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We have applied the methods of classical statistical mechanics to derive the 
inviscid equilibrium states for one- and two-layer nonlinear quasi-geostrophic 
flows, with and without bottom topography and variable rotation rate. In the 
one-layer case without topography we recover the equilibrium energy spectrum 
given by Kraichnan (1967). In  the two-layer case, we find that the internal 
radius of deformation constitutes an important dividing scale: a t  scales of 
motion larger than the radius of deformation the equilibrium flow is nearly 
barotropic, while at  smaller scales the stream functions in the two layers are 
statistically uncorrelated. The equilibrium lower-layer flow is positively corre- 
lated with bottom topography (anticyclonic flow over seamounts) and the 
correlation extends to the upper layer at  scales larger than the radius of deforma- 
tion. We suggest that some of the statistical trends observed in non-equilibrium 
flows may be looked on as manifestations of the tendency for turbulent inter- 
actions to maximize the entropy of the system. 

1. Introduction 
Since the discovery a quarter of a century ago that atmospheric eddies 

constitute the primary source of the kinetic energy in the zonally averaged flow, 
interest in nonlinear processes in the geophysical fluids has grown a t  an 
accelerating pace. The importance of turbulent interactions in maintaining the 
atmospheric general circulation is now fully appreciated, and turbulent error 
amplification has been recognized as the primary obstacle to extended-range 
numerical weather prediction. In  oceanography, the discovery within the past 
two decades of large amplitude and apparently ubiquitous transient eddy 
motions has led to a critical re-appraisal of classical ocean-circulation theories 
and a gradual appreciation that the turbulent interaction terms in the equations 
of motion may be important or dominant in much of the world ocean. 

In  this paper we investigate the equilibrium statistical mechanics of some 
simple but fully nonlinear fluid models which are particularly relevant to 
oceanography and meteorology. Specifically, we derive the equilibrium statistical 
states towards which spectrally truncated representations of the equations of 
motion would evolve in the absence of forcing and viscosity. The simultaneous 
assumption of a spectral truncation and zero viscosity is unrealistic but necessary 
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if the classical methods are to apply. The equilibrium states are of interest in 
themselves, and may be especially important if realistic, non-equilibrium flows 
are 'close' to inviscid equilibrium in some of their properties. 

The models considered in this paper are quasi-geostrophic and also quasi-two- 
dimensional in the sense that they conserve analogues of the kinetic energy and 
enstrophy of ordinary two-dimensional flow. We focus initially on two comple- 
mentary models. The first model corresponds to flow in a single homogeneous 
layer bounded vertically by flat horizontal plates. The fluid is constrained by 
rotation about a vertical axis to move only horizontally, so that the governing 
equation of motion is 

(1.1) 

where $ is the stream function of the flow and g = V2@.  The equilibrium 
spectrum associated with (1.1) has been discussed by Kraichnan (1967,1975) and 
Thompson (1972). 

The second model corresponds to quasi-geostrophic flow in a system comprised 
of two immiscible layers. The governing equations are a coupled set: 

x/:lat + J($,  C )  = 0, 

( 1 . 2 4  

and ac2/at+ J W 2 ,  C 2 )  = 0, (1.2b) 

where $l is the stream function of the top layer, $2 that ofthe bottom layer, and 
Cl and are given by 

!L= V2$1 +F1(@2- @l) ( 1 . 3 ~ )  

and G = V2$2 +F2(@1- $2). (1.3b) 

The constants Fl and F2 are defined by 4 = f$/(g'Di), where fo is twice the 
(constant) rotation rate, g' the reduced gravity and Di the mean depth of the 
ith layer. Equations (1.2) express the conservation of the potential vorticity Ci 
of each layer. A detailed derivation of these equations is given by Pedlosky 
(1970). With a slightly different interpretation of the 4, (1.2) and (1.3) are 
equivalent to the ' two-and-one-half-level baroclinic model ' of the atmosphere 
(see, for example, Phillips 1956). The equilibrium state of (1.2) has not been 
previously discussed. 

