss molecular transport in Section 12.)  Once again, the form of the fundamental 
relation (6.1) depends on the type of fluid under consideration, and cannot be determined 
from thermodynamics alone.  By using the fundamental relation in the Lagrangian for a 
moving fluid, we are assuming local thermodynamic equilibrium, that is, that the 
variables E, α,  and η, although changing in space and time, are locally related as they 
would be in exact thermodynamic equilibrium.  This assumption can be true only if the 
time scale for molecular processes to bring the system into local equilibrium is much 
shorter than the time scale for macroscopic changes. 
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7.  Variable composition 
 
 The assumption that E depends only on α and η is true only for a fluid of fixed 
chemical composition.  Seawater is a dilute solution of ionic salts whose composition is 
specified by the concentrations of its ionic components.  Let ni be the mass fraction of 
component i, defined as the number of grams of i per gram of seawater.  Since the ni are 
generally different for different seawater particles, the fundamental relation for seawater 
takes the general form 
 
  E = E(α,η, n1, ...nN ) , (7.1) 
 
where N is the number of (important) components.  The most important components of 
seawater are Cl-, Na++, SO4= and Mg++. 
 Measurements show that the mass fractions of the dissolved ions in seawater always 
have approximately the same ratio to one another.  This is because the ionic 
concentrations change mainly by evaporation and precipitation at the sea surface, and 
these processes affect all the dissolved ions in the same way.  Thus it is possible to 
specify the composition of seawater by a single parameter, the salinity, 
 
  S = n1 + n2 + ⋅ ⋅ ⋅ + nN . (7.2) 
 
The fundamental relation can therefore be written 
 
  E = E(α,η,S) . (7.3) 
 
If there is no molecular diffusion of salt, 
 
  S = S a,b,c( ), ∂S / ∂τ = 0 ,    (7.4) 
 
and each fluid particle conserves its salinity.  Then, since S(a,b,c), like η(a,b,c), is 
unaffected by variations in the dependence of x on (a,b,c,τ),  Hamilton’s principle gives 
the same momentum equation (5.12) as before, but now with 
 

  p ≡ −
∂E(α,η,S)

∂α
.  (7.5) 

 
Instead of (6.2) we now have 
 
  dE = −pdα + T dη + µ dS , (7.6) 
 
where 
 

  T ≡
∂E(α ,η,S)

∂η
 (7.7) 
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is the temperature, and  
 

  µ ≡
∂E(α ,η, S)

∂S
 (7.8) 

 
is the chemical potential  of salt in seawater.  In (7.6) the term µdS represents the internal 
energy change caused by a change dS in salinity, assuming no change in the specific 
volume or entropy.   
 Equations (7.5), (7.7) and (7.8) are called equations of state.  The equation, 
 
  ρ = ρ(S,T, p) , (7.9) 
 
obtained by eliminating the entropy η  between (7.5) and (7.7), is also often called the 
equation of state.  Note that all of (7.5-7.9) follow from the fundamental relation (7.3), 
which completely defines the thermodynamic equilibrium state of the fluid. 
 
8.  Equations of motion for an ideal fluid 
 
 Now we pause to collect our results.  Our equations of motion are, apart from 
definitions, the result of applying Hamilton’s principle to a hypothetical macroscopic 
continuum, whose internal energy (representing the energy stored in the otherwise 
ignored microscopic degrees of freedom) is assumed to be a prescribed function E(α,η,S) 
of the specific volume, entropy, and salinity.  The latter two keep their same value on 
each moving fluid particle.  In conventional notation, our equations are: 
 

  

Dρ
Dt

+ ρ∇⋅ v = 0

Dv
Dt

= −α∇p − ∇φ

p = −
∂E(α,η,S)

∂α
Dη
Dt

= 0

DS
Dt

= 0.

 (8.1) 

 
Eqns. (8.1), in which the molecular transports (i.e. diffusion) of momentum, heat, and salt 
are entirely missing, are the equations for an ideal fluid.  If the fundamental relation  
E=E(α,η,S) is known (from laboratory measurements, say), then (8.1) form a complete 
set of seven (scalar) equations in the seven dependent variables ρ =1/α,  v,  p, η,  and S.  
In this section, we rewrite (8.1) in several useful equivalent forms. 
 We can transform (8.1) into a more convenient form in several ways.  By one method, 
we rearrange (8.1c) into the form 
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  ρ = ρ( p,η,S) . (8.2) 
 
Then, taking the substantial derivative of (8.2) and using (8.1d,e), we obtain 
 

  

Dρ
Dt

=
∂ρ
∂p

Dp
Dt

+
∂ρ
∂η

Dη
Dt

+
∂ρ
∂S

DS
Dt

= 1
c2
Dp
Dt

 (8.3) 

 
where 
 

  c2 ≡
∂p ρ,η ,S( )

∂ρ
. (8.4) 

 
The quantity c  turns out to be the speed of sound.  The equations 
 

  

Dρ
Dt

+ ρ∇⋅ v = 0

Dv
Dt

= −α∇p − ∇φ

Dρ
Dt

=
1
c2

Dp
Dt

DS
Dt

= 0.

 (8.5) 

 
form a complete set of equations, with c(p,ρ,S) a prescribed function.  Once again, the 
function c(p,ρ,S)  — and all other thermodynamic functions — are uniquely determined 
by the fundamental relation E(α,η,S) .  The reader should show, by linearizing (8.5), that 
c is indeed the sound speed. 
 Another formulation uses the temperature T as one of the dependent variables.  This 
formulation is probably preferable if molecular transports are to be introduced later on. 
Eliminating the specific volume α  between (7.5) and (7.7), we obtain 
 
  η = η(S,T, p) . (8.6) 
 
It follows that 
 

  0 = Dη
Dt

=
∂η
∂p

Dp
Dt

+
∂η
∂T

DT
Dt

+ 0 .  (8.7) 
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To put (8.7) in a neater form, we need to express its two thermodynamic partial 
derivatives in terms of tabulated quantities.  Remembering that Tdη  represents the 
increase in the internal energy per unit mass caused by heating, we see that 
 

  ∂η(S,T , p)
∂T

=
Cp

T
, (8.8) 

 
where Cp is the heat capacity at constant pressure (and salinity).   
 The other partial derivative in (8.7) can be simplified as follows: 
 

  ∂η(S,T , p)
∂p

= −
∂α(S,T, p)

∂T
≡ −αβ , (8.9) 

 
where β  is the coefficient of thermal expansion.  The first equality in (8.9) is one of 
Maxwell’s thermodynamic relations.  To prove it in the standard way, we rewrite (7.6) as 
 
  dG(S,T, p) ≡ d(E + pα − Tη) = α dp − ηdT + µ dS  (8.10) 
 
and require 
 

  ∂ 2G
∂T∂p

=
∂ 2G
∂p∂T

.  (8.11) 

 
Substituting (8.8) and (8.9) into (8.7), we obtain another complete set of equations, 
 

  

Dρ
Dt

+ ρ∇⋅ v = 0

Dv
Dt

= −α∇p − ∇φ

ρ = ρ(S,T, p)
DT
Dt

=
αβT
Cp

Dp
Dt

DS
Dt

= 0

 (8.12) 

 
where (8.12c) is the equation of state, (7.9).   
 We often neglect the Dp/Dt-term in (8.12d).  Let δT and δp be typical temperature 
and pressure differences in the flow of interest.  Then the right-hand side of (8.12d) is 
negligible if 
 

  δT >>
αβT
Cp

δp.  (8.13) 
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For the typical oceanic values, 
 

 
T ≈ 275 deg, Cp ≈ 1 calgm−1 deg−1,

α ≈ 1cm3 gm−1, β ≈ 2 ×10−4 deg−1
  

 
this neglect is justified if 
 
  (δT in deg) >> 1.3 ×10−3(δp in atmospheres).  (8.14) 
 
However, the condition (8.14) is certainly violated when seawater particles undergo 
pressure changes of hundreds of atmospheres with small temperature changes, as in the 
deep ocean.  In fact, in the deep ocean, the most significant temperature changes are 
sometimes caused by pressure changes, via (8.12d). 
 A similar justification sometimes permits the neglect of Dp/Dt in (8.5c).  The 
resulting approximation, 
 
  Dρ / Dt = 0 ,   (8.15) 
 
bears a superficial resemblance to the mass conservation equation (8.5a), but it is 
nevertheless an approximation to (8.5c).  Equation (8.15) can never be justified as an 
approximation to (8.5a). 
 
9.  The method of averaging 
 
 Now we start all over again, and re-derive the equations for macroscopic fluid motion 
by the first of the two general methods described at the beginning of the chapter — by 
averaging over molecular motions.  The resulting equations are exact (apart from our 
assumption that the molecules obey Newton’s law) but mathematically unclosed without 
further approximations.  However, these exact equations automatically include the 
molecular transports of momentum, heat and salt omitted above.   
 Again we regard the fluid molecules as point masses, and let mi be the mass at 
location xi(t).  The governing molecular equations are  
 

  mi
d 2xi
dt 2

= −
∂V x1, ...,xN( )

∂x i
, (9.1) 

 
where V  is the potential for intermolecular forces.  The mass density at (x,t) can be 
defined as an average over molecules, in the form  
 
  ρ x,t( ) ≡ miR ri( )

i
∑ , ri ≡ x i t( ) − x , (9.2) 

 
where the summation is an estimate of the mass per unit volume near x at time t.  Here, 
R(r) is a sampling function that counts the molecules near x.  The simplest definition of R  
would be 
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  R r( ) =
1

4
3π r03( ) , r < r0

0 r > r0

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (9.3) 

 
where r0, the radius of the sampling sphere, is much larger than the average molecular 
molecular separation λ, but much smaller than the smallest scale L on which ρ(x,t) varies 
significantly.  However, it is more logical and convenient to define R(r) to be an 
infinitely differentiable function with the general shape sketched in Figure 1.1.  The only 
rigid requirement is the normalization condition, 
 
  dx R x( ) = 1∫∫∫ . (9.4) 
 
The time derivative of (9.2) yields 
 

  

∂ρ x,t( )
∂t

= mi
i
∑ ∂

∂t
R ri( )

= mi

∂R ri( )
∂xi

⋅
dx i t( )
dt

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

i
∑

= mi −
∂R ri( )
∂x

⋅ dx i t( )
dt

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

i
∑

= −
∂
∂x

⋅ mi R ri( ) dxi t( )
dti

∑⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
.

