A
Vorticity and Turbulence

Turbulence is an immense and controversial subject. The next three chapters
present some ideas from turbulence theory that seem relevant to flow in the oceans and
atmosphere. In this chapter, we examine the connectionsdretwticity and
turbulence.

1. The vorticity equation
From ocean models that omit inertia, we turn to flows in which the inertia is a
dominating factor. Vorticity is of central importance, and, in the case of three

dimensional motion, we must taks itector character fully into account. We begin with
the equations

&-F(V'V)V'FZ! XV :—le—VCI)(X)
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for a perfect fluid in rotating coordinates. Herdx) is the potential for external forces,
! is the specific entropy, and the other symbols have their usual meanings. By the
general vector identity,

1 (A"B)=(A" )B+(B" JA+A# (1 #B)+B#(!l #A), (1.2)
we have

L (viv)=2(v"l Jv+2vi#, (1.3)
where

#1 " #y (1.4)

is thevorticity. Thus, we can rewrite the momentum equation (1.1a) in the form

N Y
§+(#+2! Yv= #P+p#&$), (1.5)
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where

Pr Rigvm+s. (1.6)

Introducing theabsolutevelocity and vorticity,
Vabv+! %r and #,%& %y=# +2 1.7)

(respectively) in th@onrotatingcoordinate system, we can write (1.5) more compactly
as

Iv % (
o\ VE"H P4 —*, 1.8
TR P¥ ¢$) (1.8)

We form the vorticity equation by taking the curl of (1.8). By another general vector
identity,

I (A" B)=A(! #8)$B(! #A)+(B# )AS(A# )B, (1.9)
we have

& %# %) =#,4 (& V) + 0+ (V' &#a- #a'&)V, (1.10)
(since the divergence of a curl always vanishes). Thus the curl of (1.8) is

(%+V'V)#a+#a(&'v) = (#a'&)v+Vpr% (2.11)

Then, eliminating&'v between (1.113nd the continuity equation (1.1c), we finally
obtain

1

% Hal") = [#a")&] v+ 71 pH" = (1.12)

Eqgn. (1.12) is the general vorticity equation for a perfect fluid. In the special case of
homentropic flowin which the pressure depends only on the densiy( "), the last
term in (1.12) vanishes, and (1.12) reduces to

Dw

o w!" v,  (p=p(#), (1.13)

where
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wS#o" (1.14)

is the ratio of the absolute vorticity to tensityl In the very special case of a constant
density fluid, (1.13) reduces to

D# /Dt = #3&) v, ("=const) (1.15)
2. ErtelOs theorem

According to the general vorticity equation (1.12), namely,

"#S" P
#3 1

I:)W—(W!" v+

= (2.2)

the quotienwv=# 5/" is conserved on fluid particlexceptor the terms on the right

hand side of (2.1). We shall see that the first of these ten&)\, represents thting
andstretchingof w. The last term in (2.1) represeptgssuretorque. The pressure
torque vanishes if the fluid is homentropic. We consider that case first.

If the fluid is homentropic, then (2.1) reduces to (1.13). To understand (1.13), let

'r(t) =n,(t) " 1, (t) (2.2)

be the infinitesimal diplacement between two moving fluid particles with position
vectorsr(t) andro(t). Then

=2

d
m a r (t) . (2.3)

rz(t) " a 1

If # is small, a Tayloexpansion of (2.3) yields

%!n(t) =y (r,+/r)" v(r,) =%-’n, (2.4)

J

where the subscripts denote components rapeatedsubscripts denote summation from
1to 3. By comparing (2.4) to (1.13) in the form

Dw Iv
—=—w,, (2.5)
Dt I
we see that the vector fielt=# 5/” obeys the same equation as a field of infinitesimal
displacement vectors between fluid particl®ge say tha# 5/” isfrozen into the fluid.
However, since the velocity field is continugtise distortion experienced B/ " is

continuous.# 5/" can never be torn apart. Its topology is preserved despite distortion.
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These properties, so evident from the analogy bet#eéhand#, lie at the heart of the
many vorticity theorems in fluichechanics.

The most important of these is ErtelOs theorem. Still considering the case of
homentropic flow, letyx,t) be any scalar conserved on fluid particles,

Do
— =0. 2.6
ot (2.6)

The scala$ need not have physical sifjoance; it could be an arbitrarily defined
passive tracer.Letry(t) andr,(t) be defined as before. Then (2.6) implies that

d

prd (r,(t)t)" = (r,(t),t)=0. (2.7)

If the distance between the two fluid particles is infinitesimal, théf) Bcomes

if%#j) ~0. (2.8)
dtogx, °(
Now let

11(0) =" w,(r,(0),0) (2.9)

wherew(r 1,0) is the initialw at the locatiom, and%is an infinitesimal constant with
appropriate dimensions. In other words, choose the two fluid particles to lie
infinitesimally far apart along a lingarallel to the vorticity Then, sincev and# obey

the same equation,

e(t) =" w(r, 1) (2.10)

at later timeg. Since%is a constant, it follows from (2.8) and (2.10) that

#1m &
%?é?x_jwj'( = %[) "*w]=0  (homentropicflow). (2.11)

Eqn. (2.11) i€rtelOs theorefor homentropic fluid. According to (2.11),
homentropic flow consere& $# 5/” on fluid particles, wheré isanyconserved scalar
satisfying (2.6). This derivation shows that (2.11) rests on nothing besideszt@in
nature of the field# 5/ ".

In the general case abn-homentropic flow (2.11) generalizes easily t

VO.(VpxV
D ivg .y YO (VP VD) 2.12)
Dt P
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and&$w is notconserved on fluid particles. The righdnd side of (2.12) arises from

the pressuréorque in (2.1). However, if we choose the scéltr be (any function of)

the entropy’ (which saisfies (2.6)), then the rightand side of (2.12) vanishes (because
p=p(",!)), and (2.12) reduces to

bQ_

Dt - 0, (2.13)
where

QS #Ha' &!I)I" (2.14)

is thepotential vorticity Eqn. (2.13), also called ErtelOs thegisrthe most general
statement of potential vorticity conservation. The potential vorticity laws obtained in
previous chapters (from various approximations to (2.1)) can all be be viewed as
approximations to (2.124).

Of course, we can prove all thassults directly from (1.1) by pedestrian
mathematical manipulations, but that makes it harder to appreciate their physical
significance.

3. A deeper look at potential vorticity

Again assume that the fluid is homentropic. 8gk,t), $(x,t), and$;(x,t) be any
threeindependen(but otherwise arbitrary) scalars satisfying

=0. (3.1)

By independentve mean thak %1, & %, and& $3 everywhere point in different
directions. It is easy to sdleat if the$ areinitially independent, then they remain so by
(3.1). (One possible choice for tewould be the initial Cartesian components of the
fluid particles.) Since the fluid is homentropic, ErtelOs theorem (2.11) tells us that

DO,_o DO _, DO

=0, (3.2)
Dt Dt Dt

where
Q=w!"#, Q=w!"#, Q=w!"# (3.3)
are the potential vorticities corresponding to $he

Since the$ are independent, we can regard theroumsilinear coordinatesn xyz
space. By (3.1), thesmirvilinear coordinates are alkagrangian coordinatedyecause
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the surfaces of constaitmove with the fluid. We regard the vectér$:, &%), and& $3
asbasis vectorattached to the Lagrangian coordinates. As the fluid moves, these basis
vectors it and stretch with the flow. By (3.3), the conser@are just the deproducts

(3.3) ofw with these moving basis vectors. The-pgadducts are conserved because the
tilting and stretching terms on the rignd side of (1.13), which destroy the
corservation ofw, are taken into account by the motion of the basis ve&ifirs

Now letA=(A1, Az,A3) be the components of the (absolute) velogityvith respect to
these same basis vectors. That is, let

Va =AN T AT ALY (3.4)

We shall show that, with a very weak further restriction on the chéife o

Q! (0.0,,0,)=",%A, (3.5)
where
_| 9 9 9
Vo =(891 "0, ’393] (3.6)

is the gradient operator in the Lagrangian coordinates. That is, the conserved p0~tential
vorticity Q is the curl of the absolute velocity in Lagrangian coordinatesThen ErtelOs
theorem (3.2) can be written in the suggestive form

D f—
E(! . #A)=0. (3.7)

Hence the potential vorticity3.5)is just ordinary vorticity measured in Lagrangian
coordinates.|f the fluid ishomentropic, then (3.7) implies that the potential vorticity is
simply a static vector field,

LL#A=F(",",), (3.8)

in $ $,,%-space, wher€ is determined by the initial conditions. A translation of (3.8)
into conventional notation yields what some writers €allichyOs solution of the vorticity
equation.