Both (1.1) and (1.2) have been used to model geophysical flows. They differ 
from the general quasi-geostrophic equations in their neglect of the spatial 
variation of fo and Di. We defer discussion of these latter effects until later in this 
paper. The initial goal is to contrast the equilibrium states of (1.1) and (1.2), or, 
said another way, to study (1.2) in the discontinuous cases 4 = 0 and 4 

Both (1.1) and (1.2) are assumed to hold within simple closed horizontal 
boundaries I?. Corresponding to these boundaries, we define eigenfunctions ($0 
as the solutions to 

V2$i+k!$i = 0 (k: > 0 )  (1.4a) 

and #i = 0 on I?, (1.4b) 

with the normalization = 1, where the overbar denotes integration over the 
region enclosed by the boundaries. For simplicity we assume kf + k; when i p j .  

0. 
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(When this condition fails in practice it can always be restored by infinitesimal 
perturbations of the boundaries.) It then follows that q&q$ = l&. The functions 
{g5i} are assumed to be complete in the sense that for any regular functionf(x, y) 

- 

except perhaps at  boundary points. We then expand the dependent variables 
in terms of the eigenfunctions: 

( M a )  

and ($1, @ z )  = x (ai, bi) $4. (1.5b) 

The choice of notation is a matter of convenience. 
The coefficients {xi} and {ai, bi) comprise generalized co-ordinates for the 

systems (1.1) and (1.2). I n  the phase spaces spanned by these co-ordinates each 
point represents a possible state of the fluid system, and the evolution of the 
fluid system is described by a trajectory that is specified by (1.1) and (1.2) in 
the form 

dXi/dt = x z 4 l ( @ j ) P i j l X j X l ,  ( 1 . 6 ~ )  

@ = E (x i14  9~ 
i 

i 

j I  

with Piil= - 9i J(9j, (1.6b) 

and a similar equation for the other system. Let 

be the probability distribution functions for states in the phase spaces, which we 
must assume to befinite-dimensional. The time evolution of the finite-dimensional 
systems is assumed to be governed by (1.6) with the summations truncated to 
run from 1 up to n. The probability functions obey Liouville’s equation, 

and a similar equation for the other system. Equation (1.7) may be thought of as 
a continuity equation for motion in phase space with the ‘velocity ’ 2$ given by 
(1.6). From (1.6) and the fact that Birr is zero whenever two of its indices are equal, 
it follows that ai,/axi = 0, so that (1.7) becomes 

a g p t  + x 2iaqaxi = o q o t  = 0. (1.8) 
i 

At equilibrium (aB/at = 0) ,  B(x,, x2, . . . , xn) is constant along trajectories in phase 
space. If a trajectory eventually passes arbitrarily close to every point within a 
given volume V of phase space, then it follows from (1.8) that B is a constant 
over V .  The conventional assumption of equal a priori probability distributions 
in phase space is then equivalent to  the assumption that V is determined only by 
a few general constraints on the motion. 

Equation (1.1) conserves the quantities V$.V@ and F, where m is any 
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integer.t However, the spectrally truncated form of (1.6) conserves only the 
spectrally truncated forms of V$. V$ and and we take these for our general 
integral invariants. Similar remarks apply to (1.2) with quadratic invariants 
<;, and V$, . V$,/E; + V$.,. V$.,/F2 + ($, - $')%. In terms of the generalized 
Fourier coefficients, the constraints are 

s X: = E,, s kfx: = Z,, (1.9a, b) 

where E, and 2, are constants proportional to the constant total kinetic energy 
and enstrophy, and 

C[(k:+Fl)ai-Flbi]2 = Z,, (1.10a) 

2 [(k~+F')b,-Fzai]2 = z b ,  (1.10 b) 

- 

i i 

i 

i 

[k:a:/F, + k: b:/Fz + (ai - bi)'] = Eab, (1.1Oc) 
i 

where Z,, zb and E,, correspond to the potential enstrophies in the top and 
bottom layer and to the sum of the total kinetic and available potential energy. 