 (9.5) 

 
Defining the macroscopic velocity by  
   

  v x,t( ) ≡
miR ri( ) dx i

dti
∑

mi R ri( )
i
∑ , (9.6) 

 
(cf. (0.1)), so that 
 

  ρ x,t( )v x,t( ) ≡ miR ri( ) dx i t( )
dti

∑ , (9.7) 

 
we see that (9.5) is equivalent to the continuity equation, 
 

  ∂ρ
∂t

= −∇ ⋅ ρv( ) , (9.8) 
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which is therefore an exact consequence of our definitions of ρ  and v. 
 Now suppose that there are two kinds of molecules: water molecules with mass mw  
and salt molecules with mass ms . These two kinds of molecules are separately conserved.  
In analogy with (9.2), we define the density of salt by 
 
  ρs x,t( ) ≡ msR rs( )

s
∑ , (9.9) 

 
where the sum runs over salt molecules only.  By the same steps as before, we find that  
 

  ∂ρs

∂t
= −∇ ⋅ ρsvs( ) , (9.10) 

 
where 
 

  ρsvs ≡ msR rs( ) dx s t( )
dts

∑  (9.11) 

 
defines the velocity vs of salt.   By our previous definition of salinity, 
 

  S =
ρs
ρ

. (9.12) 

 
Thus (9.10) can also be written 
 

  
∂ ρS( )
∂t

= −∇⋅ ρSvs( ) . (9.13) 

 
Eqn. (9.13) is equivalent to 
 

  
∂ ρS( )
∂t

= −∇⋅ ρSv( ) − ∇⋅Fs , (9.14) 

 
where 
 
  Fs ≡ ρS v s − v( ) (9.15) 
 
is the molecular flux of salt.  Note that a molecular salt flux occurs whenever the average 
velocity of salt molecules differs from the average velocity of all molecules.  By (9.8), 
(9.14) can also be written 
 

  DS
Dt

= −
∇ ⋅Fs
ρ

. (9.16) 
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If the molecular salt flux is negligible, (9.16) reduces to the ideal-fluid equation for the 
salinity, (8.1e). 
 Unfortunately, the exact derivation of (9.16) has introduced a new dependent 
variable, vs (or Fs), without inceasing the number of equations.  As we shall see, the 
corresponding derivations of the equations for momentum and total energy also introduce 
new variables.  Thus, the method of averaging yields exact expressions for the molecular 
transports which, however, render the resulting macroscopic equations mathematically 
unclosed.  This closure problem  is an inevitable consequence of the averaging.  To close 
the equations, we must find approximations for molecular transports like Fs that involve 
only the original variables, ρ,  S, v, p, and T.  The most commonly used approximation 
for the molecular salt flux is 
 
  Fs = −µs∇S , (9.17) 
 
for which (neglecting the possible spatial dependence of µs) (9.16) becomes 
 
  DS

Dt
=κ s∇

2S , (9.18) 

 
where κs =µs /ρ  is the diffusion coefficient for salt.  The approximation (9.17) can be 
justified by an appeal to experimental results, or by kinetic-theory arguments similar to 
those given in Section 11. 
 Why does the equation (9.16) for salt contain a molecular transport term, whereas the 
corresponding equation (9.8) for all matter contains none?  Because our definition (9.6) 
of velocity is an average weighted by the total mass.  A different convention would lead 
to differently-placed molecular transport terms, but the closure problem would remain. 
 
10.  Momentum equation by the method of averaging 
 
 We resume our program of re-deriving the macroscopic equations by the method of 
averaging over the molecular motions.4  Our next objective is an evolution equation for 
the macroscopic velocity v(x,t) defined by (9.7) and (9.2).  Taking the time derivative of 
the x-component of (9.7), we obtain 
 

  

∂ ρu( )
∂t

= ∂
∂t

miRi
dxi
dti

∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

= mi
∂Ri
∂t

dxi
dt

+ miRi
d2xi
dt2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

i
∑

 (10.1) 

     
where Ri≡R(ri).  As before, 
 

  ∂Ri
∂t

=
∂Ri
∂xi

⋅
dx i
dt

= −
∂Ri
∂x

⋅
dxi
dt

, (10.2) 
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and thus (10.1) becomes 
 

  
∂ ρu( )
∂t

= −
∂
∂x

⋅ miRi
dxi
dt

dx i
dti

∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ + mi Ri

d2xi
dt 2i

∑ . (10.3) 

 
We easily obtain the corresponding equations for ∂(ρv)/∂t and ∂(ρw)/∂t.   
 Now we go to work on the right-hand side of (10.3).  We aim to extract the terms that 
appear in the ideal-fluid momentum equation (8.1b).  The remaining terms will represent 
the previously neglected molecular momentum flux.  First, define 
 
  v i' x,t( ) ≡ dx i

dt
− v x,t( ) , (10.4) 

 
and note that vi'(x,t)  is the difference between the velocity of the i-th molecule and the 
continuum velocity at x, all at time t.  Then the x-component of 
 

  miRi
dxi
dt

dx i
dti

∑  (10.5) 

 
is 

  
miRi

dxi
dt

dxi
dt

= mi Ri u x,t( ) + ui' x,t( )[ ]
i
∑

i
∑

2

= ρu2 x,t( ) + mi Ri ui ' x,t( )
i
∑ ui' x,t( )

 (10.6) 

 
The cross-terms cancel as a matter of definition.  Treating the other two components of 
(10.5) similarly, and substituting the results back into (10.3), we obtain 
 

  
∂ ρu( )
∂t

= −∇ ⋅ ρuv( ) − ∇⋅ mi Ri ui ' v i'
i
∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ + miRi

d2xi
dt2i

∑ . (10.7) 

 
Combining (10.7) with the corresponding equations for the momenta in the y- and z-
directions, and using the continuity equation to simplify the result, we finally obtain 
 

  ρ
Dv
Dt

= −∇⋅F + miRi
d2x i
dt 2i

∑  (10.8) 

 
where F(x,t) is the symmetric tensor defined by 
 
  F x,t( ) ≡ miRiv i' vi '

i
∑ ≡ ρ vmol

' vmol
' . (10.9) 
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The last equivalence in (10.9) defines the angle-bracket term, the average product of 
molecular velocity components. 
 Now, everything so far is a matter of definition.  To put in the physics, we need 
Newton’s law for molecules, 
 

  mi
d 2xi
dt 2

= −
∂V
∂xi

, (10.10) 

 
where the potential energy, 
 
  V x1,...,x N( ) = Vint +Vext , (10.11) 
 
consists of a part, Vint , arising from intermolecular forces, and another part, Vext , 
corresponding to external forces.  In a uniform gravitational field (pointing in the minus-z 
direction),  
 
  Vext = mi g zi

i
∑ , (10.12) 

 
and thus (10.8) becomes 
 

  ρ
Dv
Dt

+ ρgk = −∇ ⋅F − Ri
∂Vint
∂x ii

∑ . (10.13) 

 
where k is the unit vector in the vertical direction.  We show below that  
 

  − Ri
∂Vint
∂xi

= −∇ ⋅G
i
∑  (10.14) 

 
for some tensor G, so that (10.13) can be written 
 

  ρ
Dv
Dt

+ ρgk = −∇ ⋅T , (10.15) 

 
where 
 
  T = F +G  (10.16) 
 
is the total momentum-flux tensor associated with the microscopic flow. 
 The tensor G is sometimes negligibly small.  In an ideal gas, for example, only a tiny 
fraction of the molecules are interacting (colliding) at any particular instant, and the non-
colliding molecules make no contribution to Vint.  Then F alone represents the 
momentum flux associated with the microscopic motion.    
 To understand F, suppose that Fxy>0.  This means that x-direction momentum flows 
toward positive y.  And this agrees with the definition (10.9), which states that  Fxy>0 if 



Salmon: SIO 212 Chapter 1 

21                                                         

the molecules moving toward positive y (vmol >0) have, on average, a positive x-direction 
momentum (umol >0). 
 Now imagine that the fluid is enclosed by a rigid container, and left undisturbed for a 
long time.  Intuition suggests that the macroscopic flow will eventually die out, and that 
(away from boundaries) the microscopic, molecular motions will become statistically 
homogeneous and isotropic.  This in turn implies that T is diagonal, with all three 
diagonal components equal.  These facts motivate the general decomposition 
 
  T = pI - τ , (10.17) 
 
where 
 
  p ≡ 1

3
Txx + Tyy + Tzz( )  (10.18) 

 
is the dynamic pressure and τ  is the deviatoric stress tensor.  The momentum equation 
(10.15) then becomes 
 