To show that (3.5) agrees with (3.3), we suppress the subsomgt ; andvy, and
compute

Qr=#&&)" = (3.9)

1, Mo 1, i[&%]%_lg 96, A, 06
PUk&Xjaﬁ P”k‘;’xj o, ) 9% p”k&(i&(jaxk.

Thus
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Q :l”(#r’&’#s) :l”(#l’#Z ’#3) ”(#r’As’#s)
T2 T ) 510
_1an) A1 TEAR) A |
Ior(xy.z) ¢ w1 t(xy.2) R #
That is,
_ 1A,
Q=7 Ty, [$, 9] . (3.11)

If the Lagrangian coordinates arasslabeling cardinatesin the sense of Chapter 1,
that is, if

d/, d/,d/, =d(mas$, (3.12)

then (3.11) reduces to (3.5). (In Chapter 1 we used the symbgiso denote mass
labelling coordinates, andl&’ to denoteD/Dt.)

In generahonhomertropic flow, the pressuréorque on the righhand side of (2.1)
destroys two of the three components of the conservation law (3.7). In that case, it is
convenient to take the entropyas one of the Lagrangian coordinates. Then, since the
pressuregorque in (2.1) has no component in the directiorf/of the/ -component of
(3.7) survives,

D
E[(Ve xA)-Vyn|=0. (3.13)

By steps similar to those in (3.9) and (3.10), we can show that the conserved quantity in
(3.13) is the general poteagtvorticity (2.14).

Although (3.13) contains only orthird of the dynamical information in (3.7), ithé
in strongly stratified floaN a much more useful equation. In unstratifi@d £0) flow,
the $-surfaces typically become very convoluted, arddimplicity of the Lagrangian
equation (3.7) is offset by the complexity of transforming this result backyazto
coordinates. However, in strongly stratified flow, the gravitational restoring forces resist
the folding of isentropic surfaces, renderthg single equation (3.13) much more useful.
Moreover, if the fluid is rapidly rotating, then (3.13) controls the nearly geostrophic part
of the motion (as we have seen in Chapter 2).

4. Alternative statements of the vorticity law
As we have seen, tlgpiotient# 5/” is conserved on fluid particles except for the

effects of tilting, stretching and pressuoeque. However, the effects of tilting and
stretching can be absorbed into a Lagrangian description of the motion. Then only
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pressurgorque stands the way of conservation. In this section, we examine alternative
(and more conventional) ways of saying these same things.
First, consider theirculation

C=¢v-dr, (4.1)

where the integration is around a closeakerial loop of fluid particles, that is, around a
loop that always contains the same fluid particles. By StokesOs theorem

C=1l #!nda, (4.2)

wheren is the normal to an arbitrary surface containing the loop. If the fluid is rotating,
we also define the circulation relative to thertial reference frame,

C,=$v,dr=[] (#+2 )nda. (4.3)
Now, by the momentum equation (1.1a) for a rotating fluid,

dC D "

F[a = %[(V +1 " r) #dr]

=$i%+! " V(‘#dr+(v+! " r)#dvp

)
:i/%‘t’+2! " v§#dr
% 1 ( (4.4)
:$&1—3p134*#dr
2 )

_ 0P
_1$?

If the fluid is homentropic, thep=p("”) and the righthand side of (4.4) vanishes; the
circulation (4.3) is conserved.

We see that the effects of vortex tilting and stretchindpatiéin to the definition of
circulation. The material loop of fluid particles tilts and stretches with the motion of the
fluid. Only the pressurtorque, represented by the last term in (4&4dyses the
circulation to change. And, as anticipated by our discussion of ErtelOs theorem, even the
pressurgorque does nantirely destroy the conservation of circulation; the circulation
is conserved if we choose the material loop of fluid pagitiddie entirely within a
surface of constant entropy.

The concept ofortex tube®ffers another way to describe tinezerin evolution of
the vorticity field. Suppose that the fluidrienrotating (The extension to rotating
coordinates is easy.) tA fixed timet, choose an arbitrary closed loop within the fluid,
and consider the tube formed by its indefinite extension in the direction of the vorticity
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#. Refer to Figure 4.1. At the same fixed time, consider two ldgEmdL,, around
the vortex tube. Singé is everywhere tangent to the sides of the vortex tube, and

&'# =0, (4.5)

the divergence theorem tells us that
Il #'nidAc =11 #'nydA, (4.6)

wheren; are the unit normals to surfaces containing the logpddA are the
corresponding area elements. Thus sthengthof the vortex tube is the same at every
crosssection.

Now suppose that the fluid lmentropic Then the vortex tube isnaaterial
volume that moves with the fluid particles composing it; by the analogy befvéen
and the infinitesimal displacement vector between fluid particles on tteecswof the
vortex tube# remainstangent to thenovingsurface of the vortex tube. Hence the
strength of the vortex tubbemainsuniform along the tube. Moreover, the circulation
theorem tells us that

<1 # nda=o, (4.7)
dt.-

so that the strength of the vortex tube is also constdime The vortex tube can
stretch, increasing its vorticity, but the cregstional area then experiences a
compensating decrease. Once again, the effects of tilting and stretorenigelea built
into a definition in order to produce a conservation law.

We can think of any homentropic flow as a (generally complicated) tangle of vortex
tubes. (Think of a big pile of spaghetti, with each noodle a closed loop.) As the flow
evolves, hese vortex tubes experience a continuous distortion, but (in the absence of
friction) their strengttand theirtopologyare obviously preserved.

Helicity is a vorticity invariant that reflects the topology. Mebe a closednaterial
volume of homentnpic fluid whose surface is (and remains) everywhere tangent to the
vorticity #. That s, leVV be a collection of closed vortex tubes. Thenhitleity,

H(t) ! #f# dV (4.8)

is conserved,

dH _

—=0. (4.9)

This follows from
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DH _ D
i :_lll Vl (#/II) n dV
Dt Dt-

(D ot g s
_th[v #/")]"dV

_ D ., .. . D g

_w [EV #/") +v E(#/ )] " dv (4.10)
=1 [-&P'# +v' (# &) v]dV

=1l [-& (P#)+%& (#VvVv)]dV=0,

\

wheredP=dp/” +d" . The last line vanishes becadsés tangent to the surface ¢f

The helcity H turns out to be a measure of #mottednessof the material volume of
vortex tubes Consider, for example, two thin vortex tubes (represented abstractly as
lines) with volumed/; andVs,, that are linked together as shown in Figure 4.2. The
vortex lines within each tube are simple, parallel. intwisted) closed curves. The
arrows point along the tubes in the direction of the vorticitgre unit normals to
surfacesS containing the axes of the tubes, and the vorticity outside the tubesuimed
to vanish. By definition,

H=[[[ v# avit [[[ v # dw (4.11)

But

[[[ v #dvi=pas[[dav #

=8dr, vI"dA # =8dr, |V'"dA # = $, ¥dr, IV (4.12)
where) =}# | and

' $% dA (4.13)
is the (constant) strength of vortex tube 1. On the other hand,

B lv="" # 'nydS =%, (4.14)
where*; is the strength of vortex tube 2. Thus, (4.12) becomes

I v'# dVy=* %, (4.15)

By similar steps,
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”' V"# dV2 = *5 *1. (4.16)

Hence the helicity4.11) is
H =2k, x,. (4.17)

If the vortex tubes weneot linked, we would find thati=0. If the vorticity in one of the
tubes were reversed, theinvould change sign. If both tubes were reversed, khen
would be unchangedbut the resulting configuration is simply a rotated version of the
sketch in Figure 4.2.