2. The single-layer system 
The assumption of equal a priori probability distributions in phase space 

subject only to the constraints (1.9) leads to the microcanonical distribution for 
the total probability a t  equilibrium: 

P(x1,X2, ..., x,) = CS(E-E,)S(Z-Zo), (2 . la)  

where E(x,, x2, ..., x,) = C E 6 -  = C X i ,  ' 
i i 

(2 . lb)  

Z(X,, X2, .. ., X,) = 2 Z$ = C k:xq, (2 . l c )  
i i 

and C is a constant of normalization. We obtain the expression for the distribu- 
tion of a single component xi by integrating (2.1) over the remaining n- 1 
variables. Asymptotic methods (appendix A) yield 

(2.2a) 

with (x:) = g ( a + p k y ,  (2.2b) 

which is valid for small 

Pi(q) - r t ( a  +pk:)* (1 + Gi)*exp { - +xf/(xf) - a(xf / (~f)  - 1)' GJ, 

Gi = 2 C (k; - k:)' (x;)' (x:)'/ C Z. (k; - k;)' (x;)~ (x!)'. 
1 l + i  j + a  

The constants a and p are the solutions to the coupled equations 

v ( E J  +X(a+pkf)-l = E 0 ( 2 . 3 ~ )  

and I: (Zi) = +Ckq(a+pkf)-l = Z 0 ,  (2.3b) 

t Thomson (1974) has shown that only 5, VP. V$ and F a r e  independent invariants. 

7 i 

i i 
-- 
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subject to the constraints that a + P k ;  > 0 for every i. In  appendix B we show 
that such solutions exist and are unique for any E, and 2, = k i  E, provided that 
k& < k$ < kg,,, where kmin and km,, are the minimum and maximum wave- 
numbers in the truncation. The proof is a generalization of a theorem of Fox & 
Orszag (1973). 

For sufficiently small Gi, (2.2) reduces to Boltzmann’s Law: 

Pi(xi) d ( a  +/3k;)+ exp { - aEi - PZ,}. (2.4) 
When Gi is not small, which is the case when mode i contains an appreciable 
fraction of the total energy, then the distribution function for xi contains a 
significant correction in the form of local maxima at  the r.m.s. xi. A novel feature 
of the two-invariant system is that Boltzmann’s Law is not approached uniformly 
as n becomes large: i t  is always possible to choose E, and 2, such that most of the 
energy is trapped in the lowest or highest wavenumber. The extreme cases corre- 
spond to the negative-temperature states a N” -Pkkin and a M -Pkg,,. In this 
paper we are chiefly interested in systems in which none of the modes contains an 
appreciable fraction of the total energy, and we use Boltzmann’s Law without 
further qualification. For modes evenly distributed in wavenumber space, (2.4) 
predicts an equilibrium energy spectrum of the general form 

E ( k )  = k/(a + bk2),  (2.5) 

first deduced by Kraichnan (1967). Equation (2.5) has been verified in numerical 
experiments by Fox & Orszag (1973) and Basdevant & Sadourny (1975). 

It is interesting to note that the equilibrium circulation g is zero for the 
truncated system. This is in contrast to the untruncated equations, in which [ is 
conserved (and thus non-zero in general), and it suggests that not all of our 
results will generalize to model equations that conserve the analogue of [ as well 
as and m+. 

3. The two-layer system 
We consider now the baroclinic model (1.2) with integral invariants given by 

(1.10). The mathematical development parallels the single-layer case rather 
closely, and we present only the results. In  the two-layer model, the smallest 
component with definable energy and potential enstrophies consists of two 
co-ordinates a, and bi, and the Boltzmann Law approximation to their joint 
probability distribution is found to be 

9$(ai,bi)  = n - 1 ( Q i R i - P ~ ) ~ e x p { - Q i a ~ - R i b ~ + 2 r ? , a i b i } ,  ( 3 . 1 ~ )  

where Qi = a(ri+1)+P,(ri+1)2+P2, (3.lb) 

Ri = a(ri/6+ 1) +Pl+P2(r,/S+ (3.1 c) 

pi = ol+~l(ri+1)+P2(ri/S+1),  (3 . ld)  

ri = k;/Yl is the non-dimensional square wavenumber, S = Dl/Dz, and a, Bl and Pz 
are constants that depend on the specified total energy and potential enstrophies 
of the sycitem. The conditions on a, Pl and pa for the integrability of Pi(ui, bi) are 

Qi > 0 or Ri > 0 (3.2a, b)  
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Q,Ri-Pt = ( r + l + S ) ( r / S ) [ a 2 + p , p , ( r + l + S ) r / S  

+ ap,(r + 1) + apZ(r/S+ I)] > 0 ( 3 . 2 ~ )  

for every i. For given values of the constants of motion, Eab, 2, and z b ,  we h d  
a, pl and pz as the solutions to 

(Eabi) = Eab, ( 3 . 3 4  
i 

<zq) = za, (zbi> = zb, ( 3 .3  b, c )  
i 1 

subject to the conditions (3 .2 ) .  Equations (3 .3)  are the analogues of (2 .3 )  in the 
single-layer case. 