  ρ

Dv
Dt

+ ρgk = −∇p +∇ ⋅τ  . (10.19) 

 
To close (10.19), we need expressions for both p and τ  in terms of the macroscopic 
variables v, ρ, and S. 
 In the hypothetical, equilibrium situation described above, τ=0.  If the deviatoric 
stress tensor τ  is negligible, then (10.19) resembles the ideal-fluid momentum equation 
(8.1b).  However, in the ideal-fluid equations, p is the thermodynamic-equilibrium 
pressure, determined by the fundamental relation of thermodynamics.  The p in (10.19) 
is, on the other hand, defined by (10.18), and, from the standpoint of this section, we 
should not even mention the fundamental relation unless we can derive it from the exact 
molecular dynamics.  This turns out to be impossible — even in principle — without an 
additional hypothesis:  the basic hypothesis of equilibrium statistical mechanics.  We 
shall talk more about equilibrium statistical mechanics in later lectures.  But here we note 
that even if it were somehow possible to equate p to the pressure in (local) 
thermodynamic equilibrium, we still lack a prescription for the deviatoric stess tensor 
τ .  And since τ  evidently vanishes in thermal equilibrium, the expression for τ  requires 
ideas from nonequilibrium statistical mechanics.  We illustrate the general flavor of these 
ideas in the following section, where we obtain an expression analogous to (9.17) for the 
molecular flux of momentum. 
 Now we turn to the proof of (10.14).  We assume that the interactions between 
molecules are pair-wise repulsions.  Then 
 
  Vint = ∑∑

i> j
Φ rij( ), rij ≡ xi − x j  (10.20) 

 
where 
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  Φ ' r( ) < 0 , (10.21) 
 
and the prime denotes differentiation.  The inequality (10.21) implies that the molecules 
repel one another, that is, that energy must be supplied to bring two molecules closer to 
one another.  The x-component of (10.14) is 
 

  

− ∑∑
i / = j

Ri
∂Φ rij( )
∂xi

= − ∑∑
i / = j

Ri
Φ' rij( )
rij

xi − xj( )

= − 1
2 ∑∑

i / = j

Φ ' rij( )
rij

xi − x j( ) Ri − Rj( ).

 (10.22) 

 
Now let  Sij(x) be the unique solution to 
 

  ∂
∂x

⋅ x i − x j( )Sij[ ] = Ri − Rj and Sij → 0 as x → ∞. (10.23) 

 
It is easiest to think about (10.23) in a coordinate system in which the molecules at xi and 
xj lie on one of the coordinate axes (the r-axis, say).  Refer to Figure 1.2.  Then, if r is the 
distance in the direction of xi - xj,  (10.23) is equivalent to 
 

  
∂Sij
∂r

=
Ri − Rj
rij

. (10.24) 

 
Thus Sij is nonzero (and negative) only in the cigar-shaped region between molecules i 
and j.  Substituting (10.23) into (10.22), we obtain the x-component of (10.14) in the form 
 

  − Ri
∂Vint
∂xi

= −
∂Gxx

∂xi
∑ −

∂Gxy

∂y
−
∂Gxz

∂z
, (10.25) 

 
where 
 

  G ≡ 1
2 ∑∑

i / = j

Φ' rij( )
rij

xi − x j( ) x i − x j( )Sij x( )  (10.26) 

 
is a symmetric tensor. 
 To understand G, consider the contribution of two particular molecules, i and j, to 
(10.26).  With no loss in generality, we can assume that these two molecules lie on the x-
axis.  Then these two molecules contribute only to the Gxx-component of G, that is, to the 
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flux of x-direction momentum in the x-direction.  Since both Φ '(r) and Sij are negative, 
this flux can never be negative, but it is nonzero only within the region of nonvanishing 
Sij shown in Figure 1.2. 
 In summary, F represents the microscopic momentum flux caused by molecules 
moving from one location to another, while conserving their momentum en route.  On the 
other hand, G represents the microscopic flux caused by intermolecular forces, and can 
be nonzero even if the molecules aren’t moving. 
 
11.  An example of kinetic theory 
 
 Using the averaging method, we have obtained equations for the salinity and 
momentum that contain exact expressions for the molecular transports.  However, to 
close the equations, we must find approximate expressions for these molecular transports 
in terms of the macroscopic variables ρ, v, S, etc.  Nonequilibrium statistical mechanics 
based upon kinetic theory provides the basis for this closure, but the full theory is far 
beyond our scope.5  Instead, we examine a very simple-minded version of kinetic theory, 
which nonetheless illustrates the essential ideas.  
 Many authors define the p in (10.17) to be the pressure -∂E/∂α given by equilibrium 
thermodynamics;  then τ   is, by definition, the remainder.  If one then assumes that the 
components of τ  depend linearly on the first derivatives ∂vi/∂xj of the velocity 
components, and that the relationship between these two tensors is isotropic, one 
eventually obtains the Navier-Stokes approximation, 
 

  τ ij = κ − 2
3 µ( )δ ij∇ ⋅v + µ

∂vi
∂x j

+
∂vj
∂xi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , i =1,2,3  (11.1) 

 
where κ   and µ  are undetermined scalars, and the subscripts denote directional 
components.6  Frequently, 
 
  ∇⋅ v ≈ 0 , (11.2) 
 
and hence 
 
  Dv

Dt
= −α∇p − gk +ν∇2v , (11.3) 

 
where ν≡µ/ρ  is the kinematic viscosity. 
 This conventional derivation of (11.1), while certainly very elegant, is also somewhat 
empty:  Why, after all, should the stress depend linearly on the strain rate?  Furthermore, 
the conventional derivation leaves the coefficients µ, κ,  and hence ν  unspecified;  like 
the fundamental relation E(α,η), we must then regard them as given.  In contrast, kinetic 
theory offers both the physical motivation for a relation like (11.1) and a quantitative 
estimate of µ and κ, but accurate numbers often demand impractically difficult 
computations. 
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 To keep things simple, we suppose that all the molecules have the same mass, and 
consider the special situation in which the velocity v=(u(y),0,0) points only in the x-
direction, and depends only on y.   We want to estimate the molecular flux of x-direction 
momentum from y<0 to y>0, that is, through the dashed line in Figure 1.3.  We shall also 
assume that: 
 (a)  The molecules conserve their momentum between collisions. 
 (b)  Before each collision, a molecule’s momentum may differ from the average of its 
 neighbors, but after each collision this difference vanishes on average. 
 (c)  The molecular mean free path λ  is short compared to the scale L on which u(y) 
 varies. 
 By assumption (a), only F contributes to the total molecular momentum flux T.  Let s 
be the average speed of a molecule in any particular direction.  That is, let 
 
  s = 1

3 rms molecular speed( ). (11.4) 
 
Then, by (10.9), the diagonal components of T are 
 
  Txx = ρ umol

2 ≈ Tyy ≈ Tzz ≈ ρ s 2 . (11.5) 
 
The macroscopic velocity u(y) has a negligible effect on these diagonal components, 
because u is so much smaller than s.  By considering the momentum transferred by elastic 
collisions to a plane surface immersed in the gas, we see that (11.5) is just the dynamic 
pressure p, the normal force per unit area of the gas on the surface. 
 Now consider the (off-diagonal) flux of x-momentum in the y-direction, 
 
  Txy = ρ < umol vmol > , (11.6) 
 
at the location y=0.  If there were no macroscopic velocity, then (11.6) would vanish;  
thus Txy must depend upon u(y).  To estimate Txy, we divide the molecules crossing y=0 
into two groups, and suppose that 
  

  
< umol vmol >= 1

2 < umolvmol >up + 1
2 < umolvmol >down

≈ 1
2 < umol >up < vmol >up + 1

2 < umol >down< vmol >down

 (11.7) 

 
where < >up  is the average (at y=0) over up-going molecules, and < >down  is the 
average over down-going molecules.  Now, on average, the down-going molecules 
crossing y=0 experienced their last collision at y=+λ/2, and the up-going molecules 
crossing y=0 experienced their last collision at y=-λ/2.  Therefore, by assumptions (a) 
and (b), 
 
  < umol >up = u −λ / 2,( ), < vmol >up = +s  (11.8) 
 
and 
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  < umol >down= u +λ / 2( ), < vmol > down= −s . (11.9) 
 
Next we use the Taylor-series expansion 
 

  u(−λ / 2) = u(0) +
∂u
∂y

0( ) ⋅ −
λ
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ + 1

2
∂ 2u
∂y2

0( ) ⋅ −
λ
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2

+ ⋅ ⋅ ⋅  (11.10) 

 
to relate u(−λ/2) to the velocity field at y=0, the level at which we are calculating the 
flux.  The third term in (11.10) is negligible provided that 
 

  
∂ 2u
∂y2

0( ) λ2 << ∂u
∂y

0( ) λ , (11.11) 

 
that is, provided that 
 
  λ << L , (11.12) 
 
which is true by assumption (c).  Similarly, 
 

  u(+λ / 2) ≈ u(0) +
∂u
∂y

0( ) ⋅ +
λ
2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ . (11.13) 

 
Substituting these results into (11.7), we obtain 
 

  Txy ≈ −
ρsλ
2

∂u
∂y
.  (11.14) 

 
Thus (11.3) holds, with molecular viscosity 
 

  ν ≈
sλ
2
. (11.15) 

 
 It is interesting to compare this prediction to the measured viscosity of the Earth’s 
atmosphere.  At 20o C, s=5.0×104 cm/sec and λ=6.5×10-6 cm, so (11.15) pedicts that 
ν≈.165 cm2/sec.  This agrees well with the measured value of .15 cm2/sec.  But don’t be 
too impressed.  There is no way to define the mean free path precisely.  However, for any 
reasonable definition, (11.15) gives a reasonable estimate for the viscosity of an ideal gas. 
 Before leaving this subject, we briefly describe the more sophisticated methods 
actually used by statistical mechanicians to compute transport coefficients like ν.  One 
starts by deriving the Boltzmann equation, an equation describing the evolution of the 
probability distribution of molecular velocities.  The derivation of the Boltzmann 
equation requires an assumption (Stosszahlansatz, or “assumption of molecular disorder”) 
which, like assumption (b) above, imposes a direction of time.  The Boltzmann equation 
has stationary solutions that correspond to thermodynamic equilibrium.  To estimate the 
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transport coefficients, one expands the Boltzmann equation about one of these solutions, 
using a method pioneered by Chapman and Enskog.7 
 Although we have emphasized that calculations of molecular transport coefficients 
require a nonequilibrium theory based upon the underlying molecular dynamics, 
equilibrium thermodynamics actually places strong constraints on the forms these 
expressions can take.  To explain these constraints, we turn, once again, to the strictly 
macroscopic point of view.  First, however, we must complete the postulational basis of 
thermodynamics. 
 