Again we emphasize that all these vorticity laws are direct consequences of the
frozenin nature of vorticity in the case of homentropic flow. ErtelOs theoriich w
amounts to a transformation of the vorticity equation into Lagrangian coordinates, is the
most illuminating of these vorticity laws, but helicity conservation is perhaps the most
exotic. However, helicity conservation applies only to material volwheksed vortex
tubes, and thus excludes those portions of the fluid whose vortex tubes terminate at
boundaries. Moreover, although there is a helicity invariant corresponding to every
subvolume of closed vortex tubes, it is easy to imagine a very wangal vorticity
distribution in which a single vortex line passes arbitrarily close to every point in the
fluid. Then the only subdomain of closed vortex tubes isvth@efluid, and (because
vortex tube linkages with opposite signs produce cancelbngibutions to the helicity)
the single helicity invariant cannot tell us very much about the topology of the vorticity
field.

5. Turbulence

Every aspect of turbulence is controversial. Everd#fmitionof fluid turbulence is
a subject of disagresent. However, nearly everyone would agree with some elements of
the followingdescription

(1.) Turbulence is associated with vorticity. In any case, the existence of vorticity is
surely a prerequisite for turbulence in the sense that irrotatiomaldlemooth and
steady to the extent that the boundary conditions pérmit.

(2.) Turbulent flow has a velgomplexstructure, involving a broad range of space
and timescales.

(3.) Turbulent flow fields exhibit a high degreeagparent randomnesmddisorder.
However, close inspection often reveals the presence of orderly embedded flow structures
(sometimes calledoherent structurgs

(4.) Turbulent flows are thregimensional (unlessonstrainedo be twedimensional
by strong rotation or stréitcation), and have a high rate of viscous eneliggipation

(5.) Advected tracers arapidly mixedby turbulent flow.

(6.) Turbulent flow fields often exhibit high levelsiotermittency (Roughly
speaking, a flow is intermittent if its variabylits dominated by infrequent large events.)
However, one further property of turbulence seems to be more fundamental than all of
these others, because it largely explains why turbulence demands a statistical treatment.
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This property has been variouslyledlinstability, unpredictability orlack of bounded
sensitivity In more fashionable termsirbulence ihaotic

To understand what this means, consider two turbulent flows, both obeying the
NavierStokes equations (say), but beginning from sligtittferent initial conditions.
Experience shows that no matter how small the initial difference, the two flows will
rapidly diverge, and will soon be as different from each other as if the initial difference
had been 100%.

This instability property has actical consequences. Imagine a laboratory
experiment with a turbulent fluid, in which the experimenter measures some arbitrary
flow quantityV(t) as a function of time. For exampl4t) could be the temperature or
velocity at a fixed point in the flowRefer to Figure 4.3. The experimenter is interested
in V(ty), the value at timg,. To be sure of his result, he repeats the experiment,

arranging the apparatus and initial conditions to be as nearly the same as possible. But no
matter how hard he &8s, the new value &f(t;) is always discouragingly different from

the original measurement. The experimenter is finally satisfied to repeat the experiment a
great many times, and to compute the probability distributid(tpf. He becomes a
statistician. Because of the instability property, he reasons, only statistics are of value in
predicting the outcome of future experiments.

The question arises: Can the statistics be found without actually performing all of the
experiments? That is, can the stiadal averages of turbulent flow be calculated from
physical law, without first solving the equations (either experimentally or with a big
computer) and then averaging the results of many solutions? Many people regard this
unanswered question as thetcahproblem of turbulence.

The most direct approach to the prediction of statistics is to average the equations of
motion, thereby obtaining evolution equations for the averages. Unfortunately, as
explained in Chapter 1, direct averaging leads tonatoged hierarchy of statistical
moment equations, in which the equation for the time derivative ofFthenoment
always involves thenf-1)-th moment. These moment equations cannot be solved
without making additional hypotheses to close them. We &kt #ssclosure problem
until Chapter 5, and thus temporarily abandon any hope of obtaining a complete
statistical description of turbulent flow. However, we find that many of the important
gualitativeproperties of turbulence can perhaps be understodidedbasis of relatively
simple ideas, many of which involve vorticity.

6. KolmogorovOs Theory

Now we consider constadensity flow governed by the Navi&tokes equations,

) ' 1 (6.1)
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Once again, the summationms@ntion applies to repeated subscripts. First we review
elementary properties of (6.1). Then we examine the most famous (but still very
controversial') theory of thregimensional turbulence.

In principle, it is always possible to rewrite (6.1) asrgla, prognostic equation in
the velocityv=(v1,V2,v3). This converts the pressure term in (6.1a) into a nonlinear term
like the advection term. To see this, we take the divergence of (6.1a) to obtain an elliptic
equation,

v Iy 12
li: n p = ll#zp’ (6.2)

Ix; Ix, Ix!x,

for the pressurp. Given the velocity field/(x) and the appropriate boundary condition,
we can solve (6.2) fop(x). For fluid inside a rigid container, the appropriate boundary
condition isv=0. The boundary condition=0 impliesthat

"

"2
0=1! _p +#——F  (no summation on n) (6.3)

X

on the boundary, wheredenotes the direction normal to the boundary. Eqgn. (6.2) and
the Neumann boundary condition (6.3) determine the pressure throughout the flow. Only
in simple geometry (like thaonsidered below) is it possible to solve {8)2xplicitly,
but (at least in principle) it is clearly always possible to replace the pressure term in
(6.1a) by a quadratic expression in the velocity.

Next we consider the energy equation obtained byracting the momentum
equation (6.1a) withj, namely

/2

_',I—t(%vivi)+_,"7j( vy, ) =" (v p) + # — (6.4)

'lxlx

Integrating (6.4) over the whole domain inside the rigid boundary, and using the
boundary condition=0, we obtain

4 008 vy = 008~ o6y 21 - ) 008 LL/ (6.5)
U ;"”Xj $ | "XJ" ”XJ XJ/ +'X Xj. .

Thus, neither the advection term nor the pressure term affects the total energy, but the
viscous termalwayscauses energy to decrease.

If the flow isspatially unboundedhen it is illuminating to examine the Fourier
transforms of these egtions. Let

v(x,0) = [[] di u,(k )e™™ . (6.6)

Sincev(x,t) is real, its Fourier transforonk,t) is conjugate symmetric,

IV-13



uk)=u("k)*. (6.7)

By FourierOs theorem,

1 —ik-X
u,(k,r) = W” dx v,(x,r)e™" " . (6.8)
Similarly, let
p(x,0) = [[[ dk p(k,r)e**. (6.9)

Then the elliptic equation (6.2) for the pressure becomes
| e mu (m)nu(n) €M =1 gagen(1 m?) p(m)e™™ (6.10)

wherem=|m|, etc. Multiplying (6.10) by kK'* and integrating over a¥, weobtain the
Fourier tranform of (6.2) in the form

| HHhhHE mon u (m)u,(n)" (m +n! K) = £ p(k). (6.11)

Then, using (6.11), and proceeding in a similar manner, we obtain the Fourier transform
of the momentum equation (6.1a) in the form

}’_t”(k’t) +i$EBSBHn;u;(m)u(n) "(m +n#k)

cmn (6.12)
= i$$$1$$$#uj (m)u,(n)"(m+ n#k)# %y (k)

More concisely,

(k) = 06969696 % (m.n k) uy(m)u (n)"(m+n# K #5u (), (619

whereAjjr (m,n k) is thecoupling coefficienbetweeru;(k), uj(m), andur(n). The
nonlinear term on the leftand side of (6.12) represents the advection of mament
The nonlinear term on the rightand side of (6.12) represents the effect of pressure.
Thus theAjj -term in (6.13) represents both pressure and advection.