From (3 .1 )  one may readily compute 

(at) = $Ri/(Qi Ri - Pt) ,  ( b t )  = &Qi/(Qi Rd - Pt)  (3 .4a ,  b )  

and (a$ bi )  = &Pi/(Qi Ri - Pq), (3 .4c )  

and thereby obtain expressions for the following quantities of physical interest: 
(i) The average kinetic energy per unit depth in mode i in the top layer, 

KT = ik: (at), and in the bottom layer, KB = $kq (bq), and their ratio. 
(ii) The average available potential energy in mode i, if; ((ai - bi)'->/g', and its 

ratio to the total kinetic energy. 
(iii) The correlation coefficient pi = (ai bi) (at)-* {bf)-) between the stream 

functions in the top and bottom layer for mode i. 
We note that if the truncated system contains arbitrarily large wavenumbers 

(kkm -+ CQ) then the conditions Qi, Ri > 0 restrict p1 and pz to positive values. In  
this circumstance it can easily be shown that Pi assumes only positive values, so 
that the stream functions in the two layers are positively correlated a t  all 
wavenumbers. 

If p1,p2 < 0 then the layers may be negatively correlated. Such states are 
artificial in the sense that they exist only because of the finite truncation. They 
represent the relaxation states for fluids in which the energy is initially peaked 
near kmax. As the system adjusts towards equilibrium, energy spreads towards 
lower wavenumbers, decreasing the enstrophy, and forcing a negative correlation 
between the layers to conserve potential enstrophy. For flow in bounded domains 
(kkh > 0 )  equilibrium states in which a < 0 are possible. The latter states are 
non-artificial in the sense that boundedness is a property of real flows, but they 
show no discontinuous change in any property from equilibrium states in which 
a > 0. For systems containing arbitrarily large and small scales, the conditions 
(3 .2 )  become a, p,, p2 > 0. 

We delete the subscript from ri and regard r as a continuously varying non- 
dimensional square wavenumber, with the value r = 1 + S corresponding to 
motion a t  the internal Rossby radius of deformation. In  the two-layer system, the 
radius of deformation constitutes an important dividing scale. At scales of 
motion large compared with r = 1,6 the kinetic-energy spectra (per unit depth) 
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of the two layers are nearly equal and assume the same general form as the 
equilibrium spectrum (2 .5 )  for single-layer flow: 

r*KTOi:ri[a+ (1 +6)6-1PlP2(a+P~+Pg)-1r]-1. (3 .5)  

The kinetic-energy spectra also approach the single-layer limit at sufficiently 
small scales, where, for r > 1 + 8, 

r*K,Oi3 r*(a+/31r)-1[i +6Pl/(ar+P2r2/6)] ( 3 . 6 ~ )  

and rtK, Oi: 6r*(a+~zr/S)-1[1. +Pz/(ar+Plr2)1. (3 .6b)  

As r becomes large, their ratio, top to bottom, tends to the value 92“ = p2/p16z. 
The spectrum of the available potential energy approaches zero at  either extreme. 
For r 4 1,6 the correlation coefficient between layers is nearly unity, but it falls 
abruptly towards zero near where r equals the larger of 6(kZW)* and (&?“)-a. In  
cases of interest, the latter expressions are both of order unity. Thus equilibrium 
two-layer flow resembles a single barotropic layer on scales larger than the radius 
of deformation and two uncorrelated single layers on smaller scales. 

In  extensive numerical experiments, Rhines (1975b) has studied the evolution 
of the two-layer model from random initial conditions. He finds that large-scale 
baroclinic currents decay rapidly to deformation-scale eddies, which quickly 
become barotropic and then gradually increase their scale. Rhines notes that the 
barotropic final state may be deduced by qualitative arguments based on 
potential-vorticity conservation for a variety of initial conditions. He also points 
out that the tendency towards grave horizontal and vertical modes is anticipated 
by Charney’s (1971) theory of geostrophic turbulence. 