12.  Thermodynamic constraints on molecular diffusion 
 
 All of equilibrium thermodynamics can be deduced from four fundamental postulates.  
They are: 
  (1.)  For any system at thermodynamic equilibrium, there exists a fundamental  
 relation η=η(E,X1,X2,...,XN)  between the entropy η,  the energy E,  and the  
 other macroscopic parameters X1, X2, ... , XN  that describe the system. 
  (2.)  At equilibrium, the entropy of an isolated system is a maximum. 
  (3.)  The entropy of a system is the sum of the entropies of its constituent   
 subsystems. 
  (4.)  The entropy is zero at zero temperature. 
Gibbs introduced the first three postulates.  Nernst added the fourth, which is important 
only at temperatures so low that quantum effects become important.8 
 So far, we have used only the first postulate of thermodynamics, with X1=α  and 
X2=S as the macroscopic parameters.  That is, taking the system to be a gram of seawater, 
we have assumed the existence of a relation η(E,α, S), or, equivalently, E(α, S, η).  From 
the standpoint of thermodynamics, these are given functions, which must be determined 
by experiment.  However, equilibrium statistical mechanics (which we discuss briefly in 
Section 18) offers the means of actually calculating η(E,α, S), removing (in principle!) 
the need for any experiments.   
 In this section, we discuss the constraints imposed by thermodynamics on the 
exchange of heat and salinity between seawater particles at a fixed pressure.  Our 
discussion will require the first three of the fundamental postulates listed above. The 
system, shown schematically in Figure 1.4, consists of two seawater particles (1 and 2), 
each of one gram, and an environment (3) of much greater size.  The two particles 
exchange heat and salt with one another, but not with the more distant environment.  
However, all three systems exchange mechanical work as the two seawater particles 
adjust their volumes to keep their pressures the same as the pressure of the environment, 
pr.  We imagine the whole system (1, 2, and 3) to be enclosed by a distant, rigid, 
adiabatic wall.  In this way we fulfill the requirement of postulate 2 that the whole system 
be “isolated.” 
 By postulates (2) and (3) above, the total entropy 
 
  η = η1 + η2 + η3  (12.1) 
 
is a maximum in thermodynamic equilibrium.  However, 
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  δη3 = 0  (12.2) 
 
because the environment does not exchange heat with the two seawater particles.  Thus 
postulate (2) reduces to the requirement that 
 
  η1 +η2  (12.3) 
 
be maximum in equilibrium.  Now 
 

  δηi =
1
Ti
δEi +

pi
Ti
δαi −

µ i

Ti
δSi . (12.4) 

 
But, by the conservation of total energy, volume, and salinity, 
 

  
δE1 +δE2 − prδV3 = 0
δα1 + δα 2 + δV3 = 0
δS1 + δS2 + 0 = 0

 (12.5) 

 
Here pr  and V3   are the pressure and volume of the environment, and we have again used 
the fact that the environment exchanges only mechanical work with the particles.  We can 
treat pr as a constant because the environment is relatively large.  Then, eliminating δV3 

between (12.5a,b), we find that 
 

  
δh1 + δh2 = 0
δS1 + δS2 = 0

 (12.6) 

 
where 
 
  h ≡ E + pα  (12.7) 
 
is the specific enthalpy.  That is, the total enthalpy and salinity of the two seawater 
particles alone are conserved.  By (12.4) and (12.6-7) we have 
 

  δ η1 +η2( ) =
1
T1

−
1
T2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ δh1 +

µ2

T2
−

µ1

T1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ δS1 . (12.8) 

 
 Now we can use (12.8) in two ways. At equilibrium (12.8) must be zero for arbitrary 
infinitesimal δh1 and δS1.  Thus  
 
  T1 = T2        and       µ1 = µ 2          at equilibrium. (12.9) 
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That is, for two seawater particles at equilibrium, the temperatures and chemical 
potentials must be the same. 
 Next suppose that our two-particle system is displaced away from equilibrium by a 
small but finite amount. Then δh1 and δS1 represent the fluxes (from fluid particle 2 to 
particle 1) of enthalpy and salt that bring the system back into equilibrium.  What do we 
know about these fluxes?  From the macroscopic viewpoint, they can depend only on the 
states of the two seawater particles.  Since the pressure (pr) is uniform, these states are 
defined by  T1, µ1, T2, µ2 (two variables for each particle).  Furthermore, both fluxes must 
vanish when T1= T2 and  µ1= µ2.  If the differences between the temperatures and 
chemical potentials of the two seawater particles are small, it follows that the fluxes 
depend linearly on their differences.  That is, 
 

  

  

δh1 = kTT
1
T1

−
1
T2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + kTµ

µ2

T2
−

µ1
T1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

δS1 = kµT
1
T1

− 1
T2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + kµµ

µ2

T2
− µ1

T1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

 (12.10) 

 
to leading order in the differences between the temperatures and potentials.  The transfer 
coefficients kTT  etc. depend only on T1 (≈T2) and µ1 (≈µ2).  Furthermore, since (12.3) is a 
maximum at equilibrium, (12.8) must always be positive.  This puts a constraint on the 
transfer coefficients in (12.10).   
 Now suppose that the two seawater particles can exchange heat and mechanical work, 
but not salinity (as if separated by a membrane).  Then, for (12.8) to be positive, the sign 
of (T2-T1) must be the same as δh1.  That is, heat flows from the particle with the higher 
temperature.  Similarly, if the particles exchange salt but not heat, then salt flows from 
the particle with the higher µ/T.  However, if, as is typically the case, our seawater 
particles can exchange both heat and salt, then neither of these statements necessarily 
applies.  Thermodynamics demands only that the total entropy production (12.8) be 
positive. 
 We easily extend these arguments to the fluid continuum.  Consider a mass of fluid, 
at a fixed pressure pr , that exchanges heat and salt between its constituent fluid particles, 
but not with the surrounding fluid.  The analog of (12.8) is 
 

  D
Dt

dx ρη = dx ρ 1
T
Dh
Dt

−
µ
T
DS
Dt

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ∫∫∫∫∫∫ , (12.11) 

 
which must be positive.  The analog of (12.6) is 
 

  Dh
Dt

= −
∇ ⋅Fh
ρ

, DS
Dt

= −
∇⋅FS
ρ

, (12.12) 

 
where Fh  and FS  are the fluxes of enthalpy and salt.  Eqn. (12.12) requires that the 
enthalpy or salt lost by one fluid particle is gained by another.  Substituting (12.12) into 
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(12.11), integrating by parts, and using the fact that the normal components of the fluxes 
vanish (by hypothesis) at the boundaries of the fluid mass, we obtain the analog of (12.8), 
 

  D
Dt

dx ρη = dx ∇
1
T

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ⋅Fh − ∇

µ
T

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ⋅FS

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ∫∫∫∫∫∫ . (12.13) 

 
If the departure from thermodynamic equilibrium is slight, then the fluxes must take the 
general forms 
  

  Fh = κ TT∇
1
T

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ −κ Tµ∇

µ
T

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  (12.14) 

 
and 
 

  FS = −κ µµ∇
µ
T

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ +κ µT∇

1
T

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ , (12.15) 

 
which are the analogs of (12.10).  Again, this is true because the fluxes depend on T  and 
µ  but must vanish when T  and µ  are uniform;  the flux laws (12.14-15) are the first 
nonvanishing terms in an expansion about uniform T  and µ .  Substituting (12.14-15) into 
(12.13) yields 
 

  

D
Dt

dx ρη∫∫∫ =

dx κ TT∇
1
T

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2

− κ Tµ +κ µT( )∇ 1
T
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ⋅∇

µ
T

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ + κ µµ∇

µ
T

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
2⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ∫∫∫
 (12.16) 

 
which again must be positive.  Therefore, thermodynamics demands that 
 
  κ TT > 0, κ µµ > 0, (κ Tµ +κ µT)

2 < 4κ TTκ µµ . (12.17) 
 
That is, even though we require laboratory measurements to determine the values of the 
diffusion coefficients in (12.14-15), we can be confident beforehand that the results will 
satisfy (12.17).9 

 It is customary to rewrite (12.12) as equations for DT/Dt and DS/Dt;  this requires the 
thermodynamic expression for h=h(T, S, pr) (which may be determined from the 
fundamental relation).  Then translating the flux laws (12.14-15) into flux laws for 
temperature and salinity, the final equations take the forms 
 