If pressure and advection were absent, (6.13) would be a linear equation,

/

;—tq(k,t) =" #u (k), (6.14)
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in which the various wavenumbers areoupled The solution of (6.14) is
u,(k,7) = u(k,0) exp! "k*1). (6.15)

According to (6.15), the velocity in wavenumlkedecays exponentially, at a rate that
increasesvith increasing wavenumber magnitudeThus, viscosity damps the smallest
spatial scales fastest.

The nonlinear terms in (6.13) are much more complicated than the videocag
term and take the form t¢rfiad interactionsthat couple together wavenunmbesatisfying
theselection rulan+n=k. As we already know, these triad interactions do not change
the total energy,

[[[ax $v, = 4n° [[] di u,(k)u, (k) = Tdk E(k)- [[[ ax, (6.16)

but they do transfer energy between wavenumbers satisfying the select®rTheadas
equality in (6.16) defines thenergy spectruri (k).

Now consider the following situation: an initially quiescent fluid, in a container of
sizel, is stirred by some external agency at lengthscales comparablé&tgpose that
this stirring force is1onzero only fot-1<k<Kg. Then after a very short time the
spectrum is strongly excited only &aKg (Figure 4.4a). At these small wavenumbers,
the viscous dissipation is negligible, but the nonlinear terms can transfer energy to higher
wavenumbers vighe triad interactions. For example, two wavenumbeandn with
magnitudesn,<Kg can transfer energy intowith k<2Kg. After this has occurred, the

energy spectrum is excited &2Kg. Applying this idea again and again, we form the

picture in Figue 4.4b. When the energy reaches very high wavenumbers, the viscosity
finally becomes important, and an equilibrium is established in v{kch (or, more
precisely, its statistical average) reaches a steady state.

As this equilibrium develops, therens fundamental reason why vargnlocaltriad
interactions, linking wavenumbers of very different sizes, could not become important, as
shown in Figure 4.4cSuppose, however, that they doriis is reasonable if the
individual wavenumbers represexidies and if only eddies of comparable size
exchange energy efficiently. Then the equilibrium resembles Figure 4.4b, and is called a
turbulent cascadef energy. (Acascadds a waterfall consisting of many small steps.)
Actually, eddies with very diffrent sizeslo interact strongly, but their interaction takes
the form of large eddies sweeping small eddies from one place to awdtiart
significantly distorting themWithout distortion, there is no real energy transfer between
the eddies.

There @ many reasons why the assumption of a turbulent cascade might not be
correct. However, Kolmogorov (1941) proposed a bold theory (now often called K41)
based squarely uponStHe reasoned that the shape of the energy spe&fkjnat a
wavenumbek mary cascadesteps abov&g should be insensitive to the precise nature

of the stirring. On these largethe energy spectrum ought to depend only on the
wavenumber magnitude the molecular viscosity, and the rate at which energy moves
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rightward (thats, toward highek) through the spectrum. The latter rate is equal the
rate of energy dissipation per unit volume. Refer to Figure 4.5. Ondh®l range
betweerKg andKp, the wavenumber at which viscous dissipation first becomes
important,the spectrune(k) should depend only gn andk. The dimensions of these
guantities are

[E®]=LT?  [1=0CT° [K=L' [#HA=LT" (6.17)
Hence, dimensional analysis tells us that
E(k)=Ce k™ and  K,=0("v7""), (6.18)

whereC is Kolmogorov®universal constant.

Observed spectra often agree with (6.18a) and sugges€i(th&. Nevertheless,
considerable uncertainty surrounds this whole subject. It is now generally agreed that
KolmogorovOs theory cannotprinciple be exactly right, andx@erimental
measurements of higher statistical moments, which are also predicted by the complete
Kolmogorov theory, do not support the theory. We consider these points in the next
section.

7. Intermittency and the betaodel

In a famous footnote to $ibook on fluid mechanics, L. D. Landau noted an important
inconsistency in K41. This led to a revision of the theory, but most people feel that it
also destroyed any hope that the theory can be exactly rigihtdauOs objection is
neither the only, noperhaps even the most serious objection to K41. However, it has
helped theorists to better appreciate the enormous assumptions underlying KolmogorovOs
theory.

The essence of LandauOs objection is that K41 cannot apply to a collection of flows

with different dissipation rates First consider two completely separate flows, denoted
by the subscripts 1 and 2. The first flow is vigorously stirred, sq thatarge. The
second flow is only moderately stirred, so thais small. If both flows are turbulent,
then accordingo K41,

E()=CK* and  E(K)=CL7 K (7.1)

Next, consider theompositesystem consisting of these tweparateflows. If the
two flows have equal volumes, then the dissipation rate and the energy spectrum of the
composite system are givey

E= '2L(81 + 82) and E(k)=1% (El (k) +E, (k)) (7.2)

But then
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E(k)! C"" k™. (7.3)

That is, the composite system cannot obey K41, essentially because the average of a two
thirds power is not the power of the average.

So farthere is no problem, because the composite flow is not a single flow, and hence
there is no reason why K41 should apply to it. But suppose that the subscripts 1 and 2
refer not to separate flows, but to large regions osémeeflow with locally different
dissipation rates. We conclude uncomfortably that K41 cannot apply to the whole flow if
it is alsolocally correct. In particular, K41 should fail in cases where the dissipation rate
, averaged over lengthcales characteristic of the inertial ranflactuates.

Thebetamodelis a schematic model that clarifies this argument and suggests the
nature of the correction to K£&1 Consider a turbulent flow in a container of dige The
fluid is stirred on scales comparableLtp and the energy is subsequently transferred to
smaller spatial scales via the nonlinear terms in the momentum equations. Again we
suppose this transfer to be a series of cascade steps fromgstale=Ly/2 to L,=L,/2,
and so on. (The factor of 1/2 is inessential; any other fraction will work.)n-Ttme
cascade step corresponds to edidg

L - 2& —k (7.4)

We also define:

Vh, the characteristic velocighangeacross ddies of sizd.,

,n, the rate at which energy passes through-thecascade step; and
e

E, = | E(k)dk.
kn

En is the energy (per unit volume of thwole flow contained in eddies of sizg.
Now, the cascade can proceedviro tvays, as shown in Figure 4.6. At each cascade
step, the eddies created can fill the whole space uniformly, or they can fill only a fraction

- of the available space and be correspondingly stronger. We shall see that the K41
theory corresponds to thiest alternative { =1).

For general, the total energy in eddies of sizgis the energy within the eddies
themselvesyy?, times the fraction" of the total volume occupied by these eddies. That
is,

E ~1"V?, (7.5)

n n

where the symbol ~ denotesry rough equality This energy moves through the¢h
cascade step intarn-over time
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L 1

T ~=n_— , 7.6

"V TV (7.6)
so that

€, ~ % ~B "V, K, (7.7)

If the turbulence is stationg then, , must be independent of otherwise the energy
would pile up at some intermediate wavenumber. But if

=g, (7.8)

then (7.5) and (7.7) imply that

E, g2l knfz/sﬁnla_ (7.9)
Since
Ky 1 Ink,,,
E,= [E(K)dk = [KEK)d(Ink) e kE(k,), (7.10)
kn Inkq

(7.9) corresponds to the spectrum

E(k,) ~177%k %", (7.11)

n n

According to (7.11), the energy spectrum at wavenurkbisrsmaller than that
predicted in K41 by the facter/3 (where-<1 if the cascade is not spafiing). Let

! :2—1S (s" 0) (7.12)

be the definition 0. The intermittency of the turbulence increases witfihen since

1 L% _" k%

1" = - =% ) 7.13
(2") iLO& %kn& (7.13)

(7.11) becomes
E(k) - kOS/3! 2/3k"(5+5)/3, (714)

Again, (7.14) reduces to K41 in the case of a s{ilte cascade {=1,s=0). However,
for intermittent £50) turbulence, the spectrum falls off more steeply. Physically, the
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steeper faloff occurs because spatial concentration of the eddies makes them more
intense, and thus shortens tesidence timg€7.6) for energyat each cascade step.