If 6 = 1 and /3 = PI = PZ then we are examining the algebraically simple case of 
‘equivalent layers’. If /3 > 0 then the realizability conditions (3 .2 )  become 
simply a > -/3rmin. Assume rmin < 1 and rmax@ 1. The two kinetic-energy 
spectra are identical and their shape is controlled by the ratio @/a. If 

0 < P/a < 1/rmax 

then the spectra are increasing with r at all wavenumbers, but, if 

lP/al > l / r m i n B  1, 

the spectra are red. For l /rmax .= P/a < l / rmin the spectra have a maximum 
between rmin and rmax. The ratio of available potential to total kinetic energy is 

[1 + r +P(r  + 2 )  (a +Pr)-l]-l  < 1, 

which peaks near r = J2 at a value of 0.24 for Il/al> 1. 
The ocean and atmosphere are strongly forced fluids whose high-wavenumber 

cut-offs are not arbitrarily chosen limits, but are determined by the ‘viscosity’ 
itself. Nevertheless, the model equations contain realistic turbulent interaction 
terms, and we may expect even strongly viscous flow to exhibit some of the 
characteristics of the model inviscid equilibrium if the turbulent interactions are 
efficient in moving the system towards the state of maximum entropy. In  any 
case, the equilibrium states may indicate the direction in which the interactioiis 
will tend t o  drive the statistics of real flows. Figure 1 presents the equilibrium 
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r 

FIGURES 1 (a-d). For legend see facing page. 
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statistical variables in model two-layer fluids corresponding to the ocean and 
atmosphere. We choose 6 = 3 for the ocean and 6 = 1 for the troposphere. The 
‘inverse temperatures ’ a, ,dl and p2 are chosen to make 9Zm = 10, and the ratios 
PI/. and pZ/a are near the minimum required to make the kinetic-energy spectra 
red a t  rmin = The secondary maximum in the theoretical oceanic spectrum 
is a novel consequence of the unequal layer depths and vertical energy densities. 

4. Bottom topography and variable rotation rate 
We now generalize (1.1) and (1.2) to cases where the lower bounding surface is 

not flat and the Coriolis parameterf varies linearly in the northward direction y 
by a small fraction of its average value in the flow region. For model (1 .1)  the 
new equation of motion is 

a</:lat+J(1CP,c+H(x,Yjl)) = 0, (4.1) 

Mx, Y )  = f o  4x9 Y ) P .  

where H ( X ? Y )  = h(x,Y)+p*(Y-Yo) 

and 

Here, D is the mean depth of the fluid, d(x,  y )  is the elevation of the bottom above 
its average level (assumed small compared with D),  f,, is the value off at  y = yo, 
and P* = df/dy at y = yo, 

Expanding H ( x ,  y )  in terms of the eigenfunctions, H ( x ,  y )  = z Hiq5i(x, y), we 

obtain for the invariants of the motion in terms of the general coefficients 
i 

Z x f  = Eo (4.2a) 
i 

and 

Methods similar to those used previously then give 

Pi(xi) = n-t(a +prC:)+ exp { - (a +,&:) (xi - (xi))2) 

( x i )  = pki(a + pk:)-l Hi. 

(4.3) 

(4.4) 

as a first approximation to  the distribution of xi, with 

Again, a and pare constants determined from Eo and 2, subject to the condition 
that a + pk; > 0 for every i. 