  DT

Dt
= κ T∇

2T +κ '∇2S  (12.18) 

 
and 
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  DS
Dt

=κ S∇
2S +κ ' ' ∇2T . (12.19) 

 
Because of the cross-terms in (12.18) and (12.19), a salt gradient generally drives a 
temperature flux, and vice versa.  The κ '  term in (12.18) is negligible in the ocean, but 
the κ'' term in (12.19), called the Soret effect, can sometimes be as large as the κS term.  
Nevertheless, both κ ' and κ '' are customarily neglected. 
 The discussion given above applies to two seawater particles at the same imposed 
pressure.  Since, the pressures, temperatures, and salinity potentials of the two particles 
are equal in thermodynamic equilibrium, the two particles also have the same equilibrium 
salinities.  However, one can consider the more general problem of two seawater particles 
at different imposed pressures, or, more generally, the thermodynamic equilibrium 
attained by an extensive mass of sea water in a gravitational field.  The analysis is nearly 
the same as that given above, but one must be careful to include the gravitational energy 
per unit mass (gz) as part of the energy.  Again one finds that the temperature T and 
salinity potential µ are uniform in thermodynamic equilibrium.  That is, 
 
  T = uniform, µ S,T, p( ) = uniform . (12.20) 
 
But since T is uniform while p is not, it follows that the equilibrium salinity in a 
gravitational field must be nonuniform; the change in S compensates the change in p in 
(12.20b).  Fofonoff (1962) estimated that if the whole ocean were to come to complete 
thermodynamic equilibrium, then its temperature would be uniform, but its salinity would 
decrease with depth at the rate of about 3 ppt per kilometer.  This is far larger than the 
observed mid-ocean salinity gradient!  Of course this hypothetical equilibrium state has 
no practical relevance except, perhaps, as a reminder that however close the ocean may 
be to local thermodynamic equilibrium, it is far, far from the state of global 
thermodynamic equilibrium. 
 
13.  Macroscopic averages of the equations of motion 
 
 We have finally completed our derivation of the equations governing the motion of 
seawater.  Subject to the approximations laid out in the preceding sections, these 
equations are: 
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Dρ
Dt

+ ρ∇⋅ v = 0

Dv
Dt

= − 1
ρ
∇p − ∇φ +ν∇2v

ρ = ρ(S,T, p)
DT
Dt

= κ T∇
2T

DS
Dt

=κ S∇
2S

 (13.1) 

 
 Eqns. (13.1) apply to fields ρ, v, p, T, S  in which only the molecular fluctuations 
have been averaged out.  However, we often wish to consider fields that represent a much 
more drastic averaging.  Consider, for example, the typical wall map of ocean currents, in 
which the arrows represent the velocity v averaged over a very long time.  This time-
averaged v is the field of interest to oceanographers studying the general circulation, but 
it is the unaveraged  v that obeys (13.1).  We can derive an equation for the time-
averaged flow by time-averaging (13.1), but the resulting equations are — like the 
equations previously obtained by averaging over molecular motions — mathematically 
unclosed.  And, unlike the previous case, there is no really justifiable way of closing 
them.  This closure problem is the central problem of oceanography, and of fluid 
mechanics in general. 
 To focus the discussion, we consider not the general equations (13.1), but the simpler 
Navier-Stokes equations for constant-density flow, 
 

  

∂vi
∂t

+ vj
∂vi
∂x j

= − ∂p
∂xi

+ν ∂ 2vi
∂xj∂xj

∂vi
∂xi

= 0.
 (13.2) 

 
The subscripts in (13.2) stand for vector components, repeated subscripts are summed 
from 1 to 3, and the constant density has been absorbed into the pressure.  Again, (13.2) 
hold only if the velocity and pressure are defined, as before, as the averages of molecular 
quantities over sampling volumes between λ3 and L3.  That is, v and p  include all the 
space and time scales of the macroscopic flow.  
 Now let <F(x,t)> denote the macroscopic average of an arbitrary flow variable F(x,t).  
The commonly used types of averages include spatial averages , 
 
 < F x,t( ) >≡ 3

4πd3
F x' ,t( )dx'

x− x' < d
∫∫∫ , (13.3) 

 
time averages,    
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  < F x,t( ) >≡ 1
T

F(x,t' )dt'
t−T / 2

t+T / 2

∫ , (13.4) 

 
and ensemble averages , 
 
  < F x,t( ) >≡ F P F;x,t( )∫ dF , (13.5) 
 
where P(F;x,t) is the probability distribution of F(x,t) in an ensemble of flow realizations.  
Although it is the space- or time-average that is usually computed, it is always much 
easier to think about the ensemble average, because only ensemble averages have all of 
the following convenient mathematical properties: 
 
  (1) <F+G> = <F> + <G> 
  (2) <c> = c,   c=any constant 
  (3) <∂F/∂s> = ∂<F>/∂s,   s=x,y,z, or t 
  (4) <<F>G> = <F><G>. 
 
 The ensemble-average of (13.2) is 
 

  

∂ < vi >
∂t

+ < vj >
∂ < vi >
∂xj

= −
∂ < p >
∂xi

−
∂Rij
∂xj

+ν
∂ 2 < vi >
∂x j∂x j

∂ < vi >
∂xi

= 0
 (13.6) 

 
where 
 
  Rij x,t( ) ≡< vi' vj '>, vi' ≡ vi− < vi >  (13.7) 
 
is the Reynolds flux of i-direction average momentum in the j-direction.  The difficulty 
with (13.6) is that the averaging has created new dependent variables, the Rij, without 
adding any new equations.  Of course, we can derive an equation for ∂Rij/∂t directly from 
(13.2), but this equation contains new variables like <vi'vj'vk'>, and so on.  The tensor -Rij  
is sometimes called Reynolds stress. 
 The unclosed Reynolds equations (13.6-7) are closely analogous to the equations 
previously obtained by averaging only over molecular motions.  In the case of constant 
density (and neglecting the momentum flux arising from inter-molecular forces), the 
latter could be written 
 

  
Dvi
Dt

= −
∂Tij
∂xj

Tij ≡< vi' vj '>mol, vi ' ≡ vi( )mol − vi .
 (13.8) 

 
Kinetic-theory assumptions led us to replace 
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  −
∂Tij
∂x j

by −
∂p
∂xi

+
∂
∂xj

ν
∂vi
∂xj

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .  (13.9) 

 
Analogous arguments, called mixing-length theory, are frequently invoked to replace 
 

  −
∂Rij
∂xj

by −
∂ δp
∂xi

+
∂
∂xj

νe
∂ < vi >
∂x j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (13.10) 

 
where 
 

  δp ≡ 1
3
vi' vi '  (13.11) 

 
and νe  is the coefficient of eddy viscosity.  Then, if νe is approximately constant, (13.6) 
becomes 
 

  

∂ < vi >
∂t

+ < vj >
∂ < vi >
∂xj

= − ∂ < p >
∂xi

+ νe
∂ 2 < vi >
∂xj∂x j

∂ < vi >
∂xi

= 0.
 (13.12) 

 
where δp has been absorbed into <p>, and ν  into νe.  (Since δp is much smaller than p, 
and ν  usually much smaller than νe, it is also logical to say that δp and νe have simply 
been neglected.)   Eqns. (13.12) are formally identical to (13.2), except that the dependent 
variables now represent macroscopic averages, and the molecular-viscosity coefficient ν  
has been replaced by the eddy-viscosity coefficient νe. 
 Mixing-length theory resembles our simplified kinetic theory but with the molecules 
replaced by turbulent eddies that represent the fluctuating velocity field v'.  According to 
mixing-length theory, these eddies move an average distance of λe, called the mixing 
length, before exchanging momentum with one another.  This mixing of momentum 
between eddies is the macroscopic analogue of molecular collisions, and thus λe is 
analogous to the mean free path λ.   If se is a speed characteristic of the eddies, then 
arguments analogous to those leading up to (11.15) predict that νe  is of size λese.  
However, none of the three assumptions (11.a-c) about molecular collisions really applies 
to the interactions between eddies.  In particular, there is typically no scale separation 
between the macroscopically averaged velocity <v> and the residual v'.  Thus while it 
may be convenient, and sometimes even accurate, to replace the Reynolds stress by an 
eddy viscosity of type (13.10), the true justification for this step, if it exists, is evidently 
much more complex than mixing-length theory.   
 The problem of closure, so successfully addressed by kinetic theory in the case of 
molecular averages, is the central problem of fluid mechanics.  We can avoid it only by 
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considering completely unaveraged macroscopic flow fields that include the full 
spectrum of space- and time-scales.  In most oceanographic applications, this is either 
impossible or impractically difficult.  To make progress, we adopt eddy-viscosity-type 
closures.  This amounts to regarding (13.1) as the equations for the macroscopically 
averaged fields, with eddy coefficients ν, κT, and κS many times larger than their 
molecular counterparts. 
 The magnitude of these eddy coefficients depends on the precise definition of the 
average, and on the particular flow under consideration.  To appreciate this, consider the 
eddy diffusion coefficient in the equation for the average salinity <S>, namely 
 

 κ S = −
u' S'

∂ S /∂x
. (13.13) 

 
We can regard (13.13) as the definition of κS.  (This definition really makes sense only if 
the statistics are isotropic;  otherwise κS must be a tensor.)  The definition (13.13) renders 
the equation for <S> exact, but that equation is useful only if we can independently 
determine the value of κS, which generally depends on location and time.  One way to 
determine κS is to measure the terms on the right-hand side of (13.13), and then hope that 
κS is sufficiently uniform, in space and time, that the measured value will be useful in 
other situations for which there are no measurements.   
 The more inclusive the average, the larger will be the residuals v' and S ', and the 
larger the expected value of κS.  Even for a fixed type of average, κS  also depends on the 
statistics of v and S, that is, on the particular flow under consideration.  In this respect, it 
is completely unlike the molecular diffusion coefficient which, according to 
thermodynamics, depends only on the local values of the thermodynamic state variables 
S, T, and p. 
 The dependence of the eddy diffusion coefficent on the statistics of the scalar being 
diffused (even when that scalar is, unlike salinity, dynamically passive) has been 
insufficiently emphasized.  There is no fundamental reason why the diffusion coefficient 
obtained, through (13.13), for a blob of scalar of characteristic size (say) 10 km should be 
the same as that obtained for a blob of size 1000 km, even if the velocity field and the 
definition of the average are the same. 
 