Observations support the prediction of K41 (veith0) for the spectrurfput suggest
increasing disagreement with K41 as higheter moments are considefétd Recall that
the spectrum is the Fourier transform (with respec} td

F(r) ! u(x+r)v(x)), (7.15)

where we assume that the flow is statistically homogeneous and isotropic. As an
example of a higheorder statistic, consider tls¢ructure function

F(r) ¢ (v(x+ )" v(x)). (7.16)
If r -1 lies within the inertial range, then, by dimensional analysis, K41 predicts that
(|v(x+r)—v(x)|p):Cp(er)w3, (7.17)

whereC,, is a universal constant. On the other hand,

p/2

G,(n) ! (v(x+1)" v(x)f)

whereDy, is another universal constant. Thus, because (7.17) and (7.18) have the same
dimensions, their ratio

=D, (#r)"", (7.18)

B0 {ren-vf) ¢
"= G,(r) (|v(x +1) —v(x)|2>p/2 D, (7.19)

must be a universal constant, independent ahdr. Whenp=4, the quantity (7.19) is
calledkurtosis.

Observations suggest that (7.19) increases wimd withr -1, SinceR, measures
spatial intermittency (more sensitively for larggrthese observations suggest a spatial
intermittency tlat increases with decreasing eddy size. This contradicts K41, and it
suggests that the eddies of decreasing size are indeed confined to a decreasing fraction of
the fluid volume, as in the betaodel.

The betamodel predicts that

1'1$ »
F#—&~""(v 7.20
Pnkn% ( n) ( )

and
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1 p/2
= |~(BV2) . 7.21
Gp(kn] (BV,?) (7.21)

Hence the betanodel prediction for (7.19) is

" st+sp/ 2

. #k &
F\’) ~ ] N PI2) ~%%( ) (7.22)
That is,
! r $s‘ sp/ 2
— _ 7.23
R,(r) #Loo‘% (7.23)

If the cascade ispacefilling (s=0), then (7.23) is independentrgin agreement with
K41. However, fos>0 andp >2, Ry(r) increases with decreasing

8. Twodimensional turbulence

Again we consider constadensity flow governed by the NaviStokes equations
Now, however, we suppose that the floviws-dimensional

v = (u(x,y).(x.y),0), (8.1)
so that the vorticity equation,
D
—# =@ '&)Vv++&H, (8.2)
Dt
reduces to
Do _ v, (8.3)
Dt
Here,
N
#=wok=|—-—L, 8.4
¢ [ax ay] &4

andk is the unit vector in the-direction. Thus, apart from the effects of viscosity, the
(vertical compnent of) vorticity is conserved on fluid particles. In particular, the effects
of vortex stretching and tilting are absent in two dimensional flow. As we shall see, this
causes twalimensional turbulence to behave completely differently from three
dimersional turbulence.
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Since the flow is nondivergent,

=YY (8.5)

for some. (x,y,). Then
o=Vy (8.6)
and (8.3) can be written as an equation in a single dependent variable,

d(A,B
d(x,y)

~—

%VZW +I(y. Vi) =Wy,  J(AB)

(8.7)

One often hears that twdimensional turbulence does not really exiecause two
dimensional NavieStokes turbulence is always unstable with respect to-three
dimensional motions. While this is probably true, we recognize (8.7) as the simplest case
of the quasigeostrophic equation (for a single layer with constantliSmavametef and
no bottom topography), and we recall (from Chapter 2) that, althbdgles not even
appear in (8.7), it is responsible for tredidity of (8.7): Lowfrequency motions of a
rotating, constandensity fluid can remain twdimensional. However, the real
importance of twedimensional turbulence theory to geophysical fluid dynamics lies in
the fact that the theory covers the quasigeostrophic generalizations of (8.7). These are the
subject of Chapter 6.

In this section, we concentrata properties of the solutions to (8.7) with vanishing
viscosity. Our conclusions illuminate the role of the nonlinear terms in (8.7). In the
following section, we r@admit the viscosity and address the statistical equilibrium of
two-dimensional flows vith forcing and dissipation.

If +=0, motion governed by (8.7) conserves (twice) the energy,

E! Ogp #$ #, (8.8)

and every guantity of the form

H F(1 ), (8.9)
whereF is an arbitrary funatin. The quantity (8.9) is conserved because the vorticity
&2. is conserved on fluid particles, and because the velocity field is nondivergent. The

conservation law (8.9) has no analogue in Htiegensional turbulence, where stretching
and tilting can bange the vorticity on fluid particles. Thaastrophy,

z={[dx (V) , (8.10)
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is an important case of (8.9).

To investigate the consequences of the conservatiBrantiZ in inviscid twe
dimensional turbulence, we first catear spatially unbounded flow with Fourier
transform

y(xyt) = [[depk e, wkit)=y(-k)*. (8.11)

However, our most important results also apply to infinifedyiodic flow and to
bounded flow. Substituting (8.11) into (8.8) and (8.10), we se¢hhanergy,

E=(Q Yk 2 (0] $ ;{;p’kE(k), (8.12)
and enstrophy,
Z = "dk K E(k), (8.13)

0

are the zeroth and second moments of the energy spdefkm

Now suppose that =0 and that the energy is initially conterted at some
wavenumbek;. If the energy subsequently spreads to both higher and lower
wavenumbers, then more energy must move toward the lower wavenumbers than toward
higher wavenumbers, in order to conserve both (8.12) and (8.13). The transtenggf en
from small to large scales of motion is the opposite of the transfer usually observed in

threedimensional turbulence, and has sometimes been cadtpative eddy viscosidy.
Suppose that the energy originallyjkasubsequently flows into the two
wavenumber&y=ki/2 andk,=2k;. By conservation of energy,

E+E=E, (8.14)
and by conservation of enstrophy,

k 2
(3') E, +(2k) E, = kE,. (8.15)

It follows that
E,=4E and E =tE, (8.16)

so that 80% of the energy ends up in the lower wavenumber. However, since the
enstrophy in this wavenumber is
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7= e =hef se =4 (CE) =42, (8.17)

it contains only 20% of the enstrophy. The other 80% of the enstrophy ends up in the
higher wavenumbég.

A more convincing proof that energy and enstrophy move in opposite directions
through the spectrum proceeds as follows. Still assum#@ we consider the
expression

%"(k! k)" E(K)dK, (8.18)

which is podive if the energy initially concentrated at wavenuntesubsequently
spreads out. But

d
dt

i1 k) E(K)dk =

" ["szdk! 2k "KEdk+ k*"E dk| = ! 2kld%"kEdk, (8.19)

because the energy (8.12) and enstrophy (8.13) are conserved. It follows that

"1 kE(K) dk%0
d gl (k) SN

dt$1 E(k)dkg (6:20)

The quotient in (8.20) is a logical definition of the wavenumber characterizing the
energycontaining scales of the motion. Thus energy moves toward lower wavenumbers.
By similar reasoning,

d 2 2\? d 4 21712 4 d . 4
—"k !k Ekdk:—["k Edk! 2k, ""k"Edk+ k""E dk|=—"k"Edk 8.21
=) Bk = — : 3 — (8.21)

shauld be positive. If we let
Z(k) ! & E(k) (8.22)

be the enstrophy spectrum, then positive (8.21) implies that

Q[M] >0, (8.23)
dt| [Z(k)dk

The quotient in (8.23) is a logical definition of the (squared)emamber characterizing
the enstrophycontaining scales of the motion. Thus enstrophy moves toward higher
wavenumbers.