FIGURE 1. (a) The kinetic-energy spectra per unit depth (solid lines, arbitrary scale) and the 
spectrum of the available potential energy (dashed line, different arbitrary scale) for 
equilibrium two-layer flow in the case where S = $, Brn = 10 and ~ J C C  = lo3. The kilometre 
scale gives the corresponding inverse wavenumber in an ocean with a radius of deformation 
of 35km, the value on the earth in mid-latitude. ( b )  The same as (a)  except S = 1. The 
kilometre scale gives the inverse wavenumber in an atmosphere with radius of deformation 
equal to 450 km. (c )  The correlation coefficient pi (solid line, left scale) between layers and 
the ratio of available potential to total kinetic energy (dashed line, right scale) for the case 
of (a) .  (d) The same as fc) except 6 = 1. 
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Equations (4.3) and (4.4) are a generalization of (2.4), which is recovered when 
Hi = 0. In  the general case, the average stream function is, according to (4.4), an 
energy-weighted version of the topographic field. If the flow contains arbitrarily 
small scales of motion then /3 > 0 and the correlation between stream function 
and topography is positive at all wavenumbers (anticyclonic flow over seamounts, 
vorticity decreasing northwards). If /3 < 0 then the correlation is negative a t  all 
wavenumbers. Again, the latter states are the relaxation states for fluids in 
which the energy is initially peaked near kmax. As the energy spreads towards 
lower wavenumbers, the correlation between xi and Hi must become negative 
to  offset the resulting decrease in the total enstrophy For all p + 0 the energy, 

(xt) = B(a+pkt ) - l+p21c~(a+pkl ) -2H~,  (4.5) 

is enhanced on topographic scales. The second term in (4.5) represents the energy 
in the average contour current. The transient energy spectrum has the same 
functional form as in the case of no topography. In  strongly damped numerical 
simulations of (4.1) Holloway & Hendershott (1974) report a positive correlation 
between topography and stream function and a topographic enhancement of the 
energy spectrum similar to (4.5). For large-scale topography, Rhines (19753) has 
emphasized the appearance of contour currents from random initial conditions. 

The average stream function (4.4) is an exact steady solution to the truncated 
spectral equations. It is also the spectral truncation of an exact steady solution 
of the untruncated equations (4.1) satisfying 

(4.6) V2$+ H = (alp) $. 

An important special case is that of beta-plane flow, H = p*(y -yo), in a bounded 
rectangular ocean, x1 ,< x ,< x2, y1 < y < y2. Fofonoff (1954) considered the case 
where kginP/a < 1, in which the interior flow is a uniform westward current with 
return eastward flow occurring in side-wall boundary layers of thickness (PIE)*. 
The location of the boundary layers is controlled by yo. If yo = i ( y l  + y2), then the 
flow is symmetric, with return currents of equal strength at  the north and south 
boundaries. If yo = y1 then there is no southern boundary layer. Thus the 
equilibrium average state depends on the choice of yo: at equilibrum, 

no matter what its initial value. For large P/a, and especially a z - p k m i n  < 0, 
the regions of eastward flow need not be small. In such cases the integral con- 
straints on the motion trap energy in scales too large to resolve the thin boundary 
layers. Bretherton & Haidvogel(l976) obtain steady solutions of the form (4.4) by 
quite a different approach, and also note the connexion with Fofonoff 's problem. 

Actual ocean bottom topography is distinctly inhomogeneous, ranging from 
extremely rugged regions to smooth abyssal plains, with hi - k-4 perhaps repre- 
sentative. However, for all hi decreasing with ki (and p > 0) ,  both the proportion 
of energy in the average current and the correlation between xi and hi decrease 
with increasing ki at equilibrium. For realistic non-equilibrium flow, the same 
conclusions need not apply. We anticipate that the largest scales of motion, 
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which are perhaps most subject to external forcing, may also require the longest 
adjustment times. 

In  the two-layer system, the effects of topography and variable rotation rate 
are non-equivalent in the sense that topography alters the expression for potential 
vorticity in the lower layer only. The governing equations are (1.2) with 

Cl = V2$1 + -F;($2 - $1) + P*(Y - Yo) 

and c 2  = V211.2+~2(11.1-11.2)+P*(y-Y0)+h. 

Let h = Z h i h  P*(Y-Y,) = & h W .  
i a 

Then the joint distribution of ai and bi is Pi(ai - (ai), bi - (bi)), where gi is given 
by (3.1)7 and the new average flow field consists of both a topographic part and 
a P*-part: 

and (b i )  = X(r i ) { [a+~ , ( r i+1) ]h i+[cc+P1(r i+1+s ) ]h t } ,  

with X ( r )  = (P2/-F2s)r(r+l+S)[&R-P2]-1. 