14.  Stirring and mixing 
 
 So far, we have only managed to derive the equations of motion.  Now, finally, we 
begin to study their solutions.10  Consider the general advection-diffusion equation, 
 

  Dθ
Dt

≡
∂θ
∂t

+ v ⋅∇θ = κ∇2θ , (14.1) 

 
with constant diffusion coefficient κ .  Several of the equations (13.1) fit this form.  (In 
fact, if it weren’t for the pressure-gradient term in (13.1b), even the velocity components 
would obey equations like (14.1).)  Hence, our conclusions about (14.1) will have general 
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significance.  It doesn’t even matter whether θ is an average over molecular fluctuations 
only (in which case κ  is the molecular diffusion coefficient) or a macroscopic average of 
the type considered in the previous section (in which case κ  is an eddy diffusion 
coefficient).  Our results apply to both cases. 
 In analyzing (14.1), we shall however assume that the velocity field v(x,y,z,t) is 
already known, either from measurements or from the solution of other equations.  If the 
latter, then θ  must be considered passive, or we would have needed to know θ(x,y,z,t) to 
determine v.  If v(x,y,z,t) is given, then (14.1) is a linear equation for θ(x,y,z,t), but the 
solutions of (14.1) are still surprisingly complicated for all but the simplest choices of 
v(x,y,z,t).  However, our aim is to state general, qualitative properties of these solutions, 
and to support our statements with a simple but explicit example. 
  First consider a two-dimensional flow enclosed by rigid boundaries.  For given 
v(x,y,t), the scalar field θ(x,y,t) is determined by (14.1), the initial condition 
 
  θ x, y,0( ) = θ0 x, y( ) , (14.2) 
 
and appropriate boundary conditions.  The quantity 
 
  C ≡ 1

2 dx ∇θ ⋅∇θ∫∫  (14.3) 
 
is a convenient measure of the spatial variability in θ  at time t.   By direct calculation, 
 

  dC / dt = dx ∇θ ⋅∇
∂θ
∂t∫∫ = dl ∇θ ⋅n( ) ∂θ

∂t∫ − dx ∇2θ
∂θ
∂t∫∫ , (14.4) 

 
where n is the outward normal at the boundary of the fluid.  If there is no flux of θ  
through the boundary, then ∇θ⋅n  is zero there, and, using (14.1), (14.4) reduces to 
 
  dC / dt = dx v ⋅∇θ( )∇2θ −κ ∇2θ( )2{ }∫∫ . (14.5) 
 
The last term in (14.5), which represents the effect of mixing, is always negative;  mixing 
always reduces the variability C.  The first term on the right-hand side of (14.5), which 
represents stirring, can have either sign.  In fact, a sudden reversal of the velocity would 
change the sign of this term.  However, this stirring term is usually positive, for the same 
reason that it is easier to stir things up than it is to unstir them.  That is, stirring directly 
increases the variability C, on average.  However, the eventual, indirect effect of stirring 
is to decrease the variability, because the increase in C directly caused by stirring makes 
the mixing more efficient.  These ideas are summarized in Figure 1.5.  Next we consider a 
simple solution of (14.1) that exhibits these behaviors explicitly. 
 Consider a spatially unbounded two-dimensional flow in which the velocity field is a 
simple shear, 
 
  v = u y,t( ),0( ) . (14.6) 
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Then (14.1) becomes 
 

  
∂θ
∂t

+u y,t( ) ∂θ
∂x

= κ
∂ 2θ
∂x2

+
∂ 2θ
∂y2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ .  (14.7) 

 
Let (x0,y0) be the initial coordinates of the fluid particle located at (x,y) at time t.  Then 
 

  

x = x0 + u(y,t' )dt'
0

t

∫
y = y0
t = t0

 (14.8) 

 
are the transformation equations from Eulerian coordinates (x,y,t) to Lagrangian 
coordinates (x0,y0,t0).  Thus 
 

  

∂
∂x

=
∂
∂x0

∂
∂y

= −
∂u
∂y
dt '

0

t

∫ ⋅
∂
∂x0

+
∂
∂y0

∂
∂t

= −u ∂
∂x0

+ ∂
∂t0

 (14.9) 

 
and (14.7) transforms to 
 

  ∂θ
∂t0

=κ
∂ 2θ
∂x0

2 + −
∂u
∂y
dt'

0

t

∫ ⋅
∂
∂x0

+
∂
∂y0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

θ
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
, (14.10) 

 
with initial condition 
 
  θ x0, y0 ,0( ) = θ0 x0 , y0( ) . (14.11) 
 
If κ=0, then the solution of (14.10-11) is 
 
  θ x0, y0 ,t0( ) =θ0 x0 ,y0( ). (κ = 0)  (14.12) 
 
 From (14.10) we see that the transformation to Lagrangian coordinates has simplified 
the advection terms but made the diffusion terms much more complicated.  However, if, 
as we assume next, the velocity u(y) depends linearly on y, then (14.10) is an equation 
whose coefficients are independent of location, and we can use a spatial Fourier 
transform to solve it.  Suppose then that 
 



Salmon: SIO 212 Chapter 1 

37                                                         

  u = αycosωt  (14.13) 
 
where α  is a constant, so that 
 

  −
∂u
∂y
dt'

0

t

∫ = −
α
ω
sinωt . (14.14) 

 
Then (14.10) takes the form 
 

  ∂θ
∂t0

=κ
∂ 2θ
∂x0

2 +
α 2

ω2 sin
2ωt0

∂ 2θ
∂x0

2 −
2α
ω
sinωt0

∂ 2θ
∂x0∂y0

+
∂ 2θ
∂y0

2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , (14.15) 

 
in which all the coefficients are independent of (x0,y0).  The initial value problem 
(14.11,14.15) can therefore be solved by Fourier analysis and superposition.  It suffices to 
consider solutions of the form 
 
  θ x0, y0 ,t0( ) = A t0( )exp i kx0 + ly0( ){ } , (14.16) 
 
where k and l are constants.  The resulting ordinary differential equation 
 

  1
A
dA
dt0

= −κ k2 1 +
α 2

ω 2 sin
2ωt0

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ −

2αkl
ω

sinωt0 + l2
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (14.17) 

 
for A(t0) can be directly integrated.  For simplicity, suppose l=0, i.e. that θ is initially 
independent of y.  The resulting solution, 
 

  

θ = A0 exp ikx0 −κk
2t0 −

κk 2α 2

2ω 2 t0 −
sin2ωt0
2ω

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= A0 exp ikx − ik α
ω
sinωt⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ y⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

× exp −κk2t − κk
2α 2

2ω 2 t − sin 2ωt
2ω

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (14.18) 

 
(where A0 is an arbitrary constant) is a sinusoid with x-direction wavenumber k, and y-
direction wavenumber 
 
  −

kα
ω
sinωt . (14.19) 

 
The amplitude of (14.18) is controlled by the final exp-factor. 
 In the limit ω→0 we obtain the solution corresponding to a steady shear, u=αy, 
namely 
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  θ = A0 exp ikx − i kαt( )y −κk 2t − κk 2α 2

3
t3

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

. (14.20) 

 
If α=0 (no shear), then the amplitude of (14.20) decreases like exp{-κk2t}.  If α≠0, then 
the initial decrease is similar, but at 
 
  t ≈ 3 /α , (14.21) 
 
the amplitude begins to decrease at the faster rate corresponding to 
 

  exp −
κk2α 2

3
t3

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

. (14.22) 

 
This faster decrease is caused by the predominance of y-wavenumber as the shear 
produces the pattern shown in Figure 1.6. 
 If ω≠0, then the shear reverses periodically, and, as anticipated by our general 
discussion, the mixing is much less enhanced.  For large t, the amplitude decreases only 
like 
 

  exp −κk 2t −κ k2α 2

2ω 2 t
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= exp −κk2t −κ lrms
2t{ }  (14.23) 

 
where 
 

  lrms
2 =

k2α 2

2ω 2  (14.24) 

 
is the average, squared y-wavenumber. 
 By  (14.18), the variability C is proportional to 
 

  k 2 +
k2α 2

ω 2 sin
2 ωt

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ exp −2κk 2t − κk2α 2

ω 2 t − sin 2ωt
2ω

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

. (14.25) 

 
Thus as ω→0 
 

  C ∝ k 2 + k 2α 2t2( )exp −2κk2t − 2κk
2α 2

3
t3

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

. (14.26) 

 
For small enough κ, the stirring (α) causes an algebraic increase in C at small time, but 
the exponential decrease caused by mixing (κ) eventually dominates.  Because of the t3-
term in (14.26), this exponential decrease is ultimately faster with stirring than it would 
be without it.  Thus (14.26) captures all of the behavior shown in Figure 1.5. 
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15.  Static stability 
 