Since
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kK*Z(K)dk= [[dx (Vo Vo), (8.24)
J II

the increase (8.23) in the enstropligighted wavenumber is associated withramease
in the mean squaregradient of vorticity, sometimes callgdlinstrophy This leads to a
physicatspacepicture of the process by which enstrophy moves to higher wavenumbers.
Consider two nearby.é. nearly parallel) lines of constant vorticin inviscid twe
dimensional flow, as shown in Figure 4.7.+#0, so that the vorticity is conserved on
fluid particles, then these lines are atsaterial lines That is, they always contain the
same fluid particles. It is plausible that averagethese material lines of constant
vorticity get longer as timmcreases. That is, their constituent fluid particles move
further apart. But if these material lines get longer, they must also get closer together,
because the area between the lines is constant in incompressible flow. However, the
vorticity gradients inversely proportional to the distance between constamitcity
lines. Therefore, if the constawbrticity lines get longer, then the magnitude of the
vorticity gradient, and hence (8.24), must incrése.

What makes us think that the constaatticity lines get longer? We can show that
theaveragelength of material lines increases if the velocity fieldtatistically
isotropic13 Consider two neighboring fluid particles with position vecta(§ andr (t),
and letri(t)=ri(0)+) ri(t). The nitial particle locations;(0) aregivenandnonrandom
(i.e. statistically sharp), but the particle locations subsequently acquire a statistical
distribution that depends on the statistics of the velocity field. The mean square
separation between theiffiuparticles at time is

(ARG HE

2(0) ! (O +2[r(0) ! 1, ()] (1) #r, () +{|#n(0)! #0,(0)) (629
But since

<Ir(t)>=0 (8.26)
in isotropic flow, (8.25) implies that

(s ! &) kO 5O (8.27)

Unfortunately, this proof doewot, strictly speaking, apply to the case of particles on
a line of constant vorticity, because we have assumed that the initial locations of the fluid
particles are uncorrelated with the fluid velocity. Hence (8.27) contributes plausibility,
but no rigor to the picture of palinstrophy increase sketched above.

Now we pause to make a very important point. Although the arguments of this
section utilizeexactconservation laws, our final conclusions are essensdlystical
because they also dependamsumptions about tlzererage behavioof the flow.
Without such assumptions, it would be impossible to prove that (for example) the
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enstrophy moves to higher wavenumbers in the flow. The reason for thisirs/ibat
mechanics isimereversible Fa every inviscid flow in which enstrophy moves to

smaller scales of motion, there is an inviscid flow in which exactly the opposite occurs
(namely, the first flowrunning backwards in tim)e Thus, every example provides its

own counterexample! Our stadtical hypotheses amount to statements that the example
is more likelythan the counteexample. These hypotheses frequently enter as innocent,
often tacit, assumptions, whose statistical nature is hidden. For example, our OproofsO
that enstrophy movesward higher wavenumbers rest on the essentially statistical
assumptions that a spectral peak will spread out (rather than sharpen), and that material
lines get longer (rather than shorter). We cannot escape such assumptions, but we can
hope to find theimplest and most compelling ones possible. Turbulence theory largely
consists of linkingplausiblestatistical hypothesés interesting, even unexpected,
conseqguences.

9. More twadimensional turbulence

Now suppose that*0 and consider the statistily steady twedimensional
turbulence that arises from a stirring force acting at wavenukalgéigure 4.8). The
energy and enstrophy put in by the stirring force spread to other wavenumbers by the
nonlinear terms in the equations of the motion. Atwedigh wavenumbekp, viscosity
becomes effective, and energy and enstrophy are removed. If the container bas size
then the lowest wavenumbég, has size 1/ If the flow is unbounded, thdg@=0.

First, consider the inertial range betwdemndkp. If kp/k; is large, then there are
many cascade steps between the stirring and the dissipation nelas. Within this
inertial range the energy spectritk) then plausibly depends only on the wavenumber
k; on,, the rate of energy transfer pagb higher wavenumbers; and onthe rate of
enstrophy transfer pakt If all of the energy and enstrophy passing through the inertial
range oniy,kp] is removed at wavenumbegseaterthankp, then

> k2 9.1)

Now letk; be fixed, and lekp+, . This corresponds to the limit O of a very wide
inertial range, with many cascade steps betweamdkp. In this limit, must vanish, or,

by (9.1),/ would blow up (which is impossible, because the stirring forpplss a
finite enstrophy to the fluid, and the nonlinear interactions conserve enstrophy). We thus
conclude that, in the inertial range da,kp], the rightward energy transfer is

asymptoticallyzerg and the spectruig(k) therefore depends only &rard /. It then
follows from dimensional analysis that

E(K)= G, 2%, o-(4) ©.2)

whereC; is a universal constaaf.
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The spectrum at low wavenumbers is more problematic. Since the energy dissipated
by the viscosity+ is asymptoticall zero, the total energy of the flow must increase with
time, and no statistically steady state is possiblé&=, this energy moves toward ever
lower wavenumbers, perhaps following the similarity theory proposed by Batchelor
(1969). In the more reaslic cas&gy* 0 of bounded flow, the energy piles up nkaBut
suppose thagdomethinganotheitypeof dissipation, an Ekman drag perhagshoves
this energy nedip, so that an equilibrium state becomes possible. What then is the
nature of the turbulence in theeirrtial range onkp,k;]? By the same reasoning as above,
we conclude that, in the asymptotic lirkitki+ O, theenstrophytransfer acrosskg,ki]

vanishes, and the spectrum therefore depends oryaond, , the rate of energy
dissipation neaky. Dimersional analysis then yields

EK)= e k™", 9.3)

whereC,; is a universal constant. The spectrum (9.3) in the ereaggading inertial
range has the same form ashreedimensional turbulence. Of course, in three
dimensionaturbulence, the energy tranfer is fréange to smallscales of motion.

Meteorologists and oceanographers often use these results by imagining that
atmosphere and ocean obey the equations fodimensional turbulence, and that the
stirring force at waenumbekk; represents baroclinic instability injecting energy at scales
of motion comparable to the deformation radius. (In Chapter 6 we pursue the much
better strategy of generalizing the theory to equations that better apply to the atmosphere
and ocean) Then the above theory predictk & spectrum on wavenumbers between
ki andkp, the wavenumber at which the Rossby nuntligy/f exceeds unity. At higher
wavenumbers, rotation cannot keep the flow-thmensional, and the enstrophy passes
into smallerscale threelimensional turbulence.

Although observations supporka3 spectrum in the ocean and atmosphere, there are
at least three reasons to question this explanation:

(1) The dynamics (8.7) of pure tvehmensional turbulence omit too much of the
physics. In particular, the be&dfect and density stratification are very important in the
atmosphere and ocean.

(2) Even if we ignore objection (1), the hypotheses aboutimensional
turbulence required to establish (9.2) and (9.3) are notisdtlsy the atmosphere and
ocean. In neither fluid are the separations betwgéda, andkp large enough to justify
the picture of a turbulent cascade. Furthermore, on scales larger than the deformation
radius, the atmosphere and ocean show very lagartlires from statistical
homogeneity and isotropy.

(3) Even if we ignore objections (1) and (2), the inertial range theory ef two
dimensional turbulence is not strictly setinsistent.

In Chapter 6, we shall consider generalizations of (8.7) thdy paswer objection
(1), and we shall avoid the strong hypotheses criticized in objection (2). In the remainder
of this section we look more closely at objection (3), arriving at a picture of enstrophy
transfer to small spatial scales that is, in sorapeets, the antithesis of a cascade.

IV-26



The argument leading to (9.2) supposes that the transfer of enstropkyrpthstk -3
inertial range onk,kp] is local in wavenumber, that is, that interactions between very

distant wavenumbergddiesof verydifferent sizes) do not strongly contribute. This
justifies the picture of a turbulendscadevhose many cascadeps erase the memory
of the precise nature of the stirring force and lead to universal beh&lowr, in the
picture of enstrophy transfés smaller scales developed in Section 8, eddies okslze
are stretched out by the straining motion of the fluid, and the palinstrophy (8.24)
increases as the result of the stretching. The ragaare strainate has the same
spectrum,

Z(k) = K*E(K) ~ K> K° = K'2. (9.4)

as the enstrophy, and all spatial scéeger thank -1 contribute to the velocity
difference between one side of this eddy and the other. It follows that

1 Z(K)dk ~ 1K dk = Inggeg. (9.5)
=k .K - néE( " .

is that parbf the mearsquare strainate that is effective in stretching out an eddy of size
k-1. According to (9.5), every wavenumber octave in the rakgd fontributesequally
to the mearsquare strain on the eddy of skz8. This violates (if onlyjust) the

localnessn-wavenumber hypothesis used to derive (9.2).