For large IP1/al (red kinetic-energy spectra), the ratio of upper to lower mean 
topographic flow is nearly unity for r < 1 and decreases sharply at r = 1. Thus 
bottom topography affects the equilibrium upper-layer flow only on scales large 
compared with the radius of deformation. Smaller-scale topography traps energy 
preferentially in the lower layer. For red spectra, the ratio a:/b; is nearly unity 
and both layers are equally affected by the variable rotation rate. 

(.i> = W-i) {Plh + 1431 ah32  + PlPi + 1 + 811 

5. Conclusions 
We have derived the equilibrium statistical states towards which spectrally 

truncated representations of the equations of motion would evolve in the absence 
of forcing and viscosity. The theory gives no information about the speed of 
approach to  inviscid equilibrium, which may depend both on the initial conditions 
and on the statistics being considered. We anticipate that waves (which occur in 
our systems if topography or variable rotation is present) will complicate the 
adjustment. Numerical experiments by Rlzines (19754 have shown that, on 
scales where the Rossby-wave phase speed approaches the r.m.s. particle speed, 
the transfer of energy by turbulent interactions is inhibited. Holloway & 
Hendershott (1975) have demonstrated such suppression of turbulence by waves 
in the context of a turbulence closure approximation. In  both the problem of 
approach to inviscid equilibrium and the problem with forcing and dissipation, 
some form of turbulence closure theory is required. A promising avenue of under- 
standing is the study of the class of closures (see, for example, Orszag 1970) for 
which, in the absence of forcing and dissipation, the equilibrium states derived 
above are the stable stationary solutions. 

Our research is supported by the International Decade of Ocean Exploration 
of the National Science Foundation as a part of the Mid-ocean Dynamics 
Experiment (MODE). 
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Appendix A 
The expression sought is 

where E and Z are given by (2.1). Let w,(E, 2) = E-*G(k:E -2). Then the above 
integral may be expressed exactly as 

Now define 
f , (E,Z)  = d(a+/3k;)*wi(E,Z)exp( -aE-/32}, 

such that ~/orndEdZfi = 1. 

At this point, a and /3 can be any two constants such that the above integrals 
converge. Then 

n-2 

/IOm ...s ["li"dEidZifi(Ei,Zi) 1 Pn(xn) = C'exp ( - aE, - PZ,) 
i= 1 

n-2 

i=l 
xfn-l(EO-E,- E Ei,zo-Zn- i= C 1 Zi) 

= C' exp ( - aE, - /3Zn)f(Eo - En, 2, - Zn) ,  

wheref(X, Y )  is the same as the joint distribution for the sums of independent 
random variables 

x = x,+x,+ ... +x,-, 
and Y = y ,+Y,+ . . .  +Yn-l 

with joint distribution functionsfi(Xi, &). For large n and small Gi the central 
limit theorem applies and (2.2) results when a and /3 are chosen to be the solutions 
of (2.3). The above is essentially the method of Khinchin (1949, pp. 70-110). 
Further details are given in Salmon (1975). 

Appendix B 
This appendix shows that there exists a unique solution (a, /3) to 

+C(a+pk?)-'= E 0 (B l a )  

and + kq(a + /3kf)-l = k2 * E 0 ,  (B 1b) 

i 

z 

subject to the constraint a + p k ;  > 0 for every i, provided that kLin < k$ < PmaX. 
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The system (B 1)  is equivalent to 

-a j /aa  = E,, -aflap = z,, (B 2% b )  

where 

Thus f (a,P) is defined on the infinite sector R,, of the a,/3 plane in which 
a +BE; > 0 for every i. By direct computation, one can verify that on R,, 

-fa > 0, - f f i  > 0) f a a f p ~ - ( f a ~ ) 2  > 0. (B 3 a-c) 

We can therefore define curvilinear co-ordinates on R,, by 

Y =ffilfa, 6 = -f a.  

In  terms of the curvilinear co-ordinates, the region Rap is described by 
2 Em, < y < 0 < s < 00, 

and (B 2) become 

which always has a unique solution in Rap because, from (B 3)) 

throughout Rap. 

S =  E,, y = h$, 

a ( ~ , S ) / a ( a ,  P )  = [faaffip- ( fa~)~l / fa  < 0 
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