 The simplest solutions of the equations of motion are states of rest.  Suppose then that 
v=0, and that all the other variables do not change with time.  Then (taking φ=gz and 
neglecting the diffusion of heat and salt) the equations of motion (13.1) reduce to 
 

  0 = −
1
ρ
∇p − gk,  (15.1) 

 
and 
 
  ρ = ρ(S,T, p) . (15.2) 
 
The vertical component of (15.1), namely 
 

  
dp
dz

= −ρg , (15.3) 

 
is called the hydrostatic relation.  
 Equations (15.2-3) are two equations in the four dependent variables ρ(z), S(z), T(z), 
and p(z); there are thus many possible solutions.  We could, for example, choose S(z) and 
T(z) to be anything we please; then ρ(z) and p(z) are determined by (15.2-3).  However, 
we shall see that only a subset of these solutions are stable with respect to tiny 
disturbances of the fluid. 
 Let ρ(z) be a density field satisfying the above equations, and suppose that a particle 
of fluid is suddenly displaced a small vertical distance δz from its position at z=0 in the 
state of rest.  If the displacement occurs without exchange of heat or salt, then the change 
in particle density is 
 
  δρpart =

1
c2
δppart = −

ρ0g
c2

δz , (15.4) 

 
where ρ0  is the density of the fluid at z=0.  The displaced particle experiences a 
buoyancy force per unit volume of11 
 
  − ρpart − ρ( )g . (15.5) 
 
Thus, neglecting terms of order δz2, we obtain the equation of motion 
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ρpart
d2δz
dt2

= −[ρpart − ρ]g

≈ − ρ0 +
dρ part

dz
δz⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ − ρ0 +

∂ρ
∂z

δz⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

= − ρ0 −
ρ0g
c2

δz⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ − ρ0 + ∂ρ

∂z
δz⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ g

= g ρ0g
c2

+ ∂ρ
∂z

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ δz

 (15.6) 

 
for the displaced particle.  More succinctly, 
 

  d2 δz
dt2

= −N2 δz , (15.7) 

 
where  
 

  N2 ≡ −g 1
ρ0

∂ρ
∂z

+
g
c2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . (15.8) 

 
N  is the Brunt-Vaisala frequency.  The solution to (15.7) is  
 
  δz = e ± iNt . (15.9) 
 
Thus the fluid is stable if N2>0, and unstable if N2<0.  If N2>0, an upwardly displaced 
water particle has a density greater than that of its surroundings, and tends to sink.  If 
N2<0, the converse is true.  Note that the compressibility of the fluid — the g/c2-term in 
(15.8) — is always a destabilizing factor. 
 
16.  Potential density and potential temperature 
 
 The term  ρ0 g/c2  in (15.6) is the rate at which density changes with depth solely on 
account of the increasing pressure — the so-called adiabatic lapse rate — and, as we 
have shown, stability depends on the difference between the actual lapse rate, -∂ρ/∂z, and 
the adiabatic lapse rate.  As this calculation suggests, it is frequently convenient to 
remove the pressure effect on density. 
 Roughly speaking, potential density is density with the pressure-dependence 
removed.  More precisely, the potential density ρθ  of a seawater particle is the density 
that the particle would have if moved adiabatically (that is, without exchanging heat or 
salt) to a prescribed reference pressure p0.  Unless otherwise specified,  p0 is the average 
pressure at sea level.  The potential temperature θ  is similarly defined. 
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 Because the potential temperature and potential density are defined by hypothetical 
adiabatic displacements, they are closely related to the entropy.  Regarding the entropy as 
a function of salinity, temperature and pressure, 
 
  η = F S,T, p( ) , (16.1) 
 
we have, by definition, 
 
  η = F(S,θ, p0 ) . (16.2) 
 
Thus, for a given reference pressure p0, the potential temperature depends only on the 
entropy and salinity.  Since a particle moving adiabatically keeps the same value of η  
and S, it also conserves its potential temperature (no matter what the reference pressure 
p0).  For a particle of fixed salinity, 
 

  dη =
∂F S,θ, p0( )

∂θ
dθ =

Cp

θ
dθ (dS = 0) . (16.3) 

 
 If the equation of state is given in the form 
 
  ρ =G(S,T , p) , (16.4) 
 
then the potential density is by definition 
 
  ρθ = G(S,θ, p0 ) . (16.5) 
 
Thus η,  S, θ, and ρθ  are all conserved on a particle moving adiabatically.  For a 
seawater particle of fixed salinity, 
 

  dρθ =
∂G S,θ , p0( )

∂θ
dθ = −ρθβ dθ (dS = 0)  (16.6) 

 
where 
 

  β ≡
1
α
∂α S,T , p( )

∂T
 (16.7) 

 
as before. 
 As the calculation of Section 15 suggests, the potential density gradient is more 
simply related to the Vaisala frequency than is the density gradient itself.  Again, the 
critical factor deciding static stability is the difference between the density of the 
adiabatically displaced fluid particle and the density of its surroundings.  Suppose that the 
reference level for potential density is the level to which the particle is displaced (Figure 
1.7).  Its density there is, by definition, the potential density at the level it originated, that 
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is, ρθ(z).  On the other hand, the ambient density at z+δz  is ρθ(z+δz).  Thus the fluid is 
stable if 
 

  ρθ z( ) > ρθ z +δz( ),       that is, if        ∂ρθ

∂z
< 0 (p = p0 ) . (16.8) 

 
We find that 
 

  N2 = −
g
ρθ

∂ρθ

∂z
. (p = p0)  (16.9) 

 
However, (16.8-9) are true only at the reference pressure, p0.  Far from p0, they can be 
grossly inaccurate.  For example, in the deep North Atlantic, ∂ρθ/∂z actually becomes 
positive if ρθ  is defined with the reference pressure at the sea surface.  We return to this 
point in the next section. 
 The potential temperature gradient ∂θ/∂z is not closely related to static stability.  This 
is because (16.5) implies that 
 

  ∂ρθ

∂z
=
∂ρ
∂T

∂θ
∂z

+
∂ρ
∂S

∂S
∂z

, (16.10) 

 
and the final term in (16.10) is often very important.  Thus no particular significance 
attaches to the sign of ∂θ/∂z. 
 
17.  The equation of state for seawater 
 
 The equation of state, 
 
  ρ = ρ S,T, p( )  (17.1) 
 
is a relation between thermodynamic variables, which, like all other equilibrium 
thermodynamic functions, is uniquely determined by the fundamental relation 
E=E(α,η,S).  The choice of S, T and p as the independent variables is merely 
conventional.  However, the true salinity, defined, as in Section 17, as the mass fraction 
of all dissolved solids, is very difficult to measure.  Hence, since about 1978, 
oceanographers have adopted the practical salinity, a precisely defined function of 
electrical conductivity that agrees as closely as possible with true salinity.  The practical 
salinity is much more easily measured, and, for most purposes, the distinction between 
practical and true salinity is unimportant.  The equation of state (17.1) is a complicated 
empirical formula involving practical salinity, temperature and pressure.  The most recent 
version was adopted in 1980.12 
 The best way to get a feel for the equation of state is to look at a T-S diagram (Figure 
1.8), which has axes temperature and salinity and contour lines of constant 
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  σ = 103 ρ −1gm cm−3( )  (17.2) 
 
at fixed pressure.  Since ρ varies from about 1.02 to 1.07 gm cm-3 in the ocean, σ varies 
from about 20 to 70.  There is a different T-S diagram for every fixed pressure.  If one 
regards the temperature axis as potential temperature, and the fixed pressure as the 
reference pressure p0, then the contours represent potential density.  It has become 
conventional to denote by σn the sigma corresponding to potential density at a reference 
pressure equivalent to a depth of n kilometers.  Thus 
 
  σ2 =10

3 ρ S,θ2,2000 db( ) −1 gm cm−3( ) , (17.3) 
 
where θ2 is the potential temperature corresponding to a reference pressure of 2000 
decibars. 
 To assess the relative importance of salinity, temperature, and pressure variations on 
the density, we write the total differential of specific volume in the form 
 
  dα

α
= β dT − bdS −κ dp , (17.4) 

 
where 
 

  

β = 1
α
∂α
∂T

≈ 2 ×10−4 deg−1

b = −
1
α
∂α
∂S

≈ 8 ×10−4 ppt−1

κ = −
1
α
∂α
∂p

≈ 4 ×10−6 dbar −1

 (17.5) 

 
The open-ocean ranges of temperature, salinity and pressure, and the corresponding 
fractional changes in specific volume (or density) are: 
 
    T  S  p 
typical range   25 deg 6 ppt  10,000 dbar 
dα/α    .005  .005  .04 
 
We see that the pressure is the most important determinant of the density.  However, the 
pressure effect on density is not as important as the effects of temperature and salinity, 
because the most significant density differences are those between fluid particles at about 
the same depth.  (This, again, is the motivation for the use of potential density.)  
Furthermore, the effects of salinity and temperature are partially cancelling, because the 
warmest waters are also usually the saltiest.  Thus the density variation caused by 
temperature and salinity is nearer .3% than 1%.  At the largest scales of motion, the effect 
of temperature on density is usually more important than that of salinity. 



Salmon: SIO 212 Chapter 1 

44                                                         

 The equation of state for seawater has two interesting peculiarities.  The first is the 
concave-downward shape of isopycnals on the T-S diagram.  Consider two particles of 
seawater (A and B) with the same density, but suppose that B has the higher salinity 
(Figure 1.9).  A mixture of equal masses of A and B lies (approximately) at the center of 
a straight line joining A and B on the T-S diagram.  That is, the final salinity and 
temperature are approximately 
 
  S = 1

2 SA + SB( ) and T = 1
2 TA + TB( ) . (17.6) 

 
However, because of the isopycnal curvature, the mixture at C is denser than that at both 
A and B.  This phenomenon (called cabbeling) may contribute to the formation of deep 
water.13  Of course, (17.6) are not precisely correct.  As shown in Section 12, the correct 
equations are 
 
  S = 1

2 SA + SB( ) and h = 1
2 hA + hB( ) , (17.7) 

 
where h  is the specific enthalpy.14 

 The second peculiarity of the equation of state is the clockwise turning of isopycnal 
lines on the T-S diagram as the pressure increases.  Refer to Figure 1.10.  In other words, 
salty water is less compressible than fresh water.  Thus A in Figure 1.10 can be denser 
than B at sea level, but less dense than B at great depth.  Something like this actually 
occurs:  North Atlantic Deep Water is denser than Antarctic Bottom Water at pressures 
near sea level, but the converse is true when they finally meet at a depth of about 4 km.15 
 
18.  Statistical mechanics: the ideal gas 
 
 As already emphasized, the equilibrium thermodynamics of a particular substance is 
completely determined by its fundamental relation E=E(η, X1, ... ,XN), where the Xi  are 
the macroscopic variables (besides the specific entropy η) that determine the state of the 
substance.  For seawater, N=2, X1=α, and X2=S.  From the standpoint of thermodynamics, 
the fundamental relation must be given, that is, determined by laboratory measurements. 
 Statistical mechanics offers a means of calculating the fundamental relation of 
thermodynamics, using Boltzmann’s famous formula, 
 
    η = k ln Ω E,X1,…,XN( ) , (18.1) 
 
and thereby completing the theoretical framework.  In (18.1), k is Boltzmann’s constant, 
and Ω is the number of distinct microscopic states of the system that correspond to the 
macroscopic values E, X1, ... , XN.  For a gram of seawater, one would need to count the 
number of microstates corresponding to energy E, volume α, and salinity S.  To 
determine the fundamental relation, we would then solve (18.1) for E. 
 Statistical mechanics offers precise rules for counting the number of states.  However, 
the counting rules, though simple in principle, are quite difficult to apply to all but the 
simplest physical systems (which certainly excludes seawater!).  Moreover, even when 



Salmon: SIO 212 Chapter 1 

45                                                         

the counting rules can be applied, they often lead to results that are ambiguous or 
paradoxical, unless the true quantum nature of the microscopic states is taken into 
account.  There is however one type of system — the ideal gas — in which the counting 
rules are both easy to apply and relatively free from ambiguity. 
 Even in the case of an ideal gas, the general counting rule of statistical mechanics 
requires a rather lengthy explanation.  We defer that until Chapter 5, where we shall have 
further use for statistical mechanics.  Here we proceed by means of a shortcut, the so-
called equipartition theorem, which asserts that in thermodynamic equilibrium each 
microscopic degree of freedom has the average energy 12 kT .  Unlike the general counting 
rule of statistical mechanics, the equipartition theorem applies only to systems in which 
the energy is a quadratic function;  fortunately, the ideal gas is such a system. 
 Consider a system of ideal gas in which (for simplicity) all the molecules are 
identical; the results generalize easily.  By the equipartition theorem, the total energy of 
the system is 
 

  
1
2 kT ⋅ d ⋅ number of molecules( )
= 1

2 kT ⋅ d ⋅ NA ⋅ number of moles( )
 (18.2) 

 
where d is the number of degrees of freedom per molecule, and NA is Avogadro’s 
number.  For a monatomic gas, d=3, corresponding to location in three-dimensional 
space.   For a diatomic gas behaving like a rigid dumbell, d=5, with the additional two 
degrees of freedom needed to specify the orientation of the molecule.  From (18.2) it 
follows that the specific internal energy is 
 
  E = 1

2 d kTNA /m  (18.3) 
 
where m is the molecular weight, the number of grams per mole.  Let 
 
  R*≡ k NA  (18.4) 
 
be the universal gas constant, and let 
 
  R ≡ R* /m  (18.5) 
 
be the gas constant for the specific gas under consideration.  Then (18.3) becomes 
 
  E = 1

2 d RT . (18.6) 
 
Eqn. (18.6) does not, by itself, determine the fundamental relation.  However, we also 
know that, in an ideal gas, the pressure represents the momentum transferred by 
collisions.  Thus 
 
  p = ρ < umol

2 >  (18.7) 
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where umol is the molecular velocity in (say) the x-direction.  By the equipartition 
theorem, 
 
  1

2 mmol < umol
2 >= 1

2
m
NA

< umol
2 >= 1

2 kT . (18.8) 

 
Thus, 
 

  p = ρkTNA

m
=
ρ
m
R*T = nR *T , (18.9) 

 
where n is the number of moles per unit volume, or, 
 
  p = ρRT . (18.10) 
 
 Eqns. (18.6) and (18.10) are frequently taken as the definition of an ideal gas.  It can 
be shown, using (18.6,10) and remembering the definitions p=-∂E/∂α  and T=∂E/∂η, that 
 

  E α,η( ) = const α−2 / d exp 2η
Rd
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ , (18.11) 

 
where const is a constant of integration.  Thus (18.6,10) determine the fundamental 
relation up to an undetermined constant factor.  This undetermined factor is physically 
irrelevant (for the same reason that the entropy in classical thermodynamics is arbitrary 
to within a constant). 
 The choice of d, the number of degrees of freedom associated with a single molecule, 
is somewhat ambiguous.  In a diatomic gas (for example), d=5 if the two atoms are 
rigidly-connected,  point masses, but d=6 if the atoms have a finite radius and one takes 
the rotation about the axis of symmetry into account, and d=7 if the distance between 
atoms can change.  If the atoms also have internal degrees of freedom, then d must be 
further increased. 
 The ambiguity in d affects all the formulae in which d appears (that is, (18.6) but not 
the equation of state (18.9) or (18.10)).  However, since we can eliminate d in favor of 
the heat capacity, we can also say that the ambiguity affects only the predicted values of 
heat capacity.  At constant volume, the change in energy equals the heat added to the 
system, δE=δQ, so that, by (18.6), the heat capacity C=δQ/δT  is 
 

  CV =
d
2
R , (18.12) 

 
and (18.6) becomes 
 
  E = CVT . (18.13) 
 
At constant pressure, 
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  δE = −δ pα( ) + δQ , (18.14) 
 
which by (18.13) and (18.10) is 
 
  CVδT = −RδT + δQ . (18.15) 
 
The heat capacity at constant pressure is thus 
 
  CP = CV + R , (18.16) 
 
and 
  CP

CV

=
d + 2
d

. (18.17) 

  
Boltzmann, noting that (18.17) with d=3 and d=5 yields predictions that agree closely 
with the measurements of monatomic and diatomic gases (respectively) at moderate 
temperatures, argued that this proved that other degrees of freedom were not excited by 
the collisions between molecules;  Maxwell believed that the theory was seriously 
flawed.  Neither man lived to see quantum mechanics, which resolves the paradox.  For 
air (a predominantly diatomic gas), the measured ratio of heat capacities is so close to 
(18.17) with d=5 that many textbooks simply state the theoretical result. 
 To a very good approximation, the Earth’s atmosphere behaves like an ideal gas 
(except at very high altitudes, where the collisions between molecules are too infrequent 
to maintain statistical equilibrium). 
 
Notes for Chapter 1. 
1.  Alternatively, one could regard (a,b,c) as the values of (x,y,z) at the initial time.  Then 
the initial density ρ0(a,b,c) appears on the right-hand side of (2.4). 
2.  Readers with no previous experience at Hamilton’s method should study the first few 
chapters of Goldstein (1980) or Lanczos (1970). 
3.  Throughout Chapter 1, I use the postulational basis of thermodynamics developed by 
Gibbs (1878), Tisza (1966) and Callen (1985).  This approach, with its emphasis on 
energy, nicely parallels Hamilton’s approach to mechanics.  It is equivalent to, but much 
handier than, the thermodynamics of Clausius and Kelvin presented in most 
thermodynamics texts. 
4.  Section 10 is partly based upon an unpublished manuscript by Carl Eckart (1963).  
5.  For a thorough introduction to kinetic theory, see, for example, Balescu (1975). 
6.  For a self-contained derivation of (11.1), see Owczarek (1968, pp. 274-285) . 
7.  Once again, Balescu (1975) is a good source for details. 
8.  For a complete development of thermodynamics based upon these four postulates, see 
Callen (1985). 
9.  Actually we know even more; using a general argument based upon the time-
reversibility of the microscopic dynamics, Onsager (1931) showed that κ Tµ = κ µT . 
10.  Section 14 is based upon the paper by Young, Rhines and Garrett (1982). 
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11.  This is Archimedes principle.  The reader should be able to prove it from the 
momentum equation for a hydrostatic fluid. 
12.  For a more complete discussion of practical salinity, the equation of state, and other 
thermodynamic functions, see Fofonoff (1985). 
13.  See Foster (1972) and McDougall (1987).  Talley and Yun (1996) suggest that 
cabbeling at the confluence of the Kuroshio and Oyashio Currents produces North Pacific 
Intermediate Water. 
14.  See Fofonoff (1962) for an estimate of the error in (17.6). 
15.  See Lynn and Reid (1968). 