The inertialrange theory can be saved by an extension of the reasoning we used in
the betamodell® In the enstrophygascading inertial range, the enstrophy in the cascade
step centered ok is

kZ(k), (9.6)
(cf. (7.10)), and this amount of enstrophy is transferred to the next cascade step in a time

T(k), nownonlocallydetermined as the inverse of the average strain rate acting on the
eddy of sizek -1, namely

T(K)~ U: Z(k')dw}l/ ; 9.7)

(We assume that the cascade is sifidlogg, that is, that- =1.) Since the enstrophy
transfer past every wavenumber is a constant at equilibrium, we mu&é have

kZ(k)-U:l Z(k')dKTIZ ~n (constant. 9.8)

To solve (9.8) foZ(k), let

flkz and x! Ink. (9.9
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Then (9.8) is

[ ] -, ©.10)
with solution,

f(x)~ G 172):)1/3 . x>>x,. (9.11)
Thus

Z(k)~1* 3""1?14”%7]::?1 1/3- (9.12)
That s,

E(k) ~ nmk{ln[k—klﬂl /3. (9.13)

Eqgn. (9.13) represents a correction to (9.2) that is almost undetectably small for
inertial ranges of reasonable width. But more interesting than the precise foim of th
correction is th@icture of the enstrophy range that it implies, in which the nonlinear
transfer of enstrophy toward higher wavenumbers is nemjocalin wavenumber.

Eddies well inside the inertial range are stretched out by straining motions tenhtiga

much larger and stronger eddies, on which the stretched eddies themselves have almost
no effect. This suggests that the vorticity in inentsalge eddies behaves almost like a
passivescalarin a velocity field with auniformstrain. The straiappears uniform

because it is concentrated in spatial scales that are much larger than the eddies being
strained.

Batchelor (1959) showed that the spectrum of a passive conserved scalar in a uniform
straining field is exactly proportional to'l. We carobtain this result from the
calculation in Section 14 of Chapter 1. There we considered a single sinusoidal
component of the passive trad®x,t) in a field of uniformshear&v/&=/. We found
that, on scales at whichdiffusion is not yet important, the amplitude of the sinusoid was
conserved, but that the wavenumber magnitude atttistedt), wherek is the initial
wavenumber, anét)=(1+/ 2t2)1/2in the special case considered in Chapter 1 (see
egn.(14.20) in Chapter 1). Batchelor considered the case of ursficaim in which

%)=e% andO is the strain rate. In either case, $eariance initially betweek; and
ko=k,+dk (say) mst equal the variance betwe@i)k; and %)k, at later timd. Thus, if
- (K) is the spectrum af, then
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U (k)dk =1 (" k,)d(" k) (9.14)

at equilibrium. But since (9.14) must hold for eveand% - (k)~k 1. (To see this, take
thederivative of (9.14) with respect &and set¥1. Then use (9.14) witPsl as an
Oinitial conditionO on the resulting ordinary differential equation.) Therefore, if the
smalkscale vorticity behaves like a passive scalar, #{g)yr+k -1 and hencé&(k)~k -3, in
agreement with (9.2), butithoutthe hypothesis of a local cascdde.

There have been numerous numerical studies cfiimensional turbulencE The
numerical solutions usually show a spectral slope that is significantly steepkrhan
andsometimes as steepla®. The steeper slope is caused by the appearance of long
lived, isolated, axisymmetric vorticé8. In the frequently studied case of unforced-two
dimensional turbulence beginning from random initial conditions (often simpldcall
freely decaying turbulengea strong enstrophy cascade is initially present, but, as the
cascade subsides, significant enstrophy remains trapped in the isolated vortices. These
vortices interact conservatively (that is, without losing energy or gisty@xcept for
infrequent close encounters that lead to the merger esigeed vortices. In a typical
merger, the two interacting vortices strip long filaments of vorticity from one another.
The dissipation of these thin filaments represents a fasmsstrophy, but energy is
approximately conserved. The final state consists of a few large vortices that have
consumed all the others. Interestingly, the isolated vortices can often be traced all the
way back to local vorticity extrema in the initialrabtions.

In continually forced twalimensional turbulence, the enstrophy cascade and the
vortices coexist. In fact, it seems best to regard forcedltmensional turbulence as
two fluids N one fluid consisting of the isolated coherent vortices, haather fluid
consisting of the more randomly distributed vorticity field between the vortices. The
overall spectrum (including the vortices) is much steeperkharbut if a spectral
analysis is performed only on the regions between the vorticesththeesult is very
close tok -3. The regions of the coherent vortices contribukefcomponent to the
spectrum, and the total spectrum (which seems always to lie between these two extremes)
depends upon the relative strengths of the two comporaentigtermined by the details
of the forcing20

Figure 4.9 shows the vorticity (bottom) and streamfunction (top) in a numerical
simulation of freelydecaying twedimensional turbulence governed by (8£¥)The
boundary condition is =0 at the (rigid) boudiaries of the box. The 2B@ridpoints
correspond to a maximum wavenumber of 128 in each horizontal direction. The initial
conditions (Figure 4.9a) are random, with the energy peaked at waveris#8bdret
time be measured in units of the time requfigacdh fluid particle to move a distance
equal to the side of the box at the (initial) rms speed of the flom=®&$% (Figure 4.9b),
straining motions have produced elongated features in the vorticity field, corresponding
to enstrophy transfer to smallgpatial scales. The energgntaining scales (as
represented by the streamfunction field) have, on the other hand, increaged.0By
(Figure 4.9c¢), isolated axisymmetric vortices become prominent. As time further
increases, these vortices decreageumber and increase in strength, as the flow evolves
toward an expected final state of two large vortices with opposite signs.
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10. Energy transfer in two and three dimensions

In freely decayingi(e. unforced) NavieiStokes turbulence, the total enesyplves
according to

%##&# lvdx = " S v dx.. (10.1)
But

VAv=V(V-v)-Vx(VxV)=-Vx# , (10.2)
and thus

%"'"%v lvdx =#$"" v' (& %#) dx (10.3)

=4[] #@wv)+& @ w)ox= - +[[] ## dx
According to (10.3) the energlissipation rate
! :%##;g# # dx (10.4)
is proportional to the enstrophy
Z$ |1l #'# dx. (10.5)

Here,V is the volume of the fluid.

Eqgns. (10.34) apply to flow in twoor three dimensions. However, in two
dimensional flow, the enstrophy (10.5) can never exceed its initial value, because the
nonlinear terms in #equations of motion conserve enstrophy, and dissipation always
decreases the enstrophy. Thus, in two dimensions, the energy dissipation rate (10.4)
vanishes with the viscosity coefficient That is,

lime=0 (in two dimensions. (10.6)

v—0

Experiments suggest thidree dimensional turbulence behaves quite differently. If
an impulsive stirring creates eddies with velocity stabnd lengthscalk, then the
resulting threedimensional turbulence is observed to decay omutmeover timescale,
L/U, of the eddies. Thus

3
! ~ T (in three dimensions), (20.7)
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and isindependentf +

The relation (10.7) underlies nearly every phenomenological theory of three
dimensional turbulence. But since (10.4) holds exactly, we must conclude that, if (10.7)
is correct, then the enstrophy in thigienensional turbulence becomes infinitetas0.
In other words, if (10.7) holds for arbitrarily small viscosity, then tuiegensional
turbulence must be able to transfer energgrbitrarily small scales in a finitéime. The
energy transfer in thregimensional turbulence must be explosive.

Is such a transfer consistent with KolmogorovOs theory? Consider the cascade step
centered on wavenumblerand let the next cascade step be centeretkomwheren is
some fixed integer. (In the betaodel, we assumed that2, but now we shall be m®
general.) If the cascade is spdidleng, then, according to K41, the timgk) required to
transfer the energy from cascade $tép the next step is (cf. (9.7))

T(k)~—k31 k23
E(k)

(10.8)
for E(k): k-5/3. If the energy is initially ait; =1/, then the time required to reach
infinite wavenumber is

T(k)+ T(nk) + T(nKk ) +111" T(la)g/m#z”s, (10.9)

r=0

which converges for all >1. Thus K41 is not obviously inconsistent with the
requirementhat the energy reach infinite wavenumber in a finite time.

In contrast, the inertial ranges of tdonensional turbulence both require an infinite
amount of time to transfer the energy or enstrophy across an infinite wavenumber
interval. The time for emgy in the twedimensional energgascading inertial range to
reachk=0 is given by (10.9) witim replaced by 1. This obviously divergeBl the
terms in the series get bigger! In #& enstrophycascading inertial range, the transfer
time T(k) betwea cascade steps depends only oandk. Hence, by dimensional
analysis,

T(k)~!""" (constant), (10.10)

and each step requires the same amount of time. Nonlocal corrections of the type
considered in the previous section alter this result only logarithmically.

These results hint that the mechanism of transfer is very different iamebthree
dimensional turbulence. Now we offer a mechanistic picture of the energy transfer in
two and three dimensions that seems to tie things together. This picture attempts to
explain, in physical terms, why the energy transfer is oppositely directed in the two cases,
and why the transfer of energy to high wavenumbers is so much more efficient in three
dimensions.

First, recall that the average of the Nav&tokes momentum equen is
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I'<v > I'<vy > I'<p>, l?<v> !
| +<V > | n p n # | =n —<Vi'V]-'>, (1011)

It . I, I'x X1, I,

where, as usual, the primes denote departures from the average, and-iendgtitie of
(10.11) is the divergence of the Reynolds stress. We associate the average flow with the
large scales ahe motion and the primed flow with the smaller scales. (This constitutes
our definition of the averaging, if you like.) To form an equation for the energy in the
large-scale motion, we multiply (10.11) by, and integrate over the whole fluid.

After integrations by parts,

S 58800) -1l = vc. @0.12)

where
CE—JJJ(ViVj)%V;) dx (10.13)

is the rate at which the nonlinear terms in the momentum equation conveddaltge
energy to smalkcale energy. (Tdhew this beyond any doubt, we could form an
equation for the rate of change of the energlvi&> in small spatial scales. We would
find that the term (10.13) occurs with the opposite sign.)

Now, from the previous lectures, we expect thad typicaly positive in three
dimensional turbulence, amgpically negative in twedimensional turbulence. (The
wordtypically is a reminder that all such statements are statements about statistical
averages, and rest on assumptions about average behaviorijleCtres situation
sketched in Figure 4.10, in which the laigpale velocity

(v)=(u(y).0,0) (10.14)

points everywhere in thedirection, and varies only jm ThenC is given by
C=! ###v)r;‘ dx. (10.15)

In two dimensions (Figure 4.10, middle), the mean flow strains initially isotropic
smallscale eddies (left) into the shape at the right. Thustdior/ & positive as
depicted<u'v'’> becomes positive, ar@@lis indeed negative. The Reynolds flufxx-
momentum is directed toward positiy€that is,up-gradient), and there isreegative
transfer of energy from the mean flow to the smaller scales of motion.

In three dimensions, vortex stretching is possible, and it becomes the primary
mechanism foenergy transfer between scales. We regard the-soa# motion as an
initially isotropic collection of vortex tubes (Figure 4.10, bottom left). Tube A'is
stretched by the mean shear, and the magnitude of its vorticity therefore increases. On
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the othe hand, vortex tube C is squashed, and its vorticity magnitude therefore decreases.
Tube B is instantaneously unstretched. At a later time (Figure 4.10, bottom right) vortex
tube A makes the dominant contribution to the Reynolds stress, and it costribute
negatively to<u'v'>. Thus, the Reynolds momentum fluxdewngradient, andC is

positive.

Notes for Chapter 4.

1. Some writers call fluids in whigh=p(") barotropic,but the termhomentropids
preferable because in real fluids the pressure depends on derkitytropy. Moreover,
oceanographers use the tdsarotropicin a slightly different sensd to describe flows

in which the horizontal velocityags not depend on depth.

2. In the language of tensor analysis, the contravariant wea&aod the covariant vectors
& $ arelLie-draggedby the fluid motion. The Lie derivative of their product (a scalar)
therefore vanishes; this is just (3.2).

3. SeeMoffatt (1969) and Moffatt and Tsinober (1992).

4. For a discussion of this point see Batchelor (1967), pf099

5. However, one can show that the pressure term would, by itself, conserve the energy
uj(K)uj(k)* in eachwavenumbek. Thus pressure tnafers energy between the different

directionalcomponents of the velocity field, but not between the different wavenumbers.
6. Kolmogorov formulated his theory xaspace, but we follow most elementary
treatments by explaining the theorykirspace. Foan introduction to homogeneous
turbulence, including KolmogrovOs theory, see Saffman (1968). For a retrospective on
K41, including English translations of KolmogorovOs original papers and recent related
work, seeTurbulence and Stochastic Processes: KgjorovOs Ideas 50 Years @il
reference in the bibliography under Kolmogorov (1941)) and the book by Frisch (1995).
7. See Landau and Lifshitz (1959, p.126). Kolmogorov (1962) revised the K41 theory,
taking account of intermittency.

8. See Frisch el. (1978) and Frisch (1995, pp.1380).

9. The classic paper is Grant et al. (1962).

10. See Frisch (1995, pp. 233) and references therein.

11. The classic paper is Fjortoft (1953).

12. For a more detailed description of this process, see VI88%)(

13. See Dhar (1976).

14. See Kraichnan (1967). For reviews of-mmensional turbulence, see Kraichnan

and Montgomery (1980) and Vallis (1992).

15. See Kraichnan (1971b).

16. Of course (9.8) applies onlyke>k;. For wavenumbers nel, onemust take

account of the straining contributed by wavenumbers leskihamen though the

spectrum at these low wavenumbers is flatter than in the enstrophy inertial range.

17. C. E. Leith (personal communication) has proposed still another explaofatien
observed atmospheric3 range. Using an argument analogous to that proposed by O. M.
Phillips for ocean wind waves, Leith suggests that the atmospheric energy spectrum
represents the saturation spectrum for breaking Rossby waves.

18. See, forxample, Lilly (1971), Herring et al. (1974), Herring and McWilliams

(1985), Brachet et al. (1988), and Borue (1994).

19. See McWilliams (1984, 1990) and Carnevale et al. (1991).
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20. See Benzi et al. (1986, 1987) and Farge et al. (1996).

21. Figure 4.9I®ows a solution of (8.7) with vanishing viscositz(0). However, |
computed the vorticibadvection term in (8.7) using the thiodderupwind scheme
proposed by Leonard (1984). This scheme hasngation errorcorresponding to the
presence of a tera¥: &6. on the righthand side of (8.7), wher& is of the order of

U) x3, U is thelocal fluid speed, andix is the gridspacing. Thismplicit numerical
viscosity is evidently sufficient to wipe out rapid oscillations on the scale of the grid. In
contrast to the more conventional method of inclu@ingxplicit eddy viscosity of the

same form, the upwind scheme does not demand another boundary condition (besides
. =0) at the solid walls.

22. This has led to a longstanding but as yet unproved conjecture that solutions of the
threedimensional Euler agtionsN the NavierStokes equations with=0 N develop
singularities in a finite time. For a brief summary of the status of this problem, see Frisch
(1995, pp.115119).
